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4

Abstract5

The immune memory repertoire encodes the history of present and past infections and6

immunological attributes of the individual. As such, multiple methods were proposed to use T-cell7

receptor (TCR) repertoires to detect disease history. We here show that the counting method8

outperforms all existing algorithms. We then show that the counting can be further improved9

using a novel attention model to weight the different TCRs. The attention model is based on the10

projection of TCRs using a Variational AutoEncoder (VAE). Both counting and attention algorithms11

predict better than any current algorithm whether the host had CMV and its HLA alleles. As an12

intermediate solution between the complex attention model and the very simple counting model,13

we propose a new Graph Convolutional Network approach that obtains the accuracy of the14

attention model and the simplicity of the counting model. The code for the models used in the15

paper are provided in: https://github.com/louzounlab/CountingIsAlmostAllYouNeed16

17

Introduction18

Following recent developments in immune sequencing technology (18; 7; 3), large T-Cell Receptor19

(TCR) repertoires can be sampled. Given the association of diseases and TCRs, such repertoires20

could in theory be used for systemic detection of disease history. However, methods to decipher21

the disease history from these repertoires (currently denoted "reading the repertoire") are still22

limited. Recently, Bayesian approaches andmachine learning methods to read repertoires (15; 33;23

42; 39; 52; 55) were proposed in this field, with a good accuracy. However, even those do not reach24

the accuracy required for clinical usage.25

From a computational point of view, the repertoire classification problem is a Multiple Instance26

Learning (MIL) task. MIL problems arise when the training examples are of varying sizes. In MIL27

problems, a set or bag is labeled instead of a single object. In the standard definition, a bag𝑋 = {𝑥𝑖}28

receives a label 𝑌𝑋 = 𝑚𝑎𝑥{𝑦𝑖}, where 𝑦𝑖 is the label of 𝑥𝑖. Here, 𝑦𝑖 ∈ {0, 1}. However, this can be29

extended to any label. During training, we are unaware of 𝑦𝑖. Only 𝑌𝑋 , the class of each bag in the30

training set, is known. Examples of MIL problems are video classification, where each frame is an31

instance, text classification, where each word is an instance, 3D object classification, where each32

point is an instance, and more (8; 48).33

The standard MIL assumption can be expanded to address tasks where positive bags cannot34

be identified by a single instance. However, the bag can still be classified by the distribution, inter-35

action or accumulation of the instances in the bag (8).36

To formulate the TCR repertoire classification task as anMIL task, a repertoire can be viewed as37

a bag of TCR sequences, of which a very small fraction is associated with the class of interest. We38

use the following notations in the current analysis: 𝑇 = {𝑡1, 𝑡2, 𝑡3, ..., 𝑡𝑅} is the group of all TCRs in all39

samples (training or test) that may be very large. 𝑋𝑗 = {𝑡𝑗1 , 𝑡𝑗2 , 𝑡𝑗3 , ..., 𝑡𝑗𝑁 } is a specific repertoire and40

𝑌 (𝑋𝑗) ∈ {0, 1} is the binary label of the repertoire 𝑋𝑗 . We further assume for the sake of notation41

simplicity that a TCR 𝑡 can either bind or not bind any peptide 𝑝, with some arbitrary binding cutoff.42

We denote the set of TCR that binds the peptide 𝑝 by 𝑇 (𝑝).43
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The TCR repertoire classification problem includes unique difficulties compared with classical44

MIL problems:45

• Low overlap - The immune repertoire overlap of different individuals is low ((24; 14)). Given46

two repertoires 𝑋𝑗 , 𝑋𝑘, |𝑋𝑗 ∩𝑋𝑘| is very small.47

• Non-injectivity of TCR-peptidebinding -Multiple sequences can bind to the samepathogen48

(53). |𝑇 (𝑝)| > 1 for most target peptides.49

• Large TCR diversity - Recent studies suggest that the human body can have > 1014 unique50

TCR sequences (36). |𝑇 | ≥ 1014.51

• An extremely low Witness Rate (WR) - In MIL problems, the WR is defined by the percent-52

age of discriminating instances within a bag. A WR of 1-5% is considered low in MIL tasks53

(52). We analyze here a large CMV binding dataset, used by multiple groups (52; 41; 14; 12).54

Each immune repertoire in the dataset has an average of 192,515 (±80, 630 s.d) unique TCR55

sequences (15), of which we further estimate only an order of 100 are associated with CMV56

(15; 9), i.e., the WR can be lower than 0.0001%. Formally, for each repertoire 𝑋𝑗 and target57

peptide 𝑝 |𝑇 (𝑝)|
|𝑋𝑗 |

is very small.58

We here show that counting arguments actually produce better results than the current SOTA59

ML or Bayesian methods. We then further improve on that by including the similarity between60

different TCRs using the combination of a Variational AutoEncoder (VAE) (13), and a novel atten-61

tion model to include not only the relative importance of positive samples, but also their quantity,62

named attTCR (attention TCR). Finally, we propose an intermediate solution between the counting63

and attTCR - gTCR that uses a graph of the TCR repertoire co-occurences to predict the class of a64

sample.65

Related work66

In recent years, ML and statistical data analysis tools have been proposed to solve the repertoire67

classification problem. Emerson et al (15) released a dataset composed of 786 immune repertoires,68

most of themwith a CMV negative/positive classification as well as low resolution class-I HLA typing69

(for a detailed data description see the ’Data’ section). They use a Fisher exact test to score TCRs70

based on their association with positive and negative repertoires, and classify TCR repertoires as71

either positive or negative to CMV or for a given HLA allele.72

Their work has been enlarged by TCR-L (33) who evaluate the association between the TCR73

repertoire and clinical phenotypes. TCR-L expands on Emerson and also uses information about74

the structure of the TCR sequences and other information about the patient.75

Machine learning models, and specifically attention based machine learning models, were also76

proposed as immune repertoire classifiers. deepTCR (42) implementsmultiple deep learningmeth-77

ods, and a basic form of attention-based averaging. deepTCR encodes each TCR𝛽 chain with a78

combination of its V𝛽, D𝛽 and J𝛽 genes using a Convolutional Neural Network (CNN) that extracts79

sequencemotifs. This information is further encoded using a VAE. Then, an attention score is given80

to each TCR using a custom attention function they designed called AISRU. Finally, a fully connected81

network (FCN) classifier determines the immune repertoire’s status.82

Another recently developedmodel (39) uses 4-mers, sub-sequences of the TCRs CDR3. A logistic83

regression model is trained on the 4-mers as inputs. Similarly, MotifBoost (28) uses 3-mers to84

classify the repertoire, using GBDT (gradient boosted decision trees).85

Finally, Deep-RC (52) implements an attentionmodel anduses 1DCNNs in order to embed every86

TCR to a fixed dimension. Those embeddings are forwarded to more FCN layers, and awarded87

attention scores using a Transformer-like (49) attention equation.88

Novelty89

The algorithms presented here present multiple novel aspects to improve the accuracy of reper-90

toire association studies.91
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First, we show that a simple counting argument obtains a higher accuracy than all previous92

methods.93

We then propose a novel attention methods that on the one hand gives a different importance94

to different components, but on the other hand counts them. This is obtained through the sum95

over the attention of each TCR, with no softmax, but with sigmoid. We show that in contrast with96

classical attention models, the attention scoring with non-constant sum improves performance97

over the simple counting algorithm. The only normalization performed is on the sum of the atten-98

tion scores, to put it in the active range for the loss function.99

Finally, we combine the counting and attention in the Graph Neural Network (GNN) based gTCR100

model. We use a GNN to classify the repertoire. To the best of our knowledge, this is the first usage101

of GNN in TCR repertoire classification. The proposed GNN has two novel methodological aspects.102

First, the contribution of self edges in the modified adjacency matrix is learnt with the weights.103

Second, we use vertex identity aware graph classification. The combination of these two methods104

obtain the accuracy of the attention model with the simplicity of the counting one.105

At the technical level, attTCR offers several improvements over Deep-RC (52) and deepTCR (42).106

The embedding method of each TCR using a cyclic variational autoencoder has never been used107

on TCRs.108

The combination of these methods produce three levels of complexity for the model, where109

even the simplest model is more accurate than current state of the art (SOTA) models.110

Results111

Positive selection and detection of TCRs associated with a condition112

Although, the TCR repertoire is very diverse, with most positions along the CDR3 highly variable113

(36; 4), still a large number of TCRs are shared among multiple patients.114

We computed sharing of TCRs between samples in the Emerson dataset (15) (further denoted115

ECD), where a TCR is defined as the combination of 𝑉 𝛽, and 𝐽𝛽 genes and a CDR3 amino acid116

sequence (even with different nucleotide sequence). While most of the TCR sequences appear in a117

single repertoires, there are ∼ 105 unique TCRs that appear in more than 10 different repertoires,118

and hundreds of TCRs that appear in more than a 100 repertoires (Figure 1A). As such, there is119

enough intersection between different TCRs to perform classification algorithms.120

One can assume that following T cell clonal expansion, TCRs that bind to specific diseases are121

more frequent, and as such are likely to appear in repertoires of people who are or were infected122

by the disease. However, while we expect some TCRs to be positively associated with a disease or123

a condition, there is no a-priori reason for any TCR to be negatively associated with a condition (i.e.,124

that its absence is evidence for a condition). To test the absence of negative selection by pathogen,125

we split the data into a training and a test set (see ’Experimental setup’), and calculated the 𝜒2 score126

between the expected and observed number of CMV positive patient that carry a TCR for both the127

train and test sets (see section ’𝜒2 ’). We then multiplied the score by the sign of the difference of128

the expected and observed number of CMV+ patients carrying the TCR (i.e., TCRs less present in129

positive samples than expected have a negative sign - Figure 1B).130

For the vast majority of the TCRs, the 𝜒2 score is distributed around 0. However, there are some131

outliers with high 𝜒2 scores in the training set. Many of those also have a high 𝜒2 score in the test132

set (red points). More interestingly, the deviation is only on the positive side. In other words, some133

TCRs are strongly positively associated with the CMV+ patient class. However, as expected, there134

are no TCRs associated with the CMV- patient class. We propose to use (only) the TCRs positively135

associated with the condition (CMV in this case) in the training set to classify patients.136

No systemic difference between CMV+ and CMV- samples137

High 𝜒2 score reactive TCRs are obviously more likely to be shared between more repertoires than138

the other TCRs (Figure 1C), since a non-shared receptor per definition has a low 𝜒2 score. Although139
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reactive TCRs go through clonal expansion, checking which TCRs have a large frequency within the140

repertoire of each donor is not a sufficient method to find such reactive TCRs. Figure 1D demon-141

strates the lack of correlation between the 𝜒2 score of each TCR and its average frequency in the142

samples where it is present.143

Instead of focusing on a specific TCR, one could propose to use more generic features of the144

repertoire to distinguish between CMV+ and CMV- patients ((46; 23; 43)). This may be true for lytic145

conditions, but not for latent or historical conditions. We expect no difference in the general prop-146

erties of the peripheral repertoire. For events in the distant past, most of the TCRs that were active147

during the immune response are no longer in the blood in high quantities, and when looking at148

the general data distribution in the repertoire, there is no difference between positive and negative149

repertoires (see the Appendix for comparison between V, and J gene distributions and the CDR3150

compositions of CMV+ and CMV- patients).151

Figure 1. (A) TCR number as a function of the number of the patient repertoires that have them in thetraining set. (B) Distribution of the TCRs’ 𝜒2 scores in the training and test sets. The x-axis value is the 𝜒2 scoreof the TCR on the training set, the y-axis value is the 𝜒2 score of the same TCRs on the test set. TCRs with anabsolute 𝜒2 score of over 10 in the training set are colored red. Notice that there are only such points on thepositive side of the axis.(C) Distribution of average frequency per sample reactive and general TCRs in thedataset. General TCRs refer to all the TCRs in the dataset included in at least 7 repertoires, and reactive TCRsrefer to the 200 TCRs with the highest 𝜒2 score. The distribution of reactive receptors is clearly shifted to theright. (D) Scatter plot of different TCRs in the dataset. The x-axis represents the 𝜒2 score of each TCR, and they-axis represents its log average frequency in the repertoires it appears in. No correlation is observedbetween the two.

Counting is all you need152

Given the association of specific TCRs with a condition, one could propose different methods to153

combine reactive TCRs into a classifier for disease history. We here argue that counting the number154

of such TCRs in a repertoire is a better classifier than any existing complex ML classifier.155

To clarify that, we propose a simplisticmodel that captures the essence of the problem. Assume156
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a general very large set of TCRs, where each patient has a random subset of these TCRs. Within157

the large set of TCRs, there is a small subset associated with the disease, and patients that had the158

disease have a higher than random chance of having these TCRs (see Figure 2 for a description of159

the model). The data generation process uses 3 probabilities: 𝑝0 - the probability that a TCR would160

be selected in any patient, 𝑝1, 𝑝2 - the probability that a selected TCR associated with CMV is added161

to a repetoire in CMV positive and negative samples (Fig. 2).162

In this model, all TCRs are independent (the presence or absence of different TCRs are not163

correlated). In such a model,164

𝑙𝑜𝑔(𝑃 (𝐶𝑀𝑉 + |𝑋𝑗)) = 𝑙𝑜𝑔(𝑃 (𝐶𝑀𝑉 +)) + 𝑙𝑜𝑔(𝑃 (𝑋𝑗|𝐶𝑀𝑉 +) − 𝑙𝑜𝑔(𝑃 (𝑋𝑗)) = 𝑙𝑜𝑔(𝑃 (𝑋𝑗|𝐶𝑀𝑉 +) + 𝐶. (1)
Since the TCRs are independent,165

𝑙𝑜𝑔(𝑃 (𝑋𝑗|𝐶𝑀𝑉 +) =
∑

𝑖
𝑙𝑜𝑔(𝑝(𝑡𝑗𝑖 |𝐶𝑀𝑉 +)) (2)

𝑝(𝑡𝑗𝑖 |𝐶𝑀𝑉 +) are sampled from a binomial distribution. For reactive TCRs 𝐸(𝑝(𝑥𝑗𝑖 |𝐶𝑀𝑉 +)) = 𝑝0𝑝1,166

whereas 𝐸(𝑝(𝑥𝑗𝑖 |𝐶𝑀𝑉 −)) = 𝑝0𝑝2. Since 𝑝2 ≪ 𝑝1, the negative component can be ignored. Since the167

𝜒2 index awards a high score to TCRs that appear in more positive repertoires than negative TCRs,168

we can expect that by picking a conservative threshold, most of the TCRs that have an high enough169

𝜒2 are truly reactive (as can be observed from the absence of TCRs with parallele negative scores).170

However, since general non-reactive TCRs appear in large amounts in both positive and negative171

repertoires, some might still pass the threshold and be falsely classified as reactive TCRs. When172

the value of 𝑝0 ∗ 𝑝1 is large enough so that there are much more true reactive TCRs found than173

false reactive TCRs, we expect that classification to be correct.174

We calculated the number of false and true reactive TCRs that are extracted by the 𝜒2 scoring175

for different 𝑝0 ∗ 𝑝1 values, using the binomial distribution above (Figure 3A). In the specific sample176

sizes (see Methods for details of simulations) used here, one can clearly see that by a value of177

𝑝0 ∗ 𝑝1 > 0.06 there are considerably more true reactive than false reactive TCRs detected. Below178

this value, classification would be impossible, while above this value, it should be straightforward.179

To test that, we applied a straightforward algorithm, where we counted the number of significant180

TCRs as defined by the training set in each test sample and used the count as a classification score.181

One can see that the transition between the points that there are more false reactive TCRs than182

true reactive TCRs to there being orders of magnitude more true reactive TCRs than false reactive183

TCRs is sharp, and the AUC transition is expected to be similar. As such, either classification is184

trivial and then counting is enough, or it is impossible and then all other algorithms will also fail.185

The same holds for all parameter regimes of 𝑝2 and 𝑝1.186
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Figure 2. A) Data generation process of the toy model. Each generated repertoire is created using binomialsampling from a collection of positive and negative TCRs. B) The data generation process uses 3 probabilities:
𝑝0 - the probability that a TCR would be selected in any patient, 𝑝1, 𝑝2 - the same for TCRs associated with CMVin CMV+ and CMV- samples. We also tested a model where we replaced 𝑝1 with 𝑝𝑖 ∼ 𝑁(𝑝1, 𝜎2) for each positiveTCR 𝑡𝑖. C) When classifying the generated repertoires, the reactive TCRs are extracted from each repertoireusing the 𝜒2 score on the training set , and then counted in the test set. Repertoires with a large enoughnumber of reactive TCRs are classified as positive.

The test generated data (500 positive repertoires, 500 negative repertoires) and was split into187

a test and a training set. Reactive TCRs were extracted from the training set, and counted in each188

sample in the test set. Then, an AUC score was calculated using the number of positive clones189

present in each repertoire in the test set. We ran the counting model on the generated data with190

different parameters. As expected from the argument above, when trying to classify the generated191

data with a low value of 𝑝0 ∗ 𝑝1, the classification is impossible. With a high enough value of 𝑝0 ∗ 𝑝1,192

the classification is almost trivial, and a simple counting model can achieve a perfect AUC (Figure193

3B). More importantly, the range between the two extremities is very narrow, either you can or194

cannot classify the repertoires using counting. Since there is no a priori reason to assume for any195

disease and sampling level in any given experiment that they are exactly in this narrow range, one196

can argue that in general for any disease, either classification is impossible, or a simple counting197

argument can obtain a high accuracy.198
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Figure 3. (A) The number of true reactive and false reactive TCRs extracted by the 𝜒2 scoring. The number isthe average of 5 calculations on the training set over a 5 CV splits. Each line represents a constant
𝑝0 ∼ 𝑈 [0.01, 0.1] value with different 𝑝1 values. The x-axis is the product of 𝑝0 and 𝑝1. The other parameters areconstant: 𝑁 = 100, 000, 𝑝2 = 0.002. (B) The AUC score for data generated with different 𝑝0, 𝑝1 probabilities (5-CVfold). The classification was obtained using the counting method. The colors represents different
𝑝0 ∼ 𝑈 [0.01, 0.1] values with different 𝑝1 values. The x-axis is the product of 𝑝0 and 𝑝1. The other generationparameters are as above. (C) Bar plot of the AUC results for different models on the 5 CV above. In all themodels, meaningful TCRs are extracted by calculating the 𝜒2 score for each TCR in the test set, and thentaking only TCRs above a certain threshold (in this case, 3.84). The counting model counts the relevant TCRs ineach test set sample and classifies it by the number of relevant TCRs in each repertoire. The score sum modelsums the 𝜒2 score for the relevant TCRs in the test repertoires, and classifies them according to the sum. TheFCN model trains a 2-layer FCN over the training repertoires and then makes a prediction on the testrepertoires using the TCR one-hot vectors as an input. The parameters used in the generation of therepertoires are 𝑁 = 100, 000, 𝑝0 = 0.1, 𝑝1 = 0.08, 𝑝2 = 0.002. (D) A surface plot that presents the AUC of thecounting model for different 𝑝1 and 𝑝2 combinations. Here, 𝑝1 is not constant for each TCR. Instead, 𝑝𝑖 issampled from for each TCR 𝑡𝑖 (see Figure 2) from a normal distribution. The other generation parameters areconstant: 𝑝0 = 0.01, 𝜎 = 0.03, 𝑁 = 100, 000.

Given this simple argument, onewould expect othermethods to simply overfit in the simulation199

above. To test for that, we compared the counting with more complex methods (see Methods).200

Indeed, counting the relevant TCRs is the best repertoire classification method. The introduction201

of machine learning methods often only reduce the classification accuracy, following over-fitting202

on the training set (Figure 3C).203

To ensure that the results are not an artifact of the highly simplified model, where all the pos-204

itive TCR have the same probability, we further enlarged the model to contain a different a priori205

probability for each positive TCR to appear (see Methods). Figure 3D shows that the conclusion of206

the sharp transition is true even with looser conditions. Even when 𝑝2 is changing, and when the207

reactive TCRs are sampled in a non constant distribution, there is still a clear and sharp "tipping208

point" between impossible and easy classification, suggesting that this argument may apply to real209

sampled data.210
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Application to real data211

To show that the counting argument works in general even when not all TCRs are independent, we212

analyzed the immune repertoire ECD ((15)).213

To test for the CMV classification, we split the data into a training:validation:test split ratio214

of 8:1:1, and used 9 cross validations on the training and validation (the test set was either not215

changed or ever used in the training). We then applied the counting method:216

1. Calculate the 𝜒2 score for each TCR in the training set.217

2. Extract the top-𝑘 TCRs with the highest 𝜒2 score. In this case 𝑘 = 100. One could alternatively218

use a 𝑝 value cutoff with similar values, but we have here tried to minimize the hyperparam-219

eter optimization to show how generic the counting algorithm is.220

3. Count the number of reactive TCRs in each test sample.221

4. Calculate AUC on the test set using the counts above.222

Again, the counting model outperformed all published models, including the (15) model on the223

same test set for different training set sizes (Figure 6). The advantage of the counting algorithm is224

further obvious in small training sample sizes. In contrast with Emerson (15) and deepRC (52), the225

counting method can obtain a signal even for 100 training samples.226

TCRs Correlations227

In contrast with the simplistic model, TCR usage in real samples can be correlated. The counting228

method, as adequate as it is, neglects the information that may be available in this correlation. As229

such it does not reach a perfect AUC in the ECD. To check the co-expression of reactive TCRs, we230

computed the Spearman correlation between the appearance vector of each TCR in each sample231

(1 if the TCR is in the sample and 0 otherwise (Figure 4), and clustered the samples based on their232

correlation). The clusters of related TCRs are very clear. To test the significance, we used a t-233

test between the correlation matrix and a correlation matrix between random shuffled vectors234

(𝑝 < 1.𝑒 − 100).235
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Figure 4. A clustermap of the Spearman correlation between 125 reactive TCRs. For each reactive TCR, weextracted from the ECD (15), we assigned a one-hot vector that represents the appearance on the TCR indifferent repertoires in the data. Then, for each TCR pairing, we calculated the Spearman correlation betweentheir one-hot vectors.

Autoencoder Projections236

To address the similarity between TCRs, one can use either a sequence similarity (how similar are237

the TCR CDR3 and V sequence), or a functional similarity (how often they co-appear in the same238

sample). For the sequence similarity, we projected each sequence using an improvement of the239

ELATE (Encoder based LocAl Tcr dEnsity) TCR autoencoder (13). ELATE was enlarged to become a240

cyclic variational autoencoder, and the TCR representation method was improved (see Methods).241

To confirm that the autoencoder projection is associatedwith the class of the TCRs, we sampled242

100 TCRs out of the 200 TCRs with the highest 𝜒2 score, and 100 random TCRs, and computed the243

average nearest neighbor euclidean distance between the projections within each group (with 30244

cross validations). The distance between reactive TCRs is significantly lower than random TCRs245

(12.95 vs 13.886, T test 𝑝 < 1.𝑒− 10), suggesting that reactive TCRs are evenly distributed among all246

TCRs.247

attTCR248

In order to combine the projections into a classifier, we propose an attention model. However,249

classical attention models sum the positive attention scores to 1. As such, these models would250

fail to count the number of reactive TCRs in a sample. Instead, they would focus on the relative251

importance of reactive TCRs. We thus propose a novel attention model that does not apply a252

softmax to the score assigned to each reactive TCR (see Methods for details), but sigmoid. As253

such it allows to estimate the relative importance of reactive TCRs and on the other hand to count254

them. The sum is then normalized to be in the active range for the loss function. We then tested255

the combination of the projection and the attention on the ECD, and the results are significantly256

better than the counting algorithm (Figure 5, for every training set size, and 𝑝 values of differences257

therein), and obviously much better than all existing models.258
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gTCR259

attTCR has an impressive precision. However, it its complex and its training is costly (in GPU time).260

An alternative method to incorporate the relation between TCR would be purely based on their261

co-occurrence in samples. To address that, we propose a novel GNN formalism that we denote262

Graph TCR (gTCR). We define a graph connecting TCRs based on the correlation between their co-263

occurrence patterns (two TCRs are connected if the Spearman correlation coefficient between their264

co-occurrence vector is above 0.2). Then the occurrence vector of each TCR in a given sample is the265

input of this GNN In parallel, the log frequency of each TCR is included as the input to an FCN and266

the last layers of the two are the input of a final FCN layer that combines the interaction map with267

the co-occurence and the log frequency. The results of gTCR are close to the results of attTCR, with268

no significant difference (Figure 6). Note that similar results can be obtained by producing a graph269

using the similarity of the TCRs projection (denoted in the figure gTCR-p in contrast with gTCR-c).270

The difference between the two gTCR models is simply the interaction matrix, which can be271

either based on the sequence or the appearance similarity. The resulting interaction matrices are272

very different (Jaccard index = 0.002 ± 0.003 in 10 training/test division). Thus, information seems273

to be available through both distance definitions.274
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Figure 5. The AUC results of different models on different train sample sizes on the ECD (15). The results areover a 9 CV split of the training and the dev sets. The test set is the same for every model. Stars are used tomark statistical significance of the results using a t-test (* 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001). Pink starsrepresent the t-test between the Emerson model and the counting model, and blue stars represent the t-testbetween attTCR and the counting model. The results were also compared to the results reported for deepRC((52)) (with different experimental setup). For further result comparison to DeepRC and MotifBoost on theECD, which have even lower AUC, see (28)

HLA allele repertoire classification275

The ECD ((15)) provides the low resolution A and B HLA-alleles of most samples. We further tested276

the algorithms above HLA prediction accuracy. From a MIL point of view, this is equivalent to CMV277

classification. Indeed, the counting model handles this classification task very well, especially with278
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very frequent HLA alleles (Figure 7A). The difference between the countingmodel and the Emerson279

model is statistically significant (𝑝 = 0.017 with Mann-Whitney U-test). We use the counting model280

with 𝑘 = 100. We use a number cutoff instead of a threshold cutoff to ensure that we find reactive281

TCRs for rare HLA alleles. Those TCRs receive a relatively low 𝐶ℎ𝑖2 score to the reactive TCRs since282

very few samples have them.283

The countingmodel has a higher accuracy than the Emersonmodel onmost HLA alleles (Figure284

7B). Machine learning models, specifically attTCR and gTCR-c, have similar results to the counting285

model for common HLA alleles (Figure 7C), but over-fit for rare HLA alleles (Figure 7D). For full286

results over all the HLA alleles, see the Appendix.287
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Figure 6. A) F1 score results for the counting model on HLA classification. We performed a leave one out splitover the entire dataset. B) A histogram of the F1 score differences between the classification results of thecounting model and the Emerson model. The difference between the counting model and the Emersonmodel is statistically significant (𝑝 = 0.017 with Mann-Whitney U-test) (15) on the same HLA alleles. C)Comparison of AUC results of the counting model, attTCR and gTCR-c on the repertoire HLA classification task.A 5-fold CV was used, and the AUC was calculated using prediction pooling instead of averaging (6). The HLAalleles presented are the most frequent HLA alleles in the dataset. D) Comparison of AUC results of thecounting model, attTCR and gTCR-c on the repertoire HLA classification task. The HLA alleles presented arethe least frequent in the dataset.
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Multiple other comparisons were proposed, such as taking the MIRA (nol) Covid-19 samples as288

positive repertoires and the ECD as negative repertoires (since there was no COVID-19 at the sam-289

pling time), and the counting method obtains an AUC of 1 on this comparison. However, this may290

be a batch effect, since the two samples may have have differences in the sampling and analysis291

protocol.292

Methods293

Simulated samples294

In order to analyze the performance of the classificationmethods, we propose a simple simulation295

that captures the essence of the classification problem. Assume a general very large set of TCRs,296

where each patient has a random subset of these TCRs. Within the large set of TCRs, there is a297

small subset associated with the disease, and patients that had the disease have a higher than298

random chance of having these TCRs (see Figure 2 for description of model). The data generation299

process uses 3 probabilities: 𝑝0 - the probability that a TCR would be selected in any patient, 𝑝1, 𝑝2 -300

the probability that a chosen TCR is associated with positive and negative samples. We also tested301

a model where we replaced 𝑝1 with 𝑝𝑖 ∼ 𝑁(𝑝1, 𝜎2) for each reactive TCR 𝑡𝑖.302

In the different trials performed in the current analysis, we generated 1,000 different reper-303

toires (500 positive, 500 negative) using differing generation probabilities (𝑝0, 𝑝1, 𝑝2). All the experi-304

ments were performed using a 4:1 training:test split, using 5 different data splits.305

𝜒2 Score306

To extract reactive TCRs from a repertoire, we use a simple scoring method. For each TCR 𝑡𝑖, the307

𝜒2 formula uses the following values:308

• 𝑁𝑝𝑜𝑠𝑖 - The number of positive repertoires that contain 𝑡𝑖.309

• 𝑁𝑖 - The total number or repertoires that contain 𝑡𝑖.310

• 𝑁𝑝𝑜𝑠 - The total number of positive repertoires in the data.311

• 𝑁 - The total number of repertoires in the data.312

The 𝜒2 score for TCR 𝑡𝑖 is calculated using Equation 3.313

𝜒2
𝑖 =

𝑠𝑖𝑔𝑛(𝑁𝑝𝑜𝑠𝑖 −
𝑁𝑝𝑜𝑠
𝑁

𝑁𝑖)(𝑁𝑝𝑜𝑠𝑖 −
𝑁𝑝𝑜𝑠
𝑁

𝑁𝑖)2

𝑁𝑝𝑜𝑠
𝑁

𝑁𝑖

(3)
The difference with the regular 𝜒2 is simply the sign of the deviation.314

Counting Model315

The countingmodel is a simplemodel that effectivelymanages to distinguish between positive and316

negative repertoires on the test set. The counting model has the following steps:317

1. Calculate the 𝜒2 score for each TCR in the training set.318

2. Extract all the TCRs with a 𝜒2 score over a certain threshold. The threshold can be either a319

𝑝-value, or a fixed number of TCRs 𝑘.320

3. Count the number of significant reactive TCRs in each file of the test set.321

4. Calculate AUC on the test set using the counts.322

TCR Autoencoder323

A TCR autoencoder is a model that preserves the information about input 𝑡𝑖 V gene and CDR3 se-324

quence , while reducing the dimension to a low dimension representation 𝑧𝑖. The training of the325

TCR autoencoder includes several steps of data processing (13). The first step is representing each326

of the amino acid per position as well as the V genes by an embedding vector. There are twenty327

possible amino acids and an additional end signal is required. Each instance is then processed by328
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an autoencoder network and encoded to size ℝ30 (we have previously checked that adding dimen-329

sions beyond 30 had a very limited contribution to the accuracy).330

The autoencoder network contains three layers of 800, 1100, and 30 neurons as the encoder331

and a mirrored network as the decoder. The network is trained with a dropout of 0.2 and a ReLU.332

An MSE loss function is implemented to compare each input sequence to the resulting decoded333

sequence (13). The current version differs from the ELATE encoder ((13)), since it includes a varia-334

tional term. Instead of encoding an input as a single point, we encode it as a distribution over the335

latent space. The model is then trained as follows: First, the input is encoded as a distribution over336

the latent space; second, a point from the latent space is sampled from that distribution, Then the337

sampled point is decoded and the reconstruction error can be computed; finally, the reconstruc-338

tion error is back-propagated through the network. The VAE loss function is the same as ELATE339

with a Kulback-Leibler divergence between the returned distribution and a standard Gaussian.340

The problem with the standard VAE is that the KL term tends to vanish. A recent work ((17))341

studied scheduling schemes for 𝛽, and showed that KL vanishing is caused by the lack of good latent342

codes in training the decoder at the beginning of optimization. To remedy this, we used a cyclical343

annealing schedule, which repeats the process of increasing 𝛽 multiple times. This new procedure344

allows the progressive learning of more meaningful latent codes, by leveraging the informative345

representations of previous cycles as warm restart.346

attTCR347

Figure 7. AttTCR’s architecture. First, the reactive TCRs are sampled from all the train repertoires using the 𝜒2

method. Then, for each repertoire 𝑋, the reactive TCRs contained in 𝑋 are extracted. Each reactive TCR isprojected by the encoder. The projections are then scored by the attention scorer. The scores are summedand normalized. The output of the model in a number between 0 and 1 that indicates the confidence of themodel on whether the repertoire is positive.

The attention model receives as an input the reactive TCRs of each repertoire, and as an output348

a score between 0 and 1 that predicts whether the repertoire is positive or negative. The model349

is composed of an encoder network, an attention scorer, and a normalization layer. The encoder350

was explained above.351

Attention Network352

Each TCR 𝑡𝑖 is assigned an attention score 𝑎𝑖, such that 𝑎𝑖 ∈ [0, 1]. TCRs that are more important to353

the classification should receive higher attention scores. The attention network takes as an input354

the embedding of each TCR by the encoder network and is composed of 2 hidden layers of size 𝑞.355

The output of the attention network for each TCR sequence is a single attention score. Therefore,356

for the entire repertoire, the network outputs a vector 𝑣 of dimension 𝑁 (the number of reactive357

TCRs). A sigmoid function is used to produce an attention score between 0 and 1 for each reactive358

TCR in the repertoire. We have here used the traditional Transformer ((49)) notation. We use the359

following matrices and vectors to describe the attention process:360
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• 𝑄 ∈ ℝ𝑁×𝑞 - The queries matrix. In our model, the matrix is created after the 2 hidden layers361

of the attention network.362

• 𝜉 ∈ ℝ𝑞×1 - The keys vector. The weights of the output layer of the attention network.363

The attention score calculation applied by equation 4, where 𝜎 is the sigmoid function:364

𝜎

(

𝜉𝑇𝑄𝑇

√

𝑞

)

. (4)
Note that unlike traditional attention models, we do not use the softmax function on the result-365

ing attention vector, nor do we multiply each attention by the TCR representation. We are not366

interested in performing a weighted average. Instead, we want to score each TCR and still keep367

the information about the number of reactive TCRs in the repertoire, i.e., 𝑁 . Thus the score of an368

entire repertoire is simply the sum of the attention values for all the reactive TCRs in this sample.369

Normalization Layer370

The input of the normalization layer in a vector 𝑣 ∈ ℝ𝑁 with the scores of each TCR in the repertoire.371

The Normalization layer’s goal is to convert the sum over the vector 𝑣 to a number between 0 and372

1, so we can train the model using BCE loss. Just putting∑

𝑣 into a sigmoid function is not going to373

work, since the sum of𝑁 scores 𝑎𝑖 ∈ [0, 1] is very likely to be too large for the sigmoid function. As374

a result, all the repertoires would output a number very close to 1, which might hurt the training375

process. Therefore, we use 2 learned parameters: 𝛾1, 𝛾2, to normalize the sum before the sigmoid376

function. In conclusion, the normalization layers performs Equation 5.377

𝜎
(

𝛾1
∑

𝑣 + 𝛾2
)

. (5)
378

gTCR379

Graphs380

TCR similarity graph381

We define here two ways of modeling the TCR-graph. Both ways consists of two stages, a definition382

of similaritymatrix between the reactive TCRs followed by a zeroing stagewhere rows and columns383

from the similarity matrix are filled with zero value if the reactive TCR is absent from the sample’s384

repertoire.385

Oneway ofmodeling such a similaritymatrix between reactive TCRs is obtained using the Spear-386

man correlation matrix between the training samples presence vectors. These sample’s presence387

vectors contain 0 or 1 according to the presence of each reactive TCR in the sample’s repertoire.388

Another way of modeling a similarity matrix between reactive TCRs is obtained using the inverse389

of the euclidean distance between the projection of the reactive TCRs obtained from the autoen-390

coder.391

gTCR392

The gTCR (graph TCR) model combines the information from the frequencies vector as well as the393

graph represented by the normalized adjacency matrix as can be seen in Equation 6. An embed-394

ding vector of the log frequencies is obtained from a 2-layer FCN, each followed by a tanh activation395

function and dropout layer (Equation 8). In parallel, one layer of a GCN model is applied (Equation396

9) to the reactive TCR presence vector. Then the output of the two networks are concatenated and397

serve as the input of a 2-layer FCN to predict a binary condition (Equation 10).398

𝐴̃ = 𝐷− 1
2𝐴𝐷− 1

2 (6)

𝐷 is diagonal matrix such that 𝐷𝑖𝑖 =
∑

𝑗
𝐴𝑖𝑗 (7)
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ev is the frequencies vector’s embedding: 𝑒𝑣 = 𝐹𝐶𝑁(𝑓 ) (8)

eg is the graph embedding: 𝑒𝑔 = (𝐴̃ + 𝛼 ⋅ 𝐼) ⋅ 𝑠𝑖𝑔𝑛(𝑓 ) ⋅𝑊 (9)

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑒𝑣, 𝑒𝑔) ⇒ 𝐹𝐶𝑁. (10)
𝛼 is a learned scalar regulating the importance given to the vertex’s feature compared to its neigh-399

bors features. 𝛼 is initialized with 1 plus Gaussian 𝑁(0, 0.1) .400

Comparison to Other Methods401

The counting method was compared to 2 other classification methods:402

• Score Sum - Thismethod is almost entirely similar to the countingmodel. The only difference403

is that instead of classifying the repertoires based on the number of reactive TCRs found in404

the repertoires, we classify them by the sum of the 𝜒2 scores of the reactive TCRs in each405

repertoire.406

• FCN - After extracting the reactive TCRs from the data, each repertoire is embedded to a407

vector of the dimension of the number of reactive TCRs. Each dimension in the vector repre-408

sents a different reactive TCR, and its value is set to 1 if the repertoire contains the TCR and 0409

otherwise. Then, a 2-layer FCN is fitted on the vector training set, and tested on the test set.410

Data411

The Emerson dataset contains 786 immune repertoires (15). Each repertoire contains between412

4,371 to 973,081 (avg. 299,319) TCR sequences with a length of 1 to 27 (avg. 14.5) amino acids. The413

V and J genes and the frequency are saved for each TCR. 340 repertoires are labeled CMV+, 421 are414

labeled CMV-, and 25 are of unknown status. We only use the repertoire with a known CMV status,415

761 repertoires in total. In addition 626 of the repertoires have HLA allele information available.416

Preprocessing417

The Emerson dataset (15) is composed of 786 repertoires in total. However, since the task at hand418

is a supervised classification task, the 25 repertoires without a CMV classification are not beneficial419

to the learning process, so they are removed from the dataset. Then, all the TCRs that havemissing420

CDR3 amino acid information are discarded. In the following step, the TCRs are filtered based on421

prevalence in different repertoires. Only TCR sequences that appear in 7 different repertoires or422

more remain in the repertoires after the filtration.423

Experimental Setup424

When predicting CMV status of the repertoires, the models are tested with a test size that contains425

10% (77 samples) of the data. For all the models tested, the test set is the same. attTCR is trained426

using a 9-fold CV between the training set and the validation set, while gTCR is trained over 20427

different splits. In the counting model, the validation set is not used. All the models are evaluated428

using an AUC score on the test set (31).429

The HLA allele repertoire classification in Figure 7A was evaluated using an F1 score. In Figures430

7C and 7D, the measure was changed to AUC over a 5-fold CV with a train:validation:test split of431

3:1:1. The AUC was calculated using the pooling method, i.e., calculated once over all the predic-432

tions (6).433
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Discussion434

We have here proposed three novel methods with different levels of complexity, and shown that435

even the simplest of these models outperform the current State of The Art (SOTA) for repertoire436

classification. The simplest model is simply counting reactive TCRs, followed by a novel attention437

model that combines classical attention models with counting, and finally a combination of graph438

based machine learning with MIL. All the models presented in the paper rely on the assumption439

that TCRs are only positively selected, and there are no TCRs negatively associated with a condi-440

tion. Note that (15) used a Fisher exact test to score TCRs based on their association with positive441

and negative repertoires. It also classifies each significant TCR as either a positive or a negative se-442

lected TCR. However, the assumption that there are any negatively selected TCRs does not make443

much immunological sense. TCR expansion occurs when a certain TCR binds to an antigen-peptide.444

There is no equivalent process for TCRs that do not bind to antigen-peptides. Thus, in theory, the445

abundance of a TCR in a repertoire can only indicate that the TCR was positively selected.446

Some TCRs are highly abundant in different individuals (25), and have initial production prob-447

ability (14; 3). Therefore, positively selected TCRs exist in various frequencies in positive immune448

repertoires, some especially common ones might appear randomly in negative instances as well.449

Thus, the relative abundance of a TCR in many repertoires does not automatically make it more450

indicative than a TCR that appears in a few repertoires. Once a TCR is proven to be positively se-451

lected, its frequency does not matter much when it comes to repertoire classification. Hence, the452

counting model is a good way to classify the repertoires given the reactive TCRs.453

We have shown in the data that TCRs are indeed only positively selected, and that it improves454

on existing models in both theory and real data. There are distinctions to be made between the455

real repertoire data, and the generated one. The most obvious is that real TCR presence in a456

repertoire does not follow a binomial distribution. Real TCRs have a scale free distribution. Some457

TCRs are public TCRs and are very common (25), and others are very rare. The pool size of positive458

and negative TCRs to draw from is also vastly different in size. Statistically, there are many more459

possible negative TCRs than TCRs that bind to a epitope-peptide of a specific disease. In addition,460

TCRs are sampled in varying sizes, whereas the repertoires in the generative model are all around461

𝑝0𝑁 . Despite these differences, we believe that the conclusions of the toy model are still true462

on real repertoire data. However, these differences do not affect the validity of counting and its463

extension.464

The current approach is purely based on the observed TCR presence and absence and on their465

sequence. It completely ignores the antigen or MHC properties. However, multiple algorithms466

were proposed for both TCR-peptide (21; 10; 44; 27; 37; 42; 14; 16; 19; 45; 35; 47; 5; 26; 11) and TCR-467

MHC binding (22; 54; 32; 2; 34; 38; 40; 29; 50; 20; 51; 30). While the accuracy of such algorithms468

keeps improving, it is still too, itmay be too early to use such algorithms for repertoire classification.469

The ML models presented in the paper, especially attTCR, can also be used in a large variety of470

problems. attTCR presents a new approach of attention scoring, that can be used in every MIL task471

that involves counting. Further research has to be done on the quality of the proposed MLmodels472

on other non-related tasks. However, we propose that these three levels of modeling - counting,473

counting attentions models and GNNs on selected shared samples may be a general approach to474

all MIL problems.475
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Appendix 1614

In the paper, we have shown that repertoires can be classified using bayesian and machine
learning tools on the content of the TCR repertoire. However, in the Appendix we want
to prove that there does not exist an easier, more superficial method of distinguishing be-
tween positive and negative repertoires. In Figures 1 and 2 we show that different general
attributes of the repertoires are the same with positive and negative repertoires, and they
cannot be differentiated using this attributes.
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Appendix 1 Figure 1. (A) A swarm plot of the different repertoires in the data. Each dot represents arepertoire. The y-axis represents the average count of a TCR in a repertoire, where count of a TCR isdefined as the number of clones the TCR has in the repertoire. It is clear that there is not a bigdifference in the count distribution between positive and negative repertoires. (B) A swarm plot of thedifferent repertoires in the data. Each dot represents a repertoire. The y-axis represents the averagefrequency of a TCR in a repertoire. It is clear that there is not a big difference in the frequencydistribution between positive and negative repertoires.

616

617

618

619

620

621

622623

630

Appendix 1 Figure 2. (A) A histogram of the different V𝛽-genes in the data. Each column representsthe average frequency of a V𝛽-gene in positive and negative repertoires. It is clear that the v-genedistribution between negative and positive repertoires is very similar. (B) A histogram of the differentJ𝛽-genes in the data. Each column represents the average frequency of a J𝛽-gene in positive andnegative repertoires. It is clear that the J-gene distribution between negative and positive repertoiresis very similar.
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