
WITCH-NG: Efficient and Accurate Alignment of Datasets with

Sequence Length Heterogeneity

Baqiao Liu∗1 and Tandy Warnow†1,*

1Department of Computer Science, University of Illinois Urbana-Champaign, USA
*Corresponding author: Tandy Warnow, warnow@illinois.edu

August 8, 2022

Abstract

Multiple sequence alignment (MSA) is a basic part of many bioinformatics pipelines, including in
phylogeny estimation, prediction of structure for both RNAs and proteins, and metagenomic sequence
analysis. Yet many sequence datasets exhibit substantial sequence length heterogeneity, both because of
large insertions and deletions (indels) in the evolutionary history of the sequences and the inclusion of
sequencing reads or incompletely assembled sequences in the input. A few methods have been developed
that can be highly accurate in aligning datasets with sequence length heterogeneity, with UPP (Nguyen
et al., 2015) one of the first methods to achieve good accuracy, and WITCH (Shen et al., Bioinformatics
2021) an improvement on UPP for accuracy, In this paper, we show how we can speed up WITCH. Our
improvement includes replacing a critical step in WITCH (currently performed using a heuristic search)
by a polynomial time exact algorithm using Smith-Waterman. Our new method, WITCH-NG (i.e., “next
generation WITCH”, pronounced “witching”) achieves the same accuracy but is substantially faster.
WITCH-NG is available in open source form at https://github.com/RuneBlaze/WITCH-NG.

1 Introduction

Multiple sequence alignment (MSA) is a fundamental task in computational biology and is a prerequisite
for many downstream analyses such as phylogeny estimation [13], metagenomics [15, 20], and other
applications. Over recent years, the assembly of large sequence datasets has led to the development of
MSA methods that are able to scale to very large datasets (e.g., Clustal-Omega [23]) as well as techniques
that use divide-and-conquer to maintain high accuracy (e.g., PASTA [11] and MAGUS [24]). Yet, accurate
MSA estimation still remains challenging, especially under conditions such as high rates of evolution or
sequence length heterogeneity.

Sequence length heterogeneity, in particular the presence of many short sequences, is a frequent
characteristic of biological datasets (Figure 1 contains two examples). Sequence length heterogeneity can
arise due to various reasons, such as the inclusion of many short reads or partially assembled sequences,
or purely from evolutionary events such as domain-level deletions. MSA methods that are accurate on
datasets without sequence length heterogeneity can degrade severely in accuracy under substantial presence
of fragments, and the resulting subpar alignments will in-turn adversely affect downstream analyses [26].
Therefore, specialized MSA estimation methods that are robust to sequence length heterogeneity are
valuable.

One effective approach for aligning datasets with sequence length heterogeneity selects a set of
“full-length” sequences from the input, aligns these sequences, and then adds the rest of the sequences
(the “queries”) into the computed alignment. The last step where sequences are added into an existing
alignment is its own bioinformatics problem. Notably, this last step of producing a extended alignment
is a necessary step in other applications, including remote homology detection [16] and various tasks in
metagenomics including taxon identification and abundance classification [10, 15, 20].

∗Funding: Sandia National Laboratories LDRD
†Funding: NSF grant 2006069

1

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.08.503232doi: bioRxiv preprint 

https://github.com/RuneBlaze/WITCH-NG
https://doi.org/10.1101/2022.08.08.503232
http://creativecommons.org/licenses/by-nd/4.0/


0 50 100 150 200 250 300 350
Sequence length

0

250

500

750

1000

1250

1500

1750

2000

Co
un

t

blmb (n = 17200)

0 250 500 750 1000 1250 1500 1750
Sequence length

0

1000

2000

3000

4000

5000

6000

16S.B.ALL (n = 27643)

Figure 1: Sequence length histograms of two biological datasets that show sequence length heterogeneity.
“blmb” comes from HomFam [23] and “16S.B.ALL” comes from the Comparative RNA Website (CRW) [3]. n
denotes the number of sequences in the dataset.

PDZ blmb rrm sdr rvp
Dataset

0.00

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e 

Al
ig

nm
en

t E
rro

r

Method
WITCH
UPP

PDZ blmb rrm sdr rvp
Dataset

0

25

50

75

100

125

150

175

Ru
nn

in
g 

Ti
m

e 
(m

in
ut

es
)

Method
WITCH (Stage 2 + 3)
UPP (Stage 2 + 3)
Backbone Inference (Shared Stage 1)

Figure 2: WITCH vs. UPP on five large Homfam datasets. Left: alignment error; right: runtime. As WITCH
and UPP have the same stage 1 and nearly identical implementation for stage 2, this suggests that WITCH
is substantially slower than UPP for stage 3. The datasets have respectively 14950, 17200, 27610, 50157, and
93681 sequences.

2

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.08.503232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503232
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3: Overview of the original WITCH algorithm. Circled numbers show the stages of the algorithm,
with “(a)” and “(b)” dividing Stage 3 into two steps. The red box on Stage 3(b) highlights that WITCH-NG
in algorithm design only swaps out Stage 3(b). This figure is based on Figure 2 in [17], used under the
Creative Commons Attribution (CC-BY) License.

Methods that can produce this extended alignment include UPP [17], WITCH [21], MAFFT [7] (using
the --add option), PaPaRa [1, 2], and HMMER [6] (using the popular hmmbuild+hmmalign pipeline).

WITCH is the most recent of the methods designed for this purpose, and has had the best accuracy
of these methods. WITCH uses a two-stage technique to add sequences into a backbone alignment. In
the first stage, it computes an ensemble of Hidden Markov Models (eHMM) to represent the backbone
alignment, using tools from HMMER [4]. In the second stage, it adds the remaining sequences (i.e., the
query sequences) into the backbone alignment, using the eHMM. At a. high level this two-stage structure
is the same as in UPP, but WITCH executes the second stage differently. While UPP simply picks a single
HMM from the eHMM to add a given query sequence into the backbone alignment, WITCH computes
an extended alignment for the query sequence for each of the HMMs in the ensemble. It then combines
these extended alignments, weighted by the probabilities it associates to each HMM in the ensemble, into
a single extended alignment. This combination step is a “weighted consensus” of the alignments, and
is performed using a graph algorithm called the “Graph Clustering Merger” (GCM) from MAGUS [24].
In other words, UPP uses a “mixture of experts” approach while WITCH uses an “ensemble” approach
when combining information from the ensemble of HMMs.

The resulting pipeline improves the accuracy of UPP, an already accurate method, but at the expense
of speed (Figure 2). Since WITCH and UPP differ only in the last step, this shows that the runtime cost
is a result of its weighted consensus step where WITCH uses the top ten HMMs in the eHMM instead of
just one, and more importantly because WITCH uses GCM, a general alignment merging method, for
merging all the information in the different alignments (one for each HMM) in order to add the query
sequence into the backbone alignment.

Here we present WITCH-NG, an algorithmic simplification of WITCH with an efficient implementation.
We show that through simpler algorithmic design and better algorithmic engineering, WITCH-NG is a
faster (and in many cases, much faster) version of WITCH, and in most cases nearly removes the running
time penalty of using WITCH over UPP while retaining WITCH’s high accuracy. Therefore, WITCH-NG
can be seen as an accurate (more accurate than UPP) alignment method with a slower yet comparable
running time with UPP.

2 Background

2.1 WITCH

We present WITCH in detail, divided into three stages. The input is simply a set of unaligned sequences
(with sequence length heterogeneity) and our goal is to produce an accurate alignment on such set of

3

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.08.503232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503232
http://creativecommons.org/licenses/by-nd/4.0/


sequences. We also depict these stages in Figure 3.

2.1.1 Stage 1: producing the backbone alignment and tree

The set of input sequences is first partitioned into two disjoint sets. The first set of “backbone sequences”
is sampled from a full-length range, set as [0.75l, 1.25l] by default, where l is the median length of the
input sequences. WITCH by default samples at most 1000 sequences from this range. The backbone
sequences are then aligned by an existing accurate alignment method (current choice being MAGUS [24]),
producing the “backbone alignment” B. The set of remaining sequences, which we call the “query set”,
is denoted by Q. A tree T is estimated on B, with the current method of choice being the maximum
likelihood heuristic FastTree2 [19].

2.1.2 Stage 2: building the ensemble of HMMs

In this stage, T is used to hierarchically decompose B into overlapping subsets, upon which HMMs (using
HMMER’s hmmbuild command) are built. Going into details, we define the size of a tree by its number
of leaves and define the centroid edge of a tree by the edge that has the least difference in the number of
leaves this edge separates. Then we recursively bisect T by the centroid edge until no more trees of size
above z (z an algorithmic parameter, for our purposes z = 10) can be produced. All trees encountered
throughout this recursion (including T ) then defines a set of trees {Ti}, which then in turn induces a set
of subset alignments {Bi}, where each Bi is B restricted to the taxon names of Ti. A HMMER HMM is
then built on each Bi, resulting in the set of HMMs {Mi}.

2.1.3 Stage 3: placing the query sequences

This is the most involved stage. We divide this stage into two steps. In the first step (scoring), for each
query q ∈ Q and for each model Mi, a fitness score of q against Mi, denoted as wq,i, is derived from the
bitscore that HMMER’s hmmsearch produces. This fitness score (called “adjusted bitscore”) is derived
under the assumption that each q is generated by exactly one of {Mi} and wq,i is the probability of Mi

generating q (implying
∑

i wq,i = 1 for any q). We now simply refer to wq,i as the “weight” of q against
Mi.

In the second step (weighted consensus), each query q is independently placed into the backbone by
constructing and resolving an “alignment graph”. Consider an weighted undirected bipartite graph G
with nodes q1, q2, . . . , qm where m is the length of the query sequence and nodes b1, b2, . . . , bn where n is
the number of columns in B. We add weighted edges to G as follows. First for computational efficiency,
only the top k (by default k = 10) HMMs for each sequence by weight are retained. Let these HMMs be
denoted as Mt1 ,Mt2 , . . . ,Mtk . Intuitively, each of these HMM defines an optimal alignment (through
hmmalign) of q against Bi, hence also an optimal alignment of q against B. The homologies defined by
all such HMMs can be represented as edges in G (each homology pair defines an undirected edge) while
the edge weights are scaled by the weight of the HMMs. Concretely, if an Mtj with weight w determines
that character x of q and column y of B are homologous, an edge between qx and by is added to G with
edge weight w · cy where cy is the number of non-gap characters in column y of B. GCM is then used as
a blackbox weighted consensus method on G to resolve a merging between q and B. After each query
sequence is placed into B, producing for each query sequence an “extended” alignment of q merged with
B, the extended alignments are then merged transitively (i.e., if two query positions both map to the
same backbone position, then these two query positions are also deemed homologous) into the final output
alignment.

3 WITCH-NG: Redesign of WITCH

3.1 Algorithmic improvements

We modify the weighted consensus step (second step of the last stage, the step in the red box in Figure 3)
of WITCH. Recall that at the second step of the last stage, we have already obtained weights wq,i for
each query sequence q and each HMM Mi. In addition, for each query q, we have a construction for G,
the alignment graph. Given that any weighted undirected bipartite graph on two components of size m
and n can be naturally represented as a m× n matrix, we choose to represent G as this matrix denoted
by S (i.e., S[i, j] is the weight between qi and bj in our above construction for G).

4

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.08.503232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503232
http://creativecommons.org/licenses/by-nd/4.0/


Critically, observe that S can be seen also as a scoring matrix for sequence alignment, where aligning
position i of q against position j of B gets a reward of S[i, j]. WITCH-NG then sets all non-positive
entries of S as −∞ (to forbid aligning two positions that are not supported by any of the HMMs) and
runs a sequence alignment dynamic programming (DP) algorithm (say, Smith-Waterman [27]) to align
q to B with a constant zero gap penalty (both Smith-Waterman and Needleman-Wunsch [14] simplify
into the same DP algorithm under no gap penalty) using this S as the scoring matrix. The result is a
placement of the query against the backbone. Given this way of placing queries, the rest of the algorithm
identically follows that of WITCH. Each query is aligned to the backbone using this construction for the
scoring matrix S and then merged transitively. Notice that the computationally intensive GCM blackbox
is circumvented, replaced by a lightweight application of Smith-Waterman.

The problem of independently placing each query sequence into the backbone is thus a local alignment
problem of aligning a query against the backbone, for which the classical approaches depend on scoring
matrices and gap penalty schemes, and then use Smith-Waterman. The typical challenge in using this
classical approach is to define the scoring scheme. However, in WITCH-NG, we use the matrix S[i, j] to
define the scoring function, which makes this approach completely straightforward.

The reason this makes good sense is that Zaharias et al. [28] have argued that there is an implicit
optimization problem in GCM (which is what WITCH does to compute the alignment of the query
to the backbone), which is identical to the solution to the local alignment problem using this cost
function. Specifically, GCM, although initial devised as a blackbox for alignment merging in MAGUS
[25], has been shown to be a good heuristic for the optimization problem “Maximum Weight Trace for
Alignment Merging (MWT-AM)” [29] (a straightforward generalization of the classical Maximum Weight
Trace (MWT) problem [8] in bioinformatics). In short, MWT-AM defines an optimization criterion to
the scenario when merging multiple disjoint “constraint” alignments (i.e., the homologies inside these
alignments cannot be altered in the merging process) and when similarity scores between the constraint
alignment columns have been obtained. Moreover, maximizing the MWT-AM score for merging many
alignments is shown to be beneficial for alignment accuracy when using GCM [29].

Therefore, given how the original WITCH always uses GCM to merge two alignments, naturally we
consider the problem of optimizing for the MWT-AM criterion (restricted to the case of two alignments).
We give the definition of MWT-AM on two alignments below:

Definition 1 (MWT-AM, trivial case) Given a weighted undirected bipartite graph with nodes q1, . . . , qm
and b1, . . . , bn, edges of form (qi, bj) with weight function w((qi, bj)) > 0, select a subset of edges T (the
“trace”) maximizing ∑

(qi,bj)∈T

w((qi, bj))

subject to an additional “non-crossing” constraint, where for any two different (qi, bj) and (qx, by) in T ,
either both i < x and j < y, or both x < i and y < j.

A straightforward observation suggests that this trivial case is solvable by a simple DP algorithm
(simplified version of either Smith-Waterman or Needleman-Wunsch without gap penalty), i.e., solvable
in O(mn) time and O(mn) space, and this DP algorithm coincides with our presented algorithm on
S. This observation is far from new and is mentioned in the paper introducing the Maximum Weight
Trace (MWT) problem [8]. Therefore, WITCH-NG can be seen as replacing a computationally intensive
heuristic (i.e., GCM) to merge the query and the backbone by an exact polynomial time algorithm for the
same problem.

3.2 Implementation

We note two major differences in the implementation of WITCH-NG aiming for better running time
compared to WITCH. Our first change is a strict improvement to the very last step of WITCH before the
output, when the “extended alignments” (alignments only containing a query sequence and the backbone)
are transitively merged. The original implementation in WITCH not only conceptually builds these
extended alignments, but also writes these extended alignments to the disk verbatim before consuming
them using a generic transitivity merging subroutine. This strategy is heavy in IO usage (writing extended
alignments to disk then parsing them back into memory) and is extraneous because we only need to
memorize each query letter’s matched position in the backbone in order to print the output alignment.

The second difference is that WITCH-NG implements a different strategy in invoking hmmsearch (the
bottleneck step in obtaining the bitscores for UPP and in turn the weights for WITCH). WITCH-NG
aggressively avoids invoking extra IO especially disk writes. Both WITCH and UPP use temporary files to

5

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.08.503232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503232
http://creativecommons.org/licenses/by-nd/4.0/


divide up the query sequences into chunks for hmmsearch to consume and also to save outputs of hmmsearch
across often times hundreds of HMMs. Combined with the IO usage of hmmsearch reading the HMMs
(saved on disk), these steps might hinder efficient parallelization (i.e., operations can become IO-bound
instead of CPU-bound). Ideally this problem is solved by moving on-disk structures into memory, e.g.,
saving the HMM structure in-memory if memory permits and then saving the query sequences in the
native format used by HMMER in memory instead of having each hmmsearch instance repeating the
reading and parsing of sequences from disk (then formatting its search results before us parsing the
formatted results to extract the bitscores), but this solution requires serious implementation effort. As a
makeshift solution, WITCH-NG relies on piping small chunks of sequences (saved in memory in plain
text) to the hmmsearch command while also parsing the hmmsearch output in-memory in an attempt to
minimize disk-write congestion. We do not claim this design as necessarily better than existing designs
but more as a reasonable attempt to optimize such a common step (used in UPP, WITCH, HMMerge
[18], etc., also in general used in any kind of HMMER-built database search against many sequences).

We finally note that although a sequence alignment DP algorithm is used as the engine for merging
the query against the backbone. We in practice simply used a naive implementation (based on naive
Smith-Waterman) despite many optimized variants of DP sequence alignment algorithms that are much
faster on modern architectures (e.g., Farrar’s “striped Smith-Waterman” algorithm [5]).

4 Experimental Design

Dataset # seqs. Seq. Align p-dist.4

length length (avg)

Simulated Nucleotide
1000M1-HF 1 1000 631.3 3960 0.694
1000M2-HF 1000 634.3 3972 0.683
1000M3-HF 1000 629.6 2723 0.660
1000M4-HF 1000 629.6 2571 0.495
RNASim-500bp 2 1500-7000 1025.4 21946 0.408
Nucleotide

5S.3 5507 105.6 414 0.418
5S.T 5751 106.2 436 0.425
16S.3 6323 1557.2 8716 0.315
16S.T 7350 1492.1 11856 0.345
16S.B.ALL 27643 1371.9 6857 0.210
Protein

10AA 303-807 432.7 1745.3 0.671
Homfam2 14950-93681 149.8 273.5 0.690

Table 1: Dataset statistics (average or range).

1 The 1000M series data have 20 replicates. 1000M1 has an outlier replicate as indicated in [24], hence removed.
2 RNASim-500bp has five replicates (on 5000 full-length sequences and 5000 fragmented sequences) and we sampled
different configurations of backbone-query size to benchmark the algorithm.

3 HomFam datasets only have reference alignments on a small subset of the sequences. The last two of this row are
derived from these small references.

4 Average p-dist (p-distance) is the proportion of homologous pairs of letters (as defined by the alignment) that are
different, where a “homologous pair of letters” is two letters (nucleotides or amino acids) in the same column in the
alignment.

We assembled a diverse set of publicly available datasets (both simulated and biological, locations
provided in the supplementary materials) to evaluate the difference of WITCH-NG and WITCH, along
with WITCH’s predecessor UPP. The list of datasets and their respective statistics are shown in Table 4,
where simulated conditions have been intentionally fragmented (1000M-HF series have half of the sequences

6

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.08.503232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503232
http://creativecommons.org/licenses/by-nd/4.0/


fragmented to roughly 250bp in length [26]. RNASim-500bp has half of its sequences fragmented to an
average length of 500bp [17], and when we later vary the backbone and query set size we directly assign
full-length sequences to the backbone and the fragments to the query.)

We performed two experiments. In Experiment 1, we compare WITCH, WITCH-NG, and UPP on
both simulated and biological nucleotide datasets (from the Comparative RNA Website (CRW) [3]) where
we have reference alignments on the entire set of sequences. In Experiment 2, we compare WITCH,
WITCH-NG, and UPP on the 10AA dataset (a selected set of ten protein alignment datasets that have
curated alignments) [17] and also on the ten largest HomFam datasets [23] (up to 93681 sequences), which
only have reference alignments on very small subsets of the input sequences.

4.1 Evaluation Criteria

Our goal is retain WITCH’s accuracy while improving speed, hence we track two sets of metrics. For
accuracy, we use the Sum-of-Pairs (SP) error metrics computed by FastSP [12]. Briefly, each alignment
encodes a set of homology pairs (defined by the columns of the alignment). SPFN (Sum-of-Pairs False
Negative rate) is the proportion of true homology pairs (those from the reference alignment) that are
not present in the estimated alignment, and 1 - SPFN equals the commonly used SP-score. SPFP
(Sum-of-Pairs False Positive rate) is the proportion of estimated homology pairs not found in the reference,
and 1 - SPFP is also known as the Modeler score. Both rates are defined from 0 to 1. For convenience, we
often report the average of SPFN and SPFP, sometimes referred directly as the alignment error or average
error. We evaluate the rates across the entire alignment (not just restricted on the query sequences) both
to show the final accuracy of the methods as de novo alignment methods aligning sequences from scratch
and to also take into account the homologies between query sequences and the backbone sequences (which
will be ignored if only restricted to the query sequences).

For speed, we record the wall-clock running time of the methods assuming the backbone tree and
backbone alignment are given (i.e., ignore the running time of Stage 1). Aside from the benefit of excluding
a shared identical stage for all the methods, this wall-clock running time is exactly the running time
for applications such as phylogenetic placement or metagenomics (e.g., taxon identification), where the
reference alignment and tree often come prepackaged.

4.2 Computing Environment

All experiments were conducted on the Illinois Computing Cluster, a heterogeneous computing cluster
where most runs are constrained to four hours with at least 64GB of available memory. For the most
time-consuming dataset (16S.B.ALL), we explicitly did not constrain the running time to four hours. We
ran all methods across 16 cores.

4.3 Other MSA Methods

We compare WITCH-NG to WITCH and UPP, each run in default mode, but all three methods used the
same backbone alignment and eHMM. See Supplementary Materials for commands and version numbers.

Methods other than UPP and WITCH were not selected for comparison as prior literature and
preliminary results suggest that UPP is more accurate than other published methods (that we know of).
For example, prior studies suggest UPP is more accurate than hmmbuild+hmmalign [17] and the MAFFT
--add family of methods [22] (among those --add options that can scale to large datasets).

5 Results

5.1 Results for Experiment 1

Figure 4 presents an initial comparison of runtimes for WITCH and WITCH-NG on the RNASim-500bp
datasets where we vary the size of the backbone and the number of query sequences. This comparison
shows that WITCH is much faster than WITCH-NG across all settings, and that when there is a very
large backbone (2000 sequences), WITCH can fail to complete due to runtime limitations when given
many queries.

While we just showed that WITCH-NG can be much faster than WITCH, WITCH-NG differs with
WITCH in two sets of changes, algorithmic design and algorithmic engineering (implementation). It is
important to confirm that the speed-up is not just due to better implementation. To isolate the impact of

7

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.08.503232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503232
http://creativecommons.org/licenses/by-nd/4.0/


1000 2000 5000
Query Size

0

20

40

60

80

100

W
al

l-c
lo

ck
 T

im
e 

(m
in

ut
es

)

Backbone Size = 500

1000 2000 5000
Query Size

Backbone Size = 1000

1000 2000 5000
Query Size

Backbone Size = 2000

Method
WITCH
WITCH-NG
UPP

Figure 4: Wall-clock running time (minutes) between methods on the RNASim-500bp data, time measured
for Stage 2 and Stage 3 (i.e., assuming backbone alignment and tree known). WITCH timed out on 1/5
replicates for backbone size 2000 and 5000 queries, and is excluded from the figure. All methods achieved
roughly the same accuracy on these data (see Supplementary Material for the error rates).

WITCH WITCH(Smith-Waterman) WITCH-NG
Method

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
al

l-c
lo

ck
 R

un
ni

ng
 T

im
e 

(m
in

ut
es

)

1000M1-HF (500 backbone, 500 query)

WITCH WITCH(Smith-Waterman) WITCH-NG
Method

0

5

10

15

20

25

30

35

40

W
al

l-c
lo

ck
 R

un
ni

ng
 T

im
e 

(m
in

ut
es

)

zf-CCHH (1000 backbone, 87345 query)

Figure 5: Exploring the effect of the algorithmic change (Smith-Waterman in lieu of default GCM) vs.
the implementational changes, showing wall-clock running time (minutes, only measured on Stage 2 and
3) between methods on two very different data. “WITCH(Smith-Waterman)” denotes WITCH but with
the GCM step replaced by the described Smith-Waterman step. On 1000M1-HF, the algorithmic change
dominates the reduction in running time. On zf-CCHH, the implementational change is as important as the
algorithmic change for the running time. On 1000M1-HF we show averages across replicates with standard
error bars.

the two sets of changes, we created a version of WITCH’s code, where we replaced WITCH’s original
GCM subroutine by a version of GCM that merges using our described variant of Smith-Waterman.
This version of WITCH thus only includes the changes in algorithmic design. We then compare the
speed of WITCH (the original implementation), “WITCH(Smith-Waterman)” (the modified WITCH just
described), and WITCH-NG on two very different datasets used in this study, with the results shown
in Figure 5. We see that the simplification in algorithm design is accountable for most (in the case of
1000M1-HF) and roughly half (for zf-CCHH) of the speed-up achieved by WITCH-NG, suggesting that
both the design and engineering contributed to the speed-up, with perhaps the simplification in algorithm
design contributing more.

We show the results for Experiment 1 in both Table 2 (alignment error rates) and Figure 6 (left part,
showing the running times). Looking at the average of SPFN and SPFP, WITCH and WITCH-NG
are tied in being the most accurate method across all datasets, with the advantage over UPP most
noticeable under higher levels of evolution (1000M2-HF and 1000M1-HF). Looking closer, WITCH and
WITCH-NG have higher rates of false positive (SPFP) compared to UPP, but this disadvantage is more
than compensated for by the lower SPFN of the two methods. WITCH-NG and WITCH have almost
nonexistent differences in the error numbers, only on two cases differ by 0.001. As such, in later discussion,
we sometimes refer to WITCH and WITCH-NG as one when there exists no apparent difference in their
accuracy.

For running time, we see different trends for the 16S series of the CRW data and the rest of the
nucleotide datasets. For the four simulated conditions (1000M-HF) and the 5S series, WITCH-NG is
much faster than WITCH (by multiple factors), and close to the runtime of UPP (typically a bit slower,

8

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.08.503232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503232
http://creativecommons.org/licenses/by-nd/4.0/


1000M4-HF 1000M3-HF 1000M2-HF 1000M1-HF 5S.3 5S.T 16S.3 16S.T
Dataset (NT)

0

25

50

75

100

125

150

175
W

al
l-c

lo
ck

 ru
nn

in
g 

tim
e 

(m
in

ut
es

)
Method

WITCH
WITCH-NG
UPP

PDZ blmb p450 adh aat rrm Acetyltransf sdr zf-CCHH rvp
Dataset (HomFam)

0

25

50

75

100

125

150

175 Method
WITCH
WITCH-NG
UPP

Figure 6: Wall-clock running time (minutes) for Experiments 1 and 2, time measured for Stage 2 and Stage
3 (i.e., assuming backbone alignment and tree known), 16S.B.ALL is excluded from the figure due to high
running time of all methods (WITCH took 11 h 17 min, WITCH-NG took 8 h 4 min, and UPP took 5 h 18
min). The included NT datasets have 1000 sequences for the “HF” conditions shown, of which 500 are in the
backbone and 500 are in the query. The rest (from left to right) have 5507, 5751, 6323, and 7350 sequences
respectively. The HomFam datasets (right subfigure) have respectively 14950, 17200, 21013, 21331, 25100,
27610, 46285, 50157, 88345, and 93681 sequences. All data except the “HF” conditions have 1000 backbone
sequences and the rest are included in the query.

but occasionally faster). On all the 16S datasets, WITCH-NG is faster than WITCH, but by a smaller
amount than on the other datasets, and is slower than UPP. Thus, WITCH-NG speeds up WITCH on all
datasets, sometimes by a great margin, and (except for the 16S datasets) is reasonably close to UPP in
runtime.

5.2 Results for Experiment 2

On protein datasets, for 10 AA, all methods have near identical averaged alignment error as seen in
Table 3. It still can be seen that WITCH(-NG) trades off SPFP for SPFN compared to UPP, but in this
case not resulting in lower average error. All methods finished under one minute for these datasets with
no notable difference in running time; hence we omit showing the running time results.

On the ten largest HomFam datasets (second row, Table 3), WITCH and WITCH-NG have practically
no difference in accuracy but are both more accurate than UPP. Across individual datasets in HomFam
(shown in Supplementary Material), we see more mixed signals in terms of accuracy, with WITCH(-NG)
in general better in average error than UPP (in five out of ten datasets). On two datasets UPP is
better than WITCH(-NG) (on blmb and Acetyltransf) and in other cases tied. Interestingly, we see
cases where WITCH and WITCH-NG differ more in the error metrics, for example on Acetyltransf
where WITCH-NG is 0.01 point better in SPFP and on sdr where WITCH is almost 0.01 point better in
SPFP. The higher variance in accuracy (compared to the previous experiment) might have come from the
fact that HomFam datasets have very few reference sequences (for example, Acetyltransf has reference
alignment on 6 sequences out of 46285 unaligned sequences).

For running times on HomFam (right subfigure, Figure 6), we see a dramatic reduction of the running
time from WITCH to WITCH-NG in many cases, especially in cases where the runtime penalty of WITCH
compared to UPP is the most obvious. Noticeably, WITCH-NG has running time quite close to UPP
across all HomFam datasets, in most cases only paying a small penalty in running time compared to UPP
and in two cases even faster than UPP. We conclude that for this type of large datasets (1000 backbone
and more than 10000 query sequences), WITCH-NG dramatically speeds up WITCH with little difference
in accuracy, achieves running time close to UPP and is more accurate than UPP.

9

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.08.503232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503232
http://creativecommons.org/licenses/by-nd/4.0/


SPFN SPFP Avg. Error
Dataset Method

1000M4-HF WITCH 0.014 0.010 0.012
WITCH-NG 0.014 0.010 0.012
UPP 0.016 0.010 0.013

1000M3-HF WITCH 0.048 0.039 0.043
WITCH-NG 0.048 0.039 0.043
UPP 0.054 0.038 0.046

1000M2-HF WITCH 0.128 0.106 0.117
WITCH-NG 0.128 0.106 0.117
UPP 0.137 0.106 0.121

1000M1-HF WITCH 0.172 0.143 0.157
WITCH-NG 0.171 0.143 0.157
UPP 0.182 0.142 0.162

5S.3 WITCH 0.089 0.086 0.088
WITCH-NG 0.089 0.086 0.088
UPP 0.093 0.085 0.089

5S.T WITCH 0.117 0.104 0.110
WITCH-NG 0.117 0.104 0.111
UPP 0.120 0.103 0.112

16S.3 WITCH 0.089 0.166 0.128
WITCH-NG 0.089 0.166 0.128
UPP 0.090 0.166 0.128

16S.T WITCH 0.172 0.177 0.175
WITCH-NG 0.172 0.178 0.175
UPP 0.189 0.171 0.180

16S.B.ALL WITCH 0.044 0.045 0.044
WITCH-NG 0.044 0.045 0.044
UPP 0.045 0.045 0.045

Table 2: Alignment error rates on nucleotide datasets (four simulated datasets and four biological datasets)
placing into the same backbone alignment and tree. SPFN and SPFP are alignment error rates (lower is
better) defined in text, and “Avg. Error” is the average of these two values. Best values (with ties within
0.001) are boldfaced.

SPFN SPFP Avg. Error
Dataset Method

10AA WITCH 0.233 0.189 0.211
WITCH-NG 0.233 0.189 0.211
UPP 0.236 0.185 0.210

Homfam WITCH 0.327 0.124 0.225
WITCH-NG 0.327 0.125 0.226
UPP 0.336 0.122 0.229

Table 3: Alignment error rates on 10AA and Homfam (averaged across the ten datasets in each collection).
SPFN and SPFP are alignment error rates (lower is better) defined in text, and “Avg. Error” is the average
of these two values. Best values (with ties within 0.001) are boldfaced.

10

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.08.503232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503232
http://creativecommons.org/licenses/by-nd/4.0/


6 Discussion

The speed-up of WITCH-NG over WITCH varies across datasets (in particular, the 16S series are
outliers). As seen in Figure 4, the number of sequences in the input cannot explain this difference well, as
WITCH-NG is dramatically faster than WITCH on the dataset with the largest number of sequences,
but is only slightly faster on some smaller datasets. One potential explanation is sequence length, as the
16S series have the longest sequence lengths, and many long sequences lead to HMMs with many states,
which increases the time for Stage 3(a). When Stage 3(a) uses much of the runtime, WITCH-NG will not
differ much from WITCH in runtime, as the methods share largely the same algorithm for Stage 3(a).
However, future work is needed to understand this variability.

7 Conclusion

WITCH-NG is an accurate multiple sequence alignment method designed for datasets with sequence
length heterogeneity. WITCH-NG improves on the speed of WITCH, as a result of its algorithmic
simplification and better implementation, the current most accurate method for this problem, and has
running time comparable to that of UPP.

Although WITCH-NG is designed for de novo multiple sequence alignment, it can also be used directly
to add sequences into alignments, a problem that arises in updating existing alignments and trees as new
sequences are assembled (e.g., in phylogenetic placement [9]) and in microbiome analysis [15]. WITCH-NG
should be evaluated for use in these applications, especially for those analyses where runtime is extremely
important (e.g., taxon identification in metagenomics). Additional improvements to runtime and memory
usage are also possible and should be investigated.

8 Acknowledgments

This work is supported in part by funds from the National Science Foundation (NSF: 2006069). It was also
supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental
Research under the Secure Biosystems Design Initiative and by the Laboratory Directed Research and
Development (LDRD) program of Sandia National Laboratories, which is a multimission laboratory
managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly
owned subsidiary of Honeywell International Inc, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525.

References

[1] Simon A. Berger and Alexandros Stamatakis. Aligning short reads to reference alignments and trees.
Bioinformatics, 27(15):2068–2075, 06 2011.

[2] Simon A Berger and Alexandros Stamatakis. Papara 2.0: a vectorized algorithm for probabilistic
phylogeny-aware alignment extension. Heidelberg Institute for Theoretical Studies, 12, 2012.

[3] Jamie J. Cannone, Sankar Subramanian, Murray N. Schnare, James R. Collett, Lisa M. D’Souza,
Yushi Du, Brian Feng, Nan Lin, Lakshmi V. Madabusi, Kirsten M. Müller, Nupur Pande, Zhidi
Shang, Nan Yu, and Robin R. Gutell. The Comparative RNA Web (CRW) Site: an online database
of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC
Bioinformatics, 3(1):2, January 2002.

[4] Sean R Eddy. Accelerated Profile HMM searches. PLoS Computational Biology, 7(10):e1002195,
2011.

[5] Michael Farrar. Striped smith–waterman speeds database searches six times over other simd
implementations. Bioinformatics, 23(2):156–161, 2007.

[6] Robert D. Finn, Jody Clements, and Sean R. Eddy. HMMER web server: interactive sequence
similarity searching. Nucleic Acids Research, 39(Web Server issue):W29–W37, July 2011.

[7] Kazutaka Katoh and Daron M. Standley. MAFFT Multiple Sequence Alignment Software Version 7:
Improvements in Performance and Usability. Molecular Biology and Evolution, 30(4):772–780, April
2013.

11

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.08.503232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503232
http://creativecommons.org/licenses/by-nd/4.0/


[8] John Kececioglu. The maximum weight trace problem in multiple sequence alignment. In Annual
Symposium on Combinatorial Pattern Matching, pages 106–119. Springer, 1993.

[9] Frederick A Matsen, Robin B Kodner, and E Virginia Armbrust. pplacer: linear time maximum-
likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC
bioinformatics, 11(1):1–16, 2010.

[10] S. Mirarab, N. Nguyen, and T. Warnow. SEPP: SATé-Enabled Phylogenetic Placement. In
Biocomputing 2012, pages 247–258. WORLD SCIENTIFIC, November 2011.

[11] Siavash Mirarab, Nam Nguyen, Sheng Guo, Li-San Wang, Junhyong Kim, and Tandy Warnow.
PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences. Journal
of Computational Biology, 22(5):377–386, May 2015. Publisher: Mary Ann Liebert, Inc., publishers.

[12] Siavash Mirarab and Tandy Warnow. FastSP: linear time calculation of alignment accuracy. Bioin-
formatics, 27(23):3250–3258, 2011.

[13] David A Morrison. Multiple sequence alignment for phylogenetic purposes. Australian Systematic
Botany, 19(6):479–539, 2006.

[14] Saul B Needleman and Christian D Wunsch. A general method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal of molecular biology, 48(3):443–453, 1970.

[15] Nam-phuong Nguyen, Siavash Mirarab, Bo Liu, Mihai Pop, and Tandy Warnow. TIPP: taxonomic
identification and phylogenetic profiling. Bioinformatics, 30(24):3548–3555, December 2014.

[16] Nam-phuong Nguyen, Michael Nute, Siavash Mirarab, and Tandy Warnow. HIPPI: highly accurate
protein family classification with ensembles of HMMs. BMC Genomics, 17(10):765, November 2016.

[17] Nam-phuong D. Nguyen, Siavash Mirarab, Keerthana Kumar, and Tandy Warnow. Ultra-large
alignments using phylogeny-aware profiles. Genome Biology, 16(1):124, June 2015.

[18] Minhyuk Park and Tandy Warnow. Hmmerge: an ensemble method for improving multiple sequence
alignment. bioRxiv, 2022.

[19] Morgan N. Price, Paramvir S. Dehal, and Adam P. Arkin. FastTree 2 – Approximately Maximum-
Likelihood Trees for Large Alignments. PLOS ONE, 5(3):e9490, March 2010.

[20] Nidhi Shah, Erin K Molloy, Mihai Pop, and Tandy Warnow. TIPP2: metagenomic taxonomic
profiling using phylogenetic markers. Bioinformatics, 37(13):1839–1845, July 2021.

[21] Chengze Shen, Minhyuk Park, and Tandy Warnow. WITCH: Improved Multiple Sequence Alignment
Through Weighted Consensus Hidden Markov Model Alignment. Journal of Computational Biology,
May 2022. Publisher: Mary Ann Liebert, Inc., publishers.

[22] Chengze Shen, Paul Zaharias, and Tandy Warnow. MAGUS+eHMMs: improved multiple sequence
alignment accuracy for fragmentary sequences. Bioinformatics, 38(4):918–924, February 2022.

[23] Fabian Sievers, Andreas Wilm, David Dineen, Toby J. Gibson, Kevin Karplus, Weizhong Li, Rodrigo
Lopez, Hamish McWilliam, Michael Remmert, Johannes Söding, Julie D. Thompson, and Desmond G.
Higgins. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal
Omega. Molecular Systems Biology, 7:539, October 2011.

[24] Vladimir Smirnov and TandyWarnow. MAGUS: Multiple sequence Alignment using Graph clUStering.
Bioinformatics, 37(12):1666–1672, June 2021.

[25] Vladimir Smirnov and TandyWarnow. MAGUS: Multiple sequence Alignment using Graph clUStering.
Bioinformatics, 37(12):1666–1672, 2021.

[26] Vladimir Smirnov and Tandy Warnow. Phylogeny Estimation Given Sequence Length Heterogeneity.
Systematic Biology, 70(2):268–282, March 2021.

[27] Temple F Smith and Michael S Waterman. Identification of common molecular subsequences. Journal
of molecular biology, 147(1):195–197, 1981.

[28] Paul Zaharias, Vladimir Smirnov, and Tandy Warnow. The Maximum Weight Trace Alignment
Merging Problem. In Carlos Mart́ın-Vide, Miguel A. Vega-Rodŕıguez, and Travis Wheeler, editors,
Algorithms for Computational Biology, Lecture Notes in Computer Science, pages 159–171, Cham,
2021. Springer International Publishing.

[29] Paul Zaharias, Vladimir Smirnov, and Tandy Warnow. Large-scale multiple sequence alignment and
the maximum weight trace alignment merging problem. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 2022.

12

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.08.503232doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503232
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Background
	WITCH
	Stage 1: producing the backbone alignment and tree
	Stage 2: building the ensemble of HMMs
	Stage 3: placing the query sequences


	WITCH-NG: Redesign of WITCH
	Algorithmic improvements
	Implementation

	Experimental Design
	Evaluation Criteria
	Computing Environment
	Other MSA Methods

	Results
	Results for Experiment 1
	Results for Experiment 2

	Discussion
	Conclusion
	Acknowledgments

