
1 
 

Modeling genotype × environment interaction for single- and multi-trait 1 

genomic prediction in potato (Solanum tuberosum L.)  2 

 3 

Jaime Cuevas, 1 Fredrik Reslow, 2 Jose Crossa, 3,4 and Rodomiro Ortiz 2,* 4 

 5 
1 Universidad Autónoma de Quintana Roo, Chetumal, Quintana Roo 77019, México 6 
2 Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), P.O. 7 

Box 190, Lomma SE 23436, Sweden  8 
3 International Maize and Wheat Improvement Center (CIMMYT), Carretera México-9 

Veracruz Km. 45, El Batán, Texcoco 56237, Edo. de Mexico, Mexico 10 
4 Colegio de Postgraduados, Montecillos, Edo. de México 56230, México 11 

 12 

*Corresponding author: Rodomiro Ortiz E-mail: rodomiro.ortiz@slu.se 13 

 14 

Short running title: Single and multi-trait genomic prediction in potato 15 

 16 

ABSTRACT 17 

In this study we extend research on genomic prediction (GP) to polysomic polyploid plant 18 

species with the main objective to investigate single trait (ST) versus multi-trait (MT) for 19 

multi-environment (ME) models for the combination of three locations in Sweden 20 

(Helgegården [HEL], Mosslunda [MOS], Umeå [UM]) over two year-trials (2020, 2021) of 21 

253 potato cultivars and breeding clones for five tuber weight traits and two tuber flesh 22 

quality characteristics. This research investigated the GP of four genome-based prediction 23 

models with genotype ×environment interactions (GE): (1) single trait reaction norm model 24 

(M1), (2) single trait model considering covariances between environments (M2), (3) single 25 

trait M2 extended to include a random vector that utilizes the environmental covariances 26 

(M3) and (4) multi-trait model with GE (M4). Several prediction problems were analyzed 27 

for each of the GP accuracy of the four models. Results of the prediction of traits in HEL, 28 

the high yield potential testing site in 2021, show that the best predicted traits were tuber 29 

flesh starch (%), weight of tuber above 60 or below 40 mm in size, and total tuber weight. 30 

In terms of GP, accuracy model M4 gave the best prediction accuracy in three traits, 31 
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namely tuber weight of 40–50 or above 60 mm in size, and total tuber weight and very 32 

similar in the starch trait. For MOS in 2021, the best predictive traits were starch, weight of 33 

tuber above 60, 50–60, or below 40 mm in size, and total tuber weight. MT model M4 was 34 

the best GP model based on its accuracy when some cultivars are observed in some traits. 35 

For GP accuracy of traits in UM in 2021, the best predictive traits were weight of tuber 36 

above 60, 50–60, or below 40 mm in size and the best model was MT M4 followed by 37 

models ST M3 and M2. 38 

 39 

Key words: Solanum tuberosum, genomic prediction in potato; genomic × environment 40 

interaction; multi−environment modeling, multiple trait modeling, single−environment 41 

modeling; single trait modeling.  42 

 43 

1. INTRODUCTION 44 

Genomic prediction (GP) and selection (GS) have changed the paradigm of plant and 45 

animal breeding (Meuwissen et al., 2001; de los Campos et al., 2009; Crossa et al., 2010, 46 

2011, Desta and Ortiz, 2014). Practical evidence has shown that GS provides important 47 

increases in prediction accuracy for genomic-aided breeding (Crossa et al., 2014, 2017; 48 

Pérez-Rodríguez et al., 2012). Additive genetic effects (breeding values) can be predicted 49 

directly from parametric and semi-parametric statistical models using marker effects like 50 

the ridge regression best linear unbiased prediction (rrBLUP) (Endelman, 2011), or by 51 

developing the genomic relationship linear kernel matrix (G) to fit the genomic best linear 52 

unbiased prediction [GBLUP] (VanRaden, 2008). Departures from linearity can be assessed 53 

by semi-parametric approaches, such as Reproducing Kernel Hilbert Space (RKHS) 54 

regression using the Gaussian kernel or different types of neural networks (Gianola et al., 55 

2006; Gianola and van Kaam, 2008; de los Campos et al., 2010; González-Camacho et al., 56 

2012; Pérez-Rodríguez et al., 2012, Gianola et al., 2014; Sousa et al., 2017).  57 

Standard GP models were extended to multi-environments by assessing genomic × 58 

environment interaction (GE) (Burgueño et al., 2012). Jarquín et al. (2014) proposed an 59 

extension of the GBLUP or random effects model where the main effects of markers and 60 

environmental covariates could be introduced using covariance structures that are functions 61 

of marker genotypes and environments. Consistently, GP accuracy substantially increased 62 
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when incorporating GE and marker × environment interaction (Crossa et al., 2017). Cuevas 63 

et al. (2016) and Souza et al. (2017) applied the marker × environment interaction GS 64 

model of Lopez-Cruz et al. (2015) but modeled not only through the standard GBLUP but 65 

also through a non-linear Gaussian kernel (GK) like that used by de los Campos et al. 66 

(2010) and a GK with the bandwidth estimated through an empirical Bayesian method 67 

(Pérez-Elizalde et al., 2015). Cuevas et al. (2016) concluded that the higher prediction 68 

accuracy of the GK models with the GE model is due to more flexible kernels that allow 69 

accounting for small, more complex marker main effects and marker-specific interaction 70 

effects. 71 

In GP the training set usually includes a sufficient overlap of lines across 72 

environments, so that estimating the phenotypic covariance among environments for 73 

modeling GE is sufficient to specify it on the linear mixed model used. When modeling 74 

GE, some researchers used the mathematical operation defined by the Kronecker products 75 

or direct product (Cuevas et al., 2016) that allows operations of two matrices of different 76 

dimensions. Other authors model GE using the matrix operation named Hadamard products 77 

(also known as element-wise products) that is a binary operation between two matrices of 78 

the same dimensions as the operands (Jarquin et al., 2014; Lopez-Cruz et al., 2015; Perez-79 

Rodriguez et al., 2015; Acosta-Pech et al., 2017; Perez-Rodriguez et al., 2017; Sukumaran 80 

et al. 2017; Basnet et al., 2019). When modeling epistasis, Hadamard products of the 81 

additive genomic relationship have mainly been used (e.g., Jiang and Reif, 2015; Martini et 82 

al., 2016; Vitezica et al., 2017; Varona et al., 2018; Martini et al., 2020). However, Crossa 83 

et al. (2006) and Burgueño et al. (2007) have used Kronecker products for modeling and 84 

estimation of additive, additive × environment interaction, additive × additive epistasis, and 85 

additive × additive × environment interactions by means of the coefficient of parentage. In 86 

a recent study, Martini et al. (2020) gave theoretical proof that both methods lead to the 87 

same covariance model when used with some specific design matrices and illustrated how 88 

to explicitly model the interaction between markers, temperature, or precipitation.  89 

 Traditionally GP models have evolved from the single trait (ST) and single 90 

environment prediction (ST-SE) models to ST multiple environment (ST-ME) models 91 

including GE. Furthermore, standard GS-assisted plant breeding models are concerned with 92 

the assessment of the GP accuracy of a multi-trait (MT) measured in a single environment 93 
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(MT-SE) or MT multiple environments (MT-ME). In general, multi-traits (MT) GP models 94 

have evolved from MT-SE to MT-ME. The MT models are key for improving prediction 95 

accuracy in GS because MT models offer benefits regarding ST models when the traits 96 

under study are correlated. Most existing models for genomic prediction are ST models 97 

although MT models have several advantages over the ST (Montesinos et al., 2019). 98 

Compared with ST, MT can simultaneously exploit the correlation between cultivar and 99 

traits and thus improve the accuracy of GP as they are computationally more efficient than 100 

ST (Montesinos-López et al., 2019). When the traits are correlated, MT models improve 101 

parameter estimates and prediction accuracy as compared to ST models (Schulthess et al. 102 

2018; Calus and Veerkamp, 2011, Jiang and Jannink, 2012, Montesinos-López et al., 2016, 103 

2019; He et al., 2016). With the continuous growth of computational power, MT models 104 

play an increasingly important role in data analysis in plant and animal genomic−aided 105 

breeding for selecting the best candidate genotypes.  106 

The use of MT models is not as widespread as the use of ST models because several 107 

factors such as, among others, lack of efficient and friendly software, and not enough 108 

computational resources; also, MT models have more complex genotype × environment 109 

interactions (GE) that make it difficult to assess and achieve MT model assumptions, and 110 

MT models have more problems of convergence than ST models. Some models have been 111 

proposed for MT GP, e.g., multi-trait mixed models and their Bayesian version, Bayesian 112 

multi-trait genomic best linear unbiased predictor and multi-trait models under artificial 113 

deep neural networks applied to maize and wheat datasets (Montesinos-López et al., 2018, 114 

2019). However, most researchers use MT models to improve prediction accuracy for traits 115 

to be predicted (i.e., the prediction set) −which are tedious and time-consuming to measure 116 

and have low heritability− by using a few traits (i.e., the training set) with high heritability 117 

that are highly correlated with the former prediction set (Semagn et al., 2022; Jiang and 118 

Jannink, 2012).  119 

It is widely recognized that from the statistical and quantitative genetics 120 

perspectives, when data on multi-traits are available, the preferred models are the MT as 121 

they can account for correlations between phenotypic traits in the training set because 122 

borrowing information from correlated traits increases GP accuracy. Montesinos et al. 123 

(2022) investigated Bayesian multi-trait kernel methods for GP and illustrated the power of 124 
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linear, Gaussian, polynomial, and sigmoid kernels. The authors compared these kernels 125 

with the conventional ridge regression and GBLUP multi-trait models. Montesinos et al. 126 

(2022) showed that, in general, but not always, the GK method outperformed conventional 127 

Bayesian ridge and GBLUP multi-trait in terms of GP prediction performance; the authors 128 

concluded that the improvement in terms of prediction performance of the Bayesian multi-129 

trait kernel method can be attributed to the proposed model being able to capture nonlinear 130 

patterns more efficiently than linear multi-trait models.  131 

Semagn et al. (2022) were interested in comparing prediction accuracy estimates of 132 

a subset of lines that have been tested for a single trait (ST), with a subset of lines that have 133 

not been tested for certain proportion traits (MT1, certain cultivars were not tested for any 134 

of the traits), and a subset of lines that have been tested for some traits but not for other 135 

traits (MT2) across different bread wheat genetic backgrounds for agronomic traits of 136 

varying genetic architecture evaluated under conventional and organic management 137 

systems, and several host plant resistance traits evaluated in adult plants under standard 138 

field management. Their results show that the predictive ability of the MT2 model was 139 

significantly greater than that of the ST and MT1 models for most of the traits and 140 

populations, except common bunt, with the MT1 model being intermediate between them, 141 

demonstrating the high potential of the multi-trait models in improving prediction accuracy. 142 

Although most GP research for ST and MT for SE or ME has been applied to 143 

diploid species, a recent study by Ortiz et al. (2022) demonstrated the increase in prediction 144 

accuracy of ST-ME over the ST-SE genomic-estimated breeding values for several 145 

tetrasomic potato (Solanum tuberosum L.) breeding clones and released cultivars for 146 

various traits evaluated in several sites for one year. Ortiz et al. (2022) considered four 147 

dosages of marker alleles (A) pseudo-diploid; (B) additive tetrasomic polyploidy, and (C) 148 

additive-non-additive tetrasomic polyploidy, and B+C dosages together in the genome-149 

based prediction models using the conventional linear GBLUP (GB) and the non-linear 150 

Gaussian kernel (GK) for ST-SE and ST-ME together. Results show that GK did not show 151 

any clear advantage over GB, and ST-ME had prediction accuracy estimates higher than 152 

those obtained from ST-SE. The model with GB was the best method in combination with 153 

the marker structures C or B+C for predicting most of the tuber traits. Most of the traits 154 
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gave relatively high prediction accuracy under this combination of marker structure C or 155 

(B+C) and methods GB and GK combined with the ST-ME including GE model. 156 

Based on the above considerations, and the need to extend research on GP to 157 

polysomic polyploid plant species, the main objectives of this research were to investigate 158 

ST versus MT for ME (GE) models for the combination of three locations (namely 159 

Helgegården [HEL], Mosslunda [MOS], and Umeå [UM]) over two years (2020, 2021) of 160 

253 potato cultivars and breeding clones, which were also included by Ortiz et al. (2022). 161 

In this study we will use only the genomic relationship matrix obtained from the additive-162 

non-additive tetrasomic polyploidy (C) because using this genomic relations matrix in 163 

terms of GP accuracy was found to be one with the best GP accuracy (Ortiz et al., 2022). 164 

This research investigated the GP of four genome-based prediction models including either 165 

Hadamard or Kronecker product matrices for assessing GE: (1) the conventional reaction 166 

norm model incorporating GE with Hadamard product (Jarquin et al., 2014) (M1), (2) GE 167 

model considering covariances between environments, similar to the model employed by 168 

Burgueño et al. (2012) or the GE with Kronecker product (M2), (3) GE model 2 including a 169 

random vector that attempts to more efficiently utilize the environmental covariances as in 170 

Cuevas et al. (2017) or a GE with Kronecker product (M3), and (4) a multi-trait model with 171 

GE as in Montesinos et al. (2022) but including a GE model that joins Hadamard and 172 

Kronecker products (M4). Several prediction problems were analyzed for the GP accuracy 173 

of each of the four models. We investigated the prediction set of locations in year 2021 174 

from locations in year 2020 using the four GP models combined with two of the prediction 175 

sets (100% and 70%) and predicting ST and MT. 176 

 177 

2. MATERIALS AND METHODS 178 

2.1 Phenotypic data 179 

The multi-site experiments included 253 potato breeding clones and cultivars in trials at 180 

Helgegården (HEL), Mosslunda (MOS) and Umeå (UM). Their list is provided by Ortiz et 181 

al. (2022) Supplementary Table S1 (https://hdl.handle.net/11529/10548617). The 182 

breeding clones are in at least the fourth generation (T4) of selection by Svensk 183 

potatisförädling of the Swedish University of Agricultural Sciences (Ortiz et al., 2020), 184 

while the cultivars are a sample of those released and grown in Europe during the last 200 185 
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years. Helgegården and Mosslunda are near Kristianstad (56°01′46″N 14°09′24″E, Skåne, 186 

southern Sweden), while Umeå (63°49′30″N 20°15′50″E) is in the north of Sweden.  187 

An incomplete block design (simple lattice) with two replications of 10 plants each 188 

was the field layout for the field trials across testing sites. Fungicides were only used in 189 

Helgegården to avoid late blight caused by the oomycete Phytophthora infestans 190 

throughout the growing season, thus allowing tuber yield potential to be estimated at this 191 

site. Crop husbandry was that used for potato farming at each site.  192 

Total tuber yield per plot (kg), tuber weight by size (< 40 mm, 40–50 mm, 50–60 193 

mm, > 60 mm; kg), while tuber flesh starch was measured as percentage based on specific 194 

gravity after harvest. Reducing sugars in the tuber flesh after harvest was determined using 195 

potato glucose strip tests (Mann et al., 1991). Host plant resistance to late blight was 196 

evaluated using the area under the disease progress curve (AUDPC) in Mosslunda.  197 

 198 

2.2 Genotypic data 199 

After sampling using four leaf punches for each of the 256 breeding clones and 200 

cultivars included in the experiments, the materials were sent by AgriTech – Intertek 201 

ScanBi Diagnostics (Alnarp, Sweden) to Diversity Array Technology Pty Ltd (ACT, 202 

Australia) for targeted genotyping following a genotype-by-sequencing approach 203 

(https://www.diversityarrays.com/technology-and-resources/targeted-genotyping/). More 204 

than 2000 single nucleotide polymorphisms (SNP) were used for genotyping. They derived 205 

mostly from SolCAP SNPs based on chromosome positions and MAF > 1 in germplasm 206 

from the Centro Internacional de la Papa (CIP, Lima, Perú) and the USA. According to 207 

Selga et al. (2021), such a number of SNPs seems to be enough for researching GEBVs 208 

without losing information. Although there were very few missing genotyping data (0.1%), 209 

one breeding clone (97) and two cultivars (‘Leyla’ and ‘Red Lady’) were not included 210 

further in the analysis because they were lacking enough SNP data.  211 

 212 

2.3 Computing the genomic relationship matrix  213 

We briefly described the method used for codifying the molecular 𝑿 matrix proposed by 214 

Slater et al. (2016) and used one of the options used by Ortiz et al. (2022) in the genomic-215 

enabled prediction models.  216 
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 217 

2.4 Full tetrasomic including additive and non-additive effects  218 

For coding matrix 𝑿 according to Slater et al. (2016), we considered additive and non-219 

additive effects in a full tetrasomic assuming each genotype has its own effect. In this case, 220 

there were five possible effects per SNP marker. Then the genomic relationship between 221 

individuals 𝑗, 𝑘 was computed as:  222                                  𝐾௝௞ = భಾ ∑ (௫ೕ೔ಾ೔సభ ି௣೔)(௫ೖ೔ି௣೔)௣೔(ଵି௣೔)        223 

where M was the number of markers × 5. To compute the diagonal of this matrix, we used: 224                                 𝐾௝௝ = 1 + ଵெ ∑ (௫ೕ೔మ ିଶ௣೔ಾ೔సభ ௫ೕ೔ା௣೔మ) ௣೔(ଵି௣೔)                    225 

where 𝑝௜ was the frequency of each genotype, i.e., the frequency in each column.  226 

 227 

2.5 Statistical models 228 

2.5.1. Single-trait conventional reaction norm model including GE (model 1, M1) 229 

The standard reaction norm model incorporating genomic × environment (GE) (Jarquin et 230 

al., 2014), as shown below, explains the variation of the observations of a single trait (ST) 231 

in each of the m environments (ME) represented by the vector 𝒚 = (𝒚′ଵ, … , 𝒚′௜, … 𝒚′௠)ᇱ by 232 

estimating each mean of the environment observations 𝝁ா , plus the prediction of the main 233 

genetic effects g and the prediction of the interaction random effects G×E represented by 234 

vector ge , the unexplained differences or random errors are represented by vector ε . 235 𝒚 = 𝒁ா𝝁ா + 𝒈 + 𝒈𝒆 + 𝜺      (1) 

where 𝒚 = (𝒚′ଵ, … , 𝒚′௜, … 𝒚′௠)ᇱ   is a column vector of size 𝑛் × 1 of the observations of 236 

each environment 𝒚௜ (the ' sign indicates the transpose operation), that is, 𝑛்  × 1 is the 237 

total of the sum of the number of lines in each environment. The vector 𝝁ா is a vector that 238 

represents the means of the m environments, and the incidence matrix 𝒁ா relates the 239 

observations to the mean of the environments. The random genetic vector of main effects 𝒈  240 

including GE 𝑛் × 1 follows a multivariate normal distribution 𝑁(𝟎, 𝜎௚ଶ 𝒁௚𝑲𝒁௚ᇱ ) where 241 𝜎௚ଶis the variance component of g , 𝒁௚ is an incidence matrix that relates the observations 242 

with the genotypes and 𝑲 is a matrix of relations between the genotypes built with 243 

molecular markers. In our study K was computed as previously indicated for the case of a 244 

full tetrasomic genomic relationship matrix. The random vector of interaction effects 𝒈𝒆 245 
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follows a multivariate normal distribution 𝑁(𝟎, 𝜎௚௘ଶ  𝒁௚𝑲𝒁௚ᇱ #𝒁ா𝒁ாᇱ ) where 𝜎௚௘ଶ  is the 246 

variance component and # is the Hadamard product. Random errors are considered with 247 

homogeneous variance, that is, 𝜺~𝑁(𝟎, 𝜎ఌଶ𝑰). In general, when the correlation between 248 

environments in the training set are positive and high, results from using Hadamard product 249 

to model GE are similar to those obtained using the Kronecker product. This model is 250 

flexible because it allows predicting different numbers of lines in different environments or 251 

even predicting the entire environment. However, when the correlations between the 252 

environments are not positive, the GE model with the Hadamard product does not explain 253 

the phenotype variation well enough (López-Cruz et al., 2015), because the model does not 254 

incorporate covariances between environments. 255 

 256 

2.5.2 Single trait GE (ST-ME) model considering covariances between environments 257 

(model 2, M2) 258 

Based on Burgueño et al. (2012), the genomic prediction model including GE considered 259 

the genomic covariances between environments to attempt improving the genomic 260 

prediction accuracy of unobserved environments. In M2 we considered only one trait (ST) 261 

and multi environments (ME), but the main effect of genomic and the GE interaction 262 

effects are modeled jointly by using a single vector u assuming a multivariate normal 263 

distribution that considers the genomics covariances between environments. One form of 264 

this model is: 265 𝒚 = 𝒁ா𝝁ா + 𝒖 + 𝜺      (2) 

where the vectors  𝒁ா𝝁ா are similar to those of M1, that is, the 𝝁ா is a vector that represents 266 

the means of the m environments, and the incidence matrix 𝒁ா relates the observations with 267 

the mean of the environments, but now the number of cultivars is the same for each 268 

environment so that if we order the phenotypic observations of the first environment, then 269 

the second environment and so forth, 𝒚 = (𝒚ᇱଵ, … , 𝒚ᇱ௜, … 𝒚ᇱ௠)ᇱ = ൥ 𝒚𝟏⋮𝒚𝒎൩; thereafter the 270 

genetic random effects can be modeled as a normal distribution 𝒖~𝑁(𝟎, 𝑼ா⨂𝑲), where 𝑼ா 271 

is a matrix of genomic covariances between the environments of size m × m to be 272 

estimated, and ⨂ indicates the Kronecker product. The matrix K represents the 273 

relationships between the genotypes built with the molecular markers, as previously 274 
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indicated. The random errors are modeled as 𝜺~𝑁(𝟎, 𝚺⨂𝑰), where matrix 𝚺 is a matrix of 275 

size m × m, expressing the covariances of the errors between environments to be estimated, 276 

and I is the identity matrix of order 𝑛௅ × 𝑛௅ (Cuevas et al., 2017). In this study it is 277 

assumed that 𝚺 is a diagonal matrix that needs to be estimated. Although model M2 is 278 

powerful when considering the genetic covariances between environments, it cannot predict 279 

full environments because it does not have a way of estimating the corresponding genomic 280 

covariances of those environments in the training sites with those in the testing sites where 281 

no data have been collected. 282 

 283 

2.5.3 Single trait GE model (ST-ME) with an extra random vector to better account 284 

for variance across environments (model 3, M3) 285 

Cuevas et al. (2017) showed that adding a random vector to M2 to account for the cultivar 286 

variation across environments that was accounted for by vector 𝒖, could increase the 287 

prediction accuracy. Here we considered a single trait (ST) measured in different 288 

environments (ME) to construct and add a random vector f to M2, that is:  289 𝒚 = 𝒁ா𝝁ா + 𝒖 + 𝒇 + 𝜺      (3) 

Note that 𝒚 is a vector that started with the first environment, then the second environment 290 

and so forth until the last environment. Then 𝒁ா𝝁ா represents the mean for each 291 

environment and 𝒖 is a random vector with multivariate normal distribution 292 𝒖~𝑁(𝟎, 𝑼ா⨂𝑲). Then a random vector 𝒇 is added that is independent from 𝒖 , and  𝜺 , and 293 

that has a normal distribution 𝒇~𝑁(𝟎, 𝑭ா⨂𝑰) where 𝑭ா is a matrix of environmental 294 

covariances of size m × m to be estimated, ⨂ indicates the Kronecker product, and matrix I 295 

represents the identity matrix.  296 

  M3, like M2, allows improving the prediction accuracy of model M1, when the 297 

covariances (or correlations) of the observations between environments are negative or 298 

close to zero. Like M2, M3 could not be used to predict complete environments because 299 

technically it could not estimate covariances between related environments with the 300 

environments to be predicted because of the lack of data on the environments to be 301 

predicted. 302 

M2 and M3 can be used as a multi-trait model for one single site (SE), considering 303 

traits instead of environments. In fact, some of the programs for fitting M2 are motivated by 304 
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multi-trait models, such as the MTM (multi-trait model) package proposed by de los 305 

Campos and Grueneber (2016), and the multi-trait function of the BGLR R-package (de los 306 

Campos and Pérez Rodríguez, 2014). 307 

 308 

2.5.4 Multi-trait model with GE (model 4, M4) of MT-ME type 309 

Note that M2 could be adopted to be a single environment multi-trait (MT-SE) as  310 𝒚 = 𝒁்𝝁் + 𝒖 + 𝜺       
where the vectors  𝒁்𝝁் are similar to those of M2, that is, the 𝝁் is a vector that 311 

represents the means of the t traits, and the incidence matrix 𝒁் relates the observations 312 

with the mean of the traits, but now the number of cultivars is the same for each trait so that 313 

if we order the phenotypic observations of the first trait, then the second trait and so forth, 314 𝒚 = (𝒚ᇱଵ, … , 𝒚ᇱ௜, … 𝒚ᇱ௧)ᇱ = ൥𝒚𝟏⋮𝒚𝒕 ൩; then  the genetic random effects can be modeled as a 315 

normal distribution 𝒖~𝑁(𝟎, 𝑼்⨂𝑲), where 𝑼் is a matrix of genomic covariances 316 

between the traits of size t × t  to be estimated, and ⨂ indicates the Kronecker product. The 317 

matrix K represents the relationships between the genotypes built with the molecular 318 

markers. The random errors are modeled as 𝜺~𝑁(𝟎, 𝚺⨂𝑰), where matrix 𝚺 is a matrix of 319 

size t × t, expressing the covariances of the errors between environments to be estimated; 320 

and I is the identity matrix of order 𝑛௅ × 𝑛௅. In this study it is assumed that 𝚺 is a diagonal 321 

matrix that needs to be estimated. 322 

This model MT-SE can also be represented as a multi-response model, that is, 323 

instead of outlying the observations as a vector, they can be arranged in a matrix so that M2 324 

can be re-written as:   325 𝒀 = 𝟏௡𝝁ᇱ + 𝒖 + 𝜺      (2𝑎) 

where Y is a matrix of order 𝑛௅ × t that represents the phenotypic values ordered in such a 326 

way that the columns contain the data for each trait and the rows contain the data for each 327 

line or genotype. The intercepts or means of each trait are represented by a vector 𝝁 of size 328 

t × 1. The matrix of genetic random effects assumes that they follow a multivariate multi-329 

response normal distribution 𝒖~𝑀𝑁௡ಽ×௧(𝟎, 𝑲, 𝑼்). The random errors assume a 330 

multivariate multi-response normal distribution 𝜺~𝑀𝑁௡ಽ௫௧(𝟎, 𝚺, 𝑰), where 𝚺 is a matrix of 331 
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size t × t denoting the variances-covariances of the random errors within and between 332 

traits. In this study we assumed that 𝚺 was a diagonal matrix that needs to be estimated. 333 

As already mentioned, when multi-trait data are available, the models to be used are 334 

those that account for correlations between phenotypic traits because when the degree of 335 

correlation is moderate or large, this could increase the GP accuracy. The model, based on 336 

the Bayesian multi-trait kernel of Montesinos et al. (2022), can be seen as the combination 337 

of the multi-trait (MT) model 2𝑎 and the reaction norm G×E M1 for multi-environment 338 

(ME). Then M4 is represented as: 339 𝒀 = 𝟏௡೅𝝁ᇱ + 𝒁ா𝝁ா + 𝒈 + 𝒈𝒆 + 𝜺      (4) 340 

where the matrix 𝒀 is of size 𝑛் × 𝑡  ordered in such a way that the columns represent the 341 

phenotypic values of each of the t traits and the rows are the lines or genotypes, ordered 342 

first by environments and then by lines. The vector 𝝁  is of size t × 1 and it represents the 343 

intercept or mean of each trait. The matrix 𝒁ா is an incidence matrix of the environments of 344 

size 𝑛்  ×  𝑚, and 𝝁ா is a matrix of order m × t with the means of each environment in 345 

each trait. The matrix g is of order 𝑛் × 𝑡 and follows a normal distribution 346 𝒈~𝑀𝑁௡೅×௧(𝟎, 𝒁௚𝑲𝒁𝒈ᇱ , 𝑼௧) where 𝒁௚ is an incidence matrix of the genotypes of order 347 𝑛் ×  𝑛௅, K is the relationship matrix of the genotypes of size 𝑛௅ × 𝑛௅ and 𝑼௧ is a 348 

variance-covariance matrix of traits and between the traits. Matrix 𝒈𝒆 is of order 𝑛் × 𝑡 349 

and follows a normal distribution 𝒈𝒆~𝑀𝑁௡೅௫௧(𝟎, 𝒁௚𝑲𝒁𝒈ᇱ #𝒁ா𝒁ாᇱ , 𝑼௧) where # is the 350 

Hadamard product. Random errors are represented by the matrix ε of order 𝑛்  × 𝑡 that 351 

follows a normal distribution 𝜺~𝑀𝑁௡೅௫௧(𝟎, 𝑰, 𝚺௧) where the identity matrix 𝑰 is of 352 

dimension 𝑛்  × 𝑛் (for more details, see Montesinos et al., 2021). 353 

 354 

2.5.5 Study different models and cross-validation schemes to assess the accuracy of the 355 

GP prediction models 356 

The GP accuracy of the different models can be assessed by means of several different 357 

random cross-validation schemes. The first validation scheme (predicts 100% of the 358 

cultivars next year) uses the traits from each of the three locations in 2020 (HEL, MOS, and 359 

UM) to predict all the values of the traits in each three locations in 2021 (HEL, MOS, and 360 

UM). The second validation scheme (predicts 70% next year) uses all the data from 2020 361 

plus 30% of the value of the traits in three locations in 2021 to predict 70% (prediction set) 362 
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of the value of the traits at the three locations in 2022; this second case was established 363 

with 10 groups or random samples. 364 

A graphical explanation of the different combinations of models (M1–M4), 365 

considering two prediction sets (100% and 70%), and ST or MT cross-validation schemes 366 

for assessing GP prediction accuracy of the models is shown in Figure 1 for 10 367 

hypothetical cultivars evaluated in HEL, MOS, and UM in 2020 to predict HEL in 2021. 368 

The training set (TS) is blue in color and the prediction set (PS) is green. The red lines 369 

separate 5 different cross-validation schemes, whereas black lines denote ST prediction, 370 

and no lines denote MT predictions. The only MT model is M4, whereas ST are models 371 

M1, M2, and M3. 372 

As shown in Figure 1, the first cross-validations refer to two cases including 373 

models M1 and M4 for predicting all the values (100%) for each trait in location HEL 2021 374 

using as a training set all the values for each trait in each location from 2020. Model M1 is 375 

an ST (traits are separated by black lines), whereas M4 is an MT model (traits are not 376 

separated). For these two cases, the given names join (1) the model, (2) the ST or MT (S or 377 

M) type of prediction, and (3) include the prediction of all (100%) the lines in HEL 2021 378 

and denoted by ‘a’, that is, M1Sa and M4Ma. The third and fourth cross-validation schemes 379 

delineated by red lines included models M1, M2, M3 for ST and model M4 for MT, and 380 

they predict 70% of the values of each trait in HEL 2021 using as training set values of the 381 

trait in each location from 2020 but also adding 30% of the values from HEL 2021 to the 382 

prediction set in the training set. As already mentioned, this prediction of 70% is performed 383 

10 times using the 10 random samples for extracting 30% of the values of the prediction set 384 

(2021) and adding them into training set (2020). The same 10 random samples were used 385 

for comparing the genomic prediction accuracy of the four models. The names of each of 386 

these model-prediction types and sizes are M1Sp, M2Sp, M3Sp, and M4Mp where the letter 387 

‘p’ refers to the percentage of the prediction set (70%). Note that for these four cases, 3 388 

cultivars (out of 10) are missing in all the traits (Figure 1). The fifth cross-validation 389 

scheme had MT M4 that predicts 70% of the cultivars in HEL in 2021 for all traits but now 390 

the cross-validations between the traits and locations for HEL 2021 are different from those 391 

in the previous case (M4Mp) where some cultivars are observed in some traits and locations 392 

but not observed in other traits and locations. This cross-validation scheme is refereed to 393 
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M4Mp* Note that in this case, some cultivars are missing in some traits but not in other 394 

traits; for example, cultivars 1, 2, and 3 are not observed for weight of tubers below 40 mm 395 

but are observed for the weight of 40−50 mm tubers (Figure 1). 396 

 397 

2.5.6 Measures of prediction accuracy 398 

We used two metrics for comparing the genomic-enabled prediction accuracy of the 399 

different models (M1, M2, M3, and M4). One metric is the Pearson correlation coefficient 400 

(COR) between the observed and predicted values, whereas the second metric is the 401 

prediction mean squared error (PMSE) of the different prediction models. 402 

 403  404 

3. RESULTS  405 

Phenotypic correlations were computed for traits in each location (HEL, MOS, and UM) in 406 

2021 (PS) with those traits in the locations of the previous year (HEL, MOS, and UM in 407 

2020) (Table 1). The PS contains seven traits (5 tuber weight traits and 2 tuber flesh quality 408 

characteristics) in each of the 3 locations of 2021 using the locations and traits of the 409 

previous year, 2020. The ST or MT prediction models together with the proportion of 410 

cultivars included in the PS are combined in M1Sa, M4Ma, M1Sp, M2Sp, M3Sp, M4Mp, 411 

and M4Mp* (Tables 2−4 and Figures 2−4). 412 

 413 

3.1 Genomic prediction of traits in HEL 2021  414 

Results are presented by location−year combination and predictions included the whole 415 

location in year 2021 (M1Sa, andM4Ma) and prediction of only 70% of the 2021 location 416 

(M1Sp, M2Sp, M3Sp, M4Sp, and M4Sp*). Phenotypic correlations of traits measured in 417 

HEL, MOS, and UM 2020 with all the traits measured in HEL-2021 are given in Table 1. 418 

The phenotypic correlations between traits in HEL for 2020 and 2021 are higher than those 419 

between HEL 2021 and other locations in 2020. Tuber flesh starch had the highest 420 

phenotypic correlation between HEL 2021 and HEL, MOS, and UM 2020 (0.89, 0.80, and 421 

0.78, respectively) followed by weight of tubers above 60 mm (0.68, 0.49, and 0.51, 422 
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respectively), total tuber weight irrespective of size (0.64, 0.48, and 0.39, respectively), and 423 

weight of tubers below 40 mm (0.62, 0.36, and 0.43, respectively). 424 

 Genomic predictions of whole traits in HEL 2021 from M1Sa andM4Ma as well as 425 

from M1Sp toM4Mp*, clearly show tuber flesh starch as the best predicted trait for all the 426 

models with genomic prediction accuracy above 0.85 (Table 2 and Figure 2). Most of the 427 

four models shown a very similar genomic prediction accuracy for trait starch ranging from 428 

0.852 (M2Sp and M4Mp) to 0.877 (M3Sp) (Table 2, Figure 2). 429 

 The second trait with important GP accuracy shown by most of the models was 430 

tuber weight of 60 mm where M4Mp* had the highest prediction accuracy (0.730, Table 2) 431 

and M1Sa had the lowest genomic prediction accuracy (0.627). Weight of tubers below 40 432 

mm and total tuber weight had very similar genomic prediction accuracy except for model 433 

M4Mp* which was the worst model for weight of tubers below 40 mm but the best model 434 

for trait total tuber weight. Excluding M4Mp*, the predictions ranged from 0.525 (<40 mm, 435 

M4Ma) to 0.623 (<40mm M3Sp) for both traits. The best predictive model was M3Sp for 436 

weight of tubers below 40 mm and M1Sa for total tuber weight (Figure 2). Weight of 437 

tubers with 40–50 mm and 50–60 mm sizes had the lowest prediction accuracy for most 438 

models except M3Sp (Figure 2). Comparing models with ST and MT, M3Sp was the best 439 

ST model for 3 traits (tuber weight below 40mm and between 50–60mm, and tuber flesh 440 

starch) and M4Mp* was best for the other 3 traits (40–50mm, >60mm, and total tuber 441 

weight). 442 

In summary, prediction of the seven traits at HEL in 2021 shows that traits with 443 

higher phenotypic correlation between location HEL 2021 and those at HEL, MOS, and 444 

UM in 2020 are tuber flesh starch and most of the tuber weights (except weight of tubers 445 

50–60 mm). In terms of GP accuracy, multi-trait model M4Mp* was the best in weight of 446 

tubers 40−50mm or above 60 mm size, and total tuber weight, being very similar to those 447 

for tuber flesh starch. Model M3Sp was the best GP for tuber weights <40mm and 50–448 

60mm, as well as tuber flesh starch. 449 

 450 

3.2 Genomic prediction of traits in MOS 2021  451 

Phenotypic correlation of traits measured in location MOS in 2020–2021 are given in 452 

Table 1. For all the traits the phenotypic correlations between traits in MOS for 2021 and 453 
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2020 are higher than those between MOS 2021 and the two other locations (HEL and UM) 454 

in 2020. Tuber flesh starch had the highest phenotypic correlation between MOS 2021and 455 

HEL, MOS, and UM 2020 (0.83, 0.89, and 0.72, respectively) followed by weight of tubers 456 

above 60 mm (0.73, 0.74, and 0.62, respectively), total tuber weight (0.64, 0.74, and 0.52, 457 

respectively), and weight of tubers below 40 mm (0.65, 0.64, and 0.55, respectively). 458 

 Overall genomic predictions accuracy in MOS 2021 was higher than in HEL 2021. 459 

Tuber flesh starch was the best predicted trait for all the models with < 0.85 genomic 460 

prediction accuracy (Table 3 and Figure 3). Most of the four models showed a very similar 461 

genomic prediction accuracy for tuber flesh starch but M2Sp and M3Sp were the best 462 

genomic predictors, with 0.866 and 0.867, respectively. M1Sa andM4Ma were slightly 463 

below in terms of prediction accuracy (0.847 and 0.848, respectively). 464 

 The second trait with important genomic prediction accuracy shown by most of the 465 

models was tuber weight above 60 mm with M4Mp* with an accuracy of 0.817, followed 466 

byM1Sa having an accuracy of 0.791 followed by M3Sp with 0.790 (Table 3). Overall, 467 

total tuber weight irrespective of size ranked third based on genomic prediction accuracy, 468 

with model M4Mp* having a prediction accuracy of 0.808, followed by M3Sp with 0.758 469 

prediction accuracy followed by M2Sp (0.750). Weight of tubers below 40mm had 470 

relatively high genomic prediction accuracy, with models M2Sp and M3Sp being the best 471 

with 0.717 and 0.714 of genomic prediction accuracy, respectively. Finally, weight of 472 

tubers 50−60 mm in size had lower prediction accuracy than the previously mentioned 473 

traits, with the best predictor models being M4Mp* with 0.711 GP accuracy, followed by 474 

M2Sp and M3Sp with 0.660 accuracy.  475 

 The GP accuracy of the seven traits in location MOS in 2021 showed slightly higher 476 

accuracy in the prediction of the seven traits in 2021 than those found for the traits at HEL 477 

2021. Results show that the traits with higher phenotypic correlation between MOS 2021 478 

and those at HEL, MOS, and UM in 2020 are tuber flesh starch, weight of tubers above 60 479 

mm and below 40 mm, total tuber weight, and weight of tubers with 50–60mm. In general, 480 

the best models for predicting the majority of the seven traits were M3Sp and M2Sp, except 481 

for traits such as weight of tubers with 50–60mm and above 60 mm, and total tuber weight 482 

in which MT model M4Mp* was the best GP model.  483 

 484 
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3.3 Genomic prediction of traits in location UM 2021  485 

Table 1 lists the phenotypic correlation of traits measured at UM in 2020−2021. For all the 486 

traits, the phenotypic correlations between traits in UM for 2021 and 2020 are higher than 487 

those between UM 2021 and other locations (HEL and MOS) in 2020. The traits with the 488 

highest phenotypic correlation between UM 2021 and HEL, MOS and UM 2020 were 489 

weight of tubers with 50−60mm, below 40 mm, and above 60 mm, followed by tuber flesh 490 

starch. 491 

 Overall genomic prediction accuracy in UM 2021 was lower than those found at 492 

HEL and MOS in 2021. Weight of tuber with 50−60 mm and below 40 mm were the best 493 

predicted traits for all the models in UM 2021 (Table 4 and Figure 4). The best GP model 494 

for all the traits, except reducing sugars and starch in the tuber flesh, was M4Mp*. Models 495 

M3Sp and M4Mp had the best GP accuracy for predicting traits tuber flesh sugar and starch, 496 

respectively. 497 

Most of the four models showed similar genomic prediction accuracy for these two 498 

traits, but M2Sp had a genomic prediction accuracy of 0.688 for tuber weight with 499 

50−60mm and model M4Mp had an accuracy of 0.633 for weight of tubers below 40 mm.  500 

Models M2Sp and M3Sp had a genomic prediction accuracy of around 0.578 for weight of 501 

tubers above 60 mm that ranked third on overall genomic prediction accuracy (Table 4) 502 

followed by tuber flesh starch, with model M3Sp being the best with 0.483 prediction 503 

accuracy, followed by M2Sp (0.481).  504 

 The genomic prediction accuracy of the seven traits at UM in 2021 showed lower 505 

accuracy in 2021 than at HEL and MOS in 2021. Traits with higher phenotypic correlations 506 

between UM 2021 and those at HEL, MOS, and UM in 2020 are weight of tubers with 507 

50−60mm, below 40 mm, and above 60 mm. However, the best model for predicting the 508 

majority of the seven traits was M4Mp*, followed by models M4Mp for tuber flesh starch 509 

and M3Sp for tuber flesh sugar. 510 

 511 

4. DISCUSSION 512 

The integration of GS and GP to develop modern cultivars faster than the 513 

conventional breeding method is necessary for increasing genetic gains and facing the 514 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2022. ; https://doi.org/10.1101/2022.08.09.503418doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.09.503418
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

changes in climate that are currently affecting agriculture. Thus, a better and efficient 515 

integration of new methods including GS with increased GP accuracy, rapid cycle GS, high 516 

throughput phenotyping, and the use of appropriate environmental covariables is an urgent 517 

area of research (Crossa et al., 2021). The integration and exploitation of several big data 518 

sets is necessary, and the use of appropriate statistical machine learning models has become 519 

important for modern breeding.  520 

 521 

4.1 Prediction accuracy of model for ST and MT, cross-validation method and 522 

proportion of the prediction set 523 

When performing research on GS and GP accuracy, several problems become 524 

important; one is the inclusion of statistical machine learning methods and models that 525 

include GE interaction. Another problem to be assessed is the addition of several traits for 526 

prediction rather than only one trait, and another issue is the methods used for comparing 527 

the GP accuracy of several traits using several models and various possible cross-validation 528 

schemes to develop a GP accuracy metric. Several options exist for investigating the GS 529 

accuracy for predicting the breeding value of cultivars that have been genotyped with 530 

genome-wide molecular markers. One scenario is predicting the performance of a 531 

proportion of cultivars (e.g., 70%) that have not yet been observed in any of the testing 532 

environments (usually location-year combinations); another option is to predict all cultivars 533 

(i.e., 100%) observed in all the environments except one (leave one environment out). 534 

Another scenario is predicting cultivars that were observed in some environments but not in 535 

others.  536 

In this study predictions for these scenarios have been done using single-trait (ST) 537 

(M1, M2 and M3) and multi-trait (MT) (M4) models. These ST and MT models combined 538 

with different PT scenarios are represented in Figure 1, where several proportions of the 539 

PS have been combined with the four different models. We included the predictions of all 540 

cultivars in one entire site-year combination or the prediction of a proportion of cultivar 541 

(70%) using the other 30% as TS together with the previous year. We found that for the 542 

majority of the traits in each location-year combination to be predicted (HEL, MOS, UM in 543 

2021) M4 (multi-trait), with a proportion of potato cultivars evaluated (30%) in some 544 

location-year combinations M4Mp* (Figure 1) but not observed in other location-year 545 
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combinations, was found to be the best predictive model usually followed by ST models 546 

M3Sp and M2Sp.   547 

Results of this study demonstrate that for predicting traits in HEL 2021 using all 548 

environments in 2020 the superiority of the MT prediction method M4Mp* over the mean 549 

GP accuracy of the other six prediction methods including ST and MT for predicting entire 550 

PS (100%) or 70% for traits tuber weights 40–50mm, above 60mm and total in location 551 

were 65%, 14% and 24%, respectively. However, this superiority of the MT over ST 552 

methods was not so when comparing M4Ma or M4Mp with other ST methods, especially 553 

for M3Sp for traits tuber weight < 40mm, 50–60mm and tuber flesh starch. Results for 554 

predicting traits in location MOS in 2021 using all environments in 2020 show the 555 

superiority of MT prediction method M4Mp* for four tuber weight traits and one tuber 556 

flesh quality characteristic over all the other six methods. The GP accuracy of method 557 

M4Mp* overcame the mean GP accuracy of all the other six methods by 10%, 9%, 4%, 8% 558 

and 4% for traits tuber weights 40–50mm, 50–60mm, above 60mm, total and tuber flesh 559 

sugar, respectively. Similar results were obtained for the prediction of location UM in 2021 560 

using the TS comprising HEL, MOS, and UM from 2020; the best GP accuracy method for 561 

all five tuber weight traits was method M4Mp* over the mean GP accuracy of all the other 562 

six methods by 7%, 24%, 12%, 8% and 26% for tuber weights below 40 mm, 40–50 mm, 563 

50–60 mm, above 60 mm and total tuber weight, respectively. 564 

Previous research noticed variable prediction accuracy that depends on factors such 565 

as heritability of the trait, size of TP, relatedness of PS and TS, statistical machine learning 566 

models, marker density, linkage disequilibrium, and the incorporation of GE interactions in 567 

the prediction models. In a recent article, Semagn et al. (2022) compared the predictive 568 

abilities of wheat cultivars that have not been evaluated for a single trait (ST), not evaluated 569 

for multi-traits (MT1), and evaluated for some traits but not others (MT2) using agronomy 570 

and disease traits. Note that the partition of Semagn’s MT1 is similar to the partitions of Sp 571 

(M1, M2, and M3) and Mp (M4) in this study, whereas the partitions of Semagn’s MT2 is 572 

similar to that of M4Mp*. Semagn et al. (2022) found that the GP accuracy of MT2 573 

(method M4Mp* in this study) increased over ST and other model-partitions in all traits 574 

from 9% to 82%. This occurred because under the prediction scheme MT2 of Semagn et al. 575 

(2022) it is possible exchange of information between traits like method M4Mp* that 576 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2022. ; https://doi.org/10.1101/2022.08.09.503418doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.09.503418
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

allows borrowing of information between traits and also between environments and thus 577 

efficiently use the available information in one single model combined with an appropriate 578 

prediction scheme.  579 

This demonstrated the high potential for improving prediction accuracies and the 580 

high potential of the MT models for improving prediction accuracy, thus offering 581 

researchers the opportunity to predict traits that were not observed, due to possible 582 

difficulties or because they are expensive to measure under certain environmental 583 

constraints (Semagn et al., 2022). 584 

 585 

4.2 Prediction accuracy of potato traits 586 

Genomic prediction in potato is still in the early research stages before using it for 587 

routine breeding of this highly heterozygous tetrasomic polyploid tuberous crop with 588 

vegetative propagation (Ortiz et al., 2022, and references therein). The use of MT and ME 589 

models for genomic prediction in this research led to highest accuracy for tuber yield and 590 

tuber flesh starch as per available literature. Tuber flesh starch, which is often estimated 591 

from specific gravity measurements, is a very highly heritable trait (Bradshaw, 2021, Ortiz 592 

et al., 2021) that is affected very little by the genotype × environment interactions (Killick 593 

and Simmonds, 1974), thus explaining the high prediction accuracy noted in this and 594 

research elsewhere. The high prediction accuracy noted in this, and previous research 595 

suggest that developing GEBV modeling in potato for tuber flesh starch does not require a 596 

very large training population but just a few hundred (including both breeding clones and 597 

released cultivars that are relevant to the breeding program and covering a broad range of 598 

trait variation) may suffice. 599 

Genotype × environment interactions may significantly affect tuber yield, but the 600 

use of multi-environment genomic prediction allows identifying promising germplasm in 601 

both crossing blocks (Ortiz et al., 2022) in potato breeding. The significantly high 602 

correlations noted when using multi-trait, multi-environment modeling suggest that 603 

genomic prediction may also be useful for the potato cultivar development pipeline even 604 

when using small breeding populations (Selga et al., 2022). Every year F1 seeds (resulting 605 

from crossing heterozygous parents) are planted in individual pots in a greenhouse, and one 606 

tuber (the best in size) for each plant is taken at harvest. Thus, thousands of tubers derived 607 
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from these F1 hybrid seeds are produced for further field testing in single plant plots during 608 

the first year. At harvest, all plants are dug up to assess their tuber number, size, shape, 609 

color, appearance, and health, which are used as the selection criteria for obtaining the next 610 

breeding generation for further testing the next year. After selection in early clonal 611 

generations (first [T1], second [T2] and often third [T3]), the aim is to have about a few 612 

dozens for field-testing from the fourth generation onwards and ending with a few 613 

promising breeding clones after the 7th year of field-testing and selection to include them in 614 

multi-site trials in the target population of environments. The genomic prediction accuracy 615 

over the two years within each site suggests that it will be possible to select (based on 616 

GEBV models) in early generation trials for each target population of environments. 617 

Furthermore, as per previous GP accuracy estimates (Ortiz et al., 2022; Selga et al., 2022) 618 

and these results, it seems that GEBV for selection will be useful from T3 onwards rather 619 

than in T1 or even in T2. Hence, as shown herein, genomic selection appears to be feasible 620 

in potato breeding when using elite bred germplasm. 621 

 622 

5. CONCLUSION 623 

We investigated the accuracy of four genome-based prediction models including 624 

either Hadamard or Kronecker product matrices for assessing GE. Several prediction 625 

problems were analyzed for the GP accuracy of each of the four models. We investigated 626 

the prediction set of locations in year 2021 from locations in year 2020 using the four GP 627 

models combined with two prediction sets (100% and 70%) using both ST and MT. The ST 628 

model M3Sp was the best genomic predicted, followed by M1Sp andM1Sa at HEL in 2021. 629 

In terms of MT GP accuracy, M4Mp* was the best for weight of tubers with 40−50mm, 630 

above 60 mm and total tuber weight irrespective of size, and very similar to tuber flesh 631 

starch. The GP accuracy of the seven traits at MOS in 2021 indicated that the best models 632 

for predicting the majority of the seven traits were ST M3Sp and M2Sp, except for weight 633 

of tubers with 50−60mm, above 60mm, and total tuber weight, where MT model M4Mp* 634 

was the best GP model. The traits with higher phenotypic correlations between location 635 

UM 2021 and those at HEL, MOS, and UM in 2020 are weight of tubers with 50−60 mm, 636 

below 40 mm, and above 60 mm. The best model-method for predicting the majority of the 637 

seven traits was MT M4Mp* because it allows exchange information between traits and 638 
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environments followed by M3Sp and M2Sp that efficiently used information between 639 

environments. According with Cuevas et al (2017) it was expected M3Sp producing better 640 

or similar GP accuracy than M2Sp. 641 
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 816 
Figure 1. Hypothetical example with 10 cultivars for various models and sizes of prediction set (PS) for the genomic prediction of 817 
seven potato traits at Helgegården (HEL) in 2021 (PS) from training data observed at HEL, Mosslunda (MOS) and Umeå (UM) in 818 
2020. Models are M1–M4 and PS are 100% or 70%. The four genome-based prediction models are M1: single trait conventional 819 
reaction norm model incorporating genomic × environment interaction (GE); M2: single trait GE model considering covariances 820 
between environments; M3: single trait GE M2 extended to include a random vector that more efficiently utilizes the environmental 821 
covariances, and M4: multi-trait model with GE CV2 is the random cross-validation where 70% are predictive at HEL 2021. Red lines 822 
delineated the five random partitions combinations and black lines identified single trait genomic prediction (STGP) and absence of 823 
black lines identified multi-trait genomic prediction (MTGP).   824 
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Table 1. Phenotypic correlations of each trait at Helgegården (HEL) in 2021 with each trait at HEL 2020, 

Mosslunda (MOS) 2020, and Umeå (UM) 2020. Phenotypic correlations of each trait oat MOS 2021 with 

each trait at HEL 2020, MOS 2020, and UM2020. Phenotypic correlations of each trait at UM 2021 with 

each trait at HEL 2020, MOS 2020, UM 2020. 

Site_year 

                                                      Traits 

Weight of tubers Tuber flesh 

<40 mm 40–50 mm 50–60 mm > 60mm Total Starch Sugar 

                                                             HEL 2021 

HEL 2020 0.62 0.60 0.24 0.68 0.64 0.89 0.36 

MOS 2020 0.36 0.20 -0.16 0.49 0.48 0.80 0.30 

UM 2020 0.43 -0.05 -0.25 0.51 0.39 0.78 0.43 

                                                              MOS 2021 

HEL 2020 0.65 0.49 0.56 0.73 0.64 0.83 0.39 

MOS 2020 0.64 0.50 0.61 0.74 0.74 0.89 0.36 

UM 2020 0.55 0.28 0.45 0.62 0.52 0.72 0.41 

                                                             UM 2021 

HEL 2020 0.49 0.04 0.42 0.53 0.38 0.48 0.31 

MOS 2020 0.49 0.30 0.47 0.40 0.29 0.40 0.33 

UM 2020 0.57 0.51 0.67 0.57 0.46 0.46 0.46 

 825 
 826 

 827 

 828 

 829 

 830 

  831 
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Table 2. Predictive correlations (COR) and predictive mean squared error (PMSE) for predicting seven traits 

at Helgegården (HEL) in 2021 for four models (M1, M2, M3, M4) combined with 100% or 70% cross-

validation. M1Sa is the prediction accuracy from model M1 (single trait conventional reaction norm model 

incorporating genomic × environment interaction [GE]) when predicting 100% of each trait in 2021; M4Ma is 

the prediction accuracy from model M4 (multi-trait model with GE) when predicting 100% of each trait in 

2021; M1Sp is the prediction accuracy from model M1 when predicting 70% of each trait in 2021; M2Sp is the 

prediction accuracy from model M2 (single trait GE model considering covariances between environments) 

when predicting 70% of each trait in 2021; M3Sp is the prediction accuracy from model M3 (single trait GE 

M2 extended to include a random vector that more efficiently utilizes the environmental covariances) when 

predicting 70% of each trait in 2021; M4Mp is the prediction accuracy from model M4 when predicting 70% 

of each trait in 2021, M4Mp* is the prediction accuracy from model M4 when predicting 70% of each trait in 

2021 in which some cultivars are observed in some traits. When predicting 70%, the mean and the standard 

deviations (sd) from the 10-fold cross-validation are given in parentheses. 

Model name  

Prediction 

accuracy 

measures 

Traits 2021 

Tuber weight Tuber flesh  

< 40mm 40-50mm 50-60mm >60mm Total Starch Sugar

M1Sa COR 0.539 0.269 -0.097 0.627 0.551 0.868 0.511

PMSE 0.552 1.630 6.271 17.040 12.020 1.601 0.730

M4Ma COR 0.525 0.292 -0.111 0.628 0.533 0.867 0.493

  PMSE 0.388 1.702 5.049 16.940 12.600 1.640 0.804

M1Sp COR(mean) 0.576 0.244 -0.127 0.632 0.537 0.868 0.508
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  COR (sd) 0.043 0.043 0.038 0.028 0.031 0.010 0.031

  PMSE(mean) 0.143 0.975 4.785 16.300 11.878 1.582 0.799

  PMSE(sd) 0.022 0.058 0.570 0.708 0.677 0.088 0.035

M2Sp COR(mean) 0.549 0.370 -0.065 0.637 0.533 0.852 0.466

  COR (sd) 0.060 0.045 0.051 0.029 0.039 0.016 0.048

  PMSE(mean) 0.226 1.433 5.615 16.732 11.948 1.620 0.799

  PMSE(sd) 0.028 0.086 0.676 0.730 0.677 0.185 0.038

M3Sp COR(mean) 0.623 0.508 0.424 0.651 0.548 0.877 0.508

  COR (sd) 0.046 0.041 0.042 0.039 0.039 0.012 0.040

  PMSE(mean) 0.076 0.716 3.112 13.460 11.812 1.459 0.746

  PMSE(sd) 0.012 0.061 0.345 1.346 1.146 0.106 0.054

M4Mp COR(mean) 0.549 0.370 -0.057 0.636 0.533 0.852 0.467

  COR (sd) 0.058 0.047 0.052 0.023 0.034 0.018 0.047

  PMSE(mean) 0.142 0.863 4.317 16.833 12.242 1.650 0.810

  PMSE(sd) 0.020 0.060 0.614 0.701 0.644 0.103 0.036

M4Mp* COR(mean) 0.484 0.562 0.191 0.730 0.658 0.866 0.502

  COR (sd) 0.044 0.050 0.077 0.029 0.021 0.016 0.037

  PMSE(mean) 0.154 0.684 3.858 12.279 10.000 1.607 0.796

  PMSE(sd) 0.014 0.125 0.411 1.084 0.760 0.125 0.048
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 833 
Figure 2. Trait prediction in 2021 at Helgegården (HEL). M1Sa is the prediction accuracy 834 

from model M1 (single trait conventional reaction norm model incorporating genomic × 835 

environment interaction [GE]) when predicting 100% of each trait in 2021). M4Ma is the 836 

prediction accuracy from model M4 (multi-trait model with GE) when predicting 100% of 837 

each trait in 2021. M1Sp is the prediction accuracy from model M1 when predicting 70% of 838 

each trait in 2021. M2Sp is the prediction accuracy from model M1 when predicting 70% of 839 

each trait in 2021. M3Sp is the prediction accuracy from model M1 when predicting 70% of 840 

each trait in 2021. M4Mp is the prediction accuracy from model M4 when predicting 70% 841 

of each trait in 2021. M4Mp* is the prediction accuracy from model M4 when predicting 842 

70% of each trait in 2021 in which some cultivars are observed in some traits. 843 
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 844 

Table 3. Predictive correlations (COR) and predictive mean squared error (PMSE) for predicting seven traits at Mosslunda 

(MOS) in 2021 for four models (M1, M2, M3, M4) combined with 100% or 70% cross-validation. M1Sa is the prediction 

accuracy from model M1 (single trait conventional reaction norm model incorporating genomic × environment interaction 

[GE]) when predicting 100% of each trait in 2021. M4Ma is the prediction accuracy from model M4 (multi-trait model 

with GE like) when predicting 100% of each trait in 2021. M1Sp is the prediction accuracy from model M1 when 

predicting 70% of each trait in 2021. M2Sp is the prediction accuracy from model M2 (single trait GE model considering 

covariances between environments) when predicting 70% of each trait in 2021. M3Sp is the prediction accuracy from 

model M3 (single trait GE M2 extended to include a random vector that more efficiently utilizes the environmental 

covariances) when predicting 70% of each trait in 2021; M4Mp is the prediction accuracy from model M4 when predicting 

70% of each trait in 2021, M4Mp* is the prediction accuracy from model M4 when predicting 70% of each trait in 2021 in 

which some cultivars are observed in some traits. When predicting 70%, the mean and the standard deviations (sd) are 

given from the 10-fold cross-validation in parentheses. 

Model name 

Prediction 

accuracy 

measures 

Traits 2021 

Tuber weight  Tuber flesh 

<40mm 40−50mm 50−60mm >60mm Total Starch Sugar 

M1Sa COR 0.694 0.550 0.647 0.791 0.739 0.847 0.572 

PMSE 0.112 0.587 0.949 1.600 3.700 2.050 0.890 

M4Ma COR 0.680 0.551 0.641 0.779 0.734 0.848 0.550 

  PMSE 0.256 0.595 1.420 0.940 3.756 2.100 0.840 

M1Sp COR(mean) 0.693 0.564 0.648 0.786 0.749 0.851 0.578 
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  COR (sd) 0.032 0.025 0.028 0.018 0.016 0.028 0.034 

  PMSE(mean) 0.113 0.583 0.949 1.599 3.400 1.991 0.877 

  PMSE(sd) 0.010 0.034 0.100 0.123 0.165 0.251 0.040 

M2Sp COR(mean) 0.717 0.564 0.660 0.777 0.750 0.866 0.556 

  COR (sd) 0.029 0.038 0.029 0.026 0.018 0.024 0.026 

  PMSE(mean) 0.075 0.591 0.919 1.701 3.459 1.777 0.807 

  PMSE(sd) 0.006 0.044 0.097 0.164 0.264 0.222 0.063 

M3Sp COR(mean) 0.714 0.557 0.660 0.790 0.758 0.867 0.553 

  COR (sd) 0.029 0.037 0.030 0.023 0.018 0.026 0.025 

  PMSE(mean) 0.075 0.595 0.920 1.605 3.335 1.757 0.817 

  PMSE(sd) 0.005 0.042 0.095 0.145 0.221 0.234 0.058 

M4Mp COR(mean) 0.710 0.580 0.640 0.776 0.732 0.851 0.546 

  COR (sd) 0.026 0.027 0.033 0.019 0.027 0.021 0.032 

  PMSE(mean) 0.077 0.578 1.023 1.804 3.405 2.345 0.904 

  PMSE(sd) 0.004 0.066 0.048 0.131 0.232 0.166 0.037 

M4Mp* COR(mean) 0.684 0.622 0.711 0.817 0.808 0.856 0.579 

  COR (sd) 0.029 0.036 0.014 0.016 0.020 0.017 0.028 

  PMSE(mean) 0.105 0.546 0.804 1.410 2.782 1.890 0.881 

  PMSE(sd) 0.004 0.066 0.048 0.131 0.232 0.166 0.037 
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Figure 3. Trait prediction in 2021 at Mosslunda (MOS). M1Sa is the prediction 847 

accuracy from model M1 (single trait conventional reaction norm model incorporating 848 

genomic × environment interaction [GE]) when predicting 100% of each trait in 2021. 849 

M4Ma is the prediction accuracy from model M4 (multi-trait model with GE) when 850 

predicting 100% of each trait in 2021. M1Sp is the prediction accuracy from model M1 851 

when predicting 70% of each trait in 2021. M2Sp is the prediction accuracy from model 852 

M1 when predicting 70% of each trait in 2021. M3Sp is the prediction accuracy from 853 

model M1 when predicting 70% of each trait in 2021. M4Mp is the prediction accuracy 854 

from model M4 when predicting 70% of each trait in 2021. M4Mp*is the prediction 855 

accuracy from model M4 when predicting 70% of each trait in 2021 in which some 856 

cultivars are observed in some traits. 857 
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Table 4. Predictive correlations (COR) and predictive mean squared error (PMSE) for predicting seven traits at UM in 

2021 for four models (M1, M2, M3, M4) combined with 100% or 70% cross-validation. M1Sa is the prediction 

accuracy from model M1 (single trait conventional reaction norm model incorporating genomic × environment 

interaction [GE]) when predicting 100% of each trait in 2021. M4Ma is the prediction accuracy from model M4 (multi-

trait model with GE) when predicting 100% of each trait in 2021. M1Sp is the prediction accuracy from model M1 

when predicting 70% of each trait in 2021. M2Sp is the prediction accuracy from model M2 (single trait GE model 

considering covariances between environments) when predicting 70% of each trait in 2021. M3Sp is the prediction 

accuracy from model M3 (single trait GE M2 extended to include a random vector that more efficiently utilizes the 

environmental covariances) when predicting 70% of each trait in 2021. M4Mp is the prediction accuracy from model 

M4 when predicting 70% of each trait in 2021, M4Mp* is the prediction accuracy from model M4 when predicting 70% 

of each when some cultivars are observed in some traits. When predicting 70% the mean and the standard deviations 

(sd) from the 10-fold cross-validation are given in parentheses. 

Model name 

Prediction 

accuracy 

measures 

Traits 2021 

Tuber weight Tuber flesh 

<40mm 40−50mm 50−60mm >60mm Total Starch Sugar 

M1Sa COR 0.626 0.425 0.625 0.527 0.411 0.479 0.529 

PMSE 0.540 1.127 0.925 0.715 6.680 6.220 0.817 

M4Ma COR 0.617 0.400 0.641 0.563 0.446 0.488 0.515 

  PMSE 0.544 1.220 0.885 0.703 5.742 5.860 0.824 

M1Sp COR(mean) 0.633 0.445 0.629 0.534 0.404 0.487 0.545 
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  COR (sd) 0.034 0.034 0.031 0.024 0.033 0.021 0.027 

  PMSE(mean) 0.537 1.125 0.922 0.674 6.909 6.128 0.802 

  PMSE(sd) 0.052 0.071 0.088 0.106 0.600 0.554 0.049 

M2Sp COR(mean) 0.605 0.502 0.688 0.578 0.450 0.481 0.544 

  COR (sd) 0.025 0.025 0.025 0.032 0.031 0.036 0.032 

  PMSE(mean) 0.556 1.054 0.796 0.674 5.705 5.896 0.744 

  PMSE(sd) 0.080 0.078 0.067 0.054 0.352 0.459 0.054 

M3Sp COR(mean) 0.605 0.512 0.682 0.581 0.463 0.483 0.550 

  COR (sd) 0.024 0.019 0.024 0.031 0.022 0.029 0.034 

  PMSE(mean) 0.557 1.042 0.809 0.671 5.581 5.879 0.741 

  PMSE(sd) 0.082 0.064 0.070 0.056 0.398 0.457 0.053 

M4Mp COR(mean) 0.627 0.451 0.663 0.573 0.449 0.496 0.537 

  COR (sd) 0.035 0.043 0.028 0.029 0.035 0.025 0.020 

  PMSE(mean) 0.535 1.137 0.875 1.257 6.375 5.982 0.792 

  PMSE(sd) 0.056 0.098 0.088 0.119 0.646 0.555 0.063 

M4Mp* COR(mean) 0.662 0.558 0.732 0.603 0.551 0.482 0.519 

  COR (sd) 0.020 0.033 0.012 0.030 0.036 0.044 0.019 

  PMSE(mean) 0.428 0.949 0.710 1.064 5.324 5.854 0.851 

  PMSE(sd) 0.027 0.065 0.035 0.084 0.533 0.371 0.077 
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 860 
Figure 4. Trait prediction in 2021 at Umeå (UM). M1Sa is the prediction accuracy from 861 

model M1 (single trait conventional reaction norm model incorporating genomic × 862 

environment interaction [GE]) when predicting 100% of each trait in 2021. M4Ma is the 863 

prediction accuracy from model M4 (multi-trait model with GE) when predicting 100% 864 

of each trait in 2021. M1Sp is the prediction accuracy from model M1 when predicting 865 

70% of each trait in 2021. M2Sp is the prediction accuracy from model M1 when 866 

predicting 70% of each trait in 2021. M3Sp is the prediction accuracy from model M1 867 

when predicting 70% of each trait in 2021. M4Mp is the prediction accuracy from 868 

model M4 when predicting 70% of each trait in 2021. M4Mp* is the prediction 869 

accuracy from model M4 when predicting 70% of each trait in 2021 in which some 870 

cultivars are observed in some traits 871 
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