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Abstract  46 
 47 
Non-pharmaceutical interventions implemented to block SARS-CoV-2 transmission in early 2020 48 
led to global reductions in the incidence of invasive pneumococcal disease (IPD). By contrast, 49 
most European countries reported an increase in antibiotic resistance among invasive 50 
Streptococcus pneumoniae isolates from 2019 to 2020, while an increasing number of studies 51 
reported stable pneumococcal carriage prevalence over the same period. To disentangle the 52 
impacts of the COVID-19 pandemic on pneumococcal epidemiology in the community setting, we 53 
propose a mathematical model formalizing simultaneous transmission of SARS-CoV-2 and 54 
antibiotic-sensitive and -resistant strains of S. pneumoniae. To test hypotheses underlying these 55 
trends five mechanisms were built in into the model and examined: (1) a population-wide reduction 56 
of antibiotic prescriptions in the community, (2) lockdown effect on pneumococcal transmission, 57 
(3) a reduced risk of developing an IPD due to the absence of common respiratory viruses, (4) 58 
community azithromycin use in COVID-19 infected individuals, (5) and a longer carriage duration 59 
of antibiotic-resistant pneumococcal strains. Among 31 possible pandemic scenarios involving 60 
mechanisms individually or in combination, model simulations surprisingly identified only two 61 
scenarios that reproduced the reported trends in the general population. They included factors (1), 62 
(3), and (4). These scenarios replicated a nearly 50% reduction in annual IPD, and an increase in 63 
antibiotic resistance from 20% to 22%, all while maintaining a relatively stable pneumococcal 64 
carriage. Exploring further, higher SARS-CoV-2 R0 values and synergistic within-host virus-65 
bacteria interaction mechanisms could have additionally contributed to the observed antibiotic 66 
resistance increase. Our work demonstrates the utility of the mathematical modeling approach in 67 
unraveling the complex effects of the COVID-19 pandemic responses on AMR dynamics. 68 
 69 
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Introduction 92 
 93 

In the early 2020, international responses to the coronavirus disease 2019 (COVID-19) 94 
pandemic led to unprecedented worldwide change in population mixing, healthcare-seeking 95 
behavior, and infection prevention and control practices. This modified the ecology and 96 
epidemiology of many infectious diseases at a global scale. Strong impacts of COVID-19 on 97 
infectious disease dynamics have been reported for common viral and bacterial respiratory 98 
infections, sexually transmitted pathogens like HIV, vector-borne diseases like dengue, and even 99 
non-communicable diseases (Braunstein et al., 2020; Brueggemann et al., 2021; Chen et al., 2022; 100 
Palmer et al., 2020). Antimicrobial resistance (AMR), however, remains one of the leading threats 101 
to global health. In 2019, estimates showed that AMR in clinically relevant bacteria was associated 102 
with 4.95 million deaths, of which 1.27 million were directly attributable to resistance (Murray et 103 
al., 2022). Impacts of the COVID-19 pandemic on AMR dynamics remain relatively poorly 104 
understood.  105 
 106 
A joint report from the World Health Organization (WHO) and European Centre for Disease 107 
Prevention and Control (ECDC) has reported 2020 AMR trends across 29 European countries for 108 
eight antibiotic-resistant bacterial pathogens of concern, including S. pneumoniae (European 109 
Centre for Disease Prevention and Control and World Health Organization, 2022). While the 110 
situation varies widely across bacterial species, antimicrobial groups, and regions, most European 111 
countries, including France, documented an increase in pneumococcal resistance to both penicillin 112 
and macrolides between 2019 and 2020. The resistance rates rose from 12.2% in 2019 to 15.6% in 113 
2020 for penicillin and from 14.5% in 2019 to 16.9% in 2020 for macrolides, as reported in the 114 
EU/EEA (European Centre for Disease Prevention and Control and World Health Organization, 115 
2022). However, increased pneumococcal resistance was accompanied by a sharp worldwide 116 
decline in invasive pneumococcal disease (IPD) incidence (Brueggemann et al., 2021; Shaw et al., 117 
2023).  118 
 119 

Similar declines in bacterial disease during early waves of COVID-19 have been observed 120 
in the context of sentinel community-acquired infections in New Zealand (Duffy et al., 2021), 121 
IPDs in Taiwan (Chien et al., 2021) and Hong Kong (Teng et al., 2022), and lower respiratory tract 122 
infections in China (Chen et al., 2021). Yet, surprisingly, a growing number of studies have 123 
reported mostly stable pneumococcal carriage throughout the COVID-19 pandemic containment, 124 
including among infants in Belgium (Willen et al., 2022), children in Vietnam (Nation et al., 2023), 125 
Serbia (Petrović et al., 2022), France (Rybak et al., 2022), South Africa (Olwagen et al., 2023), 126 
and Israel (Dagan et al., 2023), adults in Connecticut (Wyllie et al., 2023), and households in 127 
Seattle (Bennett et al., 2023). In contrast, a study conducted in Denmark reported a decrease in 128 
pneumococcal carriage among older adults during the COVID-19 lockdown (Tinggaard et al., 129 
2023). 130 

 131 
Understanding the cause of these trends is not straightforward, as many responses to the 132 

COVID-19 pandemic, such as the implementation of non-pharmaceutical interventions (NPIs), 133 
changes in healthcare-seeking behavior, and alterations in antibiotic prescribing, occurred over the 134 
period (Knight et al., 2021). To gain a comprehensive understanding of the changes in AMR 135 
epidemiology during the COVID-19 pandemic, it is essential to simultaneously consider a range 136 
of scales and indicators. These include the rates of incidence of invasive bacterial diseases, the 137 
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proportion of antibiotic-resistant isolates among total invasive bacterial isolates, and the 138 
prevalence of asymptomatic bacterial carriage in healthy individuals. 139 
 140 

Several mechanisms may underlie the explanation of these contrasting observations. First, 141 
NPIs implemented to block SARS-CoV-2 transmission, such as lockdowns and mask mandates, 142 
may have led to reduced bacterial transmission. Containment measures also massively reduced 143 
circulation of common respiratory viruses, which are known to be associated with invasive 144 
bacterial disease (Domenech De Cellès et al., 2019; Smith and Opatowski, 2021). Second, the 145 
lockdown was associated with reductions in primary care consultations (Homeniuk and Collins, 146 
2021; Read et al., 2023; Zhang et al., 2021) leading to a global decrease of antibiotic prescriptions 147 
(Högberg et al., 2021). In contrast, frequent antibiotic prescribing to COVID-19 outpatients may 148 
have exacerbated AMR (Clancy et al., 2020; Knight et al., 2021). Differences in the duration of 149 
pneumococcal carriage may have also played a role (Lehtinen et al., 2017). Finally, potential 150 
within-host interactions between SARS-CoV-2 and S. pneumoniae could also have an impact on 151 
infection risk (Amin-Chowdhury et al., 2021), although strong evidence for such interactions 152 
remains limited (Wong et al., 2023). 153 
 154 

Mathematical models incorporating the co-transmission of multiple pathogens within the 155 
same host population provide a framework for investigating different hypotheses that underlie the 156 
observed patterns in antibiotic resistance and incidence of IPD in S. pneumoniae and help to 157 
enhance our understanding of the mechanisms involved. Co-circulation models have been used 158 
previously to disentangle the public health consequences of interactions between pathogens such 159 
as influenza and S. pneumoniae (Arduin et al., 2017; Domenech De Cellès et al., 2019; Shrestha 160 
et al., 2013) and could similarly be used to understand impacts of the COVID-19 pandemic on 161 
pathogens coinciding with SARS-CoV-2. However, in a systematic PubMed search conducted on 162 
4 December 2023, we identified no epidemiological models describing the simultaneous 163 
transmission of SARS-CoV-2 and antibiotic-resistant bacteria specific to the community setting 164 
(Appendix 1). 165 
 166 

Here, to disentangle how the COVID-19 pandemic has impacted the epidemiological 167 
dynamics of antibiotic resistance in S. pneumoniae, we propose a mathematical model that 168 
formalizes the transmission of SARS-CoV-2 and both antibiotic-sensitive and -resistant strains of 169 
S. pneumoniae in the community setting, and which includes mechanistic impacts of COVID-19 170 
burden on epidemiological parameters. Through simulation, we assess all possible combinations 171 
of these mechanisms to evaluate their overall impact on IPD incidence, antibiotic resistance, and 172 
the prevalence of pneumococcal carriage. Furthermore, we assess the changes in the incidence of 173 
antibiotic-resistant IPD as we vary the basic reproduction number (R0) of SARS-CoV-2 during the 174 
first COVID-19 outbreak in Europe. We also consider assumed within-host pathogen interactions 175 
between SARS-CoV-2 and S. pneumoniae. 176 
 177 
Results 178 
 179 
Antibiotic resistance trends and incidence of invasive pneumococcal disease in 2020 180 
In routine surveillance data reported to the European Antimicrobial Resistance Surveillance 181 
Network (EARS-Net), most European countries reported an increase in antibiotic resistance in S. 182 
pneumoniae from 2019 to 2020, as indicated by increases in the proportion of invasive isolates 183 
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with phenotypic resistance to both penicillin and macrolides (Figure 1A). On the contrary, the total 184 
number of reported isolates in the EU/EEA decreased by 44.3% from 2019 to 2020 (European 185 
Centre for Disease Prevention and Control and World Health Organization, 2022) suggesting a 186 
decrease in incidence of invasive pneumococcal disease (Appendix 2 – Table 1).  187 
 188 

Invasive pneumococcal isolate data for France provided by the French National Reference 189 
Center for Pneumococci (CNRP) revealed similar trends. In France, the total number of reported 190 
invasive pneumococcal isolates decreased by 45.1% from 2019 to 2020 (from 1119 to 614), while 191 
antibiotic resistance in S. pneumoniae isolates to penicillin and macrolides showed an increasing 192 
trend from 26.2% in 2019 to 35.5% in 2020 for penicillin, and from 20.9% in 2019 to 23.0% in 193 
2020 for macrolides (Figure 1B). General decreasing trend in antibiotic resistance from 2017 to 194 
2019 in S. pneumoniae was interrupted in 2020 (Figure 1 – figure supplement 1). These variations 195 
in antibiotic resistance manifested differently across age, with some age groups showing an 196 
increase in antibiotic resistance in 2020 compared to 2019, while others showed no significant 197 
change (Figure 1B).  198 
 199 
Coinfection model of SARS-CoV-2 and Streptococcus pneumoniae 200 
As mentioned above, several mechanisms may underlie the explanation of these contrasting 201 
observations (Figure 2A). COVID-19 NPIs may have led to reduced person-to-person bacterial 202 
transmission, potentially contributing to reduced rates of IPD incidence. These containment 203 
measures also massively reduced circulation of common respiratory viruses and the incidence of 204 
influenza-like-illnesses (ILIs). Respiratory viruses are known triggers and risk factors for 205 
developing an invasive bacterial disease from otherwise asymptomatic carriage; in that context, 206 
their reduction may have led to reduced infection risk (Domenech De Cellès et al., 2019; Smith 207 
and Opatowski, 2021). Due to reductions in primary care consultations in 2020, 26 European 208 
countries reported an estimated average decrease of 18.3% in overall antibiotic consumption, 209 
aligning with the global trend of reduced antibiotic prescriptions compared to 2019 (Högberg et 210 
al., 2021). On the other hand, frequent prescribing of azithromycin, a macrolide antibiotic initially 211 
hypothesized to be effective in COVID-19 treatment, has raised concerns for pandemic-associated 212 
antimicrobial overuse or misuse and may have exacerbated AMR during and following the first 213 
wave of the pandemic (Clancy et al., 2020; Knight et al., 2021; Kournoutou and Dinos, 2022; 214 
Langford et al., 2021; PRINCIPLE Trial Collaborative Group, 2021; Rusic et al., 2021). There are 215 
still uncertainties about pneumococcal ecology and the evolutionary processes that enable the 216 
robust coexistence of strains sensitive and resistant to antibiotics. The role of carriage duration, 217 
along with the impact of antibiotic consumption, is also not fully understood in this context. Longer 218 
carriage duration of antibiotic-resistant pneumococcal strains is a proposed explanation for this 219 
coexistence (Lehtinen et al., 2017). If so, antibiotic-resistant pneumococcal strains may have had 220 
an advantage during the lockdown period due to smaller clearance rates, ultimately leading to an 221 
increase in antibiotic resistance. Finally, among individuals with COVID-19, potential within-host 222 
interactions between SARS-CoV-2 and S. pneumoniae could also have had an impact on bacterial 223 
colonization and infection dynamics (Amin-Chowdhury et al., 2021). 224 
 225 

To test mechanistic impacts of responses to the COVID-19 pandemic on pneumococcal 226 
epidemiology, we developed a compartmental, deterministic transmission model describing 227 
infection with SARS-CoV-2 being introduced on 1 Jan 2020 (Figure 2B) after colonization with 228 
S. pneumoniae reached an equilibrium in a large, well-mixed human population (Figure 2C). Two 229 
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lockdowns were implemented in the model in agreement with the two lockdowns implemented in 230 
France in 2020. The model was parameterized to S. pneumoniae and five mechanisms were built 231 
in into the model: (1) a population-wide reduction of antibiotic prescriptions in the community by 232 
18% due to the reduced healthcare-seeking behavior, (2) lockdown reducing pneumococcal 233 
transmission by 25%, (3) a reduced risk of developing an IPD from asymptomatic carriage due to 234 
the absence of common respiratory viruses during the first lockdown (reduced by a factor IPDrisk 235 
= 0.2), which continues after the first lockdown, albeit at a diminished level (IPDrisk = 0.4), (4) 236 
community azithromycin use in 10% of COVID-19 infected individuals, (5) and a longer carriage 237 
duration of antibiotic-resistant pneumococcal strains giving them a fitness advantage over 238 
antibiotic-resistant strains (40 vs. 30 days).  239 
 240 
Exploring the mechanisms and identifying the optimal scenario for explaining reported 241 
trends 242 
We conducted assessments on five distinct hypotheses, each characterized by a precise underlying 243 
mechanism, and explored these hypotheses in combination within 31 pandemic scenarios, along 244 
with two pre-pandemic (baseline) scenarios, which assume no SARS-CoV-2 circulation in the 245 
population and allow for the same 30-day carriage duration (pre-pandemic 1) of both antibiotic-246 
sensitive and -resistant strains (𝑑! = 𝑑") or a longer, 40-day carriage duration (pre-pandemic 2) 247 
of -resistant strains (𝑑! > 𝑑") (Table 1).  248 
 249 

We assessed how different combinations of mechanisms may impact: (i) a change in the 250 
annual IPD incidence as compared to the pre-pandemic (baseline) period, (ii) antibiotic resistance 251 
rate in IPDs, defined as the annual number of antibiotic-resistant IPD cases over the total number 252 
of IPD cases, and (iii) daily prevalences of antibiotic-resistant and total pneumococcal carriage in 253 
a simulated population of 100,000 individuals (see Appendix 2 – Table 2 for parameter values). 254 
To identify scenarios most compatible with the reported trends, results from model simulations 255 
were compared to reported data trends from France in 2020 and more broadly to general EU/EEA 256 
reported trends that followed similar patterns. Surprisingly only two scenarios were compatible 257 
with reported trends. Scenarios S19 and S29 univocally reproduced increased antibiotic resistance 258 
in the general population (AR%) accompanied by a reduction in the annual IPD incidence by 259 
almost 50% (IPD inc.) with generally stable pneumococcal carriage prevalence in healthy 260 
individuals during lockdown (Sp.). In contrast, model simulations revealed that a reduction in the 261 
community antibiotic consumption alone (-18%) could not explain the reported trends and 262 
generally led to a reduction of antibiotic resistance (Table 1, S1). Assuming a longer duration of 263 
antibiotic-resistant pneumococcal carriage alone did not explain either the rise in antibiotic 264 
resistance (Table 1, S5). Hypothesizing that lockdown reduced the transmission of pneumococcal 265 
carriage (by 25%) in addition to a reduced community antibiotic prescribing did not seem probable 266 
since, in simulations, this yielded a major reduction in pneumococcal carriage during containment 267 
measures in all scenarios where this mechanism was implemented. On the other hand, considering 268 
an indirect impact of lockdown on pneumococcal carriage where we implemented a reduction 269 
factor for the risk of developing and IPD from otherwise asymptomatic carriage due to the absence 270 
of viral respiratory infections during (IPDrisk=0.2) and after lockdown (IPDrisk=0.4) reproduced 271 
the reported reduction in the annual IPD incidence while maintaining a stable prevalence of 272 
pneumococcal carriage during lockdown (Table 1, S3). By itself however, this scenario did not 273 
allow to observe an increase in antibiotic resistance.  274 
 275 
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 When we combined reduced antibiotic prescribing and a reduced risk of developing an IPD 276 
with community azithromycin use in a proportion of COVID-19 infected individuals, which 277 
remains in the body for an additional 15.5 days after the last dose, in a single scenario, this scenario 278 
satisfied the observed trends in AMR (Table 1, S19). Similar outcome was observed in scenario 279 
S29 when adding a longer carriage duration of antibiotic resistant strains on top of this, however, 280 
in the absence of community azithromycin use in COVID-19 infected (Table 1, S20) trends of 281 
increasing antibiotic resistance cannot be reproduced. Therefore, our best model scenario for 282 
describing the observed trends combined: (1) a reduction in the overall community antibiotic 283 
consumption; (2) the assumption that lockdown effectively reduced SARS-CoV-2 transmission 284 
including transmission of other respiratory viruses, but not pneumococcal carriage transmission, 285 
indirectly reducing the risk of developing an IPD; (3) either identical or longer carriage durations 286 
of antibiotic-resistant strains compared to antibiotic-sensitive strains, and (4) the community 287 
azithromycin use in a proportion of COVID-19 infected individuals.  288 
 289 
Effect of age 290 
Next, we used the pandemic scenario S19 that best explains the reported trends to test the model 291 
using different parameter combinations to mimic different subpopulations (children and the 292 
elderly) considering that SARS-CoV-2 infection risk, pneumococcal disease risk, disease severity, 293 
bacterial carriage prevalence, and antibiotic prescribing are all highly heterogeneous across age 294 
groups. Using scenario S19, we initialized the model with lower and higher baseline carriage 295 
prevalence (10%, 20%, and 30%) (Cohen et al., 2023; Rose et al., 2021; Rybak et al., 2022; 296 
Tinggaard et al., 2023; Wang et al., 2017), we varied  durations of pneumococcal carriage (20, 30, 297 
and 45 days), pneumococcal invasion rate, and considered reductions of antibiotic consumption at 298 
various levels (-13%, -18%, and -39%) consistent with the French data along with a range of 299 
community azithromycin use in COVID-19 infected (0-20%). For a full list of parameters see 300 
Appendix 2 – Table 2. Simulations showed that annual IPD incidence decreased between 43% and 301 
51% compared to the pre-pandemic (baseline) scenario for children, the elderly, and the general 302 
population (Figure 3, grey bars). Although the overall antibiotic prescribing in the community was 303 
reduced (between 13% and 39%), antibiotic resistance is expected to increase (from 20.1% up to 304 
23.6% in the elderly and from 32.8% up to 36.0% in children) compared to the pre-pandemic 305 
period in all age groups and in all scenarios where azithromycin was used in COVID-19 infected 306 
individuals (Figure 3, red bars). Daily prevalence of total pneumococcal carriage remained 307 
relatively stable, exhibiting higher levels of decrease with increased azithromycin use, while the 308 
prevalence of antibiotic-resistant pneumococcal carriage is expected to increase since clearance of 309 
antibiotic-susceptible strains due to azithromycin use shifts the competitive balance in favor of the 310 
existing resistant strains (Figure 3, third panel).  311 
 312 

General trends produced in model simulations using scenario S19 remained unchanged 313 
across different age groups. The extent of the impact depended on the combined magnitude of a 314 
decrease in the general antibiotic use in the community and a degree of azithromycin use in 315 
COVID-19 infected individuals belonging to a particular age group or a subpopulation. In the 316 
elderly (≥65 years-old) and the general population, antibiotic resistance is expected to increase 317 
due to azithromycin use in COVID-19 infected. Black arrows indicate model outcomes that 318 
approximate the reported trends in antibiotic resistance in France for different age groups including 319 
general population (Figure 3). Only in instances when there was no azithromycin use in COVID-320 
19 infected individuals, we observed a decrease in antibiotic resistance relative to the pre-321 
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 8 

pandemic period (e.g., children <5 years-old). When combining the largest decrease in overall 322 
antibiotic use with no or minimal azithromycin use in COVID-19 infected individuals, we expect 323 
to see the largest decrease or no change in antibiotic resistance relative to the pre-pandemic period. 324 
 325 
Effect of SARS-CoV-2 basic reproduction number (R0) and within-host pathogen 326 
interactions on AMR  327 

Considering that model simulations reproduced an absolute increase in antibiotic resistance 328 
comparable to that of 2% reported for macrolides in France but did not reproduce the reported 329 
larger increase in penicillin resistance, which was more than a 9% rise (35.5% relative increase) 330 
in France, we explored additional factors that may have amplified this increase. Using model 331 
scenario S19, we show that an association between higher values of SARS-CoV-2 R0 and a greater 332 
percentage of COVID-19 infected individuals taking azithromycin leads to increased cumulative 333 
incidence of antibiotic-resistant IPDs and elevated antibiotic resistance (Figure 4A). For example, 334 
if pre-lockdown R0 of SARS-CoV-2 was 3.8 instead of 3.2, model simulations predict an increase 335 
of 3.5% (23.5%) in antibiotic resistance from the pre-pandemic levels instead of 2%. As the R0 336 
value increases, the impact of azithromycin use becomes more pronounced.  337 

Assuming within-host interactions where SARS-CoV-2 infection favors progression from 338 
pneumococcal colonization to disease (𝜓# > 1), we found that surges in COVID-19 cases 339 
accompanied by increasing levels of azithromycin use lead to excess number of cases caused by 340 
antibiotic-resistant strains. Indeed, a rate of disease progression increased by a factor 𝜓# = 40 in 341 
in scenario S19 with 10% of infected using azithromycin applied to the general population results 342 
in approximately 0.75 additional cases of antibiotic-resistant disease per 100,000 inhabitants over 343 
the course of one year compared to 0.06 additional cases if there are no within-host interactions 344 
(Figure 4B). This represents 5% rise in resistance from the pre-pandemic levels (25% relative 345 
increase). 346 
 347 
Discussion 348 
 349 
We propose a novel co-circulation model describing the spread of SARS-CoV-2 and antibiotic-350 
resistant bacteria in a community setting to show how human behavioral responses to the COVID-351 
19 pandemic can differentially impact antibiotic resistance. Our model simulations assessed 352 
different hypotheses proposed to explain the observed trends of antibiotic resistance, IPD 353 
incidence, and pneumococcal carriage. We identified the most plausible mechanisms underlying 354 
the observed patterns of resistance and disease incidence, showing how lockdowns indirectly 355 
substantially reduce the incidence of IPD, while surges in COVID-19 cases accompanied by 356 
antibiotic prescribing in COVID-19 infected individuals increase antibiotic resistance. 357 
 358 

Many studies have reported trends on the incidence of community-acquired bacterial 359 
infections since the onset of the pandemic (Brueggemann et al., 2021; Shaw et al., 2023). There 360 
was a significant reduction in the risk of invasive disease caused by S. pneumoniae (risk ratio 0·47; 361 
95% CI 0·40–0·55) (Shaw et al., 2023). Initially, this observation seemed to support the hypothesis 362 
that NPIs implemented to control SARS-CoV-2 transmission may have simultaneously reduced 363 
the incidence of bacterial infections by preventing bacterial transmission and acquisition 364 
(Brueggemann et al., 2021; Kadambari et al., 2022). Indeed, the scenario of lockdown impact on 365 
pneumococcal transmission reproduced such trends. However, incorporating a mechanism of 366 
reduced risk for developing an IPD due to the absence of circulation of common respiratory viruses 367 
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led to similar estimates of the relative reduction in IPD incidence as reported in the EU/EEA for 368 
2020 (Brueggemann et al., 2021; European Centre for Disease Prevention and Control and World 369 
Health Organization, 2022). This finding, coupled with the outcome of other studies that found a 370 
generally stable pneumococcal carriage prevalence in healthy individuals, both children and adults, 371 
during COVID-19 containment measures (Nation et al., 2023; Petrović et al., 2022; Rybak et al., 372 
2022; Willen et al., 2022; Wyllie et al., 2023), supports the alternative hypothesis. This explanation 373 
accounts for the decreased incidence of IPD, rather than attributing it to reduced pneumococcal 374 
transmission, which resulted in a significant reduction in carriage according to the simulations 375 
(Smith and Opatowski, 2021). Furthermore, a study in Vietnam found that reductions in IPD 376 
associated with NPIs may be due to reductions in overall pneumococcal carriage density rather 377 
than carriage prevalence, driven by reductions in capsular pneumococcal carriage density 378 
frequently implicated in IPD (Nation et al., 2023). Considering that common respiratory viruses 379 
such as influenza increase pneumococcal carriage density, which contributes to transmission and 380 
disease, this hypothesis seems plausible (Alpkvist et al., 2015; Diavatopoulos et al., 2010; 381 
McCullers et al., 2010; Short et al., 2012; Wolter et al., 2014). 382 
 383 

Globally, community antibiotic consumption dropped during the first year of the COVID-384 
19 pandemic compared to the pre-pandemic period. Decreasing temporal trends were observed in 385 
England (Hussain et al., 2021), Canada (Mamun et al., 2021), the United States (Buehrle et al., 386 
2021), China (Zhang et al., 2021), South Korea (Ryu et al., 2021), New Zealand (Duffy et al., 387 
2021), and across European countries (Högberg et al., 2021). In France in particular, the number 388 
of antibiotic prescriptions decreased by 18.2% in the general population; however, this reduction 389 
ranged from 13% to 39% for the oldest and youngest age groups, respectively (Bara et al., 2022). 390 
These trends in antibiotic prescribing may largely be explained by reduced incidence of seasonal 391 
respiratory tract infections and reduced primary care consultations (Andrews et al., 2022; 392 
Homeniuk and Collins, 2021). On the other hand, the advent of telemedicine, pandemic-induced 393 
patient stress, and increased antibiotic demand may have partly offset prescription reductions due 394 
to decreased consultations and healthcare-seeking behavior (Hsu, 2020; Read et al., 2023). In a 395 
global analysis of antimicrobial sales, Khouja et al. found that antibiotic consumption initially 396 
increased by approximately 7% in March 2020, prior to subsequent declines through to August 397 
2020 (Khouja et al., 2022). While overall antibiotic prescribing may have decreased, prescription 398 
of specific antibiotics has increased, particularly those associated with COVID-19 patient 399 
management. Across continents, a rise of 10% in monthly COVID-19 cases exhibited a correlative 400 
trend with elevated macrolide sales of 0.8%, 1.3%, and 1.5% in Europe, North America, and 401 
Africa, respectively (Nandi et al., 2023).  402 

 403 
Community consumption of azithromycin, a macrolide, increased during the first year of 404 

the pandemic in multiple countries with significant variation across geographic locations and with 405 
greatest prescribing among older patients (Bara et al., 2022; Bednarčuk et al., 2023; Bogdanić et 406 
al., 2022; Crisafulli et al., 2022; Parveen et al., 2020; Weill et al., 2021). In an outpatient setting 407 
in southern Italy between February 2020 and January 2021, azithromycin represented 42.1% of all 408 
drug prescriptions to individuals diagnosed with COVID-19, while all other antibiotics combined 409 
represented just 20.9% (Crisafulli et al., 2022). A study in northwest London across two epidemic 410 
waves between January and August 2020 found that, among COVID-19 patients prescribed an 411 
antibiotic by a general practitioner during the study period, 31.5% received their prescription 412 
within 14 days of a positive SARS-CoV-2 test (Zhu et al., 2021). Two large USA-based studies 413 
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have also described early pandemic antibiotic prescribing among COVID-19 patients. From April 414 
2020 to April 2021, approximately 30% of outpatient COVID-19–related visits among Medicare 415 
beneficiaries (≥65 years-old) have resulted in a filled antibiotic prescription, 50.7% of which were 416 
for azithromycin (Tsay et al., 2022). For 0-to-5 year-olds and 45-to-64 year-olds, 4% and 16% of 417 
outpatient COVID-19–related visits have resulted in a filled antibiotic prescription, respectively 418 
(Wittman et al., 2023). In the Alsace region in France, there was a clear peak azithromycin 419 
prescribing during the first wave of the COVID-19 (Danion et al., 2023). During the first lockdown 420 
in France, community azithromycin consumption increased by 25.9%, with the increase varying 421 
from 13.4% to 47.3% depending on the week (Weill et al., 2021), while the overall number of 422 
azithromycin prescriptions across France in 2020 increased by 10.1% relative to 2019 (Bara et al., 423 
2022). Azithromycin treatment usually lasts 3-5 days depending on the disease, but the drug stays 424 
in the system for about 15.5 days after the last dose due to the long half-life of more than 60 hours 425 
(Foulds et al., 1990; Girard et al., 2005). On the other hand, penicillin has an elimination half-life 426 
of approximately 1.4 hours and leaves the body in 7.7 hours after the last dose. This suggests that 427 
if azithromycin consumption increased during the first year of the pandemic, antibiotic exposure 428 
time also increased as a result, although the overall number of antibiotic prescriptions decreased. 429 
Moreover, the use of azithromycin has been associated with selection of both macrolide and non-430 
macrolide resistance (Doan et al., 2020). In a study investigating the direct effect of antibiotic 431 
exposure on resistance in the oral streptococcal flora of healthy volunteers, use of azithromycin 432 
(500 mg once daily for 3 days) significantly increased the proportion of macrolide-resistant 433 
streptococci in healthy individuals (Malhotra-Kumar et al., 2007). Resistance peaked at day four 434 
in the azithromycin group and this increase remained significantly higher in the azithromycin 435 
group than in the placebo group until day 180 (Malhotra-Kumar et al., 2007). A clinical trial of 436 
mass azithromycin distributions for treating trachoma in Ethiopia resulted in an increase in 437 
resistant S. pneumoniae isolates among children under the age of 10 (Keenan et al., 2018, 2015).  438 

 439 
Our model simulations show that antibiotic resistance increases with surges in SARS-CoV-440 

2 infections when there is a corresponding increase in azithromycin use, but that lockdowns can 441 
moderate this increasing trend by effectively limiting transmission of SARS-CoV-2 (Salje et al., 442 
2020). Conversely, surges in azithromycin prescribing during SARS-CoV-2 outbreaks in the 443 
absence of effective measures to prevent transmission, as reported in certain regions and pandemic 444 
periods, may cause substantial increases in antibiotic resistance. Our model successfully captured 445 
the main trends of antibiotic resistance and IPD incidence observed in Europe in 2020 for S. 446 
pneumoniae. However, not all European countries reported an increase in antibiotic resistance. 447 
This inter-country heterogeneity may not be due only to heterogeneity of antibiotic use as shown 448 
in our model but may be attributed to other pandemic factors not directly implemented or assumed 449 
in the model scenario, such as different adherence to COVID-19 control measures across countries 450 
and different age groups, including impacts on disease surveillance and data reporting during the 451 
pandemic. Real-life scenarios are significantly more complicated and involve multiple alterations 452 
of many pandemic factors at different points in time and heterogeneity across populations (e.g., 453 
antibiotic prescribing increases in some demographic groups and decreases in others, multiple 454 
lockdowns, curfews, or telework).  455 

 456 
In our model simulations, we used SARS-CoV-2 parameter value R0 = 3.2 (Liu et al., 2020) 457 

in the absence of population immunity, best reflecting epidemiological dynamics from early in the 458 
pandemic. The most common estimates of SARS-CoV-2 R0 in France and other European 459 
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countries ranged from R0 = 2 to 4 (Flaxman et al., 2020; Liu et al., 2020). Modeling results suggest 460 
that higher SARS-CoV-2 R0 estimates combined with higher proportion of COVID-19 infected 461 
individuals using azithromycin exacerbated impacts of COVID-19 on antibiotic resistance (Figure 462 
4A). However, the overall impacts of COVID-19 on AMR are difficult to predict, likely vary over 463 
the short, medium, and long term, and depend on the organism, setting, and subpopulation 464 
considered. 465 

 466 
SARS-CoV-2 bacterial coinfection has been reported relatively rarely over the course of 467 

the pandemic, suggesting that most COVID-19 patients probably do not require antibiotic therapy 468 
(Garcia-Vidal et al., 2021; Karami et al., 2021; Langford et al., 2020), although extensive 469 
prophylactic antibiotic use may have limited observed co-infection incidence. The inflammatory 470 
immune response resulting from COVID-19 likely predisposes patients to subsequent progression 471 
to an invasive bacterial disease (IBD) to some extent (Sender et al., 2021), but antibiotic use may 472 
also favor progression to IBD for patients colonized with drug-resistant strains (Baggs et al., 2018). 473 
We do not explicitly model the dynamics of interaction since strong evidence for such interactions 474 
remains limited (Wong et al., 2023). The results presented in Figure 4B suggest that such within-475 
host interactions could have important consequences for the resistant IPD incidence during 476 
COVID-19 waves, especially in the elderly and high-risk groups. The model's structure allows for 477 
easy integration of mechanistic interactions as more information becomes available on this 478 
phenomenon. 479 
 480 

Our study focused on the general community, but COVID-19 distinctly influenced AMR 481 
in hospitals and long-term care facilities. Extensive antibiotic use in COVID-19 patients and 482 
disruptions to antibiotic stewardship programs may have increased antibiotic-resistant carriage in 483 
these settings. A meta-analysis conducted on studies published until June 2020 found that 68-81% 484 
of hospitalized COVID-19 patients and 74-94% in intensive care received antibiotics (Monnet and 485 
Harbarth, 2020). The disorganization in hospitals during the COVID-19 pandemic might have 486 
reduced antibiotic resistance surveillance, allowing resistant organisms to spread. However, the 487 
early implementation of antibiotic stewardship programs in March 2020, patient isolation, and 488 
widespread use of personal protective equipment (PPE) have mitigated this increase to some 489 
degree (Henig et al., 2021; Monnet and Harbarth, 2020; Seaton et al., 2020; Van Laethem et al., 490 
2021). Models analyzing these impacts in hospitals contribute to understanding COVID-19's 491 
specific role in the antibiotic resistance burden in different settings (Smith et al., 2023). 492 
 493 

A limitation of our model is the lack of age structure and contact patterns between age 494 
groups, as SARS-CoV-2 infection risk, pneumococcal disease risk, disease severity, bacterial 495 
carriage prevalence and antibiotic prescribing are all highly heterogeneous across age groups. 496 
While this choice was made to keep the model as simple as possible, we tested the model using 497 
different parameter combinations to mimic different subpopulations (children and ≥65 years-old). 498 
This included varying durations of pneumococcal carriage, initializing the model with lower and 499 
higher baseline carriage prevalence, considering reductions of general antibiotic consumption at 500 
various levels, and varying a percentage of COVID-19 infected individuals using azithromycin. 501 
Simulations of the different age groups individually interestingly reproduced realistic trends by 502 
age.  503 
 504 
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In conclusion, we introduce the first epidemiological model outlining the impact of the 505 
COVID-19 pandemic on the dynamics of AMR in the community. Our work demonstrates the 506 
utility of mathematical modeling approach in unraveling the complex effects of the COVID-19 507 
pandemic responses AMR dynamics. While our model was structured and parameterized based 508 
upon S. pneumoniae, its adaptability allows for application to various bacteria and epidemiological 509 
scenarios in the community (e.g., impacts of SARS-CoV-2-bacteria interactions in the context of 510 
seasonal outbreaks of endemic pathogens). Future research would benefit from fitting the model 511 
to real-world data for different bacterial species to enhance our understanding of AMR trends. 512 
 513 
Methods  514 
 515 
Streptococcus pneumoniae surveillance data 516 
 517 
Antibiotic resistance trends reported in 2019 and 2020, provided by EARS-Net (European 518 
Antimicrobial Resistance Surveillance Network) were acquired from a joint 2022 report on 519 
antimicrobial resistance during 2020 by WHO and ECDC (European Centre for Disease 520 
Prevention and Control and World Health Organization, 2022). The annual incidence of S. 521 
pneumoniae invasive isolates for 2019 and 2020 was measured as the number of invasive isolates 522 
from blood or cerebrospinal fluid. The proportion of resistant isolates represents the proportion of 523 
isolates with phenotypic resistance to penicillin and macrolides using standardized bacterial 524 
culture methods and EUCAST breakpoints. Out of 28 European countries that reported antibiotic 525 
resistance data for S. pneumoniae, 24 countries had enough samples to establish 2019-2020 526 
resistance trends for penicillin and macrolides. The resistance data for France, which were 527 
subsequently analyzed, were provided by the CNRP (The French National Reference Center for 528 
Pneumococci).  529 
 530 
Model structure 531 
 532 
We developed a pathogen co-circulation model (Appendix 2 – Figure 2) written using systems of 533 
ordinary differential equations (ODEs) (Appendix 2; code available online at 534 
https://github.com/alekskovacevic/antibiotic_resistance). The model simultaneously describes 535 
potential infection with SARS-CoV-2 and colonization with antibiotic-sensitive and/or -resistant 536 
strains of S. pneumoniae in a well-mixed community population. SARS-CoV-2 infection is 537 
modeled by a Susceptible-Exposed-Infectious-Recovered (SEIR) process where individuals 538 
become exposed to SARS-CoV-2 at rate 𝛽$  upon contact with other infected individuals. Infection 539 
begins with a non-infectious exposed period lasting 1/𝜀 days and is followed by an infectious 540 
period lasting 1/𝛾$  days, eventually leading to recovery and immunization against future re-541 
infection. Waning immunity and competitive multi-strain SARS-CoV-2 dynamics are not 542 
considered. 543 
 544 

Individuals in S, E, I, and R compartments can be uncolonized with S. pneumoniae (U), 545 
colonized with either a drug-sensitive (CS) or a drug-resistant strain (CR), or co-colonized with two 546 
strains (CSS, CRR, CSR). Colonization with each respective strain is acquired at rates 𝛽! and 𝛽%𝑓 547 
upon contact with other colonized individuals (Appendix 2 – Table 2). We assume a metabolic 548 
cost of resistance, whereby the drug-resistant strain has a reduced intrinsic transmission rate 549 
relative to the drug-sensitive strain due to reduced fitness, f. Bacterial carriage is cleared naturally 550 
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after an average duration of &
'!
= &

'"
= &

'!"
= &

'!!
= &

'""
 days, which we assume to be the same for 551 

all types of carriers in our baseline scenario (in the scenarios assuming longer carriage duration of 552 
antibiotic-resistant strains, &

'!
= &

'!!
 and &

'"
= &

'!"
= &

'""
). We further assume that some share of 553 

the population is exposed to antibiotics at any given time, independent of bacterial carriage, with 554 
individuals initiating antibiotic therapy at rate 𝜏, which lasts for an average duration of &

(
 days. 555 

Another model assumption is that a proportion (𝑝)*) of those infected with COVID-19 in the 556 
community (between 0% and 20% of individuals in an I compartment) receive azithromycin 557 
prescription from general practitioner reflecting azithromycin prescriptions in the early pandemic, 558 
while the rest of the infectious individuals (1 − 𝑝)*) are exposed to the baseline antibiotic therapy. 559 
We assume baseline treatment duration of seven days, on average, regardless of the antibiotic 560 
prescribed and without any assumed persistence of the antibiotic in the system after the last dose 561 
(&
(
). In case of antibiotic treatment with azithromycin for COVID-19 infected individuals we 562 

assume the treatment lasts three days with antibiotics remaining in the system for additional 15.5 563 
days after the last dose for a total of 18.5 days of antibiotic exposure where COVID-19 recovered 564 
individuals (𝑅)*) treated with azithromycin retain azithromycin in their system for an additional 565 
11.5 days ( &

(#$
) after COVID-19 recovery. Individuals treated with antibiotics are unable to acquire 566 

the sensitive strain. Antibiotics are assumed to clear colonization with sensitive strains at a rate 𝜔 567 
while having no direct impact on colonization with resistant strains. This bacterial colonization 568 
process results in antibiotic selection for resistance via competition for limited hosts, facilitates 569 
epidemiological coexistence between strains and is adapted from previous models of S. 570 
pneumoniae (Colijn et al., 2010; Lipsitch et al., 2009; Mulberry et al., 2020). For a full list of 571 
parameter values see Appendix 2 – Table 2. 572 

 573 
Simulation in an early COVID-19 pandemic context 574 
 575 
ODEs were integrated numerically using the R package deSolve to simulate and quantify 576 
epidemiological dynamics (Soetaert et al., 2010). First, bacterial dynamics were simulated until 577 
endemic equilibrium was achieved, under the assumption that S. pneumoniae was at endemic 578 
equilibrium upon the emergence of COVID-19. Second, using equilibrium states as initial 579 
conditions and re-initializing simulation time to t=0, a single SARS-CoV-2 infected individual 580 
was introduced into the population and ODEs were again integrated numerically to t=365 days. 581 
Parameter values used for simulation were taken from prior studies prioritizing French data and 582 
are provided in Appendix 2 – Table 2.  583 
 584 

These simulations were conducted in the context of an “early pandemic scenario” 585 
coinciding with the implementation of population-wide NPIs to slow SARS-CoV-2 transmission. 586 
This was conceived as the implementation of two 60-day lockdown periods starting on day 75 and 587 
on day 305 in response to the simulated surge in COVID-19 cases. Lockdowns were assumed to 588 
have three major potential impacts on population behavior and, in turn, the transmission dynamics 589 
of SARS-CoV-2 and S. pneumoniae. These impacts were incorporated into simulations by 590 
modifying epidemiological parameters in the model coincident with lockdowns. Three such 591 
modifications were considered and switched on and off, considering all possible combinations. 592 
First, lockdown led to reduced SARS-CoV-2 transmissibility by a factor 𝜃#. Second, lockdown led 593 
to a population-wide change in antibiotic initiation rate by a factor a (representing modified 594 
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healthcare-seeking behavior leading to a reduction in the number of antibiotic prescriptions). 595 
Finally, lockdowns changed the pneumococcal disease risk by a factor 𝐼𝑃𝐷(+%, (representing a 596 
reduced risk of developing an IPD due to the absence of other respiratory viruses). 597 
 598 
Effect of SARS-CoV-2 basic reproduction number (R0) on AMR 599 
 600 
Impacts of SARS-CoV-2 on antibiotic-resistant IPD incidence may also depend on the 601 
characteristics of locally circulating SARS-CoV-2 R0. To account for potential impacts of SARS-602 
CoV-2 transmissibility and azithromycin use in the community, in simulations we varied (i) values 603 
of R0 (basic reproduction number) for SARS-CoV-2 in France (2 ≤ 𝑅- ≤ 4) and (ii) the proportion 604 
of the COVID-19 infected individuals using azithromycin at simulation outset (from 0% to 20%).  605 
 606 
Effect of within-host interactions on AMR 607 
 608 
SARS-CoV-2 infection may impact progression from bacterial colonization to invasive bacterial 609 
disease at the within-host level. To incorporate this mechanism in our model, we included a within-610 
host interaction term in scenario S19: the ecological interaction term (𝜓#) increases the rate of 611 
progression to invasive disease among colonized individuals who are also infected with SARS-612 
CoV-2. The equations for calculating daily IPD incidence assuming within-host interactions due 613 
to SARS-CoV-2 co-infection with accompanying details can be found in Appendix 2. 614 
 615 
 616 
 617 
 618 
 619 
 620 
 621 
 622 
 623 
 624 
 625 
 626 
 627 
 628 
 629 
 630 
 631 
 632 
 633 
 634 
 635 
 636 
 637 
 638 
 639 
 640 
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Tables 641 
 642 
Mechanisms: 

1 Reduced community antibiotic prescribing.  
2 Lockdown effect on reducing transmission of S. pneumoniae  
3 Reduced risk of developing an IPD 
4 Community azithromycin use in COVID-19 infected individuals 
5 Longer carriage duration of antibiotic-resistant pneumococcal strains  

Scenarios 
Mechanisms 

IPD inc. AR 
(%) Sp. (%) 1 2 3 4 5 

Pre-pandemic 1 : (𝒅𝑺 = 𝒅𝑹)      10.8 20.0 NA 
Pre-pandemic 2 : (𝒅𝑹 > 𝒅𝑺)     x 11.3 20.0 NA 
Pandemic:                                  S1 x     10.9 19.2 +1.3 

S2  x    8.9 20.1 -36.1 
S3   x   5.9 20.0 0 
S4    x  9.9 23.7 -9.1 
S5     x 11.3 20.0 0 
S6 x x    9.1 19.4 -35.2 
S7 x  x   6.0 19.4 +1.3 
S8 x   x  10.1 22.9 -8.0 
S9 x    x 11.5 19.3 +1.3 

S10  x x   5.2 20.0 -36.1 
S11  x  x  8.9 20.1 -36.1 
S12  x   x 9.4 20.9 -34.3 
S13   x x  5.6 22.5 -9.1 
S14   x  x 6.2 20.0 0 
S15    x x 10.4 23.4 -9.1 
S16 x x x   5.3 19.6 -35.2 
S17 x x  x  8.3 22.4 -41.3 
S18 x x   x 9.6 20.3 -33.5 
S19 x  x x  5.7 22.0 -8.0 
S20 x  x  x 6.3 19.5 +1.3 
S21 x   x x 10.6 22.7 -7.9 
S22  x x x  5.0 22.0 -42.1 
S23  x x  x 5.5 20.6 -34.3 
S24  x  x x 8.7 23.9 -40.2 
S25   x x x 5.9 22.3 -9.1 
S26 x x x x  5.0 21.6 -41.3 
S27 x x x  x 5.6 20.1 -33.5 
S28 x x  x x 8.8 23.2 -39.4 
S29 x  x x x 5.9 21.8 -7.9 
S30  x x x x 5.2 22.5 -40.2 
S31 x x x x x 5.3 22.1 -39.4 

    
REPORTED TRENDS: IPD inc. AR (%) Sp. (%) 

Pre-pandemic (FR, 2019) 10.5 [10.3-10.7] 26.2 (PENI) and 20.9 
(ERY) 

NA 

Pandemic (FR, 2020) 5.8 [5.7-5.9] 35.5 (PENI) and 23.0 
(ERY) 

Stable 

Pandemic (EU/EEA, 2020) 
General trends 

Decrease by 
44.3% on avg. 

Majority of EU countries 
report an increase 

Generally 
stable 
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 643 
Table 1. Five mechanisms implemented in 31 pandemic scenarios proposed to explain the 644 
reported trends of IPD incidence, antibiotic resistance, and pneumococcal carriage in S. 645 
pneumoniae. Scenarios explore all possible combinations of mechanisms proposed to test 646 
hypotheses that can explain the reported trends of annual invasive pneumococcal disease incidence 647 
(annual no. of cases per 100,000 inhabitants), antibiotic resistance (% of annual antibiotic-resistant 648 
IPD cases among total IPD cases), and % change in the pneumococcal carriage prevalence at the 649 
end of the first 60-day lockdown compared the prevalence before the lockdown. Model simulations 650 
were initiated assuming the initial 20% antibiotic resistance. Two pre-pandemic scenarios assume 651 
no SARS-CoV-2 circulation in the population and allow for the same 30-day carriage duration of 652 
both antibiotic-sensitive and -resistant strains (𝑑! = 𝑑") or a longer, 40-day carriage duration of -653 
resistant strains (𝑑" > 𝑑!). When implemented, these five mechanisms assume 18% reduction in 654 
community antibiotic prescribing, a reduced risk of developing an IPD during (0.2) and after the 655 
first lockdown (0.4), a 25% reduction in transmission of pneumococcal carriage during the first 656 
lockdown, a 10% of azithromycin use among COVID-19 infected individuals, and a longer 40-657 
day carriage duration of -resistant strains. For a full list of parameters see Appendix 2 – Table 2. 658 
Reported trends in European countries showed a decrease in annual IPD incidence by 44.3% on 659 
average, an increase in antibiotic resistance, and generally stable asymptomatic pneumococcal 660 
carriage in healthy individuals during the first lockdown period. Only scenarios S19 and S29 fulfill 661 
all three reported trends during the COVID-19 pandemic in 2020 simultaneously while accounting 662 
for the reported reduction in community antibiotic prescribing (𝑑! = carriage duration of antibiotic-663 
sensitive pneumococcal strains; 𝑑" = carriage duration of antibiotic-resistant pneumococcal 664 
strains; PENI = penicillin; ERY = erythromycin). 665 
 666 
 667 
 668 
 669 
 670 
 671 
 672 
 673 
 674 
 675 
 676 
 677 
 678 
 679 
 680 
 681 
 682 
 683 
 684 
 685 
 686 
 687 
 688 
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Figures 689 
 690 

 691 
 692 
Figure 1. Antibiotic resistance trends in invasive Streptococcus pneumoniae isolates for the 693 
years 2019 and 2020. A. The proportion of invasive S. pneumoniae isolates resistant to penicillin 694 
and macrolides (azithromycin/ clarithromycin/ erythromycin) reported to EARS-Net (European 695 
Antimicrobial Resistance Surveillance Network) for 24 European countries. Error bars show 95% 696 
confidence intervals. B. The proportion of invasive S. pneumoniae isolates resistant to penicillin 697 
(MIC > 0.064 mg/L) and macrolides (erythromycin) according to age. Error bars show 95% 698 
confidence intervals. The total number of invasive pneumococcal isolates reported in France 699 
decreased by 45.1% from 2019 to 2020 (from 1119 to 614). Data are provided by the French 700 
National Reference Center for Pneumococci. 701 
 702 
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 717 
 718 
Figure 1 – figure supplement 1. Antibiotic resistance trends in invasive Streptococcus 719 
pneumoniae isolates in France, 2017-2020. The proportion of invasive S. pneumoniae isolates 720 
resistant to penicillin (A) and macrolides (B) according to age. Error bars show 95% confidence 721 
intervals. Across the period 2017-2020, a consistent decline in antibiotic resistance is observed for 722 
both penicillin and macrolides. Notably, this general trend experienced an anomaly in 2020, 723 
coinciding with the onset of the COVID-19 pandemic. Data are provided by the French National 724 
Reference Center for Pneumococci. 725 
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 747 
Figure 2. A modelling framework describing the transmission of SARS-CoV-2 and 748 
Streptococcus pneumoniae in the community setting, in the context of both general antibiotic 749 
prescribing and azithromycin prescribing for COVID-19 infected individuals. A. Non-750 
pharmaceutical interventions (NPIs) implemented to control SARS-CoV-2 transmission 751 
(lockdown, face mask use, improved hygiene practices, travel restrictions, quarantine, 752 
telemedicine, and physical distancing) may also modify transmission of other pathogens, in 753 
addition to impacting antibiotic prescribing due to altered inter-individual contact and health-care 754 
seeking behavior. B. SEIR (Susceptible-Exposed-Infected-Recovered) model with antibiotic 755 
treatment compartments depicts interaction between SARS-CoV-2 infection and antibiotic 756 
prescribing, including both general community prescribing and azithromycin prescribing among 757 
individuals infected with SARS-CoV-2. C. Diagram depicting how pneumococcal colonization 758 
and the community antibiotic prescribing are affected by the COVID-19 pandemic impacts. 759 
Initiation of antibiotic treatment is assumed independent of bacterial carriage, reflecting 760 
widespread bystander selection for commensal bacteria like S. pneumoniae. For a complete 761 
modeling framework, see section S2 in Supporting Information.  762 
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 775 
 776 
Figure 3. Annual incidence of invasive pneumococcal disease (IPD), antibiotic resistance 777 
(AR%), and pneumococcal carriage prevalence for three different subpopulations. A. The 778 
elderly (≥65 years-old) B. general population (all ages), and C. children (< 5 years-old). Using 779 
pandemic scenario S19, which includes a combination of three different mechanisms: reduced 780 
community antibiotic prescribing, a reduced risk of developing an IPD, and community 781 
azithromycin use in COVID-19 infected individuals, we ran model simulations for three different 782 
subpopulations. For a full list of parameter values see Appendix 2 – Table 2. Annual IPD incidence 783 
(grey bars) decreased between 43% and 51% relative to the pre-pandemic (baseline) period with 784 
magnitude of a decrease depending on an age group and the level of azithromycin use in COVID-785 
19 infected individuals. Antibiotic resistance (red bars) increased compared to the pre-pandemic 786 
(baseline) period in all age groups whenever azithromycin was used in COVID-19 infected. Black 787 
arrows indicate model outcomes that approximate the reported trends in antibiotic resistance in 788 
France for different age groups. Daily prevalence of total pneumococcal carriage remained 789 
relatively stable (solid-colored lines), exhibiting higher levels of decrease with increased 790 
azithromycin use. The prevalence of antibiotic-resistant pneumococcal carriage increased (dashed 791 
colored lines) over time in relation to SARS-CoV-2 outbreak (black dashed line) and higher 792 
azithromycin use. Highlighted time intervals (days 75-135 and 305-365) represent two lockdown 793 
periods. 794 
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 795 
 796 
Figure 4. The impact of varying SARS-CoV-2 R0 and percentage of COVID-19 infected 797 
individuals taking azithromycin in scenario S19 on antibiotic resistance (%) and the annual 798 
incidence of antibiotic-resistant invasive pneumococcal disease (IPD). Hypothetical within-799 
host interactions contribute to an excess incidence of antibiotic-resistant IPDs. (A) 800 
Cumulative incidence of antibiotic-resistant IPDs and antibiotic resistance increase with 801 
greater values of SARS-CoV-2 R0 and higher percentage of the COVID-19 infected 802 
individuals taking azithromycin. The reproduction number for SARS-CoV-2 (R0) in the 803 
community corresponds to the most common estimates of R0 in France and other European 804 
countries ranging from R0 = 2 to 4 (Allieta et al., 2022; D’Arienzo and Coniglio, 2020; Di 805 
Domenico et al., 2020; Flaxman et al., 2020; Liu et al., 2020; Roux et al., 2020; Salje et al., 2020). 806 
(B) Annual excess in cumulative antibiotic-resistant IPD incidence in scenario S19 due to 807 
synergistic within-host ecological interactions compared to the same scenario with no within-808 
host interactions and no azithromycin use (1.17 resistant IPD cases/100,000 inhabitants). A 809 
rate of disease progression increased by a factor 𝜓# = 1 (no within-host interaction) and 𝜓# = 40 810 
in scenario S19 applied to the general population assuming azithromycin use in 10% of the infected 811 
individuals resulted in approximately 0.06 and 0.75 additional cases of antibiotic-resistant disease 812 
per 100,000 inhabitants over the course of one year, respectively, compared to the scenario S19 813 
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assuming no within-host interaction and no azithromycin use (indicated by the black arrow). For 814 
more details, see Appendix 2 - Figure 1.  815 
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