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 Abstract 
 Predicting  interspecies  interactions  is  a  key  challenge  in  microbial  ecology,  as  such  interactions 
 shape  the  composition  and  functioning  of  microbial  communities.  However,  predicting  microbial 
 interactions  is  challenging  since  they  can  vary  considerably  depending  on  species’  metabolic 
 capabilities  and  environmental  conditions.  Here,  we  employ  machine  learning  models  to  predict 
 pairwise  interactions  between  culturable  bacteria  based  on  their  phylogeny,  monoculture  growth 
 capabilities,  and  interactions  with  other  species.  We  trained  our  models  on  one  of  the  largest 
 available  pairwise  interactions  dataset  containing  over  7500  interactions  between  20  species 
 from  2  taxonomic  groups  that  were  cocultured  in  40  different  carbon  environments.  Our  models 
 accurately  predicted  both  the  sign  (accuracy  of  88%)  and  the  strength  of  effects  (R  2  of  0.87) 
 species  had  on  each  other’s  growth.  Encouragingly,  predictions  with  comparable  accuracy  could 
 be  made  even  when  not  relying  on  information  about  interactions  with  other  species,  which  are 
 often  hard  to  measure.  However,  species’  monoculture  growth  was  essential  to  the  model,  as 
 predictions  based  solely  on  species’  phylogeny  and  inferred  metabolic  capabilities  were 
 significantly  less  accurate.  These  results  bring  us  a  step  closer  to  a  predictive  understanding  of 
 microbial communities, which is  essential  for engineering beneficial microbial consortia. 

 Introduction 
 Microbes  are  key  participants  in  various  processes,  ranging  from  the  health  of  humans  1  ,  animals 
 and  plants  2  to  global  biogeochemicals  cycles  3  .  The  impact  of  microbes  however,  is  usually  not 
 due  to  a  single  species  but  rather  caused  by  diverse  communities  of  interacting  species  4  . 
 Therefore,  the  mechanisms  by  which  microbial  species  promote  or  hinder  each  other’s  growth 
 has  been  studied  extensively  5  .  For  example,  negative  effects  can  occur  due  to  resource 
 competition  or  secretion  of  antimicrobials  6,7  ,  whereas  positive  ones  may  occur  due  to 
 cross-feeding  8  of metabolites, such as amino acids  9  . 

 Predicting  interspecific  interactions  is  necessary  to  understand  a  community’s  properties,  as 
 they  are  expected  to  be  shaped  by  interactions  within  the  community  10–13  .  Indeed,  pairwise 
 interactions  have  been  shown  to  be  predictive  of  the  structure  and  function  of  various  simplified 
 microbial  communities  14–18  .  However,  it  can  be  extremely  challenging  to  directly  measure  all 
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 pairwise  interactions  in  a  community  or  to  infer  them  from  sequencing  data  19–21  .  An  alternative 
 approach,  which  is  likely  essential  for  species-rich  communities  or  ones  comprised  of  fastidious 
 species, is developing methodologies for predicting how microbes affect each other’s growth. 

 Metabolic  modeling  and  genome-based  models  have  been  commonly  used  to  predict  microbial 
 interactions  22–24  .  These  approaches  predict  interactions  by  considering  the  overlap  and 
 complementarity  between  species’  metabolic  capabilities  and/or  their  resource  consumption  and 
 secretion  25,26  .  These  approaches  are  appealing  since  they  rely  solely  on  genomic  information. 
 However,  their  performance  depends  on  the  availability  of  well-annotated  genomes,  and  they 
 typically  do  not  account  for  non-metabolic  interaction  modalities,  such  as  the  secretion  of 
 antibiotics or pH modifications  27  . 

 Another  promising  approach  to  interaction  prediction  is  the  use  of  machine  learning  models  28  . 
 The  use  of  supervised  and  unsupervised  machine  learning  algorithms  has  increased  in  the  past 
 few  years  in  many  biological  fields,  including  microbiology  29,30  .  Previous  works  have  managed  to 
 show  that  microbial  community  composition  can  be  predicted  using  deep  learning  31,32  .  In 
 addition,  the  use  of  supervised  machine  learning  tools  to  accurately  predict  the  sign  of  microbial 
 interactions  (positive  or  negative)  based  on  genomic  data  and  inferred  metabolic  pathways  has 
 recently  been  demonstrated  33  .  While  the  latter  results  for  bacterial  interaction  prediction  are 
 promising,  they  are  restricted  to  engineered  auxotrophic  species,  in  silico  simulations,  and  a 
 handful  of  soil  species  in  a  single  environment.  Since  interactions  vary  significantly  between 
 species  and  can  drastically  change  across  environments  even  between  the  same  species,  it  is 
 still  not  clear  to  what  extent  machine  learning  tools  can  predict  interactions  between 
 non-engineered species across a range of nutrient conditions. 

 Here,  we  assess  the  ability  of  machine  learning  tools  to  predict  microbial  interactions  using  one 
 of  the  largest  datasets  of  experimentally-validated  microbial  interactions.  This  dataset  contains 
 all  pairwise  interactions  among  20  different  soil  bacteria  from  2  taxonomic  groups  that  were 
 cultured  in  40  different  media,  each  containing  a  single  carbon  source  or  a  mixture  of  all  carbon 
 sources.  Combined  with  phylogenetic  information  and  phenotypic  features,  which  were  created 
 from  the  dataset,  machine  learning  models  were  able  to  accurately  predict  both  the  sign  and  the 
 strength of pairwise interspecific interactions in this dataset. 

 Results 
 In  order  to  predict  how  species  affect  each  other,  we  have  used  additional  information,  beyond 
 the  interspecific  interactions,  regarding  the  species’  phylogeny  and  their  monoculture  yield  in 
 each  of  the  40  carbon  environments.  The  growth  of  all  species  in  monoculture  and  in  coculture 
 with  each  other  species  in  each  carbon  environment  was  measured  using  the  kChip 
 combinatorial  screening  platform  34  .  The  one-way  effect  of  one  species  on  another  in  a  given 
 environment  was  quantified  as  the  log  ratio  of  the  affected  species’  growth  yield  in  coculture  and 
 in  monoculture  in  that  environment  (see  Methods).  Information  regarding  each  species’ 
 phylogeny  and  metabolic  capabilities  were  included  as  features  based  on  the  species 
 phylogenetic  or  monoculture  growth  profile  similarity  (represented  as  the  first  2  principle 
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 components,  abbreviated  as  PCs,  of  the  phylogenetic  distance  matrix  for  each  species  or  as  the 
 first  4  PCs  of  the  monoculture  growth  distance  matrix,  see  Methods).  We  have  first  used  this 
 large  dataset  to  train  machine  learning  models  to  predict  either  the  sign  (positive/negative)  or 
 strength of one-way effects of one species on another’s growth yield (Fig. 1). 
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 Figure  1.  An  illustration  of  the  data  used  to  quantify  and  predict  bacterial  interactions  .  A. 
 All  pairwise  interactions  among  20  different  soil  bacteria  from  2  taxonomic  groups,  cocultured  in 
 40  different  carbon  sources  were  measured.  B.  Information  regarding  species’  phylogeny  and 
 metabolic  capabilities  were  created  from  the  dataset.  Machine  learning  models  were  trained  on 
 the  data,  in  order  to  predict  the  sign  and  strength  of  effects  of  one  species  on  the  growth  of 
 another. 

 Machine  learning  algorithms  predicted  well  both  the  sign  and  the  strength  of  one-way 
 growth yield effects 
 We  evaluated  the  predictive  ability  of  several  machine  learning  algorithms  and  found  that 
 tree-based  models  performed  best  for  predicting  both  effect  sign  and  strength  (XGBoost  for  both 
 sign  and  strength,  Fig.  S1).  The  performance  of  these  models  was  also  superior  to  that  of  null 
 models  that  always  predict  the  most  frequent  sign/  average  effect  strength  of  train  set,  and 
 threshold  models  that  use  a  predefined  threshold  of  a  single  feature  (e.g.  predict  a  negative 
 effect  if  the  metabolic  distance  between  the  interacting  species  is  above  a  threshold,  or  the 
 monoculture  growth  of  the  affected  strain  is  above  a  threshold).  These  results  confirm  that 
 machine  learning  models  can  predict  both  effect  sign  and  strength  better  than  models  with  a 
 simple decision role. 

 Tree-based  models  accurately  predicted  both  the  sign  and  strength  of  one-way  effects. 
 Quantitative  predictions  of  effect  strength  achieved  a  normalized  root-mean-square  error 
 (NRMSE)  of  0.35  and  R²  of  0.87  on  the  validation  set  (Fig.  2A).  Qualitative  predictions  of  effect 
 sign  had  an  out-of-sample  accuracy  of  0.88  as  well  as  high  Precision  (0.7),  Recall  (0.81)  and 
 Mathews  correlation  coefficient  (0.67),  which  accounts  for  the  fact  that  our  data  is  imbalanced 
 with  73%  negative  effects  (Fig.  2B,  Fig.  S2A).  Most  errors  in  effect  sign  prediction  (3.5%  false 
 positives,  7.7%  false  negative)  occurred  for  effects  whose  strength  was  close  to  0  (Fig.  S2B), 
 indicating  that  the  model  was  able  to  distinguish  well  between  effects  that  were  strongly 
 negative  or  positive,  but  had  difficulties  in  classifying  weaker  ones.  In  addition,  while  naive 
 models  achieved  similar  accuracy  as  the  XGBoost,  they  performed  very  poorly  in  all  other 
 matrices  (Fig.  2B,  Fig.  S2A),  strengthening  the  conclusion  that  simple  decision  roles  offered  little 
 predictive power. 
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 Figure  2.  Tree-based  machine  learning  models  accurately  predicted  the  sign  and  strength 
 of  one-way  growth  yield  effects.  A.  Measured  effect  vs  predict  effect  for  each  species  pair  in 
 the  validation  set  for  the  best  quantitative  model,  XGboost  (Methods).  Dark  gray  indicates 
 samples  with  the  same  sign  in  actual  effect  and  predicted  effect  while  light  blue  indicates 
 samples  with  different  signs.  B.  Comparison  of  Accuracy  and  Matthews  correlation  coefficient 
 for  the  best  qualitative  model  (XGboost  classifier),  null  model  (assign  common  effect  sign  in 
 train  set)  and  2  simple  one  feature  decision  role  models:  metabolic  distance  threshold  model 
 and  monoculture  growth  of  affected  strain  threshold  model  (Methods).  Other  metrics  (recall  and 
 precision) are in S2. 

 Monoculture growth yield is the most predictive feature 
 We  further  analyzed  the  contribution  of  each  feature  to  the  performance  of  the  models  using 
 SHapley  Additive  exPlantations  (SHAP),  a  game  theory  approach  that  measures  the 
 contribution  of  each  feature  to  the  total  prediction  of  the  model  35,36  .  How  well  both  species  can 
 grow  in  monoculture  in  the  carbon  environment  in  which  they  were  interacting  had  the  strongest 
 influence  on  the  prediction  of  both  effect  sign  and  strength  (Fig.  3,  Fig.  S3).  SHAP  analysis 
 indicates  that  higher  monoculture  growth  yield  of  the  affected  species  leads  to  a  stronger 
 negative  contribution  to  the  model’s  output.  In  other  words,  species  that  grow  better  in 
 monoculture  tend  to  be  more  negatively  affected  by  the  presence  of  additional  species.  This  is 
 consistent  with  previous  findings  that  monoculture  yields  shape  pairwise  interaction  s  37  . 
 Surprisingly,  using  information  regarding  species’  predicted  metabolic  pathways,  which  were 
 previously  shown  to  be  predictive  of  interactions,  instead  of  information  regarding  monoculture 
 growth  did  not  improve  the  predictive  ability  over  a  model  that  only  used  the  species’  phylogeny 
 (Fig. S4). 
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 Figure  3.  Monoculture  growth  is  the  most  important  feature  for  predicting  the  strength  of 
 effect  one  species  has  on  another’s  growth.  Top  10  most  important  features  in  the  best 
 performing  strength  prediction  model  (XGboost)  .  High  SHAP  values  indicate  positive  influence 
 on  the  predicted  effect,  and  low  values  indicate  negative  influence  on  the  predicted  effect.  Y-axis 
 represents  the  different  features,  sorted  in  descending  order  according  to  their  contribution  to 
 the  model.  Each  dot  represents  a  simulation  of  the  model  with  a  single  change  at  a  single 
 feature  value.  The  different  colors  represent  the  value  of  the  feature.  Similar  contribution  of 
 monoculture growth features appeared also in sign predictions (Fig. S3A). 

 While  tree-based  models  offered  improved  predictive  power  compared  to  simpler  models,  they 
 relied  on  having  information  regarding  each  species’  monoculture  growth  and  interactions  with 
 many  other  species  in  each  carbon  environment.  Obtaining  such  information  can  be  a  laborious 
 and  challenging  task,  especially  for  species  that  are  hard  to  culture  under  laboratory  conditions. 
 Therefore,  we  next  studied  how  accurately  we  can  predict  the  sign  and  strength  of  one-way 
 effects  when  only  partial  information  is  available.  To  do  so,  we  trained  new  models  with  only 
 partial  information  regarding  one  of  the  species  and  compared  the  accuracy  of  prediction  to 
 those of the models trained using all the data. 

 First,  we  evaluated  our  ability  to  predict  interactions  involving  species  for  which  we  have 
 monoculture  growth  data  but  no  coculture  data  by  removing  a  species  from  the  training  set. 
 Next,  we  evaluated  the  accuracy  of  prediction  when  neither  monoculture  nor  coculture  data  is 
 available  by  removing  a  species  from  the  training  set  and  removing  features  related  to 
 monoculture  growth  from  both  the  training  and  testing  sets.  In  the  latter  case,  predictions  are 
 based  only  on  phylogenetic  information.  Lastly,  we  included  a  naive  “phylogenetic  copy”  model 
 where  the  sign  or  strength  of  the  effect  is  assigned  to  be  identical  to  those  that  involve  the 
 phylogenetically closest species in the same carbon environment (Fig. 4A, Methods). 

 The  accuracy  of  predicting  the  sign  and  strength  of  one-way  effects  depended  strongly  on  the 
 availability  of  monoculture  growth  data,  but  not  on  coculture  data  (Figure  4.A,C).  The  lack  of 
 coculture  data  involving  a  given  species  increased  the  median  prediction  error  (quantified  using 
 the  NRMSE)  by  0.18  (from  0.34  to  0.52),  whereas  removing  monoculture  data  increased  the 
 median  error  by  0.3  (from  0.5  to  0.8).  Moreover,  when  monoculture  growth  data  is  not  available, 
 prediction  quality  was  similar  to  that  of  the  simple  “phylogenetic  copy”  model,  which  only 
 requires the phylogenetic distance matrix (median RMSE values of 0.83 and 0.79). 

 In  a  similar  way,  we  evaluate  our  ability  to  predict  interactions  that  occur  in  a  carbon 
 environment  for  which  we  have  only  partial  information.  First,  we  removed  a  carbon 
 environment  from  the  training  set.  Next,  we  also  removed  features  related  to  monoculture 
 growth  from  both  the  training  and  testing  sets.  Lastly,  we  included  a  naive  “metabolic  copy” 
 model  where  the  sign  or  strength  of  effect  is  assigned  to  be  identical  to  that  of  the  same  species 
 in the metabolically closest carbon environment (Fig. 4B, Methods). 
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 We  again  found  that  prediction  accuracy  depended  more  strongly  on  the  availability  of 
 monoculture  growth  data  than  on  coculture  data  (Fig.  4D),  although  overall  predictions  were 
 less  accurate.  The  lack  of  coculture  data  involving  a  given  environment  increased  the  median 
 prediction  error  by  0.15  (from  0.42  to  0.57),  whereas  removing  monoculture  data  increased  the 
 median  error  by  0.4  (from  0.57  to  0.9).  The  same  pattern  of  improvement  for  sign  predictions 
 occurs  among  all  tested  metrics  and  for  both  species  partial  models  and  environment  partial 
 models  (Fig.  S5).  These  results  indicate  that  if  a  species  monoculture  growth  in  a  given  carbon 
 environment  is  known,  growth  effects  involving  that  species  can  be  well  predicted  given  other 
 species  interactions  in  the  same  environment,  or  the  same  species’  interactions  in  other 
 environments. 
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 Figure  4.  The  accuracy  of  predicting  one-way  effect  depends  strongly  on  the  availability 
 of monoculture growth data, but not on coculture data. 
 A.  A  summary  of  the  4  compared  models  and  the  information  used  by  each  model.  Partial 
 information  (left  to  right):  Coculture,  Monoculture  (of  both  species),  phylogenetic  tree  and  type  of 
 model  (machine  learning  or  simple  decision  model).  The  models  differ  by  the  features  they  are 
 trained  on  and  their  test  set  (see  Methods).  B  .  Comparison  of  NRMSE  (normalized  root  mean 
 square  error)  of  several  partial  quantitative  models,  on  “uncultured”  strain.  Each  dot  represents 
 the  NRMSE  of  a  different  strain  that  was  excluded  from  the  train  set  and  was  included  in  the  test 
 set.  The  models  are  the  same  as  in  A.  Dashed  line  represents  the  performance  of  a  null  model 
 (average  effect  in  the  train  set).  C.  Comparison  of  NRMSE  (normalized  root  mean  square  error) 
 of  several  partial  quantitative  models,  on  “uncultured”  carbon  environment.  Each  dot  represents 
 the  NRMSE  of  a  different  carbon  source  that  was  excluded  from  the  train  set  and  was  included 
 in  the  test  set.  The  models  are  the  same  as  in  B.  Dashed  line  represents  the  performance  of  a 
 null  model  (average  effect  of  train  set).  Qualitatively  similar  results  were  found  also  for 
 predictions of effect sign (Fig. S5). 

 Accuracy of “phylogenetic copy” model was higher for closely related species 
 Since  our  best  option  for  predicting  interactions  involving  “unclutured”  species  (ones  for  which 
 we  have  no  monoculture  or  coculture  data)  was  the  simple  “phylogenetic  copy”  model,  we  next 
 examined  how  the  phylogenetic  distance  from  the  “copied”  species  (for  which  interaction 
 information  is  available)  affects  the  prediction  quality.  As  expected,  the  prediction  accuracy  and 
 distance  from  “copied”  species  were  significantly  positively  correlated  (  Fig.5;  Pearson 
 correlation  coefficient  0.56,  p-value  <0.001)  .  In  other  words,  strains  that  are  phylogenetically 
 similar  to  the  uncultured  strain  will  be  better  predictors  of  the  uncultured  strain  at  various  carbon 
 sources  whereas  the  greater  the  distance,  the  worse  the  predictions  gets.  However,  poor 
 prediction  accuracy,  lower  than  that  achieved  using  the  average  effect  strength,  sometimes 
 occurs  even  when  copying  interactions  from  species  within  the  same  family,  and  prediction 
 accuracy  varied  between  families.  These  results  indicate  that  interactions  tend  to  be  conserved 
 between  closely  related  species,  but  the  extent  of  conservation  may  vary  between  taxonomic 
 groups. 
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 Figure  5.  A  simple  phylogenetic  copy  model  can  provide  predictive  power  when  based  on 
 closely  related  species.  Each  dot  represents  a  prediction  for  a  single  species,  using  one  of  the 
 other  19  species  as  the  copied  species  (interaction  of  the  copied  species  in  the  same  carbon 
 source.)  Different  colors  represent  the  distance  category:  the  copied  strain  is  from  the  same 
 taxonomic  family  (dark  blue,  light  blue)  or  form  a  different  taxonomic  family  (red).  Other  metrics 
 for  sign  predictions  (Matthews  correlation  coefficient,  Accuracy,  recall  and  precision)  are  found 
 in S6. 

 Combining  one-way  effect  predictions  is  as  accurate  as  jointly  predicting  two-way 
 interactions 
 Lastly,  we  studied  how  well  we  can  predict  two-way  interactions  that  comprise  both  one-way 
 effects  of  the  interacting  species  on  one  another.  We  predicted  two-way  interactions  using  the 
 same  best-performing  tree-based  models  that  were  used  for  predicting  one-way  effects 
 (re-trained  for  multilabel  output.  See  Methods).  Similar  to  one-way  effects,  we  quantified  the 
 accuracy  of  qualitative  predictions  of  interaction  type:  competition  (-,  -),  mutualism  (+,  +)  and 
 parasitism (-, +) and of quantitative predictions of interaction strength (Methods). 

 Surprisingly,  jointly  predicting  two-way  interactions  was  not  more  accurate  than  combining  the 
 independent  predictions  of  two  one-way  effects  (Fig.  6A,B  Fig.S7).  To  better  understand  this 
 finding,  we  quantified  the  dependence  between  reciprocal  effects  between  a  pair  of  species 
 using  Maximal  Information  Coefficient  38  (MIC)  –  a  metric  for  capturing  general  dependencies 
 between  variables  that  ranges  from  0  (independent)  to  1  (fully  dependent).  Reciprocal  effects 
 between  a  pair  of  species  were  only  weakly  dependent  on  one  another  (MIC  =  0.16),  indicating 
 that knowing how one species affects another isn't very predictive of the reciprocal effect. 

 In  addition,  we  trained  the  same  one-way  strength  model  used  to  predict  one-way  effect,  but 
 with  the  reciprocal  effect  as  an  additional  feature.  Adding  the  reciprocal  effect  had  little  effect  on 
 prediction  accuracy  (NRMSE  decrease  of  0.02,  Fig.  6C)  and  the  reciprocal  effect  contributed 
 little  to  predictions  (Fig.  S8).  In  other  words,  knowing  the  other  species'  effect  doesn’t  add  any 
 helpful  information,  as  this  information  is  redundant  when  other  features  (monoculture  growth 
 yields, metabolic PC and phylogenetic PC) are available. 
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 Figure  6.  Reciprocal  effects  are  weakly  dependent  on  one  another  and  therefore  do  not 
 improve  the  accuracy  of  interaction  predictions.  A.  NRMSE  for  using  one-way  strength 
 model to predict two-way effects, and with multilabel strength model. 
 B.  The  relationship  between  the  one-interaction  effects.  Each  dot  is  a  single  interacting  species, 
 where  the  x-axis  and  the  y-axis  are  the  effects  of  one  species  on  the  other.  C.  NRMSE  for 
 one-way  strength  model  without  the  reciprocal  effect  as  a  feature,  and  with  the  reciprocal  effect 
 as a feature. 

 Discussion 
 Microbial  interactions  can  help  predict  the  properties  of  microbial  communities,  but  are 
 challenging  to  measure  19–21  .  Here,  we  demonstrate  that  tree-based  machine  learning  models 
 can  accurately  predict  the  sign  and,  more  importantly,  the  strength  of  bacterial  interactions. 
 These  predictions  were  based  on  the  species’  phylogeny  as  well  as  on  phenotypic  features 
 which  are  extracted  from  the  monoculture  growth  yields  of  the  species  in  various  carbon 
 courses. 

 The  ability  of  the  affected  species  to  grow  in  monoculture  in  a  given  the  carbon  environment 
 was  the  feature  that  contributes  the  most  to  prediction.  Consistent  with  previous  findings, 
 species  that  grow  well  in  monoculture  are  predicted  to  be  more  negatively  affected  by 
 coculturing  with  other  species,  and  to  affect  other  species  more  positively.  While  prediction 
 accuracy  depended  strongly  on  the  availability  of  a  species’  monoculture  growth  data,  it  was 
 less  sensitive  to  the  removal  for  coculture  data.  This  is  encouraging,  since  it  indicates  that  the 
 number  of  measurements  allowing  accurate  interaction  prediction  scales  linearly,  rather  than 
 quadratically with the number of species. 
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 In  the  absence  of  monoculture  growth  data,  a  simple  phylogenetic  copy  model,  which  is  intuitive 
 and  easy  to  create,  offered  some  predictive  power.  In  this  model,  interactions  between  a  pair  of 
 species  were  predicted  to  be  identical  to  those  that  occur  between  closely  related  species  in  the 
 same  environment.  This  indicates  that  bacterial  interactions  are  to  some  extent  phylogenetically 
 conserved,  at  least  within  the  two  families  analyzed  here,  and  that  known  interactions  may  be 
 informative  regarding  the  interactions  between  other,  closely  related,  species  for  which  no 
 growth data is available. 

 In  contrast,  predicting  interactions  in  new  carbon  environments  was  significantly  less  accurate. 
 Predicting  that  the  interaction  between  a  pair  of  species  was  identical  to  the  interaction  of  the 
 same  pair  in  the  most  “similar”  carbon  environment  was  not  accurate.  This  poor  accuracy  may 
 be  due  to  the  fact  that  carbon  sources  are  not  clustered  into  distinct  groups  based  on  the 
 species’  growth  abilities  (like  species  are  clustered  according  to  the  phylogenetic  tree;  Fig.  S8). 
 More  in-depth  research  is  needed  in  order  to  best  use  information  from  one  environment  to 
 make  predictions  regarding  another  environment,  which  may  improve  interaction  predictions, 
 especially in “new” carbon environments  39  . 

 Surprisingly,  models  that  were  trained  using  information  regarding  each  species’  inferred 
 metabolic  pathways  did  not  achieve  higher  prediction  accuracy  than  models  that  used  only 
 phylogenetic  information  (Fig.  S4).  However,  the  metabolic  pathways  were  inferred  from  the  16S 
 sequences  using  picrust2  40  ,  rather  than  from  well-annotated  whole  genome  sequences. 
 Therefore,  it  is  possible  that  the  addition  of  metabolic  pathways  that  are  constructed  from 
 whole-genome  sequences  will  improve  the  performance  of  the  models,  improve  prediction 
 accuracy  for  uncultured  species,  and  offer  insights  regarding  the  mechanistic  basis  underlying 
 bacterial interactions. 

 Predicting  pairwise  interspecific  interactions  is  crucial  for  understanding  the  structure,  stability 
 and  function  of  microbial  communities.  Here,  we  demonstrate  that  tree-based  machine  learning 
 models  can  be  used  for  accurately  predicting  interactions  of  different  species  within  the  same 
 taxonomic  group  or  between  different  taxonomic  groups,  in  a  relatively  large  set  of  conditions 
 (40  different  carbon  environments).  Further  work  is  needed  in  order  to  test  the  ability  of  this 
 approach  to  predict  interactions  between  more  diverse  taxonomic  groups,  and  in  more  complex 
 situations  involving  multiple  species  and  nutrients.  Being  able  to  predict  microbial  interactions 
 would  put  us  one  step  closer  to  predicting  the  functionality  of  a  microbial  communities  and  to 
 rationally microbiome engineering. 
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 Methods 

 Data 
 The  dataset  contains  over  7500  pairwise  interactions  involving  20  species  from  2  taxonomic 
 groups  in  40  different  carbon  environments,  as  well  as  each  species’  monoculture  growth  yield 
 in  each  carbon  environment  (see  previous  work  37  ).  Briefly,  species’  growth  in  mono-  and 
 coculture  was  assayed  using  the  kChip  platform  -  a  high  throughput  nanodroplet-based 
 platform  for  combinatorial  screening  41  .  These  data  were  used  to  calculate  the  growth  effect  of 
 one  species  on  another  as  the  log  ratio  of  the  affected  species  growth  in  coculture  and  in 
 monoculture.  Lastly,  pairwise  interactions  given  by  both  the  effect  of  species  A  on  B  and  the 
 effect of species B on A  37  . 

 Features creation 
 We  created  features  representing  species’  phylogeny  based  on  a  previously  published 
 phylogenetic  distance  matrix  of  the  20  species  37  .  We  performed  principal  component  analysis 
 (PCA)  on  this  matrix  and  used  the  first  two  principal  components,  which  capture  >95%  of  the 
 variance,  as  features.  Features  that  represent  the  carbon  environments  were  based  on  the 
 species’  metabolic  profiles,  where  the  metabolic  profile  of  each  carbon  environment  is  the 
 monoculture  growth  yields  of  the  20  species.  We  performed  PCA  on  the  metabolic  profile  matrix 
 and  used  the  first  four  principal  components,  which  capture  >90%  of  the  variance,  as 
 features.These  features  represent  each  carbon  environment  according  to  similarities  in 
 monoculture  growth  yields  of  the  different  species.  In  addition,  we  included  a  metabolic  distance 
 feature,  which  we  calculated  as  the  Euclidean  distance  between  the  monoculture-growth  yields 
 profiles of each pair of interacting species. 

 Model  training 
 First,  the  data  was  split  into  2  groups  -  train  and  test  set  (80%  and  20%  respectively).  Then,  the 
 hyperparameters  of  each  model  were  tuned  by  performing  5-fold  cross-validation  on  the  train 
 set  and  choosing  the  parameter  values  that  resulted  in  the  best  performance  (highest  accuracy 
 for  qualitative  predictions,  lowest  RMSE  for  quantitative  predictions).  For  each  hyperparameter, 
 2500  values  were  sampled  uniformly  from  a  given  range,  presented  in  supplementary  Table1. 
 The  models  which  were  used  for  qualitative  predictions  are:  Random  forest  classifier,  Logistic 
 regression,  K  nearest  neighbors  classifier,  and  XGBoost  classifier.  The  models  which  were  used 
 for  quantitative  predictions  are:  Random  forest  regressor,  XGboost,  linear  regression  and  K 
 nearest  neighbors  regressor.  All  models  were  used  from  scikit-learn  open-source  package 
 (python). Hypertuning was made using RandomGridSearch (scikit-learn 1.0.1). 

 Naive models 
 In  addition  to  machine  learning  models,  we  evaluated  the  performance  of  several  simple 
 prediction role models: 

 1.  Null  models:  predict  the  effect  sign  to  be  the  most  frequent  sign  in  the  training  set  and 
 the effect strength to be the average interaction strength in the training set. 

 2.  Threshold  models  (for  effect  sign  only):  predict  the  effect  sign  based  on  whether  the 
 value  of  a  single  feature  exceeds  a  threshold  value.  The  threshold  value  was  set  to  be 
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 the  one  that  maximized  accuracy  in  the  training  set.  Two  threshold  models  were  created 
 -  one  based  on  the  metabolic  distance  between  a  pair  of  species  and  a  second  model 
 based on the monoculture growth yield of the affected species. 

 Models trained using partial information 
 In  order  to  evaluate  our  ability  to  predict  interactions  involving  species  or  carbon  environments 
 for which only partial information is available ,we created the following: 

 Partial information regarding a species 
 For  each  of  the  species  a  different  test  set  was  created  containing  only  the  species  interactions, 
 excluding  all  the  interactions  involving  the  species  from  the  train  set.  For  each  species  excluded 
 from  the  training  set  ,three  machine  learning  models  were  trained  using  different  sets  of 
 features: 

 1.  Without  coculture,  but  with  monoculture  growth  measurements  and  phylogenetic 
 features. 

 2.  Without coculture or monoculture growth measurements, but with phylogenetic features. 
 3.  Only with phylogenetic features. 

 Additionally, a simple decision role model was evaluated: 
 4.  Phylogenetic  copy  model  -  copies  the  interaction  (sign  or  strength)  of  the 

 phylogenetically  closest  (according  to  the  phylogenetic  distance)  strain  in  the  same 
 carbon environment, when interacting with the same partner. 

 Overall,  4*20*2  (4  types  of  models,  20  species  and  2  types  of  prediction)  models  were  trained 
 and compared. 

 Partial information regarding a carbon environment 
 For  each  of  the  carbon  environments  a  different  test  set  was  created  containing  only  the 
 interactions  occurring  in  that  environment,  excluding  all  the  interactions  in  that  environment  from 
 the  train  set.  For  each  carbon  environment  excluded  from  the  training  set,  three  machine 
 learning models were trained using different sets of features: 

 1.  Without  coculture  (in  the  specific  environment),  but  with  monoculture  growth 
 measurements and phylogenetic features. 

 2.  Without  coculture  or  monoculture  growth  measurements  (in  the  specific  environment), 
 but with phylogenetic features. 

 3.  Only with phylogenetic features. 
 Additionally, a simple decision role model was evaluated: 

 4.   Metabolic distance model - copied the interaction (sign or strength) in the most similar 
 carbon environment (according to the Euclidean distance of the environments’ metabolic 
 profiles). 

 As  the  monoculture  growth  yields  were  used  for  creating  the  metabolic  representation  of  the 
 different  carbon  environment,  the  metabolic  representation  of  the  carbon  environment  excluded 
 from  the  training  set  was  generated  using  the  PCA  of  the  other  carbon  environment.Overall, 
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 4*40*2  (4  types  of  models,  40  carbon  environments  and  2  types  of  prediction)  models  were 
 trained and compared. 

 Model performance evaluation 
 The  performance  of  models  predicting  effect  sign  was  evaluated  using  Matthews  correlation 
 coefficient,  which  accounts  for  the  fact  that  negative  interactions  are  more  frequent  in  our 
 dataset  (73%).  The  performance  of  models  predicting  effect  strength  was  evaluated  using 
 normalized  RMSE  (NRMSE),  defined  as  the  RMSE  divided  by  the  standard  deviation  of  the 
 observed effects in the test set. 

 Two-way interactions prediction 
 A  two  way  interaction  (between  species  A  and  B)  is  composed  of  a  pair  of  reciprocal  effects 
 (Effect of B on A, Effect of A on B). There are two ways to predict two-way growth effect: 

 1.  Train  the  one-way  effect  model  and  predict  each  of  the  two  reciprocal  effects 
 independently. 

 2.  Train  a  two-way  model  with  multi  label  output  (each  prediction  is  in  the  form  of  [Effect  of 
 B on A, Effect of A on B]) and jointly predict the two-way interaction. 
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