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Allelic imbalance (AI) of gene expression in het-
erozygous individuals is a hallmark of cis-genetic
regulation, revealing mechanisms underlying the
association of non-coding genetic variation with
downstream traits, as in GWAS. Most methods for
detecting AI from RNA-sequencing (RNA-seq) data
examine allelic expression per exonic SNP, which
may obscure imbalance in expression of individ-
ual isoforms. Detecting AI at the isoform level re-
quires accounting for inferential uncertainty (IU) of
expression estimates, caused by multi-mapping of
RNA-seq reads to isoforms and alleles. Swish, a
method developed previously for differential tran-
script expression accounting for IU, can be applied
in a paired setting to detect AI. However, in AI analy-
sis, most transcripts will have high IU across alleles
such that even methods like Swish will lose power.
Our proposed method, SEESAW , offers AI analy-
sis at various level of resolution, including gene
level, isoform level, and optionally aggregating iso-
forms within a gene based on their transcription
start site (TSS). This TSS-based aggregation strat-
egy strengthens the signal for transcripts that may
have high IU with respect to allelic quantification.
SEESAW is primarily designed for experiments with
multiple replicates or conditions of organisms with
the same genotype, as in an F1 cross or time course
experiments of cell lines. Additionally, we introduce
a new test for detecting AI that changes across a
continuous covariate, as in a time course experi-
ment. The SEESAW suite of methods is evaluated
both on simulated data and applied to an RNA-seq
dataset of differentiating F1 mouse osteoblasts.
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Introduction
Genome-wide association studies (GWAS) have iden-
tified tens of thousands of genomic loci that are asso-
ciated with complex traits or diseases, many of which
are located in non-coding regulatory regions [1]. One
potential mechanism by which allelic variation in these
non-coding regions may affect phenotype is that the
variants reside in transcription factor (TF) binding sites
and influence the activities of TFs and transcription.

Such a non-coding region may be referred to as a cis-
regulatory element (CRE). For individuals that are het-
erozygous at such a variant, the individual may exhibit
imbalanced allelic expression at any genes regulated
by the CRE. With RNA-sequencing (RNA-seq) experi-
ments, it is possible to observe such imbalance in allelic
expression in the sequenced reads if the same individ-
ual also is heterozygous for a variant in the exons of a
regulated gene; other mechanisms of allelic imbalance,
e.g. sequences affecting splicing or post-transcriptional
regulation, are also possible to be detected. Recent
advances in long-read technologies enable reconstruc-
tion of individual diploid genomes/transcriptomes, which
leads to more accurate analysis at allele and isoform
resolution. Analysis of allelic imbalance (AI) has the
potential for higher power for detecting cis-genetic reg-
ulation regulation than analysis of total expression, as
trans-regulatory and non-genetic effects on expression
level are controlled for when comparing the two alle-
les within samples [2–8]. Such effects controlled for in
AI analysis include both biological variability as well as
technical artifacts that may distort total expression lev-
els across genes. AI is also a powerful analysis to re-
veal cis-genetic regulation in heterozygous individuals
that varies across samples representing different condi-
tions, tissues, spatial contexts, or time periods [9–13].

AI can be isoform-specific, but due to low statistical
power and challenges to statistical inference caused by
multi-mapping, AI is often measured at the exon-level
or gene-level. If different isoforms are subject to regu-
lation from different sets of CRE, and these harbor ge-
netic variants for which the individual is heterozygous,
then such isoforms may exhibit different strength or di-
rection of AI, as has been observed recently in an anal-
ysis of genomic imprinting at isoform level [14] and in
a survey of expression in GTEx using long-read tech-
nology [15]. Being able to detect AI at the isoform level
could provide insight into mechanisms of complex traits
and disease. One challenge is that AI can only be ob-
served when the individuals under study are heterozy-
gous at an exonic variant. Furthermore, only a subset of
reads that can be aligned or probabilistically assigned
to a transcript or gene will provide allelic information.
As described by Raghupathy et al. [16], an RNA-seq
read can fall into various categories of multi-mapping
with respect to gene, isoform, and allele, providing dif-
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ferent information for expression estimation or “quantifi-
cation” at different levels. The uncertainty in measuring
the expression level from multi-mapping is referred to
here as inferential uncertainty. When variants lie in ex-
ons that are not constitutive, reads overlapping these
exonic variants provide information for isoform-level AI.
In the other case, if exonic variants lie in constitutive ex-
ons, or in exons of dominant isoforms, AI can be effec-
tively detected by existing methods such as phASER [8]
or WASP [17], which count reads aligning to gene hap-
lotypes. WASP for example examines imbalance in the
pileup of reads mapped to the genome, after correction
for technical bias due to differential mapping rates of the
two alleles [18]. WASP can be followed up by methods
such as ASEP for statistical inference of gene-level AI
across a population of individuals that may be homozy-
gous or heterozygous for regulatory variants [19].

A subset of existing methods are able to detect cis-
genetic regulation at sub-gene resolution from short-
read RNA-seq. Paired Replicate Analysis of Allelic
Differential Splicing Events (PAIRADISE) can extract
more information about allelic exon inclusion events, by
counting reads that overlap both a exonic variant for
which a subject is heterozygous, and an informative
splice junction [20]. Within the PAIRADISE framework,
reads are mapped to personalized genomes based on
phased genotypes. PAIRADISE provides a statistical
model for detecting allele-specific splicing events, by ag-
gregating allelic exon inclusion within individuals, and
builds upon their previous method GLiMMPS to detect
splicing quantitative trait loci (QTL) across donors of all
genotypes [21]. Two potential limitations for this ap-
proach are that such an approach is not able to aggre-
gate allelic information along the length of a transcript
or from the two paired ends of a fragment, and some
cases of isoform-level AI may be missed when focusing
on reads overlapping splice junctions, such as allele-
specific differences in length of 5’ or 3’ untranslated re-
gions (UTR).

Other method publications that have demonstrated
quantification of expression at allelic- and isoform-level
include EMASE [16], kallisto [22], mmseq [23], and
RPVG [14]. EMASE proceeds in a similar manner to
PAIRADISE , by first constructing a diploid reference,
however in this case EMASE aligns reads to a diploid
transcriptome, constructed via the g2gtools software.
The EMASE authors found that hierarchical assignment
of reads based on their information content in some
cases outperformed equal apportionment as would oc-
cur using EM-based algorithms such as RSEM [24],
kallisto [22], and Salmon [25] with a diploid reference
transcriptome. mmseq allows for alignment of reads
to a diploid reference transcriptome using Bowtie [26],
and additionally can take into account gene-, isoform-
, and allelic-multi-mapping when performing inference
across alleles in its mmdiff step [27]. mmdiff computes
posterior distributions of expression of each feature via
Gibbs sampling. Features can be aggregated at various

level of resolution by summing the posterior expression
estimates within each sample. Aggregation also has
proved an effective strategy in non-allelic contexts, as
demonstrated in tximport [28], SUPPA [29], and txre-
vise [30]. mmseq also provides a method mmcollapse
[27] to perform data-driven aggregation of features to
reduce marginal posterior variance, although this pro-
cedure cannot currently be combined with differential
analysis across alleles (i.e. AI analysis).
RNA isoforms may differ by transcription start sites
(TSS), internal splice junctions, or termination sites.
With the objective of detecting isoform-level AI, we intro-
duce a strategy to group isoforms based on their tran-
scription start sites (TSS). For a particular case of simu-
lated AI, we show aggregating isoform-level expression
estimates to the TSS offers better resolution than gene-
or exon-level analysis, while exhibiting reduced inferen-
tial uncertainty compared to isoform-level analysis. We
describe a suite of methods, Statistical Estimation of Al-
lelic Expression using Salmon and Swish (SEESAW ),
for allelic quantification and inference of AI patterns
across samples. SEESAW utilizes Salmon [25] to es-
timate expression with respect to an allele-specific ref-
erence transcriptome, and a non-parametric test Swish
[31] to test for AI. Swish incorporates inferential uncer-
tainty into differential testing and makes no assump-
tion of the distributional model of the data. SEESAW
follows the general framework of mmseq and mmdiff
for haplotype- and isoform-specific quantification and
uncertainty-aware inference. Here, the SEESAW meth-
ods were applied to simulation data to benchmark
against previously developed methods for detection of
AI within heterozygous individuals, making use of mul-
tiple individuals as biological replicates. We applied
SEESAW to a mouse F1 cross time course dataset,
where it detected genes containing both gene-level AI
and isoform-level AI. SEESAW can detect cases of AI
that are consistent across all samples, differential AI
across two groups of samples, or dynamic AI over a
covariate, with a new correlation-based test. SEESAW
is made available within the fishpond package on Bio-
conductor, and is accompanied with a detailed software
vignette on performing allelic analysis.

Methods
SEESAW
We first describe the steps in SEESAW , which com-
bines both existing and new functionality across a num-
ber of software packages (Figure 1). SEESAW as-
sumes that phased genotypes are available, and is pri-
marily designed for multiple replicates or conditions of
organisms with the same genotype. This can occur
with multiple replicates of an F1 cross, or cell lines from
individual human donors across developmental time
points [32–34], or across conditions [35–38]. SEESAW
facilitates importing the quantification data at various
levels of aggregation: no aggregation (labelled here-
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Figure 1. SEESAW pipeline for generating allelic expression estimates and performing statistical testing for allelic imbalance.

after “isoform”, or equivalently “transcript”/“txp”), tran-
scription start site aggregation (“TSS”), or gene-level
aggregation (“gene”). The following steps were ap-
plied to analyze isoform-, TSS-, or gene-level AI. A
sample-specific diploid transcriptome was constructed
using g2gtools with the following input data: a refer-
ence genome (FASTA file); haplotype-specific variants
(SNP and indel VCF files); and a catalog of all possible
transcripts in the reference genome (GFF or GTF file).
g2gtools was used to patch and transform the reference
genome using the SNPs and indels from the the VCF
file, and to extract transcripts from each haplotype of the
custom diploid genome. Combined, these transcripts
form the custom diploid transcriptome used to quan-
tify RNA-seq reads. Salmon [25] was used to quan-
tify expression at the level of allelic transcripts, where
both alleles are kept in the reference during indexing
(--keepDuplicates). This approach for allelic quan-
tification, mapping reads to a custom diploid transcrip-
tome, has been demonstrated as a successful strategy
in previous work [23, 39, 22, 16], similarly for mapping
reads to a spliced pangenome graph [14] or to a custom
diploid genome for allelic read counting [40, 7, 41–43].
During the quantification step, 30 bootstrap replicates
were generated to capture inferential uncertainty across
genes, isoforms, and alleles (--numBootstraps 30).

To increase statistical power in testing for AI at sub-gene
resolution, we recommend to group isoforms at a reso-
lution that prioritizes discovery of cis-genetic regulation
effects from non-coding variation in the promoter or in
CRE that affect a particular promoter. Aggregation of
isoform expression to higher levels has been shown to
reduce inferential uncertainty and may improve detec-
tion power as long as the signal of interest is not at
the same time lost or diminished through aggregation
[27, 28, 44]. Other related approaches include perform-
ing inference at the level of equivalence classes (parti-

tions of reads) [45, 46], although here we focus on anal-
ysis performed over sets of one or more transcripts for
their biological interpretability. During aggregation, both
counts and bootstrap replicate counts were summed
across isoforms within a TSS-based group for each al-
lele. TSS groups can be defined strictly (identical start
position) or with some basepair (bp) tolerance (“fuzzy
TSS groups”). After aggregation, every aggregate fea-
ture will have a point estimate of abundance as well as
a vector representing the bootstrap distribution for each
of the two alleles. Likewise, we explored gene-level ag-
gregation, summing across all isoforms for a gene.

In the fishpond Bioconductor package, we used a
convenience function makeTx2Tss for generating TSS
groups (with an optional parameter to group nearby
TSS), and then used importAllelicCounts to import
the estimated counts, abundances, and bootstrap repli-
cates, producing a SummarizedExperiment object and
leveraging the tximeta package [47, 48]. In the case
that there was no read information to distinguish the
two alleles, e.g. identical sequence, or no reads cov-
ering any sequence differences, Salmon splits the total
counts equally among the two alleles, so the estimated
allelic fold change was equal to 1. Such features were
filtered out of the dataset before differential testing, as
demonstrated in the software vignette. Prior to differen-
tial testing, features that did not have a minimum count
of 10 for three or more samples were filtered out.

Swish [31] was used here to detect AI across biologi-
cal replicates or conditions while taking into account in-
ferential uncertainty. Swish is a nonparametric method
originally designed for isoform-level differential expres-
sion that extends the gene-level method SAMseq [24].
We tested for the existence of AI (allelic fold change
not equal to 1) for a given feature across all sam-
ples by specifying a paired analysis with x="allele",
pair="sample", which was referred to as “Global AI
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testing”. Reviewing the paired-sample method devel-
oped in Zhu et al. [31], Swish for global AI used the
Wilcoxon signed-rank test [49], where the paired data
in this context are the allelic counts for each sample
and each bootstrap. The signed-rank test statistic was
averaged over bootstraps (in this case, 30 bootstraps),
and the allelic labels were swapped to generate a per-
mutation null distribution. The framework of averaging
nonparametric test statistics over replicate datasets, fol-
lowed by permutation-based q-value computation was
derived from SAMseq [50].

We further extended Swish to test for changes in AI
along a continuous covariate. We tested for non-zero
correlation between the log allelic fold change within
paired samples and a continuous covariate by specify-
ing e.g., x="allele", pair="sample", cov="day",
which was referred to as “Dynamic AI testing”. Either
Pearson or Spearman correlations can be computed
between the pairwise log fold changes and the continu-
ous covariate, and this statistic was then averaged over
bootstrap samples. To stabilize the log fold change, a
pseudocount was added to the numerator and denom-
inator of the allelic fold change, with a default value
of 5, as has been used previously for bulk RNA-seq
[31]. The continuous covariate was then permuted and
correlations recalculated to generate a null distribution
over all permutations and all features, followed by q-
value computation with the qvalue package [51] to ob-
tain the significance of the relationship between the al-
lelic fold change with the continuous covariate. Testing
for changes in AI across a categorical covariate was al-
ready available in Swish as an “interaction test” and is
demonstrated in the software vignette on allelic analy-
sis.

For statistical methods designed for comparing gene
expression across samples, it is common practice that
measures of gene expression are scaled or an offset is
included in the model to account for a well-known tech-
nical bias: differences in sequencing depth across sam-
ples affect the observed or estimated counts and if left
unadjusted the across-condition estimates would be bi-
ased. Since SEESAW focuses on testing differences
in expression between the two alleles within the same
sample, the sequencing depth bias affected both allelic
counts equally, and scaling/offsets were not needed.
Thus, this scaling step should not be performed.

A number of plotting functions in fishpond were
used to facilitate visualization of allelic expression
changes across samples, isoforms, and covariates.
plotInfReps was used to visualize allelic expression
estimates and inferential uncertainty across samples
and conditions/time points [31]. plotAllelicGene
was used to visualize isoform- or TSS-group-level
allelic expression data along with a diagram of a
given gene model, using the Gviz package [52].
plotAllelicHeatmap, was used to visualize allelic ex-
pression across isoforms or TSS groups and samples,
leveraging the pheatmap package [53]. In SEESAW ,

transcript ranges were represented using GRanges [54]
objects generated from TxDb or EnsDb databases [55],
and attached as rowRanges to the main dataset ob-
ject with estimated counts, abundance and bootstrap
counts, facilitating downstream plotting and data explo-
ration.

Simulation
To assess the performance of different methods in re-
covering gene-level and isoform-level AI, we simulated
RNA-seq reads from a diploid transcriptome derived
from the Drosophila melanogaster reference transcrip-
tome, restricted to chromosomes 2, 3, 4, and X, simu-
lating RNA transcripts from female flies. The simulation
contained a total of 10 samples, with an average se-
quencing depth of 50 million paired-end reads per sam-
ple. The maternal reference transcripts included the
protein-coding and non-coding RNA from Ensembl [56]
(release 100), and the paternal reference transcripts
were created from maternal transcripts by adding sin-
gle nucleotide variants. To create paternal alleles, we
randomly selected 5 exons from each gene, and the
mid-position nucleotide of the selected exons was sub-
stituted with its complement nucleotide. Genes overlap-
ping simple tandem repeats of size 50 bp or larger were
excluded from the simulation, leaving 14,821 genes.
While the majority of genes (93.3%) were simulated
to not have AI, two types of AI were simulated: “con-
cordant AI”, where all isoforms had concordant allelic
fold change, and “discordant AI”, where there were dis-
cordant allelic fold changes among the isoforms of the
gene. In the discordant AI case, the RNA abundance
was balanced across the two alleles when summed
across all the isoforms of the gene. We randomly se-
lected 1,000 genes using the following criterion: 1) the
number of annotated isoforms in the selected gene was
between three and six, 2) the gene had at least two iso-
forms sharing the same transcription start site (TSS), 3)
the gene had at least two distinctive TSS. Half of the se-
lected genes (500) were simulated to have concordant
AI and the other half (500) were simulated to have dis-
cordant AI, and the remaining 13,821 genes were sim-
ulated to have allelic balance.
The abundance of the maternal allele was set to a con-
stant value, and the paternal allelic abundance was al-
tered to generate AI. For genes with concordant AI, the
paternal allele was either 25% up-regulated or down-
regulated, chosen at random per gene. Within each
gene with discordant isoform-level AI, one TSS was ran-
domly chosen and isoforms sharing the selected TSS
had abundance increased on the paternal allele. Abun-
dance was increased such that the up-regulation fold
change was equal to 1 + 1

2n , where n is the num-
ber of isoforms with the selected TSS. The other iso-
forms of the gene had paternal abundance decreased
at an equal rate such that the gene-level abundance
was kept constant. Expected count values were then
generated from the alleles of all transcripts by multi-
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plying abundance by the transcript length and scaling
up to the desired library size. Reads were generated
using polyester [57], with the following settings: frag-
ments with a mean size of 400 bp, paired-end reads
of 150 bp, and Negative Binomial dispersion parameter
size=100, such that the simulation contained across-
sample biological variation on the allelic counts and the
allelic fold change. Paired-end reads were shuffled so
that the reads were listed in a random order. Read gen-
eration and all subsequent analysis steps for SEESAW
and other methods were automated using a Snakemake
workflow [58] available at github.com/mikelove/ase-sim.

We applied the SEESAW pipeline as well as existing
methods mmseq and WASP to the simulated data. As
our interest in this work was in identifying isoforms af-
fected by cis-genetic regulation, we focused our com-
parisons on methods that aim to aggregate allelic infor-
mation along the entire extent of the transcribed region,
whereas other existing methods have focused on allelic
differences in internal splice events (splicing quantita-
tive trait loci, or sQTL); we chose a method that attempts
to resolve AI at the isoform level (mmseq), as well as a
method that resolves bias from genomic multi-mapping
reads (WASP) and is primarily focused on gene-level
AI. SEESAW and other methods were provided with the
complete exonic sequence of the two alleles, and the
gene annotation, either as FASTA (for Salmon and mm-
seq) or VCF files with known phasing (for WASP). We
also utilized the ground truth of simulation to obtain an
optimal isoform-grouping strategy, called “oracle”. For
"oracle" grouping, up-regulated or down-regulated iso-
forms within a gene were grouped in cases of discordant
AI. Otherwise, all isoforms within a gene were grouped
together.

The following steps were used to apply mmseq (ver-
sion 1.0.10a) and its differential testing step mmdiff to
the simulated data. Bowtie (version 1.3.1) [26] was
used to index the diploid reference transcripts and to
align the reads. During the alignment, only the align-
ments that fell into the best stratum were reported if
the alignments fell into multiple stratum using --best
--strata. If more than 100 reportable alignments ex-
isted for a particular read, then all alignments were sup-
pressed using the -m option. After obtaining mmseq ex-
pression estimates at gene and isoform level, we manu-
ally separated the estimates for the maternal and pater-
nal alleles, and subsequently used mmdiff to test for
differential expression between the two alleles, using
the flags -de 10 10 <maternal files> <paternal
files>. Posterior probability of equal expression was
used to threshold and define significant sets of tran-
scripts or genes.

We ran WASP on the simulated data according to its
recommended usage. First, HISAT2 (version 2.2.1) [59]
was used to align reads to the bdgp6 reference genome,
downloaded from the HISAT2 website. An h5 database
was created from the simulation VCF file containing the
location of the exonic SNPs and the known phasing in-

formation. HISAT2 was used to re-align the reads with
flipped nucleotides, and genomic multi-mapping reads
that would otherwise bias allelic ratios were filtered.
Read counts and heterozygous probabilities were ad-
justed using WASP scripts. Finally the Combined Hap-
lotype Test (CHT) [17] was applied with recommended
defaults --min_counts 50 and --min_as_counts 10
to generate a p-value per gene for AI across samples.
Multiple testing was controlled via the locfdr package
[60], applied to z-scores derived from WASP p-value
output.
To visually compare the AI simulation results across
methods, we used the iCOBRA [61] Bioconductor pack-
age. We assessed the performance according to the
true and reported allelic status of the transcripts (bal-
anced or imbalanced), where reported significance of
AI of a gene or TSS group was propagated to its iso-
forms. As the simulation consisted only of genes in
which all isoforms or no isoforms exhibited true AI, this
approach to compare methods at the transcript level
should not unfairly impact the performance of the ag-
gregated (gene- or TSS-level) AI tests.

Osteoblast differentiation time course
We applied SEESAW to an RNA-seq dataset of primary
mouse osteoblasts undergoing differentiation, from F1
C57BL/6J x CAST/EiJ mice, to assess both global and
dynamic AI. In the differentiation experiment, which has
been described previously [62, 63], pre-osteoblast-like
cells were extracted from neonatal calvaria, and cells
were FACS sorted based on expression of CFP, which
was under the control of the Col3.6 promoter. Dif-
ferentiation was induced with an osteoblast differenti-
ation cocktail in sorted cells and RNA was collected
every two days from day 2 to day 18 post differen-
tiation (nine time points). Three technical replicates
per time point were combined and quantified together
as one biological replicate, after quality checking with
FASTQC and MultiQC [64]. Expression data for os-
teoblasts from C57BL/6J mice of the same experiment
are publicly available on the Gene Expression Omnibus
(GSE54461).
Reference transcripts were generated via g2gtools us-
ing a reference genome, strain-specific VCF files, and
the reference gene annotation. The GRCm38 primary
assembly for Mus musculus was downloaded from En-
sembl (release 102) [56], and strain-specific VCF files
CAST_EiJ.mgp.v5.snps.dbSNP142.vcf (SNP) and
CAST_EiJ.mgp.v5.indels.dbSNP142.normed.vcf
(indel) for mm10 were downloaded
from the Mouse Genomes Project [65]
ftp://ftp-mouse.sanger.ac.uk/REL-1505-SNPs_-
Indels/. Reference transcripts (Mus_-
musculus.GRCm38.102.gtf) were downloaded
from Ensembl (release 102) [56], and subsequently
were patched and transformed for the CAST/EiJ strain
using g2gtools (version 0.2.7). All code including a
Snakemake workflow [58] for generation of the diploid
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Figure 2. Comparing results of SEESAW on polyester simulation to mmdiff and WASP. A) iCOBRA plot of sensitivity (true positive rate, or TPR) over achieved false
discovery rate (FDR) with three circles indicating 1%, 5%, and 10% nominal FDR cutoffs, respectively. Filled circles indicate observed FDR less than nominal FDR.
B) Overall sensitivity for all cases of AI and sensitivity stratified by type of AI: “discordant” AI across isoforms within a gene or “concordant” AI within gene.

transcriptome is provided in the diploid_txomes
directory at github.com/mikelove/osteoblast-quant.
Salmon was used to quantify the RNA-seq reads
against the custom diploid transcriptome with 30 boot-
strap replicates, and these data were imported into Bio-
conductor and analyzed with Swish as described in the
SEESAW section above. Swish with global AI test
was performed on isoform level, TSS-group level and
gene level, and results were compared at various lev-
els of resolution. In addition, we used the newly devel-
oped feature in Swish to test for dynamic AI: we tested
the correlation between the log fold change comparing
across alleles within a sample and the day of differenti-
ation, using the Pearson correlation.

Results
Simulation
Simulation of an F1 cross based on the Drosophila
melanogaster transcriptome was used to assess
method performance when the true AI status of each
transcript was known. iCOBRA diagrams [66] were
used to assess the sensitivity, or true positive rate
(TPR), and the false discovery rate (FDR) at nomi-
nal FDR thresholds of 1%, 5%, and 10%. Sensitiv-
ity was assessed per transcript, where detection of AI
for a gene-level method was propagated to each of the
gene’s expressed isoforms. We used Integrative Ge-
nomics Viewer (IGV) [67] to visualize the distribution of
HISAT2 [59] aligned reads along the reference genome,
after removing allelic-biased multi-mapping reads with
WASP [17]. While SEESAW uses reads mapped to the
diploid transcriptome with Salmon, examining genome-
aligned reads with IGV allowed us to identify examples
of reads that contained both allelic- and isoform-level

information (Figure S1).

As expected, SEESAW had the strongest power to de-
tect AI when oracle information about the grouping of
transcripts by AI signal was used to aggregate allelic
signal (“oracle” in Figure 2A). Among methods that were
not provided information about the true grouping of tran-
scripts by AI signal, SEESAW with TSS aggregation or
gene-level aggregation, gene-level mmdiff , and WASP
had similar sensitivity at 1% nominal FDR, and these
methods had observed FDR for this nominal cutoff in
the range of 0-2%. Notably, SEESAW with TSS aggre-
gation had the highest overall sensitivity at 5% and 10%
nominal FDR, above any of the gene- or isoform-level
methods. The reason behind the higher overall sensitiv-
ity can be seen when stratifying by types of AI, as in Fig-
ure 2B; SEESAW with TSS aggregation was able to de-
tect discordant AI on isoforms within a gene that could
be masked after aggregation to the gene level. Gene-
level SEESAW , gene-level mmdiff , and WASP had loss
of sensitivity to detect these discordant cases of AI.
However, these three methods had higher sensitivity
than SEESAW using TSS aggregation when AI was
concordant across all isoforms of a gene. This is ex-
pected as aggregation at the appropriate level strength-
ens the AI signal while reducing inferential uncertainty,
so increasing power. Both SEESAW and mmdiff at the
isoform level did not have as high sensitivity as methods
that aggregated signal. UpSet diagrams [68] of the sets
of transcripts called by each method compared to the
true AI transcripts indicated the highest overlap among
the gene-level methods and TSS or oracle aggregation
(Figure S2).

We additionally assessed performance of SEESAW
compared to a new inference pipeline from the WASP
developers, called WASP2 (Figure S3). WASP2 was
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Figure 3. Application of SEESAW to osteoblast differentiation data at TSS level. A) Global AI results for Fuca2 where isoform groups had discordant direction of
imbalance. The computed statistics are plotted directly below the TSS group. Isoform proportion per TSS group was calculated from TPM (transcript per million). B)
Isoform-level dynamic AI revealed for two TSS groups of Rasl11b. Estimation uncertainty shown with error bars (95% intervals based on bootstrap variance).

equally sensitive as WASP in detecting gene-level AI,
while it had less sensitivity than SEESAW to detect dis-
cordant AI signal as expected since it follows a simi-
lar approach to WASP. While we used the locfdr pack-
age [60] for multiple test correction for WASP, we found
Benjamini-Hochberg [69] correction performed well for
computing FDR-bounded sets for WASP2.

Osteoblast differentiation time course
Following creation of the diploid reference and quantifi-
cation steps of the SEESAW pipeline, we used Swish
to test for consistent AI across all time points of the
osteoblast differentiation dataset. While exploring the
osteoblast differentiation data, we observed that for iso-
forms of a gene with TSS that were near each other
(within 50 bp), these isoforms often shared similar esti-
mated allelic fold change as calculated with SEESAW .
To facilitate data visualization, strengthen biological sig-
nal, and reduce inferential uncertainty further, we chose
to group any transcripts with TSS within 50 bp (“fuzzy
TSS groups”). We tested at different levels of resolu-
tion: gene level, isoform level, and TSS level. To com-
pare across these levels, we looked at genes in com-
mon: a gene was considered significant for global AI at
isoform level or TSS group level if at least one isoform
or TSS group within the gene was significant (nominal
FDR < 5%). Isoform-level testing for global AI returned
the most genes, with 6,116 significant genes, followed
by gene-level with 5,701 genes, and TSS-level grouping
with 5,573 genes. The majority of genes (4,625) were
in common across all three levels of resolution (UpSet
plot [68] provided in Figure S4).
Gene-level aggregation had high overlap with TSS-level
indicating that, at least for global AI testing, most of
the AI signal was not masked by discordant direction

of AI among isoforms within a gene. Among genes dis-
playing global AI under aggregation to the gene level,
the TSS groups within those genes often had estimated
imbalance in the same direction as the gene imbal-
ance – 97.3% of significant genes had all of their TSS
groups with significant AI having the same direction as
the gene-level estimate. However, SEESAW was able
to detect – among the 2.7% remaining genes – inter-
esting examples of genes that had different direction of
AI among its isoforms. A complete list of the 134 genes
showing these significant and discordant patterns within
gene is provided in Table S1 and in the Zenodo de-
position. For example, Fuca2 exhibited discordant AI
with the CAST/EiJ allele more highly expressed than
C57BL/6J for one of the two leftmost (more 5’) TSS but
less expressed than C57BL/6J for the rightmost (more
3’) TSS, with both TSS groups significant at < 5% FDR
(Figure 3A).

We additionally tested for dynamic AI using the corre-
lation test implemented in Swish, again at gene level,
isoform level, and TSS level. Gene-level dynamic AI
testing returned the largest number of significant genes
(nominal FDR < 5%): 57 genes displayed dynamic AI
at gene level, 49 genes at TSS level, and 23 at iso-
form level (Figure S5). Those significant genes shared
across all levels only represented a third of those de-
tected at gene level, where another third were shared
only between gene level and TSS level. Thus TSS-level
aggregation appeared to help recover signal that would
be lost if only testing at the isoform level.

Interestingly, we detected genes such as Rasl11b that
had isoform-level AI trending in different directions over
time (Figure 3B, Figures S6 and S7). Rasl11b exhibited
dynamic AI for two TSS groups, with the CAST/EiJ al-
lele more lowly expressed than the C57BL/6J allele for
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TSS group “1” from day 2 to day 6, roughly balanced
from day 8 to day 10, and finally with CAST/EiJ more
highly expressed from day 12 to day 18. The other TSS
group “3” had almost the opposite allelic ratio behav-
ior: CAST/EiJ more highly expressed earlier in time but
both alleles tending toward balanced, low expression
at the end of the time course. While for Rasl11b this
pattern was also significant when testing at the isoform
level, other genes such as Calcoco1 demonstrated the
advantage of grouping features: Calcoco1 exhibited dy-
namic AI for two TSS groups, “5” and “6”, which differed
in the direction of change in the imbalance (Figures S8
to S10). Here, the p-value and q-value for TSS group
“6” was reduced when aggregating counts from the iso-
form to TSS-group level.

Discussion
Here we introduce a new suite of methods, SEESAW ,
to obtain allele-specific abundance with bootstrap repli-
cates used to capture inferential uncertainty across
genes, isoforms, and alleles, and to perform statistical
testing of global or dynamic AI. We propose to aggre-
gate estimates of allelic expression of isoforms by their
TSS to increase statistical power in testing for AI that is
a result of cis-genetic regulation on or within the pro-
moter. We introduced two different AI testing proce-
dures: global AI to test for the existence of consistent
allelic fold changes across samples, and dynamic AI to
test for non-zero correlation between the log allelic fold
change and a continuous covariate. SEESAW can also
be used to test differential AI between two groups, as
introduced in Zhu et al. [31] and shown in the software
vignette. The above tests utilize nonparametric test-
ing that make no assumption on the distribution of the
data itself, which had better performance than a stan-
dard beta-binomial generalized linear model (data not
shown). In simulation, we demonstrated that SEESAW
on TSS level had the highest sensitivity in the case that
AI was discordant within gene, and achieved an FDR
that was close to the nominal value at all levels of res-
olution (gene-, TSS-, or isoform-level testing), implying
SEESAW can maintain error control despite high and
heterogeneous levels of uncertainty. SEESAW at gene
level performed comparably to existing methods such as
WASP and mmdiff at gene level. For the osteoblast dif-
ferentiation experiment, SEESAW was able to recover
some genes with discordant isoform-level AI across all
time points, and was able to detect genes with isoform-
level AI that changed over time in different directions.
Currently, SEESAW does not support alignment of hap-
lotypes across individuals of different genotype. SNP-
based analysis simplifies this problem, but at a loss of
information, as evidence of AI may be distributed across
multiple exonic variants within a transcript. A newly
developed approach RPVG [14] maps RNA-seq reads
to a spliced pangenome, and then provides haplotype-
specific transcript abundance estimates for each indi-

vidual. It would require further work for the methods
presented here to group individuals by their haplotype
combinations per gene and perform across-sample in-
ference while accounting for estimation uncertainty us-
ing Swish. Another limitation of our current approach is
that grouping isoforms together based on their TSS re-
veals shared promoter-based regulation, but may miss
isoform-specific AI caused by intronic variation or varia-
tion that affects nonsense-mediated-decay. PAIRADISE
uniquely targets these cases of AI on splicing events,
and could be considered for these cases. Alternatively,
the framework of SEESAW can be adapted and used
with other aggregation rules for different biological pur-
poses, e.g. aggregating isoforms by various splicing
events in a manner similar to SUPPA or txrevise. While
SEESAW can be used at various levels of resolution,
from transcript or TSS group up to gene level, if the fo-
cus of interest is gene-level AI, we found that WASP and
WASP2 were equally sensitive and had good control of
false discoveries, using locfdr and Benjamini-Hochberg
correction, respectively. Additionally, the ASEP [19]
method can be run on allelic counts from WASP, and
allows for detection of gene-level AI across a population
using a mixture model to account for the unobserved
regulatory variants – individuals that are heterozygous
for exonic variants may be either homozygous or het-
erozygous for regulatory variants. The analytical con-
sequences of multiple regulatory SNPs and varying de-
gree of linkage disequilibrium (LD) of these to the exonic
SNP, with respect to detection of AI, has been described
previously by Xiao and Scott [4].

While here we relied on gene annotation to group to-
gether transcripts and reduce inferential uncertainty of
allelic expression estimates, another approach would be
to use data-driven aggregation methods such as mm-
collapse and Terminus [44]. We were not able to per-
form differential testing across alleles with mmdiff af-
ter aggregation with mmcollapse. A future direction
that may improve performance with the inclusion of Ter-
minus in the SEESAW pipeline would be stratification
of different null distributions for test statistics in Swish
based on aggregation level (transcript, transcript-group,
or gene level).

After having detected AI, a natural next step is to try
to understand the mechanism of cis-genetic regulation.
It is possible to associate the AI seen on transcripts
or genes with one or more regulatory variants, either
through phasing or usage of population-level LD to es-
tablish the search space. The list of candidate regula-
tory SNPs can be further refined by integrating allelic
signal at the epigenomic level, including allelic binding
of proteins [40, 70–72], allelic accessibility [73, 74] or
allelic methylation [75]. Alternatively, search for altered
transcription factor binding motifs can be combined with
RNA or protein abundance of potential regulators to win-
now down the list of candidate causal regulatory vari-
ants [11, 76, 77]. It may also be of interest to detect
in which cell types the allelic signal may be strongest
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or exclusively present, as has been investigated in re-
cent methods for single cell allelic expression or acces-
sibility datasets [78–80]. Finally, we note that a number
of methods have shown that AI can be effectively in-
tegrated with total expression across individuals of all
three genotypes [5, 81–84, 13]. This approach uses
more information, and so should produce a gain in sen-
sitivity, as well as extending beyond genes harboring ex-
onic variants, which is a limitation for AI-based methods.

Data Availability

The B6xCAST mouse osteoblast RNA-seq experiments
have been submitted to SRA with the following BioSam-
ple accessions:
SAMN29983440, SAMN29983441, SAMN29983442,
SAMN29983443, SAMN29983444, SAMN29983445,
SAMN29983446, SAMN29983447, SAMN29983448.

For the mouse osteoblast dataset, R data objects con-
taining the total and allelic counts at gene and isoform
level, diploid transcriptome sequences, Salmon quan-
tification directories for all samples, global and dynamic
AI test results at all three levels of resolution, and the
discordant global AI gene list are provided at the follow-
ing Zenodo accession number,
doi: 10.5281/zenodo.6963809.

For the Drosophila melanogaster simulated samples, R
data objects containing the simulated abundances and
status of each transcript, simulated transcriptome se-
quences, Salmon quantification directories for all sam-
ples, SummarizedExperiment objects at various levels
of resolution, and results tables for each method are
provided at the following Zenodo accession link,
doi: 10.5281/zenodo.6967130.

Code Availability

Code for quantifying the osteoblast data is provided at
https://github.com/mikelove/osteoblast-quant
and code for AI testing and compiling results across
different levels of resolution is provided at https:
//github.com/FennecFish/osteoblast-test.

Code for generating the simulated data is provided at
https://github.com/mikelove/ase-sim and code
for running Swish and compiling the results from
other methods is provided at https://github.com/
mikelove/swish-ase-assessment.
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Supplementary Information

Figure S1. IGV visualization of HISAT2 aligned reads for the simulated Drosophila melanogaster
dataset. The two depicted loci are CG31688 / FBgn0263355 (top) and CG33090 / FBgn0028916 (bot-
tom). Paired-end reads such as those highlighted with dashed and solid arrows provide information
to both isoform and allelic expression, used by Salmon to distribute isoform- and allelic-multi-mapping
reads.
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Figure S2. UpSet plot showing the overlap of simulation results at the tran-
script level comparing SEESAW at various levels of aggregation to mmdiff
and WASP. The overlap is shown of different methods’ positive sets as well
as the true AI status of each transcript.
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Figure S3. Simulation results at the transcript level comparing SEESAW at various levels of aggregation to WASP2.
Both “single” (s) and “linear” (l) models in WASP2 were assessed. A) Overall sensitivity over false discovery rate.
B) Sensitivity overall and stratified by type of simulated AI. C) UpSet plot of the overlap of transcripts called by the
methods and true AI transcripts.
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Figure S4. For the mouse osteoblast experiment, UpSet plot showing the
overlap of significant genes, testing for global AI at various levels of aggrega-
tion using SEESAW .
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Figure S5. For the mouse osteoblast experiment, UpSet plot showing the
overlap of significant genes, testing for dynamic AI at various levels of aggre-
gation using SEESAW .
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Figure S6. Allelic heatmap for two TSS groups of Rasl11b. minusLogQ denotes the
− log10(q-value) for dynamic AI testing for each TSS group. Color indicates the fraction of
total expression from the CAST/EiJ allele.
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Figure S7. Gene model plot for Rasl11b tested at TSS-group level. Dynamic allelic ratios over three
grouped time points: day 2-6 (top row), day 8-12 (middle row) and day 14-18 (bottom row). Isoform
proportions from all days shown in the fourth row.
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Figure S8. Estimated allelic counts over time for TSS groups of Calcoco1. Shown are four
TSS groups of which “5” and “6” were significant for dynamic AI (FDR < 5%). Estimation
uncertainty shown with error bars (95% intervals based on bootstrap variance).
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Figure S9. Allelic heatmap for four TSS groups of Calcoco1. minusLogQ denotes the
− log10(q-value) for dynamic AI testing for each TSS group. Color indicates the fraction of
total expression from the CAST/EiJ allele.
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Figure S10. Gene model plot for Calcoco1 tested at TSS-group level. Dynamic allelic ratios over three
grouped time points: day 2-6 (top row), day 8-12 (middle row) and day 14-18 (bottom row). Isoform
proportions from all days shown in the fourth row. From left to right, the TSS groups are “1”, “5”, and
“6”. TSS group “3” was filtered in this plot due to too low counts and isoform proportion.
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28 ENSMUSG00000021477-1 Ctsl 0.2398 0.0160 -6.4631 0.0004
29 ENSMUSG00000021484-1 Lman2 -1.0394 0.0000 1.4157 0.0214
30 ENSMUSG00000021670-5 Hmgcr 0.2182 0.0084 -1.2604 0.0048
31 ENSMUSG00000021728-3 Emb -0.4907 0.0000 3.7344 0.0000
32 ENSMUSG00000021846-6 Peli2 -0.7951 0.0005 1.8248 0.0028
33 ENSMUSG00000021870-7 Slmap -0.4729 0.0000 3.4371 0.0203
34 ENSMUSG00000022146-2 Osmr 0.3266 0.0000 -0.6113 0.0116
35 ENSMUSG00000022206-1 Npr3 0.6544 0.0000 -1.0981 0.0157
36 ENSMUSG00000022680-7 Pdxdc1 -0.7381 0.0000 0.9941 0.0000
37 ENSMUSG00000022969-1 Il10rb 1.1609 0.0000 -4.1329 0.0012
38 ENSMUSG00000022969-3 Il10rb 1.1609 0.0000 -1.3578 0.0290
39 ENSMUSG00000023055-6 Calcoco1 -0.3303 0.0237 0.4867 0.0254
40 ENSMUSG00000024066-4 Xdh -0.6766 0.0032 3.3216 0.0020
41 ENSMUSG00000024085-3 Man2a1 0.3737 0.0000 -2.3129 0.0342
42 ENSMUSG00000024535-2 Snx24 0.4824 0.0008 -1.4142 0.0435
43 ENSMUSG00000024576-4 Csnk1a1 0.5243 0.0000 -0.5855 0.0203
44 ENSMUSG00000025133-5 Ints4 -0.4504 0.0000 1.3647 0.0135
45 ENSMUSG00000025393-2 Atp5b -0.1393 0.0003 1.3180 0.0000
46 ENSMUSG00000025451-3 Paip1 0.5420 0.0010 -2.5358 0.0148
47 ENSMUSG00000025933-2 Tmem14a 0.5184 0.0354 -2.5237 0.0012
48 ENSMUSG00000026185-1 Igfbp5 0.3399 0.0148 -5.5603 0.0091
49 ENSMUSG00000026193-2 Fn1 0.7881 0.0000 -3.6801 0.0163
50 ENSMUSG00000026193-5 Fn1 0.7881 0.0000 -0.6366 0.0206
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51 ENSMUSG00000026193-6 Fn1 0.7881 0.0000 -0.9125 0.0015
52 ENSMUSG00000026335-3 Pam -0.1421 0.0304 1.5230 0.0073
53 ENSMUSG00000026335-9 Pam -0.1421 0.0304 0.5550 0.0016
54 ENSMUSG00000026399-2 Cd55 1.7062 0.0000 -2.2590 0.0246
55 ENSMUSG00000026728-2 Vim -0.2921 0.0000 2.2703 0.0238
56 ENSMUSG00000027201-1 Myef2 0.4134 0.0015 -1.7408 0.0406
57 ENSMUSG00000027272-5 Ubr1 0.4043 0.0015 -1.2831 0.0144
58 ENSMUSG00000027523-4 Gnas 0.6816 0.0008 -2.7420 0.0011
59 ENSMUSG00000027663-2 Zmat3 0.5589 0.0000 -5.9277 0.0088
60 ENSMUSG00000027750-2 Postn -0.2160 0.0000 2.9264 0.0000
61 ENSMUSG00000027750-4 Postn -0.2160 0.0000 0.7632 0.0122
62 ENSMUSG00000027797-8 Dclk1 0.3300 0.0005 -0.9146 0.0030
63 ENSMUSG00000027852-3 Nras 0.3541 0.0000 -1.1067 0.0430
64 ENSMUSG00000028114-3 Mettl14 -0.4781 0.0026 1.7074 0.0430
65 ENSMUSG00000028234-3 Rps20 0.1662 0.0011 -0.1665 0.0004
66 ENSMUSG00000028552-2 Eps15 0.3109 0.0000 -3.3418 0.0148
67 ENSMUSG00000028936-5 Rpl22 -0.2391 0.0006 1.0503 0.0457
68 ENSMUSG00000029061-3 Mmp23 0.1041 0.0421 -2.3856 0.0000
69 ENSMUSG00000029068-2 Ccnl2 0.3023 0.0334 -1.0018 0.0135
70 ENSMUSG00000029098-4 Acox3 0.4384 0.0140 -1.2028 0.0140
71 ENSMUSG00000029098-5 Acox3 0.4384 0.0140 -1.6052 0.0395
72 ENSMUSG00000029131-5 Dnajb6 -2.1779 0.0000 1.7201 0.0210
73 ENSMUSG00000029190-4 D5Ertd579e 0.3623 0.0017 -1.2681 0.0267
74 ENSMUSG00000029213-2 Commd8 -0.3497 0.0025 1.3324 0.0319
75 ENSMUSG00000029657-5 Hsph1 -0.2035 0.0185 0.7964 0.0006
76 ENSMUSG00000029802-1 Abcg2 -0.5457 0.0030 0.8937 0.0034
77 ENSMUSG00000029815-2 Malsu1 -1.5641 0.0000 2.7576 0.0036
78 ENSMUSG00000029994-3 Anxa4 0.2721 0.0003 -2.5104 0.0000
79 ENSMUSG00000030243-3 Recql -0.9194 0.0011 1.3294 0.0097
80 ENSMUSG00000030417-1 Pdcd5 0.5639 0.0010 -1.1299 0.0494
81 ENSMUSG00000030532-3 Hddc3 1.3584 0.0000 -2.9718 0.0027
82 ENSMUSG00000030770-1 Parva 0.2879 0.0000 -5.5121 0.0015
83 ENSMUSG00000030770-4 Parva 0.2879 0.0000 -0.5458 0.0196
84 ENSMUSG00000030881-1 Arfip2 -0.5348 0.0039 2.5773 0.0390
85 ENSMUSG00000031422-1 Morf4l2 -8.4574 0.0000 1.3739 0.0137
86 ENSMUSG00000031600-4 Vps37a 0.3284 0.0011 -0.6672 0.0314
87 ENSMUSG00000031813-3 Mvb12a 0.5846 0.0003 -1.6786 0.0034
88 ENSMUSG00000031902-4 Nfatc3 -5.7483 0.0000 2.8369 0.0000
89 ENSMUSG00000033685-3 Ucp2 0.4107 0.0035 -1.5758 0.0304
90 ENSMUSG00000034342-7 Cbl 0.4647 0.0000 -3.4540 0.0196
91 ENSMUSG00000035171-5 1110059E24Rik 0.5027 0.0000 -1.8531 0.0116
92 ENSMUSG00000035621-5 Midn -0.4541 0.0006 2.3960 0.0088
93 ENSMUSG00000036391-2 Sec24a -0.1624 0.0308 2.0602 0.0417
94 ENSMUSG00000036775-2 Decr2 -1.7122 0.0000 2.1186 0.0000
95 ENSMUSG00000037805-3 Rpl10a 1.3370 0.0000 -1.9229 0.0012
96 ENSMUSG00000037822-4 Smim14 0.1496 0.0183 -0.8618 0.0000
97 ENSMUSG00000038072-1 Galnt11 0.3297 0.0079 -1.2292 0.0000
98 ENSMUSG00000038776-1 Ephx1 0.6239 0.0000 -3.6039 0.0058
99 ENSMUSG00000039234-6 Sec24d 0.1521 0.0040 -3.7032 0.0006

100 ENSMUSG00000040118-3 Cacna2d1 0.3744 0.0026 -1.2351 0.0304
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101 ENSMUSG00000040118-4 Cacna2d1 0.3744 0.0026 -3.1706 0.0000
102 ENSMUSG00000040296-2 Ddx58 -0.3435 0.0000 1.4863 0.0004
103 ENSMUSG00000040667-8 Nup88 -0.1958 0.0325 1.1224 0.0347
104 ENSMUSG00000040760-2 Appl1 0.2833 0.0109 -1.0734 0.0012
105 ENSMUSG00000041272-4 Tox 0.8936 0.0000 -2.9804 0.0100
106 ENSMUSG00000041623-2 D11Wsu47e 0.4674 0.0218 -1.4240 0.0206
107 ENSMUSG00000041638-2 Gcn1 0.1861 0.0446 -2.3530 0.0011
108 ENSMUSG00000041702-1 Btbd7 -0.3193 0.0000 0.9751 0.0043
109 ENSMUSG00000041926-7 Rnpep -0.7554 0.0010 1.4793 0.0036
110 ENSMUSG00000042426-2 Dhx29 -0.5292 0.0000 2.3293 0.0000
111 ENSMUSG00000042472-7 Zfp410 -0.4347 0.0463 0.9386 0.0357
112 ENSMUSG00000042712-1 Tceal9 -0.6166 0.0358 2.5494 0.0000
113 ENSMUSG00000043091-2 Tuba1c 1.0560 0.0000 -2.0684 0.0242
114 ENSMUSG00000045867-2 Cradd -0.9538 0.0044 2.3222 0.0091
115 ENSMUSG00000046463-3 0.8324 0.0000 -1.5492 0.0441
116 ENSMUSG00000047909-6 Ankrd16 0.3240 0.0262 -1.2854 0.0275
117 ENSMUSG00000049470-6 Aff4 0.1891 0.0011 -4.0426 0.0018
118 ENSMUSG00000049470-7 Aff4 0.1891 0.0011 -1.8730 0.0342
119 ENSMUSG00000049775-1 Tmsb4x -2.1537 0.0013 1.9639 0.0020
120 ENSMUSG00000051007-1 Gatd1 0.4867 0.0027 -1.3180 0.0390
121 ENSMUSG00000052146-4 Rps10 0.1214 0.0215 -0.1761 0.0148
122 ENSMUSG00000052353-2 Cemip -0.4288 0.0000 0.4442 0.0030
123 ENSMUSG00000052406-4 Rexo4 -1.0186 0.0003 1.6406 0.0050
124 ENSMUSG00000052920-5 Prkg1 -0.5598 0.0000 3.4466 0.0012
125 ENSMUSG00000053453-4 Thoc7 0.3225 0.0027 -1.7004 0.0050
126 ENSMUSG00000054452-6 Tle5 0.3549 0.0000 -2.8575 0.0230
127 ENSMUSG00000055301-3 Adh7 1.4580 0.0000 -1.9470 0.0263
128 ENSMUSG00000056167-3 Cnot10 -0.2406 0.0262 1.7613 0.0106
129 ENSMUSG00000056536-3 Pign 0.4257 0.0008 -1.6103 0.0024
130 ENSMUSG00000060227-2 Golm2 -0.3406 0.0030 0.7822 0.0018
131 ENSMUSG00000060510-1 Zfp266 0.2050 0.0019 -1.3106 0.0337
132 ENSMUSG00000061477-1 Rps7 -0.6803 0.0000 2.2734 0.0088
133 ENSMUSG00000062604-1 Srpk2 0.2478 0.0344 -1.3658 0.0012
134 ENSMUSG00000062604-4 Srpk2 0.2478 0.0344 -0.7159 0.0481
135 ENSMUSG00000063087-2 Gm10125 -1.3520 0.0029 1.4983 0.0091
136 ENSMUSG00000063524-6 Eno1 -0.6924 0.0000 5.4608 0.0011
137 ENSMUSG00000066415-1 Msl2 0.6177 0.0015 -1.8527 0.0122
138 ENSMUSG00000068566-2 Myadm 0.1248 0.0099 -0.5123 0.0004
139 ENSMUSG00000068823-5 Csde1 -0.2529 0.0204 3.8378 0.0045
140 ENSMUSG00000070469-2 Adamtsl3 -0.3452 0.0201 2.9881 0.0177
141 ENSMUSG00000070942-3 Il1rl2 -1.3181 0.0000 2.5847 0.0014
142 ENSMUSG00000073530-5 Pappa2 -0.2977 0.0023 0.7394 0.0238
143 ENSMUSG00000074466-3 Gm15417 1.0034 0.0115 -1.0393 0.0367
144 ENSMUSG00000092341-2 Malat1 -0.5146 0.0000 3.4349 0.0226
145 ENSMUSG00000097073-2 9430037G07Rik -1.1082 0.0198 1.4376 0.0435

Table S1. Genes that exhibited global AI with discordant direction of AI at gene and TSS-group level. Each row represents a
TSS-group that was found significant for the global AI test (FDR < 5%) and which had discordant sign compared to the gene-level
AI (also FDR < 5%).
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