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Abstract

Dynamical models in the form of systems of ordinary differential equations have become
a standard tool in systems biology. Many parameters of such models are usually
unknown and have to be inferred from experimental data. Gradient-based optimization
has proven to be effective for parameter estimation. However, computing gradients
becomes increasingly costly for larger models, which are required for capturing the
complex interactions of multiple biochemical pathways. Adjoint sensitivity analysis has
been pivotal for working with such large models, but methods tailored for steady-state
data are currently not available. We propose a new adjoint method for computing
gradients, which is applicable if the experimental data include steady-state
measurements. The method is based on a reformulation of the backward integration
problem to a system of linear algebraic equations. The evaluation of the proposed
method using real-world problems shows a speedup of total simulation time by a factor
of up to 4.4. Our results demonstrate that the proposed approach can achieve a
substantial improvement in computation time, in particular for large-scale models,
where computational efficiency is critical.

Author summary

Large-scale dynamical models are nowadays widely used for the analysis of complex
processes and the integration of large-scale data sets. However, computational cost is
often a bottleneck. Here, we propose a new gradient computation method that
facilitates the parameterization of large-scale models based on steady-state
measurements. The method can be combined with existing gradient computation
methods for time-course measurements. Accordingly, it is an essential contribution to
the environment of computationally efficient approaches for the study of large-scale
screening and omics data, but not tailored to biological applications, and, therefore, also
useful beyond the field of computational biology.
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Introduction 1

Ordinary differential equation (ODE) models are widely used to describe the dynamics 2

of biochemical processes such as signalling [1–3], metabolism [4,5] or gene 3

regulation [6, 7]. These models can capture the mechanistic details of interactions 4

between biochemical species, aggregate current knowledge and integrate heterogeneous 5

data types. However, such models often possess a large number of parameters. While 6

some parameter values can possibly be extracted from databases such as BRENDA [8] 7

or SABIO-RK [9], others usually need to be inferred from problem-specific experimental 8

data. The complexity of this inference problem depends on the model size, the number 9

of unknown parameters and data availability. 10

Data availability and, in general, the structure and information content of data sets 11

differs substantially between projects. On the experimental side, one often distinguishes 12

between time-course and dose-response data. On the computational side, different 13

experimental setups correspond to different types of simulation setups (Fig. 1a): (i) the 14

initial conditions of the simulation can either be specified explicitly as numerical values 15

or parameters, or implicitly with a steady-state constraint; and (ii) either a dynamic 16

phase has to be simulated or only a steady-state has to be determined. The 17

experimental setup and the corresponding formulation of the simulation can be encoded 18

using formats, such as the Simulation Experiment Description Markup Language 19

(SED-ML) [10] or the Parameter Estimation tables (PEtab) [11]. 20

In many studies, there is some data available regarding the system’s 21

steady-state [12–15]. There are two distinct cases: (1) the system is assumed to start in 22

a steady state, then it is perturbed and enters a dynamic state; or (2) the system is 23

assumed to start in a dynamic state and after some time it reaches a steady state 24

(Fig. 1a). These two cases will be referred to as pre- and post-equilibration, respectively. 25

The system can start in a steady state and reach a steady state again after a 26

perturbation, therefore, the two cases are not mutually exclusive. 27

Pre- and post-equilibration as part of the simulation complicate parameter 28

estimation and other subsequent tasks as the numerical computation of steady states of 29

nonlinear systems is challenging. Therefore, a variety of computational methods have 30

been proposed to derive analytical expressions for steady states. These methods rely, for 31

example, on graph theory [16,17], py-substitution [18] and some can even take positivity 32

constraints into account [19]. Yet, for a large number of application problems these 33

analytical approaches are not applicable and one needs to resort to numerical 34

approaches. Fortunately, steady states can be computed without time-course 35

simulations [20,21]. Nowadays, variants of Newton’s method are widely used for 36

equilibration. Tailored implementations of Newton’s method achieve a speedup of up to 37

100-fold compared to steady-state calculation via numerical simulation [21]. 38

Efficient numerical simulation and steady-state calculation are cornerstones for 39

parameter estimation [22]. However, several studies found that the availability of the 40

objective function gradient is also highly beneficial for the parameterization for 41

dynamical modelling (see, e.g. [23, 24]). Indeed, gradient-based multi-start local and 42

global optimization methods seem to often outperform gradient-free optimization 43

methods [23]. 44

Objective function gradients can be computed using automatic differentiation (see, 45

e.g., [25]), finite differences, and forward or adjoint sensitivity analysis [26]. While 46

approximations obtained using finite differences are often numerically unreliable [24], 47

forward and adjoint methods allow for an accurate assessment [26]. All sensitivity 48

analysis methods are, in principle, available for pre- and post-equilibration. With 49

forward sensitivity analysis, one can simulate state sensitivity ODEs along with the 50

dynamical system until approximate convergence to a steady state. This comes at a 51

high computational cost and scales poorly with the number of states and parameters, as 52
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Fig 1. Steady-state simulation scenarios, and computation methods for ASA.
(a) Different scenarios requiring computation of the model steady state. Top: The
pre-equilibration case, where the system is at steady state at the beginning of the
experiment. This means that by t = t0 the system has reached its steady state (x0)
under some condition (ue) (blue line). At t = t0 the system was perturbed and
measurements were taken at time points tj > t0 (orange crosses). The pre-equilibration
steady state (x0) is the initial state under the experimental conditions (u). Bottom:
The post-equilibration case, where at some point after the beginning of the experiment,
the system reaches its steady state (x∗) and measurements for this time point (t = t′′)
are available (orange cross at t = t′′). Measurements of the transient state may also be
available (orange crosses in t < t′′). (b) Alternative approaches for computing
sensitivities. Top: The standard ASA approach that requires numerical integration until
convergence to the steady state and subsequent backward integration of the adjoint
state (p) ODE on the same time interval. Bottom: The proposed adjoint method that
circumvents backward numerical integration and requires solving a system of linear
algebraic equations instead.
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one has to simulate a system of ODEs with the dimension (nx + 1)nθ. The existing 53

adjoint method for pre- and post-equilibration simulates the model until approximate 54

convergence to a steady state, and then solves the corresponding backward equation for 55

the same time interval, [12, 27]. This is computationally costly as well but possesses, in 56

contrast to the forward method, improved scalability; here, one has to sequentially 57

simulate two systems of the size nx. However, the forward method can be easily adapted 58

to exploit steady-state constraints. One can find state sensitivities at steady state 59

without numerical integration, by solving a system of linear equations per parameter 60

(see, e.g., [20]). The downside is that this approach is not applicable for systems with 61

singular Jacobians. A corresponding approach for adjoint methods is currently missing. 62

In this paper, we introduce a novel adjoint method for the computation of objective 63

function gradients for problems with steady-state constraints. The proposed method 64

exploits the steady-state constraint to circumvent numerical backward integration for 65

pre- and post-equilibration. Instead, a system of equations is solved to compute parts of 66

the objective function gradient. We provide an implementation of the method in the 67

open-source toolbox AMICI and investigate its accuracy and efficiency on three 68

real-world problems. Our study demonstrates that the new method achieves a 69

substantial speedup for gradient computation, which is particularly valuable for large 70

models. 71

Methods 72

In this section, we introduce the considered classes of mathematical models and 73

parameter estimation problems. Subsequently, we describe the established method for 74

gradient calculation via adjoint sensitivity analysis (ASA) and propose a new 75

formulation for the steady-state case. 76

Mathematical modeling and simulation 77

We consider ODE models of biochemical processes of the form 78

ẋ = f(x(t,θ,u),θ,u), x(t0,θ) = x0(θ,u), (1)

in which x(t,θ,u) ∈ Rnx
+ is the vector of state variables, θ ∈ Rnθ

+ is the parameter 79

vector, u ∈ Rnu
+ is the vector of inputs and t ∈ R is the time. The vector field of the 80

ODE model is f : Rnx
+ × Rnθ

+ × Rnu
+ → Rnx

+ and the initial condition at t0 is 81

x0 : Rnθ
+ × Rnu

+ → Rnx
+ . The ODE model determines the time evolution of the state 82

variables, e.g., concentrations of biochemical species, given the parameters, e.g., reaction 83

rate constants. The inputs (u) describe experimental conditions, e.g., regime of 84

administration of a drug or composition of a cell culture medium. In many models, the 85

state variables approach a steady-state x∗(θ,u) for large values of t: 86

x∗(θ,u) = lim
t→∞

x(t,x0(θ,u),θ,u). (2)

In this paper we assume that for each initial condition (x0(θ,u)) there exists an 87

exponentially stable steady state. Both pre- and post-equilibration cases assume 88

existence of a steady state that the dynamical system can reach fast enough to 89

appropriately describe the modeled biochemical process. This assumption is often 90

implicitly made when working with steady-state data. 91

Additionally, we denote by ue the inputs corresponding to a pre-equilibration
condition, if pre-equilibration is required. In this case, the initial condition is specified
as a steady state corresponding to pre-equilibration condition (x(t0,θ) = x∗(θ,ue)), i.e.
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as a steady state of

ẋ = f(x(t,θ,ue),θ,ue), x(t0,θ) = x0(θ,ue).

The solution of the ODE system (1) is usually not available in closed form. 92

Therefore, numerical simulation algorithms are widely used to determine the 93

time-course of state variables. Here, we employ an algorithm based on the 94

backward-differentiation formula (BDF) to study the – often stiff – ODE models of 95

biochemical processes. For the computation of steady states of ODE models (2) 96

analytical methods, numerical simulation, and numerical equation solvers (e.g. 97

Newton’s method) can be employed [16–19,21]. Here, we employ numerical integration 98

until time derivatives ẋ become sufficiently small. For example, one can run numerical 99

integration until the condition 100√√√√ 1

nx

nx∑
i=1

(ẋiwi)2 < 1, where wi =
1

rtol ∗ xi + atol
(3)

is fulfilled, where “rtol” and “atol” denote relative and absolute tolerances, respectively. 101

Experimental data 102

Experiments provide information about observable components of the biochemical 103

processes, which are in general subsets or functions of the state variables (x). The 104

dependence of the observables y(t,θ,u) ∈ Rny on the state variables and parameters is 105

modelled as 106

y(t,θ,u) = h(x(t,θ,u),θ,u), (4)

with output map h : Rnx
+ ×Rnθ

+ ×Rnu
+ → Rny . As measurements are corrupted by noise, 107

we model them as noise-corrupted realizations of the observables. Here, we consider two 108

types of measurements: 109

1. Time-course measurements with independent, normally-distributed noise, 110

ȳij = yi(tj ,θ,u) + εij with εij ∼ N (0, σ2
ij), (5)

in which i = 1, . . . , ny and j = 1, . . . , nt index observables and time points, and 111

σ2
ij ∈ R+ denotes the noise variance. We assume without loss of generality that 112

tj < tj+1 and denote the collection of these time-course measurements by Dt. 113

2. Independent, normally distributed measurements of the steady state, 114

ȳi∗ = yi∗(θ,u) + εi∗ with εi∗ ∼ N (0, σ2
i∗), (6)

in which yi∗(θ) = h(x∗(θ,u),θ,u) denotes the values of the observable yi at the 115

steady state x∗(θ,u), and σ2
i∗ ∈ R+ denotes the noise variance. For the case of 116

multi-stable systems, the state for the starting point of the post-equilibration 117

needs to be considered. We denote the collection of these measurements in steady 118

state by D∗. 119

Measurements from multiple experiments may be available, which can be described 120

by a set of inputs U = {u1, . . . ,un}. Further in this section, without loss of generality, 121

we assume that measurements from one experiment, described by u are available. 122

Remark: For the subsequent sections we assume, without loss of generality, that the 123

noise is normally distributed and the variance is known. The results also apply to 124

unknown noise variances and other noise distributions. 125
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Parameter estimation 126

As the parameters of biochemical processes are often difficult to determine 127

experimentally, they are typically unknown. Hence, the values of the parameters (θ) 128

have to be estimated from experimental data. This is usually achieved using frequentist 129

or Bayesian inference. 130

Frequentist inference focuses on maximum likelihood estimates (MLEs) and the 131

assessment of their uncertainties. MLEs maximize the likelihood function (L), which is 132

a measure for the distance between measurement and simulation, and this is equivalent 133

to minimizing the negative log-likelihood function (J ). For independent, 134

normally-distributed measurements, the negative log-likelihood function is given by 135

J (θ) = − logL(θ) =
1

2

ny∑
i=1

nt∑
j=1

(
log
(
2πσ2

ij

)
+

(
ȳij − yi (tj ,θ,u)

σij

)2
)

+
1

2

ny∑
i=1

(
log
(
2πσ2

i∗
)

+

(
ȳi∗ − yi∗ (θ,u)

σi∗

)2
)
,

(7)

in which the first part accounts for the time-course measurements (Dt) and the second
part for the steady state measurements (D∗). The MLE is computed by solving the
optimization problem

θ∗ = arg min
θ

J (θ).

The parameters are often constrained, e.g. to be non-negative, and might be 136

log-transforms of the original model parameters in order to improve convergence of the 137

optimizer [24,28]. 138

Bayesian inference focuses on the assessment of the posterior distribution, which 139

encodes the information provided by the data as well as prior knowledge. In practice 140

the first step is usually to compute the maximum a posteriori estimator. This is 141

achieved by minimizing the (often unnormalized) negative log-posterior, yielding an 142

optimization problem similar to the one encountered in frequentist inference [29]. 143

Parameter estimation for ODE models often involves objective functions (e.g. 144

negative log-likelihood or negative log-posterior functions) that are non-convex and 145

possess local minima. To solve these parameter estimation problems, global 146

optimization methods are used. A globalization strategy that has proven to be efficient 147

is multi-start local optimization with gradient-based local optimization methods [23,24]. 148

The computation time of these methods is usually dominated by the computation time 149

required for the evaluation of the objective function gradient. For the objective function 150

(7), the gradient is given by 151

∂J
∂θk

∣∣∣∣
θ

= −
ny∑
i=1

nt∑
j=1

(ȳij − yi(tj ,θ,u))

σ2
ij

∂yi
∂θk

∣∣∣∣
tj ,θ

−
ny∑
i=1

(ȳi∗ − yi∗(θ,u))

σ2
i∗

∂yi∗
∂θk

∣∣∣∣
θ

, (8)

in which ∂yi/∂θk denotes the sensitivity of the observable yi with respect to the 152

parameter θk at a specific time point tj or in steady state. 153

Adjoint sensitivity analysis (ASA) 154

For large-scale ODE models, the objective function gradient for time-course data Dt is 155

usually calculated using ASA. This approach has been developed in [30] and later 156

adopted to parameter estimation problems in biological applications in [26] for the case 157

of time-course measurements without pre- or post-equilibration. For a comprehensive 158

description of ASA, readers are referred to [26]. This approach circumvents the 159
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evaluation of the observable sensitivities ∂yi/∂θk by introducing the adjoint state 160

p(t,θ,u) : [t0, tnt
] × Rnθ × Rnu → Rnx , such that ∀j = nt . . . , 1 on interval (tj−1, tj ] it 161

satisfies the backward differential equation 162

ṗ(t,θ,u) = −J(x(t,θ,u),θ,u)Tp(t,θ,u), (9)

with boundary values

p(tj ,θ,u) = lim
t→t+j

p(t,θ,u) +

ny∑
j=1

∂hi

∂x

∣∣∣∣T
(x(tj ,θ,u),θ,u)

(ȳij − yi(tj ,θ,u))

σ2
ij

, and

lim
t→t+nt

p(t,θ,u) = 0,

and Jacobian matrix J, 163

J(x(t,θ,u),θ,u) =


∂f1
∂x1

. . . ∂f1
∂xnx

...
. . .

...
∂fnx

∂x1
. . .

∂fnx

∂xnx


∣∣∣∣∣∣∣∣
x(t,θ,u),θ,u

. (10)

Given the adjoint state, the objective function gradient can be computed as 164

∂J
∂θk

∣∣∣∣
θ

= −
ny∑
i=1

nt∑
j=1

(ȳij − yi(tj , θ,u))

σ2
ij

∂hi

∂θk

∣∣∣∣
x(t,θ,u),θ,u

−
∫ tnt

t0

p(t,θ,u)T
∂f

∂θk

∣∣∣∣
x(t,θ,u),θ,u

dt− p(t0, θ,u)T
∂x0

∂θk

∣∣∣∣
θ,u

,

(11)

in which ∂x0/∂θk denotes the sensitivity of the initial state with respect to parameter 165

θk. If the initial condition is given as an explicit function, this derivative can be 166

computed easily; however, its calculation is non-trivial in the case of pre-equilibration. 167

To use ASA for the pre- and post-equilibration cases, the steady-state calculation is 168

currently performed via a long simulation (see, e.g. [12, 27]): 169

1. For the case of a time-course followed by a post-equilibration, the simulation is 170

run until a time t′′ ≫ tnt
for which time derivatives ẋ are negligible. We used (3) 171

as convergence criterion. The values of the observables at time t′′, yi(t
′′,θ,u), are 172

considered a good approximation of the observables at the steady state, yi∗(θ,u), 173

and used for the evaluation of the objective function. 174

2. For the case of pre-equilibration followed by a time-course, in a first step a 175

simulation is run for the pre-equilibration condition (ue) until the state 176

derivatives ẋ are sufficiently small. The initial time point for this simulation is 177

denoted by −t′. In the second step, the condition is switched to u and a 178

simulation is performed for the transient phase using the final state of the 179

pre-equilibration simulation as the initial state. This can be interpreted as 180

running the simulation for t ∈ [−t′, t0] under the pre-equilibration condition (ue) 181

and then switching for t ∈ (t0, tnt
] to the time course condition (u). 182

These approximations of the exact setup are good if the convergence criteria are tight. 183

In practice, one often uses values on the order of 10−8 and 10−16 as the relative and 184

absolute tolerance, respectively [31]. One should note, that ASA only provides the 185

objective function gradient, but not the sensitivity of the steady state with respect to 186

the parameters. 187
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Adjoint sensitivity analysis at steady state (ssASA) 188

As steady-state constraints are encountered in a large fraction of application problems 189

(see, e.g., the benchmark collection in [28]), we propose here an adjoint sensitivity 190

analysis method that is tailored for problems with pre- and post-equilibration. 191

Post-equilibration case 192

For experiments with a post-equilibration, steady-state measurements (D∗) are available 193

in addition to time-course measurements (Dt). To compute the objective function 194

gradient (11), one needs to compute the term 195∫ t′′

t0

p(t,θ,u)T
∂f

∂θk

∣∣∣∣
x(t,θ,u),θ,u

dt. (12)

Note, that the upper limit of the integral is different from the one in (11) as the 196

steady-state measurements time point t = t′′ were added. On the time interval [t0, tnt) 197

the integral should be computed using the standard ASA, while on the interval [tnt , t
′′] 198

the proposed approach can be applied. 199

Let us introduce a time point t′ such that tnt
≪ t′ ≪ t′′ and for t ≥ t′ the system (1) 200

is at steady state. Then for t ≥ t′ the Jacobian (10) is a constant matrix. Due to the 201

exponential stability of the steady state, the precise choice of t′ is not important, as 202

long as t′ has been chosen large enough. Then, on the time interval t ≥ t′, the adjoint 203

system of ODEs (9) simplifies to 204

ṗ(t,θ,u) = −J(x∗(θ,u),θ,u)Tp(t,θ,u). (13)

This system has the solution

p(t,θ,u) = e−J(x∗(θ,u),θ,u)T (t−t′′)p(t′′,θ,u).

The steady state of the system (1) is exponentially stable if and only if the
eigenvalues of the Jacobian at the steady state (J(x∗(θ,u),θ,u)) have negative real
parts. This follows that the steady state p = 0 of the system (13) is asymptotically
stable in reverse time. Hence, as the time interval [t′, t′′] can be chosen large enough, it
holds that

lim
t→t′+

p(t,θ,u) = 0,

which is illustrated in Fig. 2a. As the steady state p = 0 is stable, the system (13) will 205

not diverge from it on the interval [tnt
, t′]. 206

As a consequence, the integral 207∫ t′′

tnt

p(t,θ,u)T
∂f

∂θk

∣∣∣∣
x(t,θ,u),θ,u

dt. (14)

reduces to a matrix-vector product:∫ t′′

t′
p(t,θ,u)T dt · ∂f

∂θk

∣∣∣∣
x=x∗(θ,u)

dt = pintegral ·
∂f

∂θk

∣∣∣∣
x=x∗(θ,u)

,

since ∫ t′

tnt

p(t,θ,u)T dt · ∂f

∂θk

∣∣∣∣
x=x∗(θ,u)

dt = 0.
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Fig 2. Computation of the adjoint state integral term. The top row illustrates
the solution of the system (1) for (a) the post-equilibration case and (b) the
pre-equilibration case for nt = 3. The bottom row illustrates the integral term in (11).

To obtain the integral one can solve the linear system of equations 208

J(x∗(θ,u),θ,u)Tpintegral = −p(t′′,θ,u), (15)

see Section “Adjoint state integral computation at steady state” of the Supporting 209

Information for the derivation. Additionally, the calculations from this section 210

performed for a simple example of a conversion reaction can be found in Section 211

“Conversion reaction example” of the Supporting Information. 212

Pre-equilibration case 213

For experiments with a pre-equilibration, in order to do standard ASA, one requires 214

initial state sensitivities (∂x0

∂θk
) (see Equation (11)). They can be computed by 215

performing forward sensitivity analysis during pre-equilibration. 216

Alternatively, instead of computing ∂x0

∂θk
, the ASA method can be extended to the 217

pre-equilibration time interval [−t′, t0]. On the intervals [tN , tN−1), . . . , [t1, t0) standard 218

ASA can be performed as described in Section “Adjoint sensitivity analysis (ASA)”. As 219

described for the post-equilibration case, at t = −t′, the system (13) is at steady state 220

p = 0, hence the scalar product of the initial state sensitivities of pre-equilibration, with 221

the adjoint state at t = −t′, vanishes. Therefore, one only needs to compute the 222

quadratures 223∫ t0

−t′
p(t,θ,ue)T

∂f

∂θk

∣∣∣∣
u=ue,x=x0

dt. (16)

For this, the adjoint state from the time-course adjoint simulation must be passed on to 224

the initial adjoint state of backward pre-equilibration (p(t0,θ,u)). 225

Similarly to the post-equilibration case, there are two possibilities for computing this 226

integral. The first possibility is to compute it by simulating the system (1) until it 227

reaches its steady state and then compute the integral (16) backward on the same time 228

interval. The second possibility is to use the proposed ssASA method. One can assume, 229

without loss of generality, that the system (1) is at the steady state that corresponds to 230
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the pre-equilibration condition for all t < t0. On this interval, the same considerations as 231

in the previous section apply and the adjoint system simplifies to (13), but in this case 232

x∗(θ,u) = x∗(θ,ue). To find the integral one can solve the linear system of equations 233

J(x∗(θ,ue),θ,ue)Tpintegral = −p(t0,θ,u). (17)

This case is illustrated in Fig. 2b. 234

Applicability of the proposed method 235

The systems (15) and (17) have a unique solution only if the (transposed) Jacobian is 236

non-singular. Otherwise, the proposed approach is not applicable. A common cause for 237

singular Jacobians is, amongst others (cf. [32] for a review), presence of conserved 238

quantities in the system. Conserved quantities or conserved moieties are functions of 239

the sates of the dynamical system that remain constant over time. Identifying each 240

conserved quantity allows to reduce model dimension by excluding one state, expressing 241

it in terms of other states contained in the conserved quantity. A simple example can be 242

found in Section “Conversion reaction example” of the Supporting Information. There 243

are various deterministic [33,34] algorithms available to identify conserved quantities, 244

which, however, are not suitable for large/genome-scale reaction networks due to 245

combinatorial complexity. A fast, scalable, heuristic-based approach presented in [35] is 246

better suited for large-scale reaction networks. 247

Removing conserved quantities from the system allows to apply the proposed 248

method. If it is not possible or if the Jacobian remains singular, the adjoint state ODEs 249

have to be integrated numerically. 250

Implementation 251

The new algebraic approach for computing objective function gradient as well as a 252

heuristic-based conserved moieties identification approach [35] have been made available 253

via the open-source AMICI package (https://github.com/AMICI-dev/AMICI/) [36], 254

which interfaces the SUNDIALS solver CVODES [37]. Implementation details can be 255

found in Section “AMICI Implementation” of the Supporting Information. 256

During the numerical study, described in the next section, the AMICI package was 257

used for model simulations, [38]. Parameter estimation was performed using the 258

open-source Python Parameter EStimation TOolbox (pyPESTO) [39], which internally 259

used The Interior Trust Region Reflective algorithm for boundary constrained 260

optimization problems implemented in the Fides Python package for 261

optimization [40], [41]. 262

Results 263

In this section we investigate whether using the proposed ssASA method is beneficial, 264

compared to the standard ASA approach, to computing the objective function gradient. 265

In both cases we used ASA, but in the first case gradient computation was done via 266

numerical integration of the ODE system (9), whereas in the second case the new 267

approach was applied, where the system of equations (15, 17) is solved. In both cases 268

numerical integration was used to find the steady state of the system (1), i.e. to find the 269

solution x∗(θ,u) of ẋ = f(x∗(θ,u),θ,u) = 0. The two cases will be referred to as 270

“standard ASA for sensitivities” and “ssASA for sensitivities”. We assess accuracy by 271

comparing the gradient values computed with the two methods, as well as the difference 272

in computation time. 273
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The comparison is done on three previously published ODE-constrained optimization 274

problems of varying complexity that required either pre- or post-equilibration (Table 1). 275

The problems were taken from the PEtab Benchmark Collection, a GitHub repository 276

with parameter estimation problems from published studies implemented in the PEtab 277

format [11,42]. 278

Table 1. Overview of the models and optimization problems considered in this study.

Problem nθ nx # data points Equilibration type Reference
Blasi et al., 2016 9 16 288 post-equilibration [13]
Zheng et al., 2012 46 15 60 pre-equilibration [14]
Fröhlich et al., 2018 4088 1396 143 post-equilibration [12]

The Blasi et al., 2016 model describes acetylation of the histone H4 [13]. It is linear 279

and has 16 state variables and 9 optimized parameters, which is the dimension of 280

objective function gradient (8). Only steady-state data is available for this model. The 281

Blasi et al., 2016 model contains conserved quantities, which were automatically 282

removed during model import by AMICI to ensure non-singularity of the Jacobian. The 283

model by Zheng et al., 2012 is also linear and describes histone H3 methylation pattern 284

formation. For this model dynamic data is available and the initial condition is 285

determined by pre-equilibration. The model by Fröhlich et al., 2018 is a large-scale 286

nonlinear model describing the drug response of cancer cell lines [12]. The measurement 287

data used for optimization was collected when the system was assumed to be at steady 288

state. 289

Accuracy with ssASA is preserved 290

To investigate the accuracy of objective function gradients computed with the proposed 291

ssASA method, we performed 500 model simulations with different parameter vectors 292

sampled uniformly within the parameter bounds specified in the parameters PEtab 293

file [11]. For each model, the same initial state, specified in the PEtab files, was used for 294

each simulation and no simulation failed. 295

For all three models the computed objective function gradients were very similar for 296

both compared approaches (Fig. 3). The maximum and median deviations (as defined 297

in the Supplementary Information, Section “Accuracy of gradient computation”) are 298

respectively equal to 1.9 · 10−4 and numerically 0 for the Blasi et al., 2016 model, 299

2.8 · 10−11 and 1.6 · 10−17 for the Zheng et al., 2012 model, 3.1 · 10−2 and 3.04 · 10−20
300

for the Fröhlich et al., 2018 model. Therefore, we conclude that the new approach gives 301

accurate results. 302

Simulation with ssASA is faster 303

We then compared how simulation time differs for the two approaches. For all three 304

models, all simulations were significantly faster with the new approach (Fig. 4). The 305

precise speedup depends on the model. The simulations were on average 3.3, 1.2, 3.3 306

times faster with the new approach for the Blasi et al., 2016, Zheng et al., 2012 and 307

Fröhlich et al., 2018 models, respectively (Fig. 4d). 308

Additionally, we investigated how simulation time and computation speedup scale 309

with respect to the number of optimized parameters. We simulated the Fröhlich et al., 310

2018 model with 11 different estimation problem sizes (1, 2, 5, 12, 28, 64, 147, 337, 775, 311

1780, or 4088 estimated parameters), each 200 times, for a total of 2200 simulations. 312

For each simulation, the subset of parameters set to be estimated or fixed was randomly 313

chosen, and all parameter values were sampled uniformly within the parameter bounds 314

in the PEtab parameters table. During simulation, sensitivities of the objective function 315
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Fig 3. Accuracy of objective function gradients of the proposed method. In
each of the three subplots one point corresponds to an objective function gradient value
computed during one simulation using either standard ASA (x-axis) or ssASA (y-axis)
for sensitivities computation. The number of points in each subplot is equal to the
number of optimized parameters multiplied by the number of simulations. Points close
to the diagonal indicate a good agreement.
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Fig 4. Simulation efficiency of the proposed method. Each point corresponds to
a total simulation time with ASA (x-axis) and ssASA (y-axis) for sensitivities
computation. Points on the diagonal correspond to simulations that took equal time
with both approaches. (a) Blasi et al., 2016, (b) Zheng et al., 2012 and (c) Fröhlich et
al., 2018 models. (d) Computation speedup of simulations using ssASA for sensitivities
computation compared to using standard ASA. Each bar height corresponds to a mean
of computation speedups of all simulations and each error bar correspond to the sample
standard deviations.
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Fig 5. Scaling of simulation time and computation speedup of simulations
with respect to the number of optimized parameters. Fröhlich et al., 2018 model,
200 simulations with 1, 2, 5, 12, 28, 64, 147, 337, 775, 1780, 4088 optimized parameters.
(a) Each point is the mean simulation time for corresponding number of free parameters,
and the error bars are the standard deviations. (b) Each point represents computation
speedup of simulations performed with ssASA for sensitivities compared to using
standard ASA for sensitivities, the error bars show the standard deviation.

were only computed for the estimated parameters. As expected, simulation time did not 316

change with the number of optimized parameters for both sensitivities computation 317

methods, (Fig. 5a), as the dimension of both the adjoint state ODE (9) and the system 318

(15) do not change with the number of optimized parameters and is equal to nx. 319

Consequently, computation speedup does not change with the number of optimized 320

parameters, and the proposed method is faster, independent of the number of free 321

parameters (Fig. 5b). 322

Optimization with ssASA is faster 323

Furthermore, we investigated how the speedup we observed for individual model 324

simulations with different parameter vectors translates to parameter estimation tasks. A 325

large number of model simulations might be required during optimization for parameter 326

estimation, which also means that if pre- or post-equilibration is needed it will be 327

executed during each simulation. 328

We compared the difference in computation time for solving parameter estimation 329

problems using multi-start local optimization between the two approaches for 330

sensitivities computation, (Fig. 6a–c). Same as for the simulation comparison, initial 331

parameter vectors were sampled uniformly within the parameter bounds specified in the 332

parameters PEtab file. The same initial parameter values were used for optimizations 333

with ASA and ssASA. For the Blasi et al., 2016 and Zheng et al., 2012 models we ran 334

500 multi-starts. As the Fröhlich et al., 2018 model is computationally demanding, in 335

this study, we considered only a subset of data used in [12]. We used only the control 336

conditions, that is 143 out of the total 5281 conditions. For this model, we ran 50 337

multi-start optimizations with the number of optimization steps limited to 50. This 338

would not yield good model fits, but should provide a representative performance 339

estimate. 340

For the Blasi et al., 2016 and Zheng et al., 2012 models all multi-starts finished 341

successfully. For the Fröhlich et al., 2018 model for both methods one out of 50 342

multi-starts failed at the first step and the other 49 finished as the number of 343

optimization steps exceeded 50. Optimizations were on average 1.5, 1.1, 1.9 times faster 344

with the new approach for Blasi et al., 2016, Zheng et al., 2012 and Fröhlich et al., 2018 345

models respectively (Fig. 6d). 346
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The speedups for optimization were lower than those observed for model simulation, 347

because the proposed method only affects simulation time, but not the time taken in 348

the optimizer itself, or other overhead. The Blasi et al., 2016 model is rather small and 349

linear and simulations made up only approximately 50% of total optimization time. 350

Therefore, the 3-fold speedup in simulations resulted in 1.3-fold speedup of 351

optimizations. For the Zheng et al., 2012 model speedup is about the same as for 352

simulations. For the Fröhlich et al., 2018 model simulations made up around 25% of the 353

total optimization time. Here, model simulation is very costly, but also significant time 354

was spent in the optimizer due to the large number of optimized parameters. Generally, 355

the speedup for optimization will be highly implementation-dependent. 356

Discussion and Conclusion 357

It has been shown, that if finding a steady state is required during model simulation, 358

whether it is pre-equilibration, post-equilibration, or both, it is possible to partially 359

avoid numerical integration and to solve a system of algebraic equations instead [21]. In 360

this study, we showed that this idea can also be used to simplify objective function 361

gradient computation. We introduced a new method for efficient adjoint sensitivities 362

computation at steady state. We showed that an intermediate step of objective function 363

gradient computation with ASA, i.e., backward numerical integration of the adjoint 364

state ODEs, can be avoided by solving a linear system of equations for the time interval 365

including steady-state measurement time point. We also showed that in case 366

pre-equilibration is required, computation of initial state sensitivities (∂x0

∂θk
) with forward 367

sensitivity analyses can be avoided by extending ASA to the pre-equilibration interval. 368

The proposed method is applicable on this time interval as well, and a linear system of 369

equations can be solved instead of backward numerical integration. 370

We tested the new approach on three published models and demonstrated that it is 371

accurate and allows for efficient sensitivity computation. The exact speedup over the 372

standard approach depends on the model and dataset. We observed a speedup of up to 373

3.3-fold for simulations and up to two-fold for parameter estimation, for the models and 374

datasets considered in this study. 375

The new approach is only applicable if the (transposed) Jacobian is non-singular. 376

Otherwise, the adjoint state ODEs have to be integrated numerically. One of the main 377

reasons for a singular Jacobian is the presence of conserved quantities in the dynamical 378

system [32]. In order to facilitate applicability of the proposed method we have 379

implemented a fast heuristic-based approach for conserved quantities identification 380

suitable for large-scale reaction networks as presented in [35]. Both the conserved 381

moieties identification approach and the proposed ssASA approach have been made 382

available via the open-source AMICI package. 383

Solving parameter estimation problems consist of various steps that depend on the 384

model and available data. Different methods, for finding steady states, numerical 385

integration, or sensitivity computation, might be applicable or more efficient for a 386

particular model. Further analysis and benchmarking of different approaches and their 387

combinations would be beneficial. For example, a broader study of the steady-state case 388

that considers different methods for steady-state computation in combination with 389

different approaches for sensitivity analysis for both forward and adjoint sensitivity 390

methods, to find especially efficient combinations, would be of interest. 391
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Code availability 392

All the presented approaches have been integrated into AMICI version 0.11.32 [38], an 393

open-source tool for efficient simulation and sensitivity analysis [36]. All code to 394

reproduce the analysis has been deposited at 395

https://doi.org/10.5281/zenodo.6963596. 396
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12. Fröhlich F, Kessler T, Weindl D, Shadrin A, Schmiester L, Hache H, et al. 452

Efficient Parameter Estimation Enables the Prediction of Drug Response Using a 453

Mechanistic Pan-Cancer Pathway Model. Cell Systems. 2018;7(6):567–579.e6. 454

doi:10.1016/j.cels.2018.10.013. 455

13. Blasi T, Feller C, Feigelman J, Hasenauer J, Imhof A, Theis FJ, et al. 456

Combinatorial Histone Acetylation Patterns Are Generated by Motif-Specific 457

Reactions. Cell Syst. 2016;2(1):49–58. doi:10.1016/j.cels.2016.01.002. 458

14. Zheng Y, Sweet SMM, Popovic R, Martinez-Garcia E, Tipton JD, Thomas PM, 459

et al. Total kinetic analysis reveals how combinatorial methylation patterns are 460

established on lysines 27 and 36 of histone H3. Proceedings of the National 461

Academy of Sciences. 2012;109(34):13549–13554. doi:10.1073/pnas.1205707109. 462

15. Gopalakrishnan S, Dash S, Maranas C. K-FIT: An accelerated kinetic 463

parameterization algorithm using steady-state fluxomic data. Metabolic 464

Engineering. 2020;61:197–205. doi:10.1016/j.ymben.2020.03.001. 465

16. Chou KC. Applications of graph theory to enzyme kinetics and protein folding 466

kinetics. Biophysical Chemistry. 1990;35(1):1–24. 467

doi:10.1016/0301-4622(90)80056-d. 468

17. Feliu E, Wiuf C. Variable Elimination in Chemical Reaction Networks with 469

Mass-Action Kinetics. SIAM Journal on Applied Mathematics. 470

2012;72(4):959–981. doi:10.1137/110847305. 471

18. Loriaux PM, Tesler G, Hoffmann A. Characterizing the Relationship between 472

Steady State and Response Using Analytical Expressions for the Steady States of 473

Mass Action Models. PLoS Computational Biology. 2013;9(2):e1002901. 474

doi:10.1371/journal.pcbi.1002901. 475

19. Rosenblatt M, Timmer J, Kaschek D. Customized Steady-State Constraints for 476

Parameter Estimation in Non-Linear Ordinary Differential Equation Models. 477

Frontiers in Cell and Developmental Biology. 2016;4. doi:10.3389/fcell.2016.00041. 478

August 8, 2022 17/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2022. ; https://doi.org/10.1101/2022.08.08.503176doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.08.503176
http://creativecommons.org/licenses/by/4.0/


20. Fiedler A, Raeth S, Theis FJ, Hausser A, Hasenauer J. Tailored parameter 479

optimization methods for ordinary differential equation models with steady-state 480

constraints. BMC Systems Biology. 2016;10(1). doi:10.1186/s12918-016-0319-7. 481

21. Terje Lines G, Paszkowski  L, Schmiester L, Weindl D, Stapor P, Hasenauer J. 482

Efficient computation of steady states in large-scale ODE models of biochemical 483

reaction networks. IFAC-PapersOnLine. 2019;52(26):32–37. 484

doi:10.1016/j.ifacol.2019.12.232. 485
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Fig 6. Optimization efficiency of the proposed method. Each scatter point
shows the total computation time required for one multi-start optimization using
standard ASA (x-axis) or ssASA (y-axis) for sensitivities computation (a) Blasi et al.,
2016 model, (b) Zheng et al., 2012 model, (c) Fröhlich et al., 2018 model. Points on the
diagonal correspond to multi-starts that took equal time with both approaches. (d)
Computation speedup of optimizations using ssASA for sensitivities computation
compared to using standard ASA for sensitivities. Each bar height corresponds to a
mean of multi-start local optimization computation speedups and each error bar
correspond to the sample standard deviations.
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