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Abstract 20 

Mitochondria form a network in the cell that rapidly changes through fission, fusion, and motility. 21 
This four-dimensional (4D, x,y,z,time) temporal network has only recently been made accessible 22 
through advanced imaging methods such as lattice light-sheet microscopy. Quantitative analysis 23 
tools for the resulting datasets however have been lacking. Here we present MitoTNT, the first-24 
in-class software for Mitochondrial Temporal Network Tracking in 4D live-cell fluorescence 25 
microscopy data. MitoTNT uses spatial proximity and network topology to compute an optimal 26 
tracking. Tracking is >90% accurate in dynamic spatial mitochondria simulations and are in 27 
agreement with published motility results in vitro.  Using MitoTNT, we reveal correlated 28 
mitochondrial movement patterns, local fission and fusion fingerprints, asymmetric fission and 29 
fusion dynamics, cross-network transport patterns, and network-level responses to 30 
pharmacological manipulations. MitoTNT is implemented in python with a JupyterLab interface. 31 
The extendable and user-friendly design aims at making temporal network tracking accessible to 32 
the wider mitochondria community.  33 
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Introduction 34 

Mitochondria are membranous organelles in cells that provide up to 90% of the cellular energy, 35 
and are thus fundamental to almost all processes of life from inheriting genetic information to 36 
retaining molecular order1,2. In mitochondrial diseases, the function of mitochondria is impacted, 37 
leading to diminished energy production and cell and organ dysfunction. This is particularly true 38 
in high-energy demand organs such as the muscles, heart, and brain. A vast array of diseases 39 
such as metabolic disorders3, developmental disabilities4, epilepsy5, neurodegenerative disease6–40 
8, cancer2,9, and aging10,11 may result from mitochondrial dysfunction. Progress in developing 41 
pharmacological modulation of mitochondria has been limited, potentially due to the current 42 
difficulty in quantitatively measuring the behavior of the cellular mitochondrial network with 43 
sufficient spatial and temporal detail.  44 
Measuring the dynamic mitochondrial network is difficult. Far from the solitary kidney bean shapes 45 
depicted in many textbooks, interconnected somatic mitochondrial tubules fill all three spatial 46 
dimensions and undergo continuous changes in the fourth dimension of time through active and 47 
passive motion, fission, and fusion2. Conventional fluorescence microscopy technology has been 48 
inadequate to simultaneously capture the full spectrum of both mitochondrial morphology and 49 
dynamics in all four dimensions (4D). The advent of high-framerate low-phototoxicity fluorescence 50 
microscopes such as lattice light-sheet microscopy12,13 (LLSM) has now made the detailed 4D 51 
characterization of temporal mitochondrial networks possible. Quantitative analysis of this data 52 
remains a problem however. 53 
The majority of existing quantitative analysis software was designed for two-dimensional (2D) 54 
fluorescence images of mitochondria (MyToe14, MitoSPT15, QuoVadoPro16). For three-55 
dimensional (3D) fluorescence images, MitoGraph17–19 is a unique tool for the segmentation and 56 
quantitation of 3D mitochondrial network morphology, yet lacks temporal analysis. The software 57 
packages TrackMate20 and Mitometer21 can operate on 4D time-lapse fluorescence microscopy 58 
data by performing center-of-mass tracking. However, the abstraction of every mitochondrial 59 
fragment as single object poses limitations for accurate sub-fragment level information and 60 
network tracking. 61 
Here we present MitoTNT, the first-in-class software for the tracking of the 4D mitochondrial 62 
network. MitoTNT builds on the established tools MitoGraph17–19 for segmentation and 63 
ChimeraX22,23 for intuitive visualization. Mitochondria tracking is achieved by solving a linear 64 
assignment problem (LAP) that utilizes both spatial and network topology information. Tracking 65 
accuracy was validated both in-silico and in-vitro. A reaction-diffusion simulation of the 66 
mitochondrial network was created to provide in-silico ground truth for testing. In vitro data of 67 
mitochondrial networks was created using LLSM in human induced pluripotent stem cells 68 
(hiPSCs). We demonstrate that MitoTNT’s high-resolution mitochondria network tracking is 69 
accurate and provides an unprecedented level of detail for mitochondria motility measurement, 70 
fission/fusion event detection, and temporal network analysis.  71 
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Results 72 

Preserved topology enables 4D mitochondrial network tracking 73 
Our first aim was to confirm that high-framerate fluorescence imaging of the 4D mitochondrial 74 
network retains enough information for reliable tracking. The somatic mitochondrial networks of 75 
tall cuboid hiPSCs were used as a model system (Fig. 1a). LLSM was used to acquire imaging 76 
volumes at 3.2s per volume. After deskewing and deconvolution, individual cells were 77 
computationally segmented based on the plasma membrane signal (Fig. 1b and Supplementary 78 
Fig. 1). MitoGraph17–19 was then used to segment the mitochondrial network for consecutive 79 
imaging volumes (Fig. 1c,d). At 3.2s frame interval, we observed that changes of the 4D 80 
mitochondrial network are predominantly limited to small movements and remodeling events while 81 
the overall network structure appeared to be conserved from frame to frame (Fig. 1e). We then 82 
quantified this conservation at several acquisition frame rates by applying the scale-invariant 83 
feature transform (SIFT)24. For small time intervals, SIFT was able to correctly assign network 84 
features between frames (Fig. 1f top), but failed for longer time intervals (Fig. 1f bottom). We 85 
found that at high volumetric frame rates, mitochondrial network topology is preserved (Fig. 1g). 86 
In the next section, we aim to use this conserved temporal information to achieve 4D mitochondrial 87 
network tracking. 88 
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 89 
Figure 1 | Mitochondrial network topology is preserved in high-framerate 4D fluorescence 90 
microscopy data. a, Representative 4D (3D+time) lattice light-sheet microscopy data of a hiPSC 91 
colony labeled with MitoTracker (mitochondria, green) and expressing CAAX-RFP (plasma 92 
membrane, red). b, Individual cells in the colony are segmented based on the plasma membrane 93 
marker. c, Mitochondria fluorescence signal in a single cell is segmented using MitoGraph17–19. 94 
d, Mitochondrial network skeleton dynamics over 5 min every 6.4s (time red to purple). e, 95 
Mitochondrial fluorescence density and segmented network skeleton are overlaid and shown for 96 
frame numbers 0,1,2,20 at frame interval 3.2s. f, Scale-invariant feature transform (SIFT) maps 97 
image features for two frames separated by 3.2s (top), and 64s (bottom). g, Pixel deviation 98 
between SIFT-mapped feature locations at different time intervals. 99 
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4D mitochondrial network tracking using spatial and topological optimization 100 
We formulated 4D mitochondrial temporal network tracking as an optimization problem that uses 101 
information preserved in consecutive frames. We chose equally spaced nodes along the 102 
mitochondria skeleton as the fundamental units that are tracked (Fig. 2a). Such a discretization 103 
of the mitochondrial network can be automatically calculated using the software MitoGraph17–19. 104 
In our previous observation, we found that spatial proximity (Fig. 2b) and network topology (Fig. 105 
2c) are conserved characteristics that likely allow temporal tracking. At high framerates, 106 
mitochondrial motion is limited, and the nodes located close to the current position in the next 107 
frame tend to be the correct candidates. However, this distance metric quickly decorrelates in 108 
dense network regions. Similarly, the mitochondrial network topology remains relatively stable at 109 
high framerates and only decorrelates at high fission/fusion rates of the network. We developed 110 
a topological dissimilarity score to capture this parameter. The score is computed using a fast 111 
alignment-based graph comparison method (see Supplementary Note 4) to measure how 112 
different the network topologies around any two candidate nodes are. Nodes embedded in a 113 
similar local network topology are more likely to be linked in time. 114 
Similar to established particle/object tracking methods20,21,25, we formulated the network tracking 115 
problem as a linear assignment problem (LAP) that solves for the optimal node assignment 116 
through constraints (Fig. 2d). First, the distances between nodes in two consecutive frames T, 117 
T+1 were computed as a pairwise distance matrix. Next, local distance thresholds were estimated 118 
for each node at frame T (see Supplementary Note 3). Nodes located within these thresholds at 119 
frame T+1 were considered candidate nodes while those beyond were ignored. Then, network 120 
topology was incorporated using the topological dissimilarity score for each candidate node pair 121 
(node at T and candidate node at T+1). The distance and topology costs were then combined 122 
with equal weights. Mitochondrial dynamics and imaging artifacts often contribute to fluctuations 123 
in the number of skeleton nodes. To account for this fluctuation, we added additional constraints 124 
to the final cost matrix (see Supplementary Note 3), thereby permitting three options for a temporal 125 
assignment: 1) link two nodes between frames, 2) terminate a node in the current frame, or 3) 126 
initiate a new node in the next frame. Finally, the frame-to-frame tracking result is given as the 127 
optimal node assignment to the LAP by minimizing the global sum of the final cost matrix. Gap 128 
closing is performed at the end of frame-to-frame tracking in order to connect prematurely 129 
terminated node tracks, using the same cost terms (Supplementary Note 5). 130 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 17, 2022. ; https://doi.org/10.1101/2022.08.16.504049doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.16.504049


 

6 

 131 
Figure 2 | Algorithm design and in-silico validation of 4D mitochondria network tracking. 132 
a, Discretized nodes along the segmented mitochondria skeleton serve as the basis for network 133 
tracking. Cloud: fluorescence density; cylinder: segmented skeleton; sphere: skeleton node. b-c, 134 
Cost terms used for the linear assignment problem (LAP) formulation of node tracking. Spatial 135 
proximity is measured as distances between nodes within two consecutive frames. Topology cost 136 
is computed using a graph comparison that assigns low cost for similar local topology. d, LAP 137 
formulation of node tracking for the mitochondrial network. From left to right: 1) pairwise distance 138 
matrix for nodes at frames T and T+1; 2) thresholds to eliminate nodes too far to be tracked; 3) 139 
spatial separation and network topology constraints; 4) the solution to the LAP yields the tracking 140 
results as linked node pairs, along with terminated and initiated nodes. e, Three consecutive 141 
frames of a reaction-diffusion mitochondrial network simulation with representative fusion (green) 142 
and fission (red) events. f, Temporal network tracking for the simulated mitochondria for two 143 
consecutive timepoints (blue skeleton: frame 1, red skeleton: frame 2, black arrows: node 144 
tracking). g, magnification of example in-silico fusion (green triangle) and fission (red triangle) 145 
events in f). h, Accuracy of in-silico tracking compared to node mean squared displacement 146 
(MSD), N=10 simulations. MSD relates to frame as 𝑀𝑆𝐷 = 6𝐷𝜏. Commonly achievable frame 147 
rates with LLSM highlighted in yellow. 148 
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In-silico validation of MitoTNT through spatial reaction-diffusion simulations of 149 
mitochondrial networks 150 
Our next aim was to validate our tracking algorithm using synthetic data as ground-truth. A meso-151 
scale reaction-diffusion simulation was developed to model temporal mitochondrial networks (Fig. 152 
2e). We used the ReaDDy26,27 framework to model mitochondria as connected mitochondrial 153 
skeleton particles that were held together by bond, angle, and repulsion potentials. Mitochondrial 154 
motion was assumed to be diffusive only. The spatial distribution and density of the in-silico 155 
mitochondrial network was modeled after in-vitro imaged mitochondrial networks that we found to 156 
resemble a mixture of Erdös–Rényi random networks (Supplementary Fig. 4a-b). Fission and 157 
fusion were included as structural reactions such that fission reactions remove a bond between 158 
skeleton nodes and fusion reactions create a bond between unbound skeleton nodes. 159 
Experimental observations of fission and fusion rates were adjusted through iterative sampling of 160 
fission and fusion reaction rates (see Supplementary Note 5).  161 
Tracking accuracy of our algorithm was subsequently tested using this simulation as ground-truth. 162 
We found that each fragment of the mitochondrial network, as well as fission and fusion events 163 
are tracked faithfully with few mis-assignments (See Fig. 2f,g). We found that the distance 164 
constraint alone results in relatively poor tracking performance (Fig. 2h, red curve) likely due to 165 
ambiguous assignments in the dense mitochondrial network. In contrast, when paired with the 166 
topology constraint, consistently reliable tracking was achieved with fission and fusion switched 167 
off (95-100% accuracy, Fig. 2h green) or on (> 90% accuracy, Fig. 2h blue) in the regime relevant 168 
for LLSM (shaded region, see Supplementary Note 6).  169 
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 170 
Figure 3 | In-vitro validation and evaluation of 4D mitochondria network tracking. a, LLSM 171 
volumetric snapshot of a segmented cell. Green: mitochondrial network. Red: plasma membrane. 172 
b, Zoom-in on the mitochondrial network in a). Fluorescence signal and segmented network 173 
skeleton are overlaid for two consecutive frames (blue: 0s, red: 3.2s). c, Tracking of the network 174 
nodes for the two frames in b) visualized by black arrows. d, Zoom-in to a representative region 175 
(box) in c) tracked over 12.8s. The skeletons are colored in blue, red, green, yellow, and purple 176 
in the order of time. See also Movie 1. e-g, Top: Mitochondrial nodes are colored by diffusivity at 177 
node, segment, or fragment levels from high (red) to low (blue) diffusivity. Bottom left: Distribution 178 
of diffusivity values, bottom right: linking vectors compared to a fixed reference vector. h-i, MSD 179 
curve and motility distribution for nodes h) and fragments i).  180 
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In-vitro validation and evaluation of 4D mitochondrial network tracking 181 
We next validated our tracking algorithm on LLSM data of 4D mitochondrial networks in cultured 182 
cells. CAAX-RFP hiPSC colonies were labeled with MitoTracker Green and imaged at 3.2 183 
seconds per volumetric frame for a duration of 5 minutes. Cells and mitochondrial network were 184 
segmented (Fig. 3a-b) and MitoTNT used to track the network (Fig. 3c and Movie 1). Careful 185 
examination of the tracking results showed that the mitochondrial network skeleton is faithfully 186 
tracked over time (see Fig. 3d). Depending on the level of granularity required for the biological 187 
question of interest, tracks for the nodes (Fig. 3e) that belong to the same segment (Fig. 3f), or 188 
the same fragment (Fig. 3g) can be obtained. We found that somatic mitochondrial motility is 189 
diffusive not only on the fragment-level but also on the mitochondrial skeleton node-level (Fig. 3h, 190 
3i, S6). We observed, that the high-resolution tracking on the level of mitochondrial skeleton 191 
nodes illustrates that mitochondrial motility and dynamics exhibit complex spatial and temporal 192 
details and a heterogeneity in speed and orientation (Fig 3e-g, lower panel). Finally, we compared 193 
our high-resolution tracking results to previously published values of lower-resolution center-of-194 
mass tracking. We found that our average mitochondrial network fragment motility for hiPSC 195 
mitochondria (0.06±0.03 μm/s) is in good agreement with motility data from 3D spheroids 196 
(0.03µm/s) and 2D adherent cells (0.08µm/s) (Supplementary Figure 6). 197 
 198 
High-resolution mitochondria tracking reveals heterogeneous sub-fragment motility and 199 
correlated movement patterns 200 
We observed individual fragments displaying a wide range of movement patterns that include 201 
translational, and rotational components. Branches of the same mitochondrial fragment can 202 
simultaneously undergo motions with different orientations and modes. Here we showcased three 203 
examples: 1) a small fragment exhibiting twisting motion (Fig. 4a), 2) a medium-sized fragment 204 
exhibiting concentric inward motion (Fig. 4b), and 3) a large fragment exhibiting convolution of 205 
different motility patterns (Fig. 4c). 206 
To further investigate network branch motility, we correlated tracking vectors between adjacent 207 
nodes on the same segment, and between the same node at consecutive frames. We observed 208 
that spatial correlation along the segment skeleton is predominantly positive (Fig. 4d) 209 
demonstrating a concerted motion. In contrast, temporal correlation between frames is 210 
predominantly zero (random motion) to slightly negative (oscillating motion), while interspersed 211 
with short period of positive values (directional motion) (Fig. 4e). This data confirms that 212 
mitochondrial branches move as a unit, but in a relatively random manner (Fig. 4f, control).  213 
We employed the ATP synthase inhibitor oligomycin that induces mitochondrial fragmentation28 214 
to investigate if our motion correlation findings are dependent upon network morphologies (Fig. 215 
4g,h). We observed that while temporal motion correlation remains similar, the spatial motion 216 
correlation dropped. Furthermore, we observed that drug induced fragments move considerably 217 
faster compared to control (Fig. 4i). 218 
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 219 
Figure 4. | Mitochondrial network motility analysis. a-c, Tracking of three representative 220 
mitochondrial network fragments for 32 seconds (time blue to red). a, A small fragment displays 221 
twisting motion. b, A medium-size fragment displays inward motion. c, A large fragment displays 222 
complex motion patterns. d, spatial tracking vector correlations between neighboring nodes. Left: 223 
illustration. Right: Heatmap of vector correlation for segment nodes (columns) at different 224 
timepoints (rows). e, temporal tracking vector correlation for the same node at consecutive 225 
frames. Left: illustration. Right: Heatmap of correlation values for segment nodes (columns) at 226 
different timepoints (rows). f, Violin plot of spatial (red) and temporal (blue) correlation values 227 
between control and oligomycin-treated cells. g-h, Spatial structure of somatic mitochondrial 228 
network overlayed with mitochondria segment diffusivity in control and oligomycin-treated cells. i, 229 
Kernel-smoothed distribution of segment diffusivity for 2552 segments in control cells (blue), and 230 
2376 segments in oligomycin-treated cells (red).  231 
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Mitochondrial network tracking reveals local fission and fusion fingerprints and 232 
asymmetric fission and fusion preferences 233 
Our high-resolution network tracking allows us to precisely locate fission and fusion events in the 234 
mitochondrial network with sub-fragment spatial resolution and high temporal fidelity (Figs. 5a 235 
S5). To provide mechanistic insights into network remodeling, we compared the motility between 236 
randomly selected nodes and nodes undergoing fission and fusion. We observed that diffusivity 237 
for nodes undergoing fission and fusion is nearly two times the diffusivity for randomly chosen 238 
nodes (Fig. 5b). This data suggests that mitochondrial fission and fusion remodeling might involve 239 
local rearrangements at the event site as suggested previously29. 240 
Based on node tracking, each individual mitochondrial network fragment can be tracked (Fig. 5c) 241 
and the selectivity of fission and fusion events recorded in terms of fragment size. For each fission 242 
or fusion event, the normalized network fragment size difference was computed, with values close 243 
to 0 corresponding to a symmetric fission/fusion (Fig. 5d, left), and values close to 1 indicating 244 
fragments of drastically different sizes (asymmetric fission/fusion) (Fig. 5d, right). We found that 245 
there is a significant portion of asymmetric fission/fusion events (Fig. 5d, blue). Asymmetric 246 
fission/fusion events between large healthy mitochondria and small unhealthy mitochondria have 247 
been proposed to separate dysfunctional mitochondria targeted for mitophagy, or rescue 248 
damaged mitochondria by supplying essential materials30,31. We hypothesized that this dynamic 249 
selectivity bias is facilitated by the cytoskeleton. In cells treated with 10 μM of nocodazole to 250 
disrupt microtubules, we observed a decrease in asymmetric fission/fusion (Fig. 5d, green). This 251 
observation points to a potential role of cytoskeleton in mediating selective fission/fusion as has 252 
previously been suggested32. 253 
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 254 
Figure 5. | Mitochondrial network remodeling analysis. a, Representative snapshots of 255 
tracked fusion event (left), and fission event (right). b, Node diffusivity is significantly lower for 256 
randomly selected nodes (blue) as compared to nodes undergoing fusion (green) and fission 257 
(red). Student’s t-test used, and p-values are 6.565E-25, and 1.237E-24, for random vs. fusion 258 
nodes and random vs. fission nodes, respectively. c, Representative tracking of mitochondrial 259 
fragments in hiPSCs over three timepoints (one color per fragment) d, Analysis of fission/fusion 260 
preferences with respect to fragment size shows that asymmetric fission/fusion events are more 261 
likely to occur. This pattern is less pronounced but preserved in nocodazole-treated hiPSCs with 262 
disrupted microtubules.  263 
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4D mitochondrial network tracking shows drug-dependent network remodeling rates, 264 
network transport, and network resiliency 265 
4D mitochondrial network tracking allowed us to investigate the mitochondrial network from the 266 
perspective of a graph temporal network (Fig. 6a). Specifically, it is now possible to quantify a) 267 
remodeling of the mitochondrial network, b) flux across the network as it moves spatially and is 268 
being remodeled, and c) resiliency of the network to damage. 269 
To quantify mitochondrial network remodeling, the mean degree difference (DD) and the temporal 270 
intersection (TI) were calculated. A low DD indicates a low rate of nodes breaking off from their 271 
neighbors and reconnecting with other nodes. Inversely, A low TI implies that the network is very 272 
dynamic and does undergo drastic remodeling. We found that control hiPSCs showed a low DD 273 
of 0.28 (Fig. 6b) and a high TI 0.58 (Fig. 6c), indicating that the network is relatively stable with 274 
relatively little turnover. In contrast, when treated with oligomycin, we observed a 0.52 DD and 275 
0.44 TI indicating a high level of network remodeling. We hypothesized that cytoskeleton 276 
influences drive network remodeling events. However, treatment with nocodazole did not induce 277 
drastic changes in neither metric for network remodeling (Fig. 6b,c). 278 
To quantify transport across the 4D mitochondrial network, we simulated a random walk on the 279 
tracked temporal mitochondrial networks and measured the process in the form of network 280 
reachability (see Supplementary Note 9). Reachability for a node indicates how easily can 281 
material/information reach this node from various parts of the overall network, via the time-282 
respecting paths defined by the network tracking. In control conditions, we observed that almost 283 
every part of the network was in reach within ~120s (Fig. 6d) and that network nodes showed a 284 
low average reachability of 0.18 (Fig. 6f). Comparatively higher reachability was reached with 285 
nocodazole (0.29), mdivi-1 (0.35), and in particular with oligomycin (0.64). 286 
To quantify mitochondrial network resiliency, mitochondrial node reachability was calculated in 287 
networks where the top 5% of highest connected nodes were removed, as measured by 288 
betweenness of centrality. We observed that the global reachability for a large number of nodes 289 
was significantly reduced, particularly those isolated from the larger well-connected fragments. 290 
This observation suggests certain central nodes may be essential to the material and information 291 
transport within the cellular mitochondrial network (Fig. 6f). To quantify the relationship between 292 
network motility, remodeling, and reachability, we calculated the Pearson’s correlation coefficients 293 
between the mean normalized global reachability, the mean node displacement (Fig. 6g), and the 294 
node TI (Fig. 6h). The positive correlation with node displacement, and negative correlation with 295 
TI suggests that long-range movements and enhanced network remodeling both lead to quicker 296 
percolation through the network. 297 
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 298 
Figure 6 | Temporal characteristics of mitochondrial network remodeling, flux, and damage 299 
resilience. a, Temporal networks display node and edge dynamics that have an influence on 300 
network transport and resilience (newly added or removed nodes/edges highlighted in red). b, 301 
Mean degree difference between control, oligomycin, and nocodazole. c, Temporal intersection 302 
between control, oligomycin, and nocodazole. d, Global network reachability in a representative 303 
somatic mitochondrial network depicted as a color gradient (dark: high reachability, light: low 304 
reachability). e, Global network reachability where the top 5% highest betweenness-centrality 305 
nodes were removed. f, Mean normalized global reachability in different drug induced conditions. 306 
Triplets indicate no nodes removed (left), 5% random nodes removed (middle), and 5% most 307 
connected nodes removed (right). g,h, Correlation of network reachability with node MSD and 308 
temporal intersection. 309 
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Discussion 310 

Here we presented MitoTNT, the first-in-class software for mitochondrial temporal network 311 
tracking in 4D volumetric fluorescence microscopy data. Recent advances in low phototoxicity 312 
volumetric live cell imaging allow fast high-resolution acquisition of the somatic mitochondrial 313 
temporal network. Now, MitoTNT allows the automated tracking of this temporal network for the 314 
first time. Based on mitochondria skeleton segmentation and discretization through MitoGraph, 315 
MitoTNT solves the linking problem of discretized mitochondria skeleton nodes through time. An 316 
efficient, alignment-based graph comparison algorithm was used to capture network topology 317 
information and pair it with distance constraints for temporal linking. Tracking was validated using 318 
both in-silico and in-vitro methods. We created polymer-based spatial mitochondrial simulations 319 
that include fission and fusion reactions and are parameterized to reproduce experimental 320 
observations to quantify the tracking fidelity of our algorithm. We found that MitoTNT performs 321 
with >90% tracking accuracy on these datasets. When comparing tracking performance on 322 
experimental in-vitro datasets, we found that MitoTNT faithfully tracks the 4D mitochondrial 323 
network and reproduces experimental observables such as mitochondrial diffusivity and speed 324 
as compared to published values in the literature. Based on fluorescence microscopy and 325 
computational image segmentation, MitoTNT is limited by a microscope’s ability to record high 326 
signal to noise volumetric images of the mitochondrial network to ensure high quality 327 
segmentation. Future efforts might use advances in machine learning33–35 to improve 328 
segmentation quality and reliability.  329 
We highlighted three applications of MitoTNT: 1) high-resolution mitochondria network motility 330 
analysis, 2) node-level mitochondrial fission/fusion analysis, and 3) mitochondria temporal 331 
network analysis. For motility analysis, we showed that the previously hidden complexity of sub-332 
fragment motility can now be characterized. By coupling network sub-compartment motility with 333 
other mitochondrial fluorescence readouts (e.g., membrane potential, reactive oxygen species, 334 
mtDNA nucleoid), future studies employing network tracking will have the potential to investigate 335 
the functional aspects of mitochondrial motion in cellular physiology. 336 
For node-level fission/fusion analysis, we showed that mitochondrial fission and fusion dynamics 337 
can be registered at sub-fragment resolution. Compared to fission/fusion detection for object-338 
based tracking, our approach is highly versatile in distinguishing sub-types of mitochondrial 339 
remodeling events such as kiss-and-run events, sustained fission/fusion events, intra-fragment 340 
events, and inter-fragment events. We predict, that the high spatio-temporal resolution offered 341 
through mitochondrial network tracking will become instrumental in studying selective 342 
fission/fusion32 and mitochondrial quality control7,36. 343 
The characterization of somatic mitochondrial networks as temporal networks through MitoTNT 344 
now allows using the full power of mathematical models for graph temporal networks for 345 
mitochondria analysis, for example determining community formation within the mitochondrial 346 
network, understanding the efficiency of metabolic flow, or characterizing various cell types and 347 
states using network motifs. By combining 4D fluorescence imaging, network tracking, and 348 
functional simulation, cellular metabolic state profiling based on microscopy data can now be 349 
conducted, opening the door for high-content screening of such states. We hope that MitoTNT’s 350 
extendable software design and open-source code availability will contribute to forming a 351 
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community around mitochondria temporal network tracking and will allow the field to quickly 352 
explore the indicated directions.  353 

Methods 354 

Human induced pluripotent stem cell (hiPSC) culture 355 
All studies involving hiPSCs were performed under approval from the University of California 356 
San Diego IRB/ESCRO committee. WTC hiPSCs expressing the CAAX domain of K-ras tagged 357 
with mTagRFP-T were created at the Allen Institute for Cell Science and obtained through the 358 
UCB Cell Culture Facility. hiPSC colonies were expanded on dishes coated with growth factor-359 
reduced Matrigel (Corning, 354230) in mTeSR1 (Stemcell Technologies, 85850) containing 1% 360 
penicillin/streptomycin (Gibco, 15140122). Colonies were washed with DPBS (Gibco, 361 
14190144) and detached with accutase (Stemcell Technologies, 07920) before plating onto 362 
imaging dishes. Cultures were tested routinely for mycoplasma. 363 
 364 
Drug treatments 365 
All drugs were dissolved in DMSO to make a stock solution and diluted in PBS to prepare a 366 
100X working stock. Cells were treated with oligomycin (20uM, 2 hr), nocodazole (5 uM, 30 367 
min), and MDIVI-1 (10 uM, 12 hr) without wash.  368 
 369 
Live cell imaging 370 
CAAX-RFP hiPSCs were stained with 100 nM MitoTracker Green FM (Invitrogen, M7514) for 30 371 
min prior to imaging. Cells were plated onto 25 mm MatTek dishes and imaged in phenol-red 372 
free mTeSR1 (Stemcell Technologies, 85850) . Cells were kept under 5% CO2 and 37 degrees 373 
C. For imaging, we used Zeiss LLSM 7 with 10× N.A. 0.4 illumination objective lens and 48× 374 
N.A. 1.0 detection objective lens. We acquired images in two channels: green channel with 375 
excitation at 488nm and emission at 512nm; red channel with excitation at 561nm and emission 376 
at 597nm. For both channels we used 18% laser power and 8ms exposure. The illumination 377 
light-sheet was the Sinc3 beam with length 15 μm, thickness 650 nm and no side lobes. The 378 
volume size was 2048 x 448 x 57 pixels or 296.94 x 64.96 x 8.12 μm with isotropic pixel size 379 
145 nm after coverglass transformation. Images were saved with bit depth 16 bits. For each 380 
region, we imaged 93 frames with frame rate 3.26 s per volume for total 5 min. For LLSM data 381 
processing, we used the Lattice Lightsheet 7 Processing Module on ZEN Blue for 382 
deconvolution, deskew, and cover glass transformation. Further processing is then done using 383 
MitoGraph and MitoTNT. 384 

Code availability 385 

Please find links to documentation, source code and other information at https://www.mitotnt.org. 386 
Specifically, code, installation guide, and sample data are available at 387 
https://github.com/pylattice/mitoTNT. 388 
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