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Abstract

Epigenetic mapping studies across individuals have identified many positions of epigenetic variation

in various human tissues and conditions. However the relationships between these positions, and in

particular global patterns that recur in many regions of the genome remains understudied. In this study,

we use a stacked chromatin state model to systematically learn global patterns of epigenetic variation

across individuals and annotate the human genome based on them. We applied this framework to

histone modification data across individuals in lymphoblastoid cell lines and across autism spectrum

disorder cases and controls in prefrontal cortex tissue. We find that global patterns are correlated across

multiple histone modifications and with gene expression. We used the global patterns as a framework to

predict transregulators, identify trans-QTL, and study complex disease. The frameworks for identifying

and analyzing global patterns of epigenetic variation are general and we expect will be useful in other

systems.

Introduction

Understanding molecular variation is fundamental to understanding variation in complex traits. Many

studies have identified molecular variation across individuals in transcription factor (TF) binding, gene
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expression, histone modifications, and other molecular phenotypes [1, 2, 3, 4, 5, 6, 7].

Understanding variation in histone modifications that are associated with enhancers or promoters can be

of particular interest since variants for many diseases and phenotypes are enriched in enhancer and promoter

regions of the genome [8, 9, 10, 11, 12]. A number of studies have mapped histone modifications associated

with enhancers and promoters across many individuals [13, 3, 4, 5, 14, 15, 16, 6]. These studies have identified

thousands of regions where histone modifications differ across individuals.

These previous studies often identify a set of consensus regions across individuals with histone modifica-

tion signal, such as merged peaks, and perform a marginal association test between each region to an external

data set. For example, in histone quantitative trait loci (hQTL) studies, variation is identified by associating

histone modification signal across individuals with genetic variants. Similarly, for differential peak analysis,

variation in a single region is associated with an external label, such as cases and controls [4, 17, 18, 19].

Another approach, which allows for joint analysis of multiple marks is to learn combinatorial and spatial

patterns of epigenetic marks that are associated with distinct biological functions (“chromatin states”) [20].

This approach has been previously applied to histone modification data across multiple individuals by virtu-

ally concatenating data across individuals for each data type and learning a chromatin state model using the

ChromHMM software [21, 3]. Using the learned model, individual-specific genome chromatin state annota-

tions were generated, which contain chromatin state assignments for each individual genome-wide. These

annotations were then used to identify regions with variable chromatin states across individuals [3]. While

informative, one understudied aspect of these previous approaches is the relationships between the variable

regions, in particular recurring patterns of epigenetic variation across individuals observed in many regions

of the genome.

One biological reason we may expect to observe recurring epigenetic patterns across individuals is that

a transcription factor may have differential activity across individuals. This could be reflected in corre-

sponding differential activity of histone modifications at many of its binding locations across the genome.

Such transcription factors can act as “trans-regulators” potentially affecting the expression of many genes

in the genome. Reflecting the importance of trans-regulation, it has been estimated that 60-75% of the

heritability in gene expression is explained by distal effects [22, 23, 24, 25]. However, the identification

of trans-regulators and genetic variants associated with them through trans-expression QTL (trans-eQTL)

mapping is challenging. This is the case compared with cis-expression QTLs (cis-eQTLs) because of the

much larger number of association tests that need to be performed, which results in lower statistical power

[26]. The recurring patterns of global variation have the potential to provide useful information towards the

challenge of identifying trans-regulators and trans-eQTLs in a given cell type.

In this study, we use a “stacked” chromatin state model to systematically learn global patterns of epi-
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genetic variation across individuals and annotate the genome based on them [21, 27, 28]. The “stacked”

chromatin state model is based on a multivariate hidden Markov model (HMM) that learns combinatorial

and spatial patterns across multiple individuals of one or more marks that recur in many regions of the

genome. We first develop and use the global patterns to predict transregulators and identify trans-QTLs in

lymphoblastoid cell line. Then, we demonstrate how this framework can be applied to histone modification

data from autism spectrum disorder (ASD) cases and controls in prefrontal cortex tissue. While previous

studies have identified numerous molecular features, including RNA expression, RNA splicing, and histone

modifications, that differ between ASD cases and controls [29, 30, 31, 4, 32, 33], we apply the global patterns

framework and show that global patterns are also associated with diagnosis status. We expect identifying

global patterns of epigenetic variation will be a useful framework to study transcriptional regulatory networks

and complex disease in other systems.

Results

Systematic genomic annotation of chromatin variation across individuals

We learned a stacked ChromHMM model where all histone marks in all individuals are used as features

by applying a “stacked” version of the ChromHMM framework [21, 27, 28]. We used genome-wide histone

modification data quantified in 200bp non-overlapping bins across multiple individuals and marks. We

first regressed out the effects of known confounders before training the model (Methods). Similar to the

ChromHMM framework when data from only a single cell type is used to train a model, we binarized the

data using a Poisson background model and used this as input to ChromHMM [20, 21]. Unlike the standard

use of ChromHMM, in this framework, each hidden state learned corresponds to a combinatorial and spatial

pattern across marks and individuals, which we call a “global pattern.” The emission probabilities correspond

to the probability of observing a mark in a specific individual given a global pattern. After the global patterns

are learned, we annotate the genome at 200bp resolution with the most likely hidden state of the HMM.

Learning global patterns in lymphoblastoid cell line

We first applied the stacked ChromHMM model to a data set of 75 individuals with 3 marks (H3K27ac,

H3K4me1, H3K4me3) in the lymphoblastoid cell line (LCL) [15]. Different combinations of these three marks

within a single individual are associated with different types of promoters and enhancers [34, 12, 15, 35]. We

trained stacked ChromHMM models to learn global patterns across both individuals and marks (Methods,

Figure 1). We learned models with between 5 and 100 states in increments of 5. We used the models learned

3

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.502571doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.02.502571
http://creativecommons.org/licenses/by-nd/4.0/


+Multivariate 
HMM
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Figure 1: Method overview. We trained a stacked ChromHMM model using genome-wide histone modifi-
cation signal from multiple individuals and marks (“Genome-wide histone modification signal”). This model
learns global patterns of epigenetic variation that recur in many regions of the genome (“Emission proba-
bilities”). The model learning is agnostic to the mark labels. The emission probabilities learned correspond
to the probability of observing signal from each data set conditioned on being in each hidden state. We
used the model learned to annotate the genome according to these patterns at 200bp resolution (“Genome
segmentation”).

to then segment and annotate the genome according to these global patterns.

As an initial validation of the models we tested whether the global patterns were internally consistent

across pairs of histone modifications, even though they are from models that were learned agnostic to mark

labels during training. Based on prior knowledge that pairs of these three marks frequently co-occur in the

genome, we expect that the emission parameters for pairs of marks to be correlated for many of the states.

Specifically, we calculated the median Spearman correlation of emission parameters for pairs of marks across

individuals for each global pattern as a function of the number of states in the model. The median pairwise

correlation between marks increased rapidly until the number of hidden states was increased to 35. Pairs of

histone modifications corresponding to active promoters (H3K4me3 and H3K27ac) and enhancers (H3K4me1

and H3K27ac) remained high (>0.5) for models with up to 100 states (Figure S1). High correlations were

observed even though the models were agnostic to the mark and individual labels in the training process. This

suggests that a global pattern is less likely to be caused by technical issues with the ChIP-seq experiments

and more likely to be associated with differences at the sample level.
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Common genetic variation associated with LCL global patterns

To investigate the genetic basis of global epigenetic patterns across individuals, we performed what we termed

global pattern quantitative trait association analysis. For each model that we had learned, we associated

common variants with minor allele frequency (MAF) greater than 0.05 in the data set [15] with the emission

parameters of each global pattern to identify significantly associated (padj < 0.05) global pattern quantitative

trait loci (“gQTLs”). The number of gQTLs was maximized with the 85-state model, (2948 gQTLs, Figure

S3), which we selected for further analysis. In this 85-state model, 38 states were associated with at least

one gQTL. We also verified that global patterns for the 85-state model were robustly learned across different

subsets of the genome (Median Spearman correlation of emissions = 0.93, Methods, Figure S2).

We then sought to understand whether the gQTLs identified were biologically relevant for the LCL cell

type by performing a GREAT gene set enrichment analyses for the gQTLs [36]. GREAT analyzes genes near

a set of genomic regions and tests for ontology and phenotype enrichments compared to a background set

of regions. We used the gQTLs obtained as the foreground and the whole genome as the background. The

“regulation of leukocyte cell-cell adhesion”, “regulation of lymphocyte activation”, and “regulation of T cell

activation” gene ontology (GO) terms were significantly enriched for the gQTLs (FDR < 5%, Supplementary

Data 1). These enrichments are expected since the lymphoblastoid cell line is derived from lymphocyte cells,

which are critical for immune system functions. While we also observed significant enrichment for terms not

directly related to immune function, we do not expect all global patterns to be cell type-specific. Additionally,

there may be pleiotropy between immune function and other complex traits. Enrichment of terms relevant

to immune function suggest that some gQTLs are biologically relevant for the LCL cell type and that global

patterns may be informative for identifying sources of molecular variation associated with immune function.

LCL global patterns enriched for active regions of the genome

To characterize the types of genomic regions found in the global patterns learned in the 85-state model, we

computed overlap enrichments for previous chromatin state annotations in the LCL data obtained (Meth-

ods, Figure S4). These chromatin states annotations correspond to combinatorial and spatial patterns of

epigenetic datasets within LCLs for a single individual and have been previously given candidate biological

descriptions. We identified the chromatin state with the highest fold enrichment among states significantly

enriched (overlap enrichment > 1 and Binomial Test, FDR<5%; Methods) for each global pattern. The

majority of global patterns are most highly enriched for enhancer and promoter chromatin states, which

is expected given the histone modifications used to learn the model (Figure 2A). We define promoter-like

global patterns to be global patterns with the highest enrichment for promoter states and enhancer-like
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Figure 2: LCL 85-state model A) Emission matrix for the 85-state LCL model. The x-axis (“Global
Pattern”) shows the global patterns learned, and the y-axis shows the datasets, which are grouped by the
indicated histone modifications. The ordering of individuals is the same for each histone modification. Each
global pattern is annotated (top) with a previous LCL chromatin state annotation for one individual [40]
with the highest significant enrichment. B) Overlap enrichments for CpG Islands [37], consensus DNase I hy-
persensitive sites [15] measured in the same samples, and promoter annotations computed from GENCODE
transcription start site (TSS) annotations [38], and immune-related GWAS variants [9]. Only significant
enrichments are shown (Binomial Test, FDR<5%, fold > 1). C. Motif enrichments for 24 TFs with mo-
tifs enriched in at least one global pattern (FDR<5%, log10(fold enrichment) > 1.5) and gene expression
associated with global patterns (FDR<5%). Only significant enrichments are shown (Fisher’s Exact Test,
FDR<5%, log10(enrichment) > 1.5).

global patterns to be those with the highest enrichment for enhancer states from the reference chromatin

state annotations.

We also evaluated global pattern enrichments for other external annotations that were not based on

histone modifications. These included CpG Islands [37], DNase I hypersensitive sites [15], and promoter

annotations defined as regions 2KB from GENCODE transcription start sites (TSS) [38], which as expected

showed significant enrichments for many global patterns (Figure 2B, Binomial Test, FDR<5%). CpG Islands

tend to be enriched in promoter-like global patterns, whereas DNase I hypersensitive sites are enriched in

both promoter-like and enhancer-like global patterns. We also evaluated enrichments for fine-mapped GWAS

variants for 39 immune-related diseases [9], which revealed nine global patterns of histone modifications with

significant enrichments (Figure 2B, Binomial Test, FDR<5%). These GWAS enriched global patterns were

strongly enriched for promoters and enhancers, which is consistent with previous analyses [9, 12, 39].
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LCL global patterns associated with large-scale molecular variation

In addition to using external annotations of the human genome, we associated the global patterns with

external gene expression [15] and protein quantification [41] data sets across individuals, which were not

used to train the models.

We associated the global patterns with the expression of genes in a subset of the individuals (n = 54) for

which gene expression data was available. We identified 4774 genes with expression patterns significantly

associated with at least one global patterns (Linear model, FDR<5%), with 38 global patterns represented

among these associations, indicating that the global patterns co-vary with the expression of a large number

of genes. We also computed the average correlation between each global pattern and gene expression at

different distances to the global pattern in the annotation (for each 100bp window, up to 500KB upstream

and downstream). We found that global patterns tend to more highly associate with genes in relatively

closer proximity (i.e, 100KB, Figures S5-S7), as expected.

We also associated the global patterns with protein abundance data for a subset of 60 out of the 75

individuals for which the protein data was available [41]. Of the 60 individuals with both protein abundance

data and histone modification data, 44 also had expression data. After intersection of the protein data with

their corresponding gene expression data [15], there were 4371 genes with protein abundance data and gene

expression data. We correlated the abundance of each protein across individuals with the emission parameters

for each global pattern (Methods). We identified 594 proteins that were significantly associated with at least

one global pattern (Linear model, FDR < 5%). Of these 594 proteins, we identified 258 proteins that also

had differential expression significantly associated with at least one global pattern. Of these 258 proteins, 143

were associated with at least one of the same global patterns as its corresponding gene expression values. We

note the partial agreement with corresponding differential gene expression could be explained by a number

of factors. First, of the 4774 genes with expression patterns significantly associated with a global pattern,

3425 did not have protein data available. Second, the number of samples differed between the data sets

with only 44 samples shared between protein abundance, histone modifications, and gene expression. Since

global patterns reflect different subsets of individuals with histone modification signal, lack of overlap could

account for the partial agreement. Finally, proteins with differential expression but not differential protein

levels could potentially be explained by post-transcriptional differences between individuals [41, 42].

Although not all genes with expression levels associated with global patterns also have protein levels

associated with global patterns, there is greater overlap between these two sets of genes than expected by

chance (Permutation test, p<1e-4). These results indicate that LCL global patterns based on chromatin

are associated with large-scale molecular variation across individuals as determined by other assays further
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supporting their biological relevance.

Predicting trans-regulators in LCL

As the global patterns of histone modifications might be associated with TFs that have differential activity

across individuals, the identification of enriched DNA motifs at genomic positions annotated to specific

patterns can suggest trans-regulators associated with them. Thus, in order to identify potential trans-

regulators, we first performed TF motif enrichment analysis for each global pattern. We calculated motif

enrichment of 602 TF motifs in the ENCODE motifs database [43] compared to shuffled motifs. We observed

enrichment of motifs for 20 of the 85 global patterns, corresponding to 79 distinct TFs (Fisher Exact test,

FDR<5%, log10(fold enrichment) > 1.5, Figure 2A).

To provide additional evidence that some of the TFs corresponding to these motifs potentially have

trans-regulatory activity we analyzed their correlations with gene expression. In total, 24 of the 79 TFs with

motifs enriched in a global pattern, also have their expression levels significantly associated with a pattern

(FDR<5%, Figure 2C), although not necessarily the same pattern. Two TFs (TP73 and CREB5) had gene

expression patterns associated with the same global pattern for which their motifs were enriched. TP73

has been shown to regulate T helper differentiation-related genes, which results in variation in autoimmune

disease susceptibility in mice [44]. The CREB family of transcription factors regulate genes containing a

cAMP-responsive element, including a number of immune-related genes [45]. TFs with expression associated

with a global pattern, particularly the same one in which they have an enriched motif have additional

evidence of trans-regulatory activity, but we note that TFs might be post-transcriptionally regulated, which

could lead motif enrichments in specific global patterns without corresponding gene expression correlations.

LCL global patterns increases power to detect trans-eQTLs

In traditional trans-eQTL testing, every variant is associated with the expression of every gene, resulting in a

substantial multiple testing burden and low power to detect true associations. To mitigate this, an informed

set of variants can be tested to reduce the multiple testing burden. For example, cis-eQTLs have been used

as an informed set of variants because variants that affect expression locally are more likely to affect other

genes indirectly [26].

We hypothesized that the gQTLs would be more likely to be trans-eQTLs than cis-eQTLs, since they are

associated with global patterns of histone modifications that recur in many regions of the genome. Thus,

we used gQTLs as an informed set of variants in trans-eQTL analysis using the LCL data set (n=75) and

compared this with an approach using cis-eQTLs as an informed set of variants. We restricted the analysis

8

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.502571doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.02.502571
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3: LCL trans-eQTL replication analysis We performed a replication analysis on 10 trans-eQTLs
identified in the LCL data with MAF of at least 5% in the GTEx data set. Expected −log10(p − values)
(x-axis) were computed using theoretical values from a uniform distribution. Observed −log10(p−values) (y-
axis) were computed in the replication analysis. The dashed line corresponds to the null, where p-values from
the replication experiment have the same quantiles as those from a uniform distribution. The distribution
of the replication p-values was significantly lower than we would expect by chance (Mann-Whitney U Test,
p = 0.002).

to global patterns with signal in more than one individual to increase power of gQTL discovery (Methods),

which led us to considering 62 gQTLs. We identified 45 significant trans-eQTLs (FDR < 5%) corresponding

to 23 of 62 of the gQTLs when using the gQTLs as the informed set of variants. In comparison, an alternative

approach of using cis-eQTLs as an informed set of variants did not have any significant trans-eQTLs (FDR

< 5%).

We used data from the Whole Blood tissue of the GTEx data set (n=338) to attempt to replicate the

LCL trans-eQTL identified. Of the 45 trans-eQTLs identified, only 10 could be tested for replication due to

ancestry differences between the LCL data set and the GTEx data set (Methods). While none of these SNPs

were individually significant after correcting for multiple testing (Bonferroni corrected p < 0.05), the p-values

obtained in the replication analysis were more significant than we would expect by chance (Mann-Whitney

U Test, p = 0.002, Methods). The lack of replication of individual SNPs after correcting for multiple testing

is likely due to relatively small sample size of the replication cohort. Trans-eQTLs have been historically

difficult to replicate due to small effect sizes and low power [46]. Our results suggest, that by using gQTLs

instead of cis-eQTLs as an informed set of variants, we can be better powered for trans-eQTL discovery.

Learning global patterns across autism spectrum disorder cases and controls

In order to directly associate global patterns with complex disease, we learned a separate model using

H3K27ac histone modification data previously collected from prefrontal cortex tissue in ASD cases and

controls [4].
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We used the same procedures as the LCL data set to preprocess the data, train models, and select the

number of hidden states except that we accounted for a larger set of known covariates that were used in

previous differential peak analyses (Methods) [4]. We selected the 90-state model (Figure 4) for followup

analyses, which maximized the number of gQTLs (Figure S9) with 2229 gQTLs. Similar to the LCL analysis,

we performed GREAT [36] enrichment using the gQTLs as the foreground and the whole genome as the

background. We identified a number of enriched GO terms (FDR < 5%, Supplementary Data 1) relevant

for the prefrontal cortex tissue, such as “neuron projection morphogenesis”, “axon development”, and “reg-

ulation of axon guidance.” While we also observed significant enrichment for terms not directly related to

brain function, we do not expect all global patterns to be cell type-specific.

We next computed enrichments of global pattern for chromatin states previously annotated in the pre-

frontal cortex tissue from the Roadmap Epigenomics Consortium [47] (Figure S8). We annotated each global

pattern with the most enriched state from this single reference epigenome annotation (Figure S8, Figure 4A).

Like the LCL model, most of the states in the ASD model were highly enriched for promoter and enhancers

(Binomial test, FDR<0.05) (Figure 4A). Consistent with the LCL data set, we also found high enrichments

for CpG islands and GENCODE annotations of TSS in global patterns annotated as promoters (Figure 4B).

We identified 3535 genes with expression associated with the ASD global patterns (FDR<5%). In order

to identify potential trans-regulators, we performed TF motif enrichment analysis for each global pattern. As

with the LCL data, we calculated motif enrichment of 602 TF motifs in the ENCODE motifs database [43]

compared to shuffled motifs. We observed enrichment of motifs for 27 of the 90 global patterns, corresponding

to 114 distinct TFs (Fisher Exact test, FDR<5%, log10(fold enrichment)> 1.5, Figure 2A). In total, 19 of

the 114 TFs with motifs enriched in a global pattern, also had their expression levels associated with the

pattern (FDR<5%, Figure 2C), although not necessarily the same pattern. The motif enrichments for these

TFs are shown in Figure 4C. For example, we found the RFX family’s motif, which was also previously

identified to be enriched in differential peaks between cases and controls [4]. Furthermore, it was noted that

RFX2 contains a differentially acetylated peak in its promoter, providing a potential mechanism by which

its expression differs across individuals [4].

As the ASD data set contains both case and control individuals, we associated the global patterns with

the diagnosis status. This identified two global patterns (47 and 49) that were significantly associated

with ASD status (Mann-Whitney U, padj < 0.05, Methods). Both global patterns were highly enriched for

promoter regions of the genome. Global pattern 47 was significantly associated with the expression of 22

genes, and global pattern 49 was significantly associated with the expression of 316 genes (FDR<5%). The

genes associated with state 49 were enriched for several GO terms (Table S1), including “cellular response

to interleukin-1,” which has been previously been suggested to play a role in the disease etiology [48]. These
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Figure 4: ASD 90-state model A) Emission matrix for the 90-state ASD model. The x-axis (“Global
Pattern”) shows the global patterns learned, and the y-axis shows each individual (“Individuals”). The
diagnosis status of each individual is annotated (right). Each global pattern is annotated in the top three
rows with whether the global pattern had significant motif enrichments (first), the reference chromatin state
annotation for prefrontal cortex tissue [40] with the highest enrichment (second), and whether the state
was significantly associated with diagnosis status (third). B) Overlap enrichments for CpG Islands [37]
and promoter annotations computed from GENCODE TSS annotations [38] C) Motif enrichments for 19
TFs with motifs enriched in at least one global pattern (FDR<5%, log10(fold enrichment) > 1.5) and gene
expression associated with global patterns (FDR<5%). Only significant enrichments are shown (Fisher’s
Exact Test, FDR<5%, log10(enrichment) > 1.5).
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(a) (b)

Figure 5: Association with ASD diagnosis status. We tested for association between emission parame-
ters for each state in the 90-state ASD model and disease status. After controlling for multiple testing using
a permutation test, two global patterns (Global pattern 47, left) and (Global pattern 49, right) were signif-
icantly associated with diagnosis status (p < .05, Mann-Whitney U Test). In each subplot, the diagnosis
status is shown on the x-axis, and the emission parameters for the state are shown on the y-axis.

results suggest that analyzing global patterns can potentially be informative towards studying complex

disease.

Discussion

In this work, we learned global patterns of epigenetic variation across individuals and systematically anno-

tated the human genome according to these patterns of variation using a stacked ChromHMM model. We

applied this framework to an LCL data set for three histone modifications (H3K27ac, H3K4me1, H3K4me3)

and an ASD case and control data set for one histone modification (H3K27ac).

Previous work in detecting molecular variation across individuals have performed marginal association

tests on consensus regions of the genome [1, 2, 3, 4, 5]. However, these analyses do not investigate whether

the patterns of variation across individuals recur in multiple regions of the genome. By associating genes

and variants with the global patterns, we decrease the multiple testing burden substantially for detecting

trans-regulators and trans-eQTLs. Thus, this investigation is better powered than traditional association

methods that consider larger numbers of potential associations.

We identified motif of TFs enriched in the global patterns for both the LCL and ASD data enabling us to

predict potential trans-regulators. Of these TFs, a fraction also had differential expression associated with

at least one global pattern. In these cases, there is additional evidence of molecular coordination in different

regions of the genome. We also identified thousands of genes in both data sets with expression patterns

significantly associated with the global patterns.
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We also utilized the global patterns to improve power of trans-eQTL studies. By using variants associated

with the global patterns as an informed set of variants for testing, we identified 45 trans-eQTLs in the LCL

data set (FDR<5%). We performed a replication analysis for 10 of these variants with MAF > 5% in the

GTEx data set, and observed that the replication was significantly higher than expected by chance. Since

the sample sizes of both the LCL data set (n=75) and the GTEx Whole Blood Tissue (n=338) limited the

statistical power in both the initial and replication study.

One challenge in identifying global patterns is that it is difficult to distinguish global patterns due to

confounders and those due to biological reasons, such as trans-regulation. Unsupervised methods, such as

principal component analysis and PEER [49] are likely to remove true biological signal in these applications.

To mitigate the effect of confounders, we regressed out known covariates from the histone modification input

signal. In the LCL data set, we showed that the biological signal of interest was consistent across multiple

histone modifications. To further demonstrate the likely biological significance of the global patterns we relied

on external data sets and annotations. For both data sets, we identified a number of global patterns that

showed consistent co-variation with gene expression. We also showed that the global patterns were associated

with common genetic variants and that these variants were in close proximity to tissue/condition relevant

genes. These analyses support the differences across individuals captured across individuals is biological.

However, we cannot exclude that technical differences are also driven by sample-level confounding factors

that were not previously regressed out.

Finally, we identified two global patterns significantly associated with ASD, in spite of the small sample

size and heterogenous nature of ASD. The framework we have used is general and can be applied to other

datasets to further analyze and understand epigenetic variation across individuals and its relationship with

complex disease.

Methods

Histone modification data

We learned global patterns in LCL histone modification data [15] and ASD histone modification data [4].

In the LCL data, histone modification signal was mapped for three marks (H3K27ac, H3K4me1, H3K4me3)

in 75 individuals. In the ASD data, H3K27ac signal was mapped in the prefrontal cortex tissue for 93

individuals. We used the same 76 individuals that were used previously after quality control [4]. Only

autosomes were included in this analysis and we used the hg19 genome assembly.
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Learning epigenetic patterns across individuals using a stacked ChromHMM

model

We quantified the number of reads falling within each 200bp non-overlapping bin in the genome using the

BinarizeBam command in the ChromHMM software package (version 1.11) [21]. For each bin, we then fit

a quasi-poisson regression model, where the dependent variable was the number of reads in the bin and the

independent variables were standardized known covariates [50]. Quasi-poisson regression handles both over

and under-dispersion of count data and has been used in related applications [51]. We quantile normalized

the read counts so that the distribution of counts across bins in the genome was the same for each individual.

We regressed out the effect of the known covariates for each data set that were used in previous work. For

the LCL data set, we accounted for sex, genotyping method, number of reads and relative strand correlation

(RSC) [15]. We performed the correction separately for each mark in the LCL dataset. For the ASD data

set, we accounted for age, sex, percentage of neuronal cells, brain bank, number of peaks, fraction of reads

in peak (FRIP), read duplicate fraction, and read alignment fraction [4]. We then binarized the corrected

histone modification count data according to the procedures used in ChromHMM using the BinarizeSignal

command with default parameters [21]. We used binarized read count data as input to learn the parameters

to a stacked ChromHMM model. To learn the model parameters and perform genome segmentation and

annotation we used the LearnModel command of the ChromHMM software package with default parameters

[21]. We trained “stacked” models where each ChIP-seq dataset is treated as a separate mark. We trained

separate models using 5-100 hidden states in increments of 5 states for each data set.

gQTL analysis

We associated each global pattern with common variants (MAF > 5%) previously identified in each data set

[15, 4]. In this association analysis, we split the emission matrix by mark and treated the emission parameters

for each mark and state as a phenotype. We performed the associations and computed the p-values for each

association using the MatrixEqtl software [52]. We use a Bonferonni corrected threshold of 5∗10−8

mk , where m

in the number of marks, and k is the number of global patterns. For the LCL data set, we performed the

gQTL analysis on all 75 individuals with Yoruban ancestry. For the ASD data set, we performed the gQTL

analysis using on individuals with Caucasian ancestry (69/76 individuals).

Choosing number of hidden states

To select the number of hidden states, we first trained models using between 5 and 100 hidden states in

increments of 5 states. We then associated common variants (MAF>5%) in the human genome with the
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emission parameters to identify gQTLs and chose the number of hidden states that maximized the number

of gQTLs.

Evaluating robustness of global patterns

To evaluate whether the global patterns are robustly learned across different subsets of data, for each number

of states between 5 and 100, we first trained two models using chr1 and chr2 separately. For each pair of

models with the same number of states, we matched states from the two models using a greedy approach.

We iteratively computed pairwise Spearman correlations between unpaired states, matching the two states

from the models with the highest correlation.

GREAT enrichment analysis

We performed GREAT enrichment [36] for the set of gQTLs identified by each data set, using the gQTLs as

the foreground and the whole genome as the background. The whole genome was selected as the background

distribution because variants from all regions of the genome were tested for gQTL association. Using default

parameters, GREAT computes a basal regulatory domain of a minimum distance of 5kb upstream and 1kb

downstream. The regulatory domain is extended in both directions to the nearest gene’s basal domain, but

no more than 1000kb in one direction. gQTLs are intersected with these regulatory domains to identify

genes in close proximity to the gQTLs. GREAT uses a hypergeometric test to assess whether the foreground

is significantly enriched for Gene Ontology (GO) terms relative to the background. We identified GO terms

that were significantly enriched in the gQTLs (FDR<5% and observed genes > 5).

Overlap enrichments

We performed overlap enrichments for external annotations in both the LCL and ASD models using the

OverlapEnrichment command in the ChromHMM software (Version 1.11) [21]. To assess the significance

of the overlap, we computed significance p-values for the enrichments using a binominal test, where the

probability of success was set the the fraction of bases covered by the annotation in the genome. We corrected

for multiple testing using an FDR threshold of 5% (Benjamini-Hochberg procedure) for all annotations tested

within each model.

For both models, we computed enrichments for tissue-specific chromatin state annotations using a previ-

ous 25-state “concatenated model” that was learned from imputed data for 12-marks [40] based on data from

the ENCODE Consortium Project [53] and the Roadmap Epigenomics Project [47]. For the LCL model, we

used the lymphoblastoid cell line (reference epigenome E116), and for the ASD model, we used the prefrontal
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cortex tissue (reference epigenome E073). We tested enrichment for each of the 25 states in these models and

annotated the global patterns with the state with the highest enrichment. We also computed enrichments for

promoter annotations computed from GENCODE V29 TSS annotations [38], which were defined as regions

2KB from the TSS of the genes. Finally, we computed enrichments for CpG Islands obtained from the UCSC

Genome Browser [54].

For the LCL model, we computed enrichments for DNase I hypersensitive sites collected in the same

individuals [15]. Specifically, we tested previously published consensus peaks that were obtained by merging

peaks across individuals (http://mitra.stanford.edu/kundaje/portal/chromovar3d) [15]. We also obtained

4,950 candidate causal SNPs for 21 immune diseases that were previously fine-mapped from 636 autoimmune

GWAS loci [9] and tested them for enrichment in the global patterns.

Association of global patterns with gene expression and protein quantification

For the association of global patterns with gene expression, we used external RNA-seq data that was not

used to train the model. Expression data was previously collected for 54 of the 75 LCL samples using RNA-

seq [15]. We corrected the expression data for known covariates (sex, genotyping method, number of reads,

the ratio between the fragment-length peak and the read-length peak or relative strand correlation (RSC)

[55]). We only considered genes with variability as defined in a previous publication [15]. Expression data

was available for 51 of the 76 individuals from the ASD data set [30]. Expression values were corrected for

known covariates as described in [30]. We only considered genes with variability as defined in this previous

work. We tested for association between gene expression and the emission parameters. We calculated the

association statistics for a linear model using the MatrixEqtl software [52] and used an FDR threshold of

0.05 within each mark.

For the LCL data set, we obtained log2 protein quantification data for 60 of the 75 individuals for a subset

of 4371 genes with both gene expression and protein quantification data [41]. Using the same association

framework as the association between global patterns and gene expression, we associated the log2 protein

quantification with the global patterns for each mark separately. We used an FDR threshold of 0.05 within

each mark.

Motif enrichments

We computed enrichment of 602 TF motifs in the ENCODE motifs database using a tool published with the

database [43]. Briefly, this tool computes the enrichment of each motif compared to a background created

using shuffled control motifs with a confidence interval correction for small counts. Although this database
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includes both known and computationally discovered motifs, only known motifs, which are more specific to

individual TFs, were used. We identified motifs with FDR<5% and a log2 fold enrichment of at least 1.5.

Trans-eQTL analysis

We performed two trans-eQTL analyses using the LCL dataset. First, we performed a baseline trans-eQTL

analysis, where cis-eQTLs identified in prior studies [15] were tested for association with all expressed genes,

as defined previously for associations with gene expression and emission parameters. We compared this

trans-eQTL analysis to one where gQTLs were tested for association with all expressed genes. For both

analyses, we used an FDR threshold of 5%.

For the trans-eQTL analysis using gQTLs as the informed set of SNPs, we further restricted the set of

SNPs to those that were associated with “nonsingleton global patterns” to increase power. This is analogous

to filtering out SNPs with low minor allele frequency and would theoretically improve power for downstream

replication. We identified nonsingleton global patterns as follows. For each global pattern, we counted the

number of individuals with emission parameters greater than 0.5 within that global pattern. We defined

singleton states as those with only one individual with emission parameter greater than 0.5. All other states

were classified as nonsingleton states, including states where all individuals had emissions less than 0.5.

For the LCL trans-eQTLs identified using gQTLs as the informed set of SNPs, we performed a replication

analysis using the Whole Blood Tissue from the GTEx Consortium v6p [56]. Only 10 SNPs could be tested

for replication due to differences in ancestry between the LCL data set (Yoruban) and the GTEx data set

(primarily European). In this analysis, we used the same covariates as used for eQTL discovery in GTEx

[26] (3 genotype principal components, 135 PEER factors, genotyping platform, and sex). To compute the

replication between each significant gQTL and gene pair, we used a Bonferroni corrected threshold of 0.05.

We compared the p-values obtained in the GTEx replication with a uniform distribution using a Mann

Whitney U statistical test.

Association of global patterns with ASD disease status

We associated each global pattern in the 90-state ASD model with the disease status using a Mann-Whitney

U test. We performed a permutation test to correct for multiple testing, where for each permutation, the

samples labels were shuffled and the minimum p-value was retained for the null distribution. The adjusted

p-values were computed as the fraction of p-values from the null distribution that were more significant

than the observed p-values. We used an adjusted p-value threshold of 0.05 to identify states significantly

associated with disease status.
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Data availability

Our work integrates data from a number of previous publications, including LCL ChIP-seq and RNA-seq data

(http://mitra.stanford.edu/kundaje/portal/chromovar3d/) [15], LCL protein data [41], ASD ChIP-seq data

(https://www.synapse.org/#!Synapse:syn4587616) [4], and ASD RNA-seq data (https://www.synapse.

org/#!Synapse:syn11242290) [30].

The GREAT enrichments for gQTLs are available in Supplementary Data 1. The model parameters and

segmentations learned in this paper are available in Supplementary Data 2 and Supplementary Data 3 for

LCL and ASD, respectively.
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Supplementary information

Figure S1: Pairwise correlation of marks in LCL data set. For each pair of histone modifications
(H3K27ac, H3K4me1, H3K4me3), we computed the median Spearman correlation of the emission parameters
across individuals within each state. Each colored line corresponds to a pair of marks. The median pairwise
correlation (y-axis) is shown as a function of the number of states used to train each model (x-axis).
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Figure S2: Pairwise state correlations in LCL data set. For each number of states (x-axis), two models
were trained on different subsets of data (Methods). Each dot corresponds to the Spearman correlation (y-
axis) of the emission parameters of a state in one model with a paired state in the other model. States
between the two models were paired using a greedy algorithm (Methods).
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Figure S3: LCL model gQTLs. The total number of significant gQTLs (FDR<5%) in the LCL model
(y-axis) is shown as a function of the number of states (x-axis). The number of gQTLs is maximized using
an 85-state model denoted with the vertical line.
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Figure S4: Fold enrichment of chromatin states for LCL 85-state model. The top heatmap shows
the emission parameters learned for the 85-state model using the LCL dataset. The global patterns are on
the x-axis, and the datasets are on the y-axis. The datasets are grouped by histone modification, and the
individuals have the same ordering within each mark. The bottom heatmap shows the log2 fold enrichment
of a previous reference chromatin state annotation in LCL for one individual based on imputed data for 12-
marks, where states with the same annotation color (left) represent different sub-states of the same category
[40]. Significant enrichments are indicated with color (Binomial Test, FDR<5%). The global patterns are
shown on the x-axis (“Global Pattern”), and the LCL reference chromatin states on the y-axis (“Reference
Chromatin State”). Each global pattern is annotated with the highest enriched chromatin state from the
reference individual (top).
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Figure S5: Average correlation of H3K27ac LCL emission parameters and gene expression as a
function of distance. The genome segmentation based on the LCL global patterns was used to identify
genes with transcription start sites (TSS) within 500KB for each global pattern. These genes were associated
with the global pattern. The average Pearson correlations between emission parameters and expression of
genes are shown for each global pattern (y-axis) using only genes with TSS within each 100bp bin (x-axis).
The LCL reference chromatin state [40] with the highest enrichment for each global pattern is indicated
based on the color on its left and the color legend on right.
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Figure S6: Average correlation of H3K4me1 LCL emission parameters and gene expression as a
function of distance. Average correlation of H3K4me1 LCL emission parameters and gene expression as a
function of distance. The genome segmentation based on the LCL global patterns was used to identify genes
with transcription start sites (TSS) within 500KB for each global pattern. These genes were associated with
the global pattern. The average Pearson correlations between emission parameters and expression of genes
are shown for each global pattern (y-axis) using only genes with TSS within each 100bp bin (x-axis). The
LCL reference chromatin state [40] with the highest enrichment for each global pattern is indicated based
on the color on its left and the color legend on right.
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Figure S7: Average correlation of H3K4me3 LCL emission parameters and gene expression as a
function of distance. Average correlation of H3K4me3 LCL emission parameters and gene expression as a
function of distance. The genome segmentation based on the LCL global patterns was used to identify genes
with transcription start sites (TSS) within 500KB for each global pattern. These genes were associated with
the global pattern. The average Pearson correlations between emission parameters and expression of genes
are shown for each global pattern (y-axis) using only genes with TSS within each 100bp bin (x-axis). The
LCL reference chromatin state [40] with the highest enrichment for each global pattern is indicated based
on the color on its left and the color legend on right.
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Figure S8: Fold enrichment of chromatin states for ASD 90-state model. The top heatmap shows
the emission parameters learned for the 90-state model using the ASD dataset. The global patterns are
on the x-axis. The samples are on the y-axis and are annotated as being either a case (dark purple) or
a control (light purple) to the right. The bottom heatmap shows the log2 fold enrichment of a previous
chromatin state annotation of a prefrontal cortex for a single reference epigenome using imputed data for
12-marks [40] (“Reference Chromatin State”). Significant enrichments are indicated with color (Binomial
Test, FDR<5%). The global patterns are annotated with two tracks above the emission parameters. The
first shows the chromatin state from the reference prefrontal cortex chromatin state annotation with the
highest enrichment. The second shows whether the state is significantly associated with ASD status (red)
or not (pink).
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Figure S9: ASD model gQTLs. The total number of significant gQTLs (FDR<5%) is shown (y-axis) as a
function of the number of states in the model (x-axis). Each point corresponds to one stacked ChromHMM
model. The number of gQTLs is maximized using an 90-state model denoted with the vertical line.
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GO term Total Obs Exp Fold Enrichment P FDR
cellular response to interleukin-1 114 9 1.53 5.89 3.85E-05 3.01E-02

rRNA processing 219 12 2.94 4.09 6.27E-05 4.46E-02
macromolecule modification 2922 65 39.17 1.66 4.04E-05 3.02E-02
protein metabolic process 3900 82 52.28 1.57 1.92E-05 1.68E-02

cellular macromolecule metabolic process 4497 92 60.28 1.53 1.37E-05 1.27E-02

Table S1: GO enrichment of genes associated with global pattern 49. We performed GO enrichment
of the 316 genes associated with global pattern 49 using the whole genome as the background. The terms
shown (“GO term”) were significantly enriched after correcting for multiple testing using an FDR threshold
of 5%. The total number of genes for the term (“Total”), the observed number of genes in the foreground
(“Obs”), the expected number of genes (“Exp”), the fold enrichment (“Fold Enrichment”), the raw p-value
(“P”), and the FDR corrected p-value (“FDR”) are shown in the table above.
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