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Abstract 

Study Objectives: Current assessment of excessive daytime somnolence (EDS) requires 

subjective measurements such as the Epworth Sleepiness Scale (ESS), and/or resource 

intensive sleep laboratory investigations. Recent work 1,2 has called for more non-

performance-based measures of EDS. One promising non-performance-based measure of 

EDS is the aperiodic component of electroencephalography (EEG). Aperiodic (non-oscillatory) 

activity reflects excitation/inhibition ratios of neural populations and is altered in various states 

of consciousness, and thus may be a potential biomarker of hypersomnolence.  

 

Methods: We retrospectively analysed EEG data from patients who underwent a Multiple 

Sleep Latency Test (MSLT) and determined whether aperiodic neural activity is predictive of 

EDS. Participants having undergone laboratory polysomnogram and next day MSLT were 

grouped into MSLT+ (n = 26) and MSLT– (n = 33) groups (mean sleep latency of < 8min and 

> 10min, respectively) and compared against a non-clinical (Control) group of participants (n 

= 26).  

 

Results: While the MSLT+ and MSLT– groups did not differ in their aperiodic activity, the 

Control group had a significantly flatter slope and larger offset compared to both MSLT+ and 

MSLT– groups. Logistic regression machine learning predicted group status (i.e., 

symptomatic, non-symptomatic) with 90% accuracy based on the aperiodic slope while 

controlling for age. Slow oscillation-spindle coupling was also significantly stronger in the 

Control group relative to MSLT+ and MSLT– groups.  

 

Conclusions: Our results provide first evidence that aperiodic neural dynamics and sleep-

based cross-frequency coupling is predictive of EDS, thereby providing a novel avenue for 

basic and applied research in the study of sleepiness. 
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1. Introduction 

It is broadly accepted that sleep must serve a vital, biological purpose, or be evolution’s 

greatest error 3. So too sleepiness, or somnolence, defined as both the subjective experience 

of accumulated sleep need and the likelihood of falling asleep at any given moment, must be 

a marker of an important biological process in much the same way that pain is the subjective 

experience of nociception. Excessive daytime sleepiness (EDS), or hypersomnolence, comes 

with inherent risk to both the individual, such as poorer mental health outcomes, and the 

community, including greater risk of motor vehicle accidents and occupational errors and 

injuries 4,5. Despite the health risks associated with hypersomnolence, the direct measurement 

of neurobiological markers of sleepiness are difficult to obtain 6,7. For example, current gold 

standards rely on subjective questionnaires, such as the Epworth Sleepiness Scale (ESS), 

and the Multiple Sleep Latency Test (MSLT), both of which are not without flaws (e.g., 8), with 

concerns regarding the expense, access and reliability of the MSLT 9. Methodological issues 

with current measures of EDS were highlighted in a recent review 1 and editorial 2 in the 

flagship journal SLEEP, both of which called upon the need for non-subjective and 

performance-based measures of EDS. Here, we present data which indicates that 

somnolence can be read directly from the human electroencephalogram (EEG) via the 

aperiodic component. 

Somnolence is explained in the two-process model 10,11 as resulting from the 

interaction of homeostatic and circadian drives to sleep. That is, sleep pressure is the 

accumulation of sleep need that increases across wake and dissipates across sleep 12, and is 

influenced by circadian timing 10. Mechanistically, the accumulation of sleep need is proposed 

to result from long-term potentiation (LTP) due to incidental learning and information 

processing during wakeful behaviour, resulting in saturation of synaptic strength in the 

cerebral cortex 13–15. Data supporting this position are drawn from studies showing that: i) 

neural firing rates increase as a function of time spent awake, and then decrease over sleep 

16; ii) molecular and electrophysiological markers of LTP are positively related to hours of 

wakefulness, while markers of global synaptic depression are linked with time spent in 

subsequent sleep 14; and, iii) using transcranial magnetic stimulation to directly measure 

neural firing responses, there is a noted increase in synaptic strength in both excitatory and 

inhibitory cortical connections in response to prolonged wakefulness 17. Taken together, this 

body of work demonstrates that somnolence may result from plastic changes in the brain that 

accumulate over wakefulness. Therefore, a direct measure of brain activity should contain 

information related to the need for sleep in the individual.  

Research indicates several potential markers of somnolence in the EEG 7. Proposed 

oscillatory markers of somnolence include alpha attenuation 18, theta/alpha ratio 19 and 

changes in theta power 12,20. Theta power, in particular, increases in magnitude as a function 
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of time spent awake and correlate with slow wave activity in the first subsequent sleep cycle 

12 in line with model predictions 10,11,13.  

Despite this body of research, neural measures of somnolence have not been widely 

adopted, and current approaches to the measurement of somnolence involve either full-day 

behavioural testing, or subjective survey instruments 6,7. There are several potential reasons 

for this, including difficulties in interpreting individual differences in the EEG and lack of normal 

data around this 7, a lack of understanding as to what oscillatory techniques here may actually 

be measuring (i.e., a spectral increase may reflect a compensatory mechanism in response 

to somnolence, not somnolence per se 6,21, and noted circadian influences in the oscillatory 

markers which would need to be accounted for unless they confound the signal 22–24. 

One potential novel approach for the direct measurement of somnolence is through 

the aperiodic component of the EEG. This approach has several advantages, including that 

aperiodic activity is intuitively linked to neurobiologically-informed models of sleep need as it 

demarks modulations in neuronal excitability 25, and has been shown to reliably differ between 

both healthy and sleep disordered patients 26 as well as between wakeful, anaesthetised, REM 

and NREM brain states 25. 

 Given the utility of aperiodic activity in distinguishing between states of consciousness 

and between health and disease, we aim to describe aperiodic factors in the EEG as markers 

of somnolence. We calculated the aperiodic slope and intercept from resting state EEG data 

from patients diagnosed with excessive daytime somnolence via MSLT designated MSLT+ for 

this cohort, patients who presented with excessive daytime somnolence but who did not meet 

diagnostic criteria on the MSLT (MSLT–), and healthy individuals who did not report excessive 

somnolence (Control). Using mixed-effects regression models, as well as machine learning 

approaches and advanced measures of sleep micro and macro-state variables, we present a 

thorough investigation of the utility of aperiodic EEG markers in characterising daytime 

somnolence, and potential links to resulting functional impairment. 

 

2. Method 

2.1. Participants and design 

To obtain data from a symptomatic cohort we reviewed patients who were referred to 

the Royal Adelaide Hospital (RAH) Sleep Disorders Laboratory Sleep & Respiratory Failure 

Service for an overnight in-laboratory polysomnography (PSG) and next day MSLT between 

August 2014 and August 2017. Patients were included if they completed an overnight PSG 

and proceeded to next day MSLT. Participants were required to have ≥ 2 min (4 epochs) of 

resting awake EEG data in both PSG and all MSLT naps to enable reliable extraction of the 

aperiodic component. 
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This cohort of patients was split into the objectively sleepy group (MSLT+) which was 

defined as patients with a mean sleep latency (MSL) of <8 min, and patients without 

demonstrable objective sleepiness who had an MSL of >10min (MSLT–; 27,28). Patients with 

an “intermediate” MSL between 8 and 10min were not included to further stratify the two 

groups. Additionally, patients were excluded from analysis if they did not have sufficient quality 

EEG data of at least two minutes in a resting awake state. Other exclusion criteria were major 

psychiatric co-morbidity apart from depression, significant neurologic disability (including 

acquired or traumatic brain injury), use of typical or atypical anti-psychotic medications, 

prescribed stimulants or wakefulness promoting agents (e.g., Dexamfetamine, 

Methylphenidate, Modafinil and/or Armodafinil), a positive urinary drug screen, or untreated 

obstructive sleep apnoea (defined as an AHI > 10/hr). 

Data were collected on baseline demographics (Table 1), use of medications that may 

potentially affect sleep stage, ESS, and PSG and MSLT parameters which were all completed 

at the time of study as per the sleep laboratory protocol (Figure 1A). The MSLT was performed 

as per the AASM recommendations 28. Four to five nap opportunities were provided during 

daylight hours with central and occipital electroencephalogram (EEG), chin muscle 

electromyogram (EMG), bilateral electro-oculogram (EOG), and electrocardiogram (ECG) 

activity recorded with calibrations performed at the beginning of each nap opportunity. The 

use of these data was approved by the Central Adelaide Local Health Network Human 

Research (CALHN ID: 15132) and University of South Australia’s Human Ethics (204266; 

204778) Committees. 

A group of healthy participants who had no reported sleep problems were used as a 

control group in analyses examining the aperiodic component using resting daytime EEG. 

Participants in the Control group were aged 18 – 80 years, monolingual native English 

speakers, were not visually impaired and did not report any medical disorders (Table 1). 

Control group participants also reported not taking any sleep-related medication, not having 

taken recreational drugs in the last six months, and no current diagnoses of neurological or 

psychological conditions, including past or current diagnosis of traumatic brain injury. 

 

Table 1. Demographic and clinical variables of study groups. 

Clinical Variables 
Controls 
(n = 26) 

MSLT – 
(n = 33) 

MSLT + 
(n = 26) 

Age (years) 42 (22.80) 38.80 (16.30) 45.5 (18.00) 

Gender (% female) 73.08 69.70 69.23 

ESS 5.33 (4.06) 10.40 (4.60) 12.40 (5.61) 
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A second group of healthy participants (n = 17; Mage = 23.60; 8 females) were used for 

analyses examining sleep-related EEG. This group was based on archival data from 29. 

Participants were aged 18 – 39 years and met the same inclusion criteria described above for 

the first control group. 

 

 

Figure 1. Schematic of Multiple Sleep Latency Test and resting-state-derived EEG metrics. (A) 

Subjects undertook five nap bouts throughout a day, following a monitored night of polysomnography 
(left; light blue rectangle). Open and closed eyes indicate if sleep was obtained on a nap bout (dark 
blue squares). 

 

2.2. EEG Pre-Processing 

2.2.1. Resting-state EEG.  

Patient data (MSLT–, MSLT+) were retrospectively analysed from archival PSG and 

MSLT data from the Royal Adelaide Hospital Sleep Disorders Laboratory between August 

2014 and 2017. EEG recordings were obtained from attended polysomnography (PSG) and 

MSLT using Profusion PSG 4 software (E-series, Compumedics, Abbortsford, Vic Australia). 

The Control group data were obtained from either a LiveAmp or actiCHamp system (Brain 

Products GmbH, Gilching, Germany) with 32 or 64 active Ag/AgCl electrodes mounted in an 

elastic cap (actiCap or BrainCap, Brain Products GmbH, Gilching, Germany). Electrode 

placement for both patient (MSLT+, MSLT–) and control (aperiodic and sleep-based healthy 

comparisons) groups followed the 10/20 system. Horizontal and vertical eye movements and 

blinks were monitored with electrodes placed above and slightly below the left eye. EEG 

channels from the Control group were amplified using a BrainVision amplifier (LiveAmp 32 or 

actiCHamp base unit 5001, Brain Products, GmbH) at either a 500 Hz or 1000 Hz sampling 
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rate. All EEG pre-processing and analysis was performed using MNE-Python (Gramfort et al., 

2013). Raw data were band-pass-filtered from 0.1 to 30 Hz (zero-phase, hamming windowed 

finite impulse response). Data were then re-referenced to the average of left and right mastoid 

electrodes and resampled to 250 Hz to match the sampling rate of the patient recordings. 

 

2.2.2. Sleep EEG.  

Sleep data were scored by expert sleep scientists according to standardised criteria 30 

using Compumedics Profusion 4 software (Abbortsford, Vic, Australia). The EEG was viewed 

with a high-pass filter of 0.3 Hz and a low-pass filter of 35 Hz. The following sleep parameters 

were calculated: total sleep time, sleep onset latency, wake after sleep onset, time (minutes) 

and percent of time spent in each sleep stage (N1, N2, N3 and R). Slow oscillation-spindle 

(SO-spindle) coupling strength were extracted via the YASA toolbox 31 implemented in MNE-

Python 32 based on previously used methods (e.g., 33,34).  

For pre-processing of the sleep EEG, the EEG signal was re-referenced to linked 

mastoids and filtered from 0.1 – 30 Hz using a digital phase-true FIR band-pass filter. Data 

were then epoched into 30 second bins and subjected to a multivariate covariance-based 

artifact rejection procedure 35,36. 

 

2.3. EEG Data Analysis 

2.3.1. Neural aperiodic exponent.  

To estimate the 1/ƒ power-law exponent from resting-state EEG recordings, we used 

the irregular-resampling auto-spectral analysis method (IRASA v1.0; 37) implemented in the 

YASA toolbox 31 in MNE-Python. The (negative) exponent summarising the slope of aperiodic 

spectral activity was calculated by fitting a linear regression to the estimated fractal component 

in log-log space. For a full mathematical description of IRASA, see 37 (also see 38). 

 

2.3.2. NREM slow oscillations and spindle coupling.  

For slow oscillations, continuous NREM EEG data were filtered using a digital phase-

true FIR band-pass filter from 0.3 – 2 Hz with a 0.2 Hz transition band to detect zero crossing 

events that were between 0.3 – 1.5 s in length, and that met a 75 to 500 microvolt criterion. 

These artifact-free epochs were then extracted from the raw EEG signal. 

We also estimated SO-spindle coupling activity (for a detailed description of this 

method, see 33). We first filtered the normalized SO trough-locked data into the SO component 

(0.1 – 1.25 Hz) and extracted the instantaneous phase angle after applying a Hilbert transform. 

Then we filtered the same trials between 12 – 16 Hz and extracted the instantaneous 

amplitude from the Hilbert transform. For every participant and epoch, we detected the 

maximal sleep spindle amplitude and corresponding SO phase angle at electrode C3. The 
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resultant vector length (mean vector; coupling strength) across all NREM events were then 

determined using circular statistics implemented in the pingouin package 39. The Rayleigh test 

was used to test for circular non-uniformity with p < 0.01. 

 

3. Statistical Analysis 

Data were imported into R version 4.0.2 (R Core Team, 2020) and analysed using 

linear mixed-effects regressions fit with restricted maximum likelihood (REML) estimates using 

lme4 40. For models predicting differences in the aperiodic slope and offset, and in ESS scores, 

Condition (Control, MSLT– and MSLT+) was specified as a fixed effect, and Sex (Male, 

Female) and Age were treated as covariates. Similarly, for models examining differences in 

sleep-related EEG (e.g., SO density, SO-spindle coupling), Condition was specified as a fixed 

effect, while Age was treated as a covariate. For all EEG-based models, participant ID and 

electrode were modelled as random effects on the intercept to account for between-subject 

and topographic differences in aperiodic estimates, respectively. Type II Wald χ2-tests from 

the car package 41 were used to provide p-value estimates, while effects were plotted using 

the package effects 42 and ggplot2 43. Outliers were isolated using Tukey's method, which 

identifies outliers as exceeding ± 1.5 × inter-quartile range. Categorical factors were sum-to-

zero contrast coded, such that factor level estimates were compared to the grand-mean 44. 

Further, an 83% confidence interval (CI) threshold was used given that this approach 

corresponds to the 5% significance level with non-overlapping estimates 45,46. In the 

visualisation of effects, non-overlapping CIs indicate a significant difference at p < 0.05. 

 

4. Results 

4.1. Resting-state aperiodic neural activity predicts clinical status 

In modelling the aperiodic slope, we revealed a significant main effect of Group, with 

the Control group having a flatter 1/ƒ slope compared to both the MSLT– (𝛽 = -0.19, se = 0.06, 

p = 0.001) and MSLT+ (𝛽 = -0.14, se = 0.06, p = 0.02; Figure 2A) groups. Critically, the MSLT– 

and MSLT+ groups did not differ in their 1/ƒ slope estimates (𝛽 = -0.05, se = 0.04, p = 0.15). 

A similar pattern emerged when modelling differences in the aperiodic offset: while there was 

no difference in the offset between the MSLT+ and MSLT– groups (𝛽 = 0.17, se = 0.16, p = 

0.28), the Control group had a larger offset than the MSLT+ (𝛽 = 0.82, se = 0.24, p = 0.001; 

Figure 2B) and MSLT– (𝛽 = 0.99, se = 0.24, p < 0.001) groups.  

For analyses regarding self-perceived sleepiness (quantified as ESS), we found a 

main effect of Group (Figure 2C): while there was no difference between the MSLT– and 

MSLT+ groups (𝛽 = 2.05, se = 1.28, p = 0.11), the Control group had significantly lower ESS 

scores (𝛽 = -5.04, se = 1.43, p < 0.001). However, when adding the aperiodic slope into the 
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model, there was no significant main effect of Group (𝛽 = 19.03, se = 17.77, p = 0.29), Slope 

(𝛽 = -2.21, se = 5.55, p = 0.70), or interaction between Group and Slope (𝛽 = 11.72, se = 8.41, 

p = 0.17) on self-perceived sleepiness. 

Based on these observations, we performed machine learning analyses to determine 

whether we could predict clinical status based on resting-state derived aperiodic measures. 

Given that the MSLT+ and MSLT– groups did not differ in either the 1/ƒ slope and offset, we 

collapsed these groups together, resulting in a two-level factor of Symptomatic (MSLT+, 

MSLT–) and non-symptomatic (Control). Data were separated into a training and test set, 

retaining 75% of the data for training and 25% for testing. We then created bootstrapped 

resamples of the training data to evaluate the logistic regression models, which predicted 

Group (Control, MSLT+, MSLT–) from 1/ƒ Slope and Age, and the 1/ƒ Offset and Age. The 

model containing the 1/ƒ slope performed well on the test data with an accuracy estimate of 

0.90 and region under the curve estimate of 0.90, while the 1/ƒ offset model yielded an 

accuracy and region under the curve estimate of 0.70 and 0.66, respectively. From this, we 

were able to predict with 90% accuracy whether an individual is symptomatic or non-

symptomatic based on the combination of the 1/ƒ slope and age. For a visualisation of both 

machine learning models, see Figure 2F. 

 

 

Figure 2. Differences in aperiodic activity and self-perceived sleepiness between study groups. 
(A) Differences in the aperiodic slope (y-axis; higher values denote a flatter slope) between the MSLT–
, MSLT+ and Control groups (x-axis). (B) Represents the same as (A) but for the aperiodic offset. 
Topographical distribution of the aperiodic slope and offset between study groups are given above (A) 
and (B), respectively. (C) Differences in self-perceived sleepiness quantified by the ESS (y-axis; higher 
values denote more self-perceived sleepiness) between the MSLT–, MSLT+ and Control groups (x-
axis). For A – C, bars represent the 83% confidence interval around group-level expected marginal 
mean estimates. Dots represent individual data points per subject for aggregated data. (D) Relationship 
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between the aperiodic slope (y-axis) and MSL in minutes (x-axis; higher values denote a longer time to 
fall asleep). Points along the line of best fit indicate predicted values, while points off the line represent 
residual data, with larger points indicating further distance from predicted values. (E) Relationship 
between age (in years; y-axis; higher values denote older age) and the aperiodic slope (x-axis) across 
each study group. (F) Region over the curve plot representing the logistic machine learning model for 
the aperiodic slope (left) and offset/intercept (right). Each line represents one of the 25 bootstrapped 
resamples of the training data. 

 

4.2. SO-spindle coupling differs between individuals with and without EDS 

 We examined whether there were differences in sleep-related oscillatory dynamics 

between those with MSLT+, MSLT–, and Controls (i.e., no diagnosed sleep disorders). We 

focussed on three cardinal measures of slow oscillations, namely slow oscillation (SO) density, 

SO peak-to-peak amplitude, and the slope of SOs. We also quantified SO-spindle coupling, 

which has shown to change across the lifespan 33, as well as differ between those with and 

without psychiatric disorders 47. While controlling for age, there was no significant difference 

in SO density (χ2(2) = 0.94, p = 0.62), peak-to-peak amplitude (χ2(2) = 0.71, p = 0.70), or SO 

slope (χ2(2) = 2.25, p = 0.32) between the three groups. There was also no significant 

difference in SO-spindle coupling density (F(2,146) = 0.22, p = 0.80; for visualisation of these 

metrics across groups, see Figure 4). Note that a mixed-effects regression did not converge 

for SO-spindle density, and thus a simple linear regression was performed (i.e., without the 

random intercept of subject). However, there was a significant difference in SO-spindle 

coupling strength (χ2(2) = 287.45, p < 0.001) between the three groups, which is resolved in 

Figure 4E. While the MSLT+ and MSLT– groups did not differ in SO-spindle coupling strength 

(𝛽 = 0.0002, se = 0.002, p = 0.93), the Control group had stronger SO-spindle coupling 

strength than the MSLT+ (𝛽 = 0.06, se = 0.003, p < 0.001) and MSLT– (𝛽 = 0.06, se = 0.004, 

p < 0.001) groups. There was also a similar effect of Coupling Phase, whereby there was a 

significant difference between groups in the preferred spindle amplitude to SO phase (χ2(2) = 

41.57, p < 0.001). Here, maximal spindle amplitude occurred after the peak of the SO in the 

Control group, while spindle amplitude was maximal prior to the SO peak for both the MSLT– 

and MSLT+ groups (Figure 4F). For a summary of sleep parameter metrics between groups, 

see Table 2, while for a visualisation of SO-spindle coupling activity, see Figure 3. 
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Table 2. Sleep parameters of study groups. 

 Controls Patients 

F (p, ηp
2) 

Sleep Measures (n = 17) MSLT– (n = 33) MSLT+ (n = 26) 

TST 400.00 (67.02) 389.00 (61.70) 405.00 (59.7) 1.37 (.24, .02) 

SOL 15.23 (12.23) 29.80 (23.2) 25.30 (21.8) 0.30 (.60, .01) 

WASO 52.64 (55.60) 58.10 (47.00) 44.80 (40.60) 1.51 (.22, .02) 

N1 10.05 (8.21) 4.43 (3.85) 4.00 (2.80) 0.11 (.73, .004) 

N2 49.52 (10.36) 51.10 (11.2) 55.70 (8.80) 2.93 (.09, .05) 

N3 25.84 (9.60) 28.00 (12.5) 22.00 (8.85) 3.66 (.06, .06) 

REM 14.57 (8.56) 16.50 (7.10) 17.80 (6.57) 0.48 (.49, .008) 

SO Density 12.90 (7.16) 7.85 (7.53) 6.92 (6.70) 0.45 (.64, .20) 

SO Peak-to-Peak  119.64 (18.24) 108.45 (19.91) 109.54 (24.80) 0.37 (.69, 0.09) 

SO Slope 477.41 (117.54) 393.41 (114.73) 397.60 (108.13) 1.17 (.31, .20) 

Coupling Density 9.26 (7.49) 6.60 (7.37) 5.65 (6.70) 2.90 (.06, .04) 

Coupling Strength 0.23 (0.01) 0.17 (0.01) 0.17 (0.00) 345.92 (<.001, 0.82) 

Coupling Phase -0.27 (0.34) 0.26 (0.41) 0.17 (0.38) 21.65 (<.001, 0.23) 

Note. Values presented in parentheses are standard deviation. TST = total sleep time; SOL = sleep 
onset latency; WASO = wake after sleep onset; N1 = stage 1; N2 = stage 2; N3 = slow wave sleep; 
REM = rapid eye movement sleep. Values for each sleep stage represent the percent of time spent in 
each stage. ηp

2 = partial eta squared. 
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Figure 3. Sleep neurophysiology and NREM SO-spindle coupling activity between study groups. 

(A) Hypnogram and full-night multi-taper spectrogram for a single participant from channel Cz. (B – D) 
Preferred phase of SO-spindle coupling for each study group. Circles indicate individual participant 
estimates. Note that 0 represents the peak of the SO. (E – G) Group-level comodulagram illustrating 
the frequency for phase (x-axis) and frequency for power (y-axis) during NREM sleep SO-spindle 
epochs for each study group. PAC = phase amplitude coupling. 

 

 

Figure 4. Sleep microstructural activity between study groups. For each plot, study group (MSLT–

, MSLT+ and Control) is represented on the x-axis, while sleep microstructural activity is shown on the 
y-axis.  In each plot, thick horizontal lines indicate the median; lower and upper hinges correspond to 
the first and third quartiles, respectively; lower and upper whiskers extend to the furthest estimate within 
1.5 × interquartile range from the lower and upper hinges, respectively.  
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5. Discussion 

In the present study we aimed to determine whether resting-state and sleep-related 

EEG metrics differentiate between individuals with and without excessive daytime somnolence 

(EDS). The aperiodic slope (a proxy for neural excitation/inhibition; 48) and slow-oscillation 

spindle (SO-spindle) coupling (related to neuronal transmission and subcortical-cortical 

connectivity; 49) were statistically predictive of EDS. Critically, these neural metrics were 

stronger predicters of EDS than the ESS and MSLT, offering a potentially novel objective 

measure for sleep physicians and scientists in the diagnosis and treatment of chronic 

sleepiness in patient populations. These findings also inform current understandings of the 

neurobiological basis of sleepiness, a phenomenon that serves a vital homeostatic function in 

both health and disease. 

The slope of the aperiodic component has been recently described as a marker of 

homeostatic sleep need 50, based on theoretical accounts of neural activity leading to sleep 

need 51,52 and experimental results in animals and humans which have delineated processes 

of synaptic regulation as a function of sleep 53–55. Broadly, as the individual progresses through 

wakefulness, incidental information processing necessarily occurs, and this leads to saturation 

of synaptic connections in cortex. On a neural level, this leads to increased levels of excitability 

as a function of hours of wakefulness 51,55,56. Aperiodic metrics offer a unique opportunity to 

measure such processes non-invasively and cheaply, as they have been linked with the 

activity of excitatory and inhibitory neurons 25,48,57, with information in the aperiodic signal 

related to increases in both excitation and inhibition in the neural system. Therefore, to the 

extent that the mammalian drive to sleep is related to the accumulation of synaptic strength 

as a result of incidental information processing 51,52 leading to increased excitation 16,53 and 

that aperiodic measures reflect the E/I balance of the neural system 25,58, aperiodic measures 

may constitute a useful marker of currently experienced sleepiness in the individual, linking to 

homeostatic sleep need. 

 Our results broadly extend previous literature by demonstrating that the aperiodic 

slope can be used to classify cases of excessive daytime somnolence from healthy controls. 

These results are informative in terms of finding relatively cheap and efficient diagnostic 

markers of sleep disorders but are also in terms of understanding precisely what is measured 

by aperiodic markers in terms of sleep need. Sleep research typically differentiates both 

circadian and homeostatic sleep drives, and between sleep propensity and subjective 

sleepiness 11,23,59,60, and it is presently unclear how these linked drives can be read directly 

from the EEG, despite the brain being deeply impacted by them 61,62. Here, we note that the 

aperiodic slope is predictive of time to sleep onset in the MSLT (Figure 2D). As such, it 

presently appears that the information contained in the aperiodic signal is related to current 

sleep propensity and accumulated sleep need. It is unclear from the present results whether 
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aperiodic measures might predict subjective sleepiness, subjective (versus objective) ratings 

of sleep propensity or circadian-related measures of sleepiness. Similarly, it is unclear whether 

aperiodic measures might be predictive of fatigue or time on task effects. These are all useful 

endeavours for future research. 

Regarding the sleep EEG, SO-spindle coupling during NREM sleep differed 

significantly between symptomatic (MSLT+, MSLT–) and non-symptomatic (Control) 

individuals, with coupling strength being higher for the non-symptomatic group. These 

differences offer potential mechanistic insights within the context of hypersomnolence and 

underlying sleep neurophysiology. Sleep spindles and their coupling to slow oscillations are 

often disrupted in clinical relative to healthy individuals (for review, see 47). For example, the 

duration, amplitude, and density of sleep spindles differ between those with and without 

Alzheimer’s disease (AD), while SO-spindle coupling strength is negatively associated with 

two hallmark features of AD, namely pathological tau and β-amyloid aggregates 63. Poor or 

disrupted sleep is predictive of tau and β-amyloid (Aβ) accumulation, particularly within medial 

frontal regions and the hippocampal complex 33. From this perspective, individuals with EDS, 

who often report disrupted sleep, may be at greater risk of developing AD, a prediction 

supported by a recent study of 283 older individuals with EDS 64. Here, it was shown that 

baseline EDS predicted increased longitudinal Aβ accumulation. Given that our sample of 

clinically presenting patients were aged between 18 and 78 years (MAge = 37.25 years), SO-

spindle coupling strength may not only serve as a diagnostic tool in hypersomnolence 

treatment, but also a potential early marker of Aβ accumulation. Further, as SO-spindle 

coupling is plastic, if SO-spindle coupling is found to be casually related to EDS, brain 

stimulation (e.g., transcranial direct current stimulation) may serve as an alternative treatment 

method for individuals with hypersomnolence. 

The development and validation of alternative methods for the diagnosis and 

assessment of hypersomnolence is an important endeavour for sleep research and medicine. 

The MSLT, currently the gold standard diagnostic procedure, is resource heavy necessitating 

a formal sleep laboratory as well as a full night and day of patient and laboratory scientist time.  

In contrast, the aperiodic slope may be a quick and efficient marker of sleepiness that is easier 

to obtain in a clinic environment thus enabling faster evaluation of EDS. Such a diagnostic tool 

could also play a role in serial monitoring over time, something that the MSLT struggles with 

given issues with cost, and test re-test reliability. Further research is required to explore these 

potential applications. Finally, it is also critical to highlight that the measurement of sleepiness 

via the MSLT and aperiodic components of the EEG as reported here does not relate to other 

measures of sleep and wake drive, such as vigilance, subjective sleepiness, or fatigue, which 

are typically measured with the maintenance of wakefulness test (MWT; 65). From this 

perspective, examining the aperiodic component of the EEG as it relates to the propensity to 
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fall asleep versus the ability to maintain wakefulness may reveal similar or dissociable 

mechanisms of sleep and wake in the human brain. 

The significance of sleepiness has recently been highlighted in experimental works 

which have linked the phenomenon to the E/I balance in neuronal functioning. From this, we 

have used a biological measure of E/I balance (the aperiodic slope) to classify EDS patients 

from healthy controls. We have also demonstrated potentially functionally relevant differences 

between these groups, in our observation of differences in SO-spindle coupling strength. This 

invites further fields of inquiry in terms of basic sleep research and medicine, which may lead 

us to a better understanding of sleep and sleepiness in health and disease.  
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