1 Comparative genomic analyses of *Lactococcus garvieae* isolated from bovine mastitis

- 2 in China
- 3 Yushan Lin^{1#}, Jinge Han^{2#}, Herman W. Barkema³, Yue Wang¹, Jian Gao¹ John P. Kastelic³,
- 4 Bo Han^{1*}, Shunyi Qin^{2*}, Zhaoju Deng^{1*}
- ¹Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China
- 6 Agricultural University, Beijing, 100193, P. R. China
- ⁷²College of Animal Science and Veterinary Medicine, Tianjin Agricultural University,
- 8 Tianjin, 300384, P. R. China
- ⁹ ³Department of Production Animal Health, Faculty of Veterinary Medicine, University of
- 10 Calgary, Calgary, AB, Canada, T2N 4N1
- 11
- [#]Both contributed equally
- 13 ***Correspondence:** Bo Han: <u>hanbo@cau.edu.cn</u>; Shunyi Qin: qinshunyi@163.com;
- 14 Zhaoju Deng: zhaoju2020@hotmail.com
- 15
- 16 **Running title:** Comprehensive genomic analyses of *Lactococcus garvieae*

- 18 **No. of words: 4157**
- 19 No. of Figures: 7
- 20 No. of Tables: 3

21	ABSTRACT Lactococcus garvieae is an emerging zoonotic pathogen, but there are
22	few reports regarding bovine mastitis. The recent prevalence of L. garvieae poses an
23	increasing disease threat and global public health risk. A total of 39 L. garvieae
24	isolates were obtained from 2899 bovine clinical mastitis milk samples in 6 provinces
25	of China from 2017 to 2021. Five clonal complexes were determined from 32 MLST
26	types of <i>L. garvieae</i> ; ST46 was the predominant sequence type and 13 novel MLST
27	types were identified. All isolates were resistant to chloramphenicol and clindamycin,
28	but susceptible to penicillin, ampicillin, amoxicillin-clavulanic acid, imipenem,
29	ceftiofur, enrofloxacin, and marbofloxacin. Based on genomic analyses, L. garvieae
30	had 6310 genes, including 1015, 3641 and 1654 core, accessory and unique genes. All
31	isolates had virulence genes coding for collagenase, fibronectin-binding protein,
32	Glyceraldehyde-3-phosphate dehydrogenase, superoxide dismutase and NADH
33	oxidase. Most isolates had <i>lsaD</i> and <i>mdtA</i> AMR genes. Based on COG results, the
34	functions of defense, transcription and replication, recombination and repair were
35	enhanced in unique genes, whereas functions of translation, ribosomal structure and
36	biogenesis were enhanced in core genes. The KEGG functional categories enriched in
37	unique genes included human disease and membrane transport, whereas COG
38	functional categories enriched in core genes included energy metabolism, nucleotide
39	metabolism and translation. No gene was significantly associated with host specificity.
40	In addition, core genome SNPs analysis suggested potential host adaptation of some

41	isolates in several sequence types. Therefore, this study characterized L. garvieae
42	isolated from mastitis and assessed host adaptation of <i>L. garvieae</i> to various hosts.
43	IMPORTANCE This study provides important insights on bovine mastitis key topic
44	pathogen Lactococcus garvieae, which constitutes mastitis concerns. However,
45	comprehensive genomic analyses of L. garvieae from dairy farms have not been
46	performed. This study gives a detailed and comprehensive novel feature in L. garvieae,
47	an important but poorly characterized bacterium, recovered in the past 5 years in 6
48	Chinese provinces. We documented diverse contributory genetic processes, including
49	predominant sequence type ST46 and 13 novel MLST types. L. garvieae had 6310
50	genes, including 1015, 3641 and 1654 core, accessory and unique genes. All isolates
51	had virulence genes coding for collagenase, fibronectin-binding protein,
52	Glyceraldehyde-3-phosphate dehydrogenase, superoxide dismutase and NADH
53	oxidase, and resistant to chloramphenicol and clindamycin. Most isolates had <i>lsaD</i> and
54	mdtA antimicrobial resistance genes. No gene was significantly associated with host
55	specificity. This is the first absolute quantification of <i>L. garvieae</i> isolated from mastitis
56	and identified host adaptation of <i>L. garvieae</i> to various hosts.
57	KEYWORDS bovine mastitis, Lactococcus garvieae, population structure, virulence
58	genes, antimicrobial resistance, host adaptation

59 INTRODUCTION

60	Bovine mastitis is a prevalent and costly disease on dairy farms worldwide $(1, 2)$. It is a
61	multifactorial disease, often caused by bacteria (2). Bacterial pathogens associated with
62	bovine mastitis are broadly classified as major (Staphylococcus aureus, Escherichia
63	coli, Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis,
64	Enterococcus spp. etc.) and minor pathogens (Non-aureus Staphylococci spp.,
65	Lactococcus spp., Corynebacterium spp., etc.) (3). Most studies have focused on major
66	pathogens, with only limited studies of minor pathogens.
67	Lactococcus garvieae is a zoonotic pathogen reported to cause infections in fish (4)
68	and humans (5–8). It is also considered a minor pathogen for bovine mastitis, with
69	transmission attributed to environmental reservoirs (2). There are limited reports on
70	bovine mastitis caused by <i>L. garvieae</i> (9–15), primarily descriptive studies of
71	phenotypes or genotypes. However, detailed whole genome characterization of L.
72	garvieae associated with bovine mastitis is lacking.
73	Predominant strain types of mastitis pathogens have been described for various
74	pathogens (16–20). Elucidating population structure and diversity of mastitis pathogens
75	informs evidence-based mastitis control programs that target those prevalent strain
76	types.
77	Bacterial pathogenicity is primarily determined by virulence factors; some
78	facilitate adhesion and invasion, whereas antimicrobial resistance, particularly
79	multi-drug resistance, is an important threat to public health (21). For L. garvieae,

80	several virulence factors and antimicrobial resistance genes were identified using
81	traditional methods (e.g., PCR) targeted at specific virulence genes (22-24). However,
82	a comprehensive profiling of its virulence and antimicrobial resistance genes are
83	lacking.
84	Host adaptation of bovine mastitis associated pathogens have been reported for
85	Staphylococcus aureus (25) and Streptococcus agalactiae (26). Infections caused by L.
86	garvieae in humans, fish and cattle have been reported, but potential host adaptation of
87	L. garvieae has not been studied. Therefore, our objectives were to: 1) resolve the
88	population structure; 2) identify virulence genes and antimicrobial resistance genes;
89	and 3) determine genes associated with host specificity.
90	
91	RESULTS
91 92	RESULTS A total of 39 <i>L. garvieae</i> isolates from 2899 clinical mastitis composite milk samples
92	A total of 39 L. garvieae isolates from 2899 clinical mastitis composite milk samples
92 93	A total of 39 <i>L. garvieae</i> isolates from 2899 clinical mastitis composite milk samples collected from 13 large dairy farms in 6 provinces in Northern China from April 2017
92 93 94	A total of 39 <i>L. garvieae</i> isolates from 2899 clinical mastitis composite milk samples collected from 13 large dairy farms in 6 provinces in Northern China from April 2017 to September 2021. Detailed information of these isolates is provided in Table 1 .
92 93 94 95	A total of 39 <i>L. garvieae</i> isolates from 2899 clinical mastitis composite milk samples collected from 13 large dairy farms in 6 provinces in Northern China from April 2017 to September 2021. Detailed information of these isolates is provided in Table 1 . MLST and Minimum Spanning Tree. MLST analysis assigned the 86 <i>L</i> .
92 93 94 95 96	A total of 39 <i>L. garvieae</i> isolates from 2899 clinical mastitis composite milk samples collected from 13 large dairy farms in 6 provinces in Northern China from April 2017 to September 2021. Detailed information of these isolates is provided in Table 1 . MLST and Minimum Spanning Tree. MLST analysis assigned the 86 <i>L</i> . <i>garvieae</i> isolates into 32 STs (Table 2), of which 13 were novel STs: ST46 to ST58.
92 93 94 95 96 97	A total of 39 <i>L. garvieae</i> isolates from 2899 clinical mastitis composite milk samples collected from 13 large dairy farms in 6 provinces in Northern China from April 2017 to September 2021. Detailed information of these isolates is provided in Table 1 . MLST and Minimum Spanning Tree. MLST analysis assigned the 86 <i>L.</i> <i>garvieae</i> isolates into 32 STs (Table 2), of which 13 were novel STs: ST46 to ST58. The most common sequence type was ST46 (n = 13), followed by ST48 (n = 9). The 32

- 101 complex CC4 and CC5, respectively, whereas, the remaining 24 isolates were
- 102 singletons.

103	Antimicrobial Resistance Profile and Genes. Antimicrobial resistance patterns
104	of <i>L. garvieae</i> are listed in Table 3 . All isolates were resistant to chloramphenicol and
105	clindamycin. There were also high resistance rates for amikacin (90%), cefpodoxime
106	(82.5%), cefazolin (45%), and gentamicin (37.5%), whereas few isolates (5%) were
107	resistant to erythromycin. Meanwhile, all isolates were susceptible to penicillin,
108	ampicillin, amoxicillin-clavulanic acid, imipenem, ceftiofur, enrofloxacin and
109	marbofloxacin. Regarding multidrug resistance, there were 5, 14, 12, 6, 2 and 1 isolates
110	resistant to 3, 4, 5, 6, 7, and 8 antimicrobials, respectively.
111	Distribution of antimicrobial resistance (AMR) genes with country, host and clonal
112	complex information are presented in Fig. 2. The most common genotypic AMR
113	markers were: (i) multidrug protein first reported in L. garvieae, represented by the
114	lsaD gene (97% of isolates); (ii) resistance-nodulation-cell division antibiotic efflux
115	pump, represented by the mdtA gene (97% isolates); and (iii) tetracycline-resistant
116	ribosomal protection protein, coded by <i>tetS</i> gene (14 isolates, including 12 from current
117	bovine samples). Other tetracycline-resistant genes, tetL and tetM, were identified in
118	only 3 isolates. Three isolates, namely LG728, LG791 and MGYG-HGUT-00230,
119	harbored the most abundant AMR genes, the gene number of which was 14, 7, 5
120	respectively. Genes cat, dfrG, ermA and lunD were only present in LG728, and gene
121	<i>lnuD</i> was only in MGYG-HGUT-00230. Genes <i>ermB</i> , <i>fexA</i> and <i>optrA</i> were present in

122	LG728 and LG791. Genes acc(6')-aaph(2'') and ant(6)-la were identified in LG728
123	and MGYG-HGUT-00230. However, no AMR genes were detected in 3 isolates that
124	belonged to ST18: A1, DCC43 and FDAARGOS_893.
125	Virulence Genes. The occurrence and distribution of putative virulence genes are
126	shown in Fig. 3. The putative virulence factors were classified into 5 functional
127	categories: toxin, iron uptake, capsule formation, adherence, and enzyme.
128	Among the 3 toxin-related genes, hyl-II was present in all isolates, whereas hyl-I
129	and hyl-III were absent in ST18 only (represented by 3 isolates: A1, DCC43 and
130	FDAARGOS_893). Nine iron uptake genes (<i>fepB</i> , <i>fepC</i> , <i>fepD</i> , <i>fecB</i> , <i>fecC</i> , <i>fecD</i> , <i>fecE</i> ,
131	<i>feoA</i> , and <i>feoB</i>) were detected in > 81 isolates. In contrast, <i>fecE</i> was absent only in
132	EP01. However, <i>fecB</i> was absent in EP01 and FDAARGOS_893. <i>fecD</i> , <i>feoA feoB</i> , <i>fepB</i> ,
133	<i>fepC</i> and <i>fepD</i> were absent in 4 isolates: A1, EP01, DCC43 and FDAARGOS_893.
134	Furthermore, <i>fecC</i> was absent in 5 isolates: A1, EP01, DCC43, FDAARGOS_893 plus
135	FDAARGOS_1063. With respect to the 9 adherence-associated virulence factors,
136	adhPavA and putative collagenase were identified in all isolates. The gene adhPsaA
137	was absent in the same 4 isolates above (A1, EP01, DCC43 and FDAARGOS_893),
138	whereas Adhesin was detected in 22 isolates. Genes expressing LPxTG proteins
139	(LPxTG-1, LPxTG-2, LPxTG-3, LPxTG-4, LPxTG-5, and LPxTG-6) were in 4 to 43%
140	of isolates. Six enzyme-related virulence factors were detected in almost all isolates,
141	although eno and srtA were exclusively absent from 2 (MGBC116427 and UBA11300)

142 and 4 isolates (A1, EP01, DCC43 and FDAARGOS_893). Regarding 16 genes

143	encoding for the capsule gene cluster, the number of gene presented in isolates varied
144	from 0 to 16. Lg2 and JJJN1 were identified with all 16 genes, whereas 47 isolates had
145	0 genes.
146	Co-occurrence of virulence genes was visualized in Fig. 4, where each box had a
147	phi coefficient value. A phi value of 1.0 indicates a perfect positive relationship
148	between the 2 variables, whereas values > 0.7 indicates a fair positive relationship.
149	Most associations among virulence genes were very weak. However, there were
150	strongly positive correlations between 8 genes, including <i>adhPsaA</i> , <i>srtA</i> and 6 iron
151	uptake genes (fecD, feoA, feoB, fepB, fepC and fepD). In addition, toxin-related genes
152	hyl-I and -3 were also strongly positively associated with each other and those 8 genes.
153	Furthermore, fecC was strongly positively associated with hyl-I, hyl-III and the 8 genes.
154	LPxTG-4 was strongly positively associated with Adhesin, whereas fecB had strong
155	associations with the 8 genes. However, there were no strong negative associations
156	among the presence of virulence genes.
157	Pan-Genome Analyses. The pan-genome of 86 L. garvieae isolates tested in this
158	study had 6310 genes. The core genome (shared by 100% isolates) consisted of 1015
159	genes. The accessory genome (genes in >2 isolates but not in all) consisted of 3641
160	genes, and the unique genome was composed of 1654 genes. According to BPGA's
161	calculation, the pan genome was open but approached convergence (Fig. 4A).
162	Functional annotation of genes in the pan-genome performed using the COG and
163	KEGG databases revealed a distribution of functional categories among 3 pan-genome

164	sets (Fig. 4B, 4C and 4D). The functions of defense mechanisms, transcription and
165	replication, recombination and repair were enhanced in unique genes, whereas the
166	functions of translation, ribosomal structure and biogenesis were enhanced in core
167	genes in KEGG functional pathways (Fig. 4B). The COG functional categories
168	enriched in the unique genome included human disease and membrane transport (Fig.
169	4C). By contrast, COG categories enriched in the core genome included energy
170	metabolism, nucleotide metabolism and translation (Fig. 4D).
171	Phylogenetic Analyses. A phylogenetic tree was constructed based on the core
172	genes of 86 L. garvieae genomes (Fig. 5). The longer the branch, the more distant the
173	evolutionary relationship. All trees had 3 clades that contained 4, 38 and 44 isolates
174	respectively. All local isolates except Hebei-B-22 were in the same clades. EP01 was
175	phylogenetically distant from the others. There were signs of host adaptation, which
176	consisted of isolates from various hosts.
177	Phylogenetic tree based on 16s rRNA (Fig. 5A) were similar to that using the core
178	genes with minor differences. For example, LG9 was assigned to clade A in core gene
179	based phylogenetic tree but in clade B in 16S rRNA based phylogenetic tree.
180	Both trees corresponded well with STs and CCs predicted by GrapeTree analysis.
181	For core gene based phylogenetic tree (Fig. 5B), all isolates that belonged to the same
182	CC were grouped in the same cluster, except 2 isolates (LG9 and IBB3403) in the 16S
183	rRNA-based phylogenetic tree.

184 **Pan-Genome-Wide Association Analyses.** No significant association was

- 185 detected between genes and either country or host.
- 186 **Core-genome SNPs Analyses.** The core-genome single nucleotide
- 187 polymorphism (SNPs) based phylogenetic tree with metadata annotation is displayed in
- 188 Fig. 6. The numbers of core-genome SNPs among 86 isolates are provided in
- 189 Supplementary Table S1. Several isolates from various hosts were phylogenetically
- 190 closely related in core SNPs. For example, the number of SNPs between isolates within
- 191 the same MLST but a different host were: DM12426 (human) and CT2 (fish) was 0,
- 192 1001287H_170206_H11 (human) and UBA5784 (metal) was 5,
- Lg-ilsanpaik-gs201105 (human) and Hebei-B-22 (cow) was 11, 21881 (human) and
- 194 M14 (cow) was 105, which indicates potential host adaptation in *L. garvieae*.

195 Associations between the Co-occurrence of Virulence Genes. Co-occurrence

- 196 of virulence genes was visualized in Fig. 7. SortaseA, LPxTG-6, and adhensin PsaA
- 197 was in co-occurrence with *fecB*, *fecC*, *fecD*, *feoA*, *feoB*, *fepB*, *fepC*, *fepD*, *hemolysin I*,
- and *hemolysin III*.
- 199

200 **DISCUSSION**

- 201 Although L. garvieae was first isolated as a causative agent of bovine mastitis (27),
- 202 most reports have focused more on the epidemiology of fish and human cases. In
- addition, many studies used sequencing to investigate genotypic characteristics of L.
- 204 garvieae isolates (8, 28–40). Therefore, we collected 39 L. garvieae isolates from

205 bovine mastitis in China and conducted comparative genome sequence analysis of *L*.

201	•
206	garvieae.

207	The prevalence of <i>L. garvieae</i> from clinical mastitis sample was 1.35% during
208	2017-2021, which increased from 0% in 2017 to 4.10% in 2020 in China. That <i>L</i> .
209	garvieae has been misclassified into Streptococcus spp. (41) has resulted in
210	underreporting of L. garvieae. Similarly, the true incidence of human infective
211	endocarditis is difficult to assess due to misidentification with other gram-positive
212	cocci (42). This is the first report regarding the prevalence of <i>L. garvieae</i> in Chinese
213	dairy herds.
214	The MLST analysis clustered 86 L. garvieae isolates into 32 distinct STs, with 5
215	CCs and 18 singletons, which is consistent with the population structure in isolates
216	from other hosts (37, 38, 43), the environment, or foods (44). All strains, except
217	Hebei-B-22, were new STs and phylogenetically close to each other. However, they
218	were distant from isolates of bovine mastitis in other countries, which might indicate
219	geographic effects on the phylogeny. Meanwhile, new STs profiles are comprised of
220	new alleles in gene loci (e.g., <i>als</i> , <i>gyrB</i> and <i>galP</i>), perhaps due to a different evolution
221	rate of those loci (38).
222	Understanding phylogenetic relationships between strains is important for
223	characterizing pathogen transmission. In this study, 3 phylogenetic trees were
224	constructed using core genes and core genome SNPs as well as 16S rRNA, respectively.
225	Core-genes tree and 16S rRNA trees produced similar clades but 16S rRNA failed to

226	resolve relationships toward tree tips. Furthermore, a core-gene tree is in line with
227	MLST and CC. This was not surprising, as 16S rRNA tree is based on only 1 gene,
228	representing only a very small portion of the whole genome. Therefore, many studies
229	recommended core genes for inferring phylogenies (45, 46).
230	Although pathogenicity of L. garvieae is poorly understood, some mechanisms
231	have been determined, including presence of a capsule, hemolytic activity via secreted
232	proteins (47) and production of siderophores (48). Capsulated <i>L. garvieae</i> Lg2 was
233	more virulent in fish than the non-capsulated isolate ATCC 49156 (49). The capsule
234	gene cluster, located in a genomic island, were identified in Lg2 but absent in
235	ATCC49156, which could be crucial for virulence of <i>L. garvieae</i> in fish (40).
236	However, existence of the capsule gene cluster has not been detected in all clinical fish
237	isolates from Japan, Spain, Italy, France, Turkey (22), USA (39), or India (50), nor in
238	any human isolates (31, 69). In this study, only 2 of 86 isolates had the complete
239	capsule gene cluster, which confirmed that it was not essential for virulence.
240	Proteases are among the important virulence factors causing rapid and extensive
241	destruction of host tissue. For example, enolase (50) can cleave an extracellular
242	proteinaceous matrix and therefore break a host's structural barrier during
243	colonization. Hemolysin genes might act with secreted proteases to promote host
244	tissue destruction. Genes encoding biosynthesis of iron uptake may be involved in
245	iron acquisition during host colonization (48). LPxTG protein (Leu-Pro-any-Thr-Gly),
246	an important virulence factor in L. garvieae, binds to the peptidoglycan of cell wall by

247	transpeptidase enzymes called sortases (40). In a previous study, L. garvieae strain
248	isolated from rainbow trout colonized non-phagocytic cells with the help of LPxTG
249	proteins (51). LPxTG proteins and sortases have important roles binding pathogenic
250	bacteria to their host. In this study, genes coding for adhesin, proteases, hemolysin,
251	iron uptake and LPxTG protein were detected in most or all isolates. Strong positive
252	associations within LPxTG-4, adhPsaA, srtA and iron uptake genes suggest they might
253	act together to promote host tissue destruction and colonization. Gene pgm, identified
254	in all isolates, produces protein with an important role in antibody production (52).
255	The minimum inhibitory concentrations (MIC) results were consistent with reports
256	that L. garvieae isolates from dairy farms were susceptible to penicillin, ampicillin and
257	amoxicillin-clavulanic acid, imipenem, ceftiofur, enrofloxacin, vancomycin, and
258	marbofloxacin (10, 53). However, compared to a previous report (10), there were
259	variable degrees of increasing resistant rates for 8 antibiotics, including clindamycin
260	(93.6 to 100%), chloramphenicol (6.4 to 100%), amikacin (2.1 to 90%), cefpodoxime
261	(0 to 82.5%), cephalothin (0 to 10%), cefazolin (40.4 to 45%), gentamicin (0 to 37.5%),
262	and erythromycin (0 to 5%). High resistance of clindamycin has been described as
263	intrinsic for <i>L. garvieae</i> and proposed as a selection criterion to distinguish between <i>L</i> .
264	garvieae and L. lactis (54). The lsaD gene, identified in most isolates (83/86), could be
265	responsible for intrinsic resistance. <i>lsaD</i> is a novel lsa-type family gene detected in
266	lincomycin-resistant strains isolated from fish (55). The lsa-type genes are responsible
267	for cross-resistance to lincosamides, streptogramins or pleuromutilins (hereinafter

268	referred to as LSA(P)-resistant phenotype), by coding ATP-binding cassette F
269	proteins in Gram-positive pathogens including Staphylococci, (56) Streptococci (57),
270	enterococci (58), and lactococci (55). Increasing resistance against cephalosporins
271	might be related to increasing use of these antibiotics for treatment of infectious
272	diseases on Chinese dairy farms (59). The multidrug transporter, <i>mdtA</i> is another AMR
273	gene present in most isolates. This gene originally conferred resistance to macrolides,
274	lincosamides, streptogramins and tetracycline in L. lactis (60), but mutations present
275	in the C-motifs of <i>mdtA</i> from <i>L. garvieae</i> confer susceptibility to erythromycin and
276	tetracycline (53). Furthermore, all 39 isolates with <i>mdtA</i> had a limited resistance rate
277	to erythromycin (5%). Some isolates (16/86) harbor the <i>tetS</i> gene, including 10 local
278	isolates. Three isolates from the human gut in China, LG729, LG729 and
279	MGYG-HGUT-00230, contained the most abundant AMR genes. Notably, 9 AMR
280	gene were only present in the 3 isolates, including cat, dfrG, ermA, ermB, lunD, fexA,
281	optrA, $acc(6')$ - $aaph(2'')$ and $ant(6)$ -la. The optrA gene, first identified in enterococci,
282	has been reported in Staphylococci, and Streptococci, Clostridium perfringens and
283	Campylobacter coli; it confers resistance to oxazolidinones and phenicol and has
284	identified on a plasmid of <i>L. garvieae</i> (61). The spread of antibiotic resistance genes in
285	bacterial populations is aided by various mechanisms of horizontal gene transfer, with
286	plasmid-mediated transfer being the main mechanism for transmission of resistance
287	genes (62). Horizontal gene transfer between bacteria is largely mediated by
288	specialized mobile genetic elements, including plasmids, bacteriophages, transposon,

289	insert sequences (IS), intergon, etc., and has been reported in L. garvieae. Both tetS
290	and <i>tetM</i> were associated with conjugative transposon-associated gene in isolates
291	from healthy fish intestines (63). Most of the IS in <i>L. garvieae</i> had substantial
292	homology to Lactococcus lactis elements, implying movement of IS between these 2
293	species that are phylogenetically closely related (64, 65). That these 9 AMR genes
294	were only reported in humans does not support the assertion that AMR genes are
295	transferred to humans from fish or dairy products. Regardless, L. garvieae could be a
296	reservoir for antibiotic resistance genes for other bacteria.
297	In this study, no genes were associated with host specificity, consistent with the
298	phylogenetic analysis and the core-genome SNP analysis that host adaptation occurs in
299	L. garvieae isolates. Previous research (5) summarized human L. garvieae infections
300	associated with consumption of raw fish, seafood, or unpasteurized milk. The core
301	genome SNP analysis underlies the potential host adaptation of <i>L. garvieae</i> . Meanwhile,
302	adhesins, haemolysin, fibronectin-binding proteins, penicillin acylase and WxL
303	domain-containing proteins are considered to actively promote bacterial colonization
304	(66); most had high similarity across host in those coding sequences. Regardless,
305	underlying mechanisms remain unclear. Consequently, further studies are needed to
306	determine host adaptation mechanisms of L. garvieae.
307	

308 CONCLUSIONS

309	This was apparently the first study on comparative genomic analyses of <i>L. garvieae</i>
310	isolates from mastitis cows in China. The incidence of <i>L. garvieae</i> mastitis was 1.35%
311	in China. Most isolates (38/39) were novel sequence types, 3 antimicrobial resistance
312	genes (<i>mdtA</i> , <i>lsaD</i> and <i>tetS</i>) were identified and there was evidence of host adaptation
313	in these isolates.
314	
315	MATERIALS AND METHODS
316	Statement of Ethics. This study was conducted in accordance with ethical
317	guidelines and standard biosecurity and institutional safety procedures of China
318	Agricultural University (CAU; Beijing, China). Ethical approval was not needed, as no
319	animal study was involved.
320	Sample Collection and Bacteria Identification. Milk samples from clinical
321	cases of mastitis were collected aseptically from dairy cows on Chinese dairy farms and
322	sent to the Mastitis Diagnostic Laboratory at the College of Veterinary Medicine, CAU,
323	Beijing, China. Pathogens were identified by bacteriological culture, colony
324	morphology and 16S rRNA sequencing according to NMC guidelines (67). In brief, 50
325	μ l milk was spread on tryptone soy agar with 5% defibrinated sheep blood. The plate
326	was incubated aerobically at 37 °C for 24 h. Bacterial colony morphology was recorded;
327	samples with \geq 3 morphologically distinct colonies were considered contaminated and
328	excluded from subsequent analyses.

329	Antimicrobial Susceptibility Testing. For all 39 L. garvieae isolates, MIC of 15
330	antimicrobials (Chinese National Institutes for Food and Drug Control, Beijing, China),
331	commonly used to treat clinical mastitis in China, were determined by the microbroth
332	dilution method, according to the Clinical and Laboratory Standards Institute (CLSI)
333	guidelines VET01-A4 (CLSI, 2013), with reported breakpoints (10). Staphylococcus
334	aureus ATCC 29213 was used as the quality control strain.
335	Genome Assembly and Annotation. Genomic DNA of putative isolates was
336	extracted using a bacterial DNA extraction kit (TransGen Biotech, Beijing, China)
337	according to the manufacturer's instruction. Extracted DNA was quantified with a
338	NanoDrop One spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA)
339	prior to 16S rRNA gene sequencing (Beijing Sunbiotech Inc., Beijing, China). Whole
340	genome DNA was paired-end sequenced (2 \times 150 bp) using Illumina NovaSeq 6000
341	(Illumina, San Diego, CA, USA) at Shanghai Personal Biotechnology Co., Ltd
342	(Shanghai, China). For raw reads, quality control was done with FastQC Version 0.11.9
343	(https://github.com/s-andrews/FastQC). Low quality bases were trimmed using fastp
344	Version 0.20.1 (https://github.com/OpenGene/fastp) with default settings. Quality
345	trimmed reads were assembled into scaffolds using SPades Version 3.13.1
346	(https://github.com/ablab/spades) with auto coverage cut-off and shovill Version 1.1.0
347	(https://github.com/tseemann/shovill) with default settings. Thereafter, 2 assembled
348	scaffolds for each isolate were obtained, and a draft genome of each isolate was
349	selected using Quast Version 5.0.2 (https://github.com/ablab/quast) with N50, L50

350	from the above-mentioned 2 assembled scaffolds. Assembly completeness was
351	assessed using Busco Version 5.2.2 (https://github.com/WenchaoLin/BUSCO-Mod)
352	with reference to lineage lactobacillales_odb10. Only genomes with completion $\ge 95\%$
353	were considered "high-quality draft genome" and were included in further analyses
354	(68). In addition, whole genome sequence assemblies fasta files of 51 L. garvieae
355	(accessed on March 24, 2022) were downloaded from NCBI. To ensure high-quality
356	genomes, all genomes were analyzed by BusCom Version 5.2.2 (lineage
357	lactobacillales_odb10) and 3 assembles were excluded from subsequent analysis. There
358	were 3 ATCC 49156 assemblies; we chose the 1 with the highest assembly level.
359	Therefore, a total of 39 isolates from composite (or quarter) milk samples and 47
360	assemblies from NCBI were obtained in the subsequent genome annotation and
361	pan-genome analysis. Annotation of the genome was performed using Prokka Version
362	1.14.6 (https://github.com/tseemann/prokka) with default settings. MLST analyses
363	Multilocus sequence typing (MLST) using whole genome sequences was performed to
364	determine sequence types (ST) of the 86 isolates. A L. garvieae MLST database was
365	constructed based on reported datasets (69) as there was no publicly available MLST
366	scheme for L. garvieae. Similarly, the database was integrated into ABRicate local
367	database, and we aligned the 86 L. garvieae genomes against the dataset by ABRicate.
368	Sequence types were assigned to new allele patterns and added to the existing MLST
369	scheme for <i>L. garvieae</i> constructed by (69). Clonal complex (CC) was defined as a
370	group of STs in which every ST shared at least 5 of 7 identical allele profiles with at

371	least 1 othe	r ST in the group	The minimum	spanning tree	(MST) was	constructed by
571	ieust i othe			spunning tree	1110 I J Wub	constructed by

- the goeBURST algorithm and visualized with the PhyloViz web server
- 373 (https://online.phyloviz.net/index) to infer phylogenetic relationships among STs.
- 374 Identification of Antimicrobial Resistance Genes and Virulence Factors.
- 375 Antimicrobial resistance genes were identified by blasting L. garvieae genomes against
- 376 ResFinder database via Resfinder Version 4.1.11
- 377 (https://cge.cbs.dtu.dk/services/ResFinder/) and The Comprehensive Antibiotic
- 378 Resistance Database (https://card.mcmaster.ca/) via RGI Version 5.2.1
- 379 (<u>https://github.com/arpcard/rgi</u>). A set of virulence genes of *L. garvieae* was
- 380 summarized from previous reports (22, 69, 70); they included haemolysin I, II and III
- 381 (hlyI,-II and -III), iron uptake genes (fepB, fepC, fepD, fecB, fecC, fecD, fecE, feoA, and
- 382 *feoB*), capsule gene cluster (CGC), adhesions (*adh, adhPavA, adhPsaA*), putative
- 383 collagenase (*colA*), LPxTG surface proteins 1, 2, 3, 4, 5, 6 (LPxTG-1, LPxTG-2,
- 384 LPxTG-3, LPxTG-4, LPxTG-5 and LPxTG-6) and enzyme-related virulence factors
- 385 NADH oxidase(*Nox*), glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
- 386 phosphoglucomutase (Pgm), superoxide dismutase (Sod), enolase (Eno) and SortaseA
- 387 (srtA). The database was integrated into the ABRicate local database. We blasted the 86
- 388 (39 from our study and 47 from NCBI) L. garvieae genomes against the database using
- 389 ABRicate to determine virulence genes. The presence of antimicrobial resistance or
- 390 virulence gene was defined using the cut-off value of 80% sequence coverage and 80%
- 391 nucleotide identity (ABRicate default settings).

392	Pan-genome Analyses. The pan-genome of 86 L. garvieae isolates was computed
393	using BPGA Version 1.3 (https://iicb.res.in/bpga/) with USEARCH algorithm to
394	cluster orthologous gene families using faa files of local isolates produced by Prokka
395	and retrieved from NCBI directly. For BPGA analysis, a core gene was defined as a
396	gene present in all the genomes; an accessory gene was present in > 1 genome but not
397	all genomes; and a unique gene was only present in a single genome. Functional
398	annotations of core, accessory, and unique genes were obtained after comparing
399	sequences to COG and KEGG databases incorporated in BPGA Version 1.3.
400	Phylogenetic Analyses. A 16S rRNA phylogenetic tree was constructed based on
401	16s rRNA genes. In addition, we also constructed another phylogenetic tree using
402	alignment of core genes produced by BPGA. For 16S rRNA phylogenetic analysis,
403	Barrnap Version 0.9 (https://github.com/tseemann/barrnap) was used to extract 16S
404	rRNA gene from the whole genome sequence. The 16S rRNA gene sequences were
405	edited and aligned using MAFFT multiple sequence alignment algorithm (stargety
406	"L-IINS-I"; https://github.com/GSLBiotech/mafft). Maximum-likelihood (ML) trees
407	based on this alignment were constructed using FastTree Version 2.1
408	(https://github.com/PavelTorgashov/FastTree). Visualization of the phylogenetic tree
409	was performed using iTOL (https://itol.embl.de/) with metadata (clonal complex,
410	source of host and country) of the isolates.
411	Pan-genome Wide Association Analyses. To identify genes potentially
412	associated with traits, such as host, clonal complex, and country, we performed

413	pan-genome wide association analysis using Scoary. Annotation of whole genome
414	sequences of the 86 L. garvieae isolates were performed using Prokka Version 1.14.6
415	(https://github.com/tseemann/prokka), and the resultant gff files were used for
416	pan-genome analysis with Roary Version 3.13.0
417	(http://sanger-pathogens.github.io/Roary/) to produce gene presence and absence data.
418	Thereafter, genes associated with host, country, ST or clonal complex were identified
419	with Scoary VVersion 1.6.16 (https://github.com/AdmiralenOla/Scoary). Categorical
420	traits were dichotomized prior to pan-genome wide association analysis with Scoary.
421	Core-genome SNPs Analyses. In addition to pan-genome wide association
422	analyses, we also performed core-genome SNPs analyses. Core genome alignment and
423	single nucleotide polymorphism (SNP) were detected for all 86 genome sequences
424	using parsnp Version 1.7.2 (https://github.com/marbl/parsnp). Meanwhile, the exact
425	numbers of SNPs among genomes from various hosts in the same MLST group and
426	closely related in core-gene based phylogenetic tree were determined with snp-dists
427	Version 0.8.2 (http://sanger-pathogens.github.io/snp-sites/) using the sequence
428	alignment file produced from parsnp. Phylogenetic tree based on core genome SNPs
429	was annotated with iTOL.
430	Associations between the Co-occurrence of Virulence Genes. Co-occurrence of
431	virulence genes was determined with phi coefficient using the Phi function in psych
432	package Version 2.2.5 (https://cran.r-project.org/web/packages/psych/) with R Version
433	4.1.3 (https://www.r-project.org/) and $P < 0.05$ was considered significant in a 2-tailed

- 434 test. The pair-wised phi coefficients between the presences of virulence genes were
- 435 visualized using ggplot2 Version 3.3.6
- 436 (https://cran.r-project.org/web/packages/ggplot2/).
- 437 **Data Availability.** All whole genome sequence data used in this study are
- 438 available without restriction from NCBI under BioProject no. PRJNA848370.

439

440 ACKNOWLEDGMENTS

- 441 This study was supported financially by the following: National Natural Science
- 442 Foundation of China (No. 32172928), the High-End Foreign Experts Recruitment
- 443 Program (No. 110000202720220022), and Beijing Municipal Natural Science
- 444 Foundation (No. 6222031).
- 445 B.H. and Y.L. designed and supervised the study. Y.L., J.H., Y.W., J.G. and S.Q.
- 446 performed the experiments, and wrote the manuscript. Z.D. and H.W.B. assisted in the
- 447 analyses and re-edited the manuscript. B.H., J.P. K. and H.W.B. revised the manuscript.
- 448 All authors read and approved the final manuscript.
- 449 The authors declare that the research was conducted in the absence of any commercial
- 450 or financial relationships that could be construed as a potential conflict of interest.
- 451

452 SUPPLEMENTAL MATERIAL

453 Supplemental material is available online only. **Table S1.xlsx** file, 45 KB.

454 **REFERENCES**

455	1.	Barkema	ι HW,	von Key	serlingk	MAG,	Kastelic	JP, Lam	TJGM,	Luby	C, Roy	y J-P,
-----	----	---------	-------	---------	----------	------	----------	---------	-------	------	--------	--------

- 456 LeBlanc SJ, Keefe GP, Kelton DF. 2015. Invited review: Changes in the dairy
- 457 industry affecting dairy cattle health and welfare. *J Dairy Sci* 98:7426–7445.
- 458 2. Ruegg PL. 2017. A 100-year review: Mastitis detection, management, and
- 459 prevention. *J Dairy Sci* 100:10381–10397.
- 460 3. Acharya KR, Brankston G, Slavic D, Greer AL. 2021. Spatio-temporal variation in
- 461 the prevalence of major mastitis pathogens isolated from bovine milk samples
- 462 between 2008 and 2017 in Ontario, Canada. *Front Vet Sci* 8:1–12.
- 463 4. Meyburgh CM, Bragg RR, Boucher CE. 2017. *Lactococcus garvieae*: an emerging
- 464 bacterial pathogen of fish. *Dis Aquat Organ* 123:67–79.
- 465 5. Gibello A, Galán-Sánchez F, Blanco MM, Rodríguez-Iglesias M, Domínguez L,
- 466 Fernández-Garayzábal JF. 2016. The zoonotic potential of *Lactococcus garvieae*:
- 467 An overview on microbiology, epidemiology, virulence factors and relationship
- 468 with its presence in foods. *Res Vet Sci* 109:59–70.
- 469 6. Choksi TT, Dadani F. 2017. Reviewing the Emergence of Lactococcus garvieae: A
- 470 case of catheter associated urinary tract infection caused by *Lactococcus garvieae*
- 471 and *Escherichia coli* coinfection. *Case Rep Infect Dis* 2017:5921865.
- 472 7. González-Bravo DH, Alegre-Boschetti S, Silva-Cantillo R, Mercado-Maldonado J,
- 473 Ramos-Márquez R, Torres-Rivera G, Cortés C, Mercado-Crespo J. 2021.
- 474 *Lactococcus garvieae*: An uncommon human pathogen causing infective

475	endocarditis in a valve-in-valve transcatheter aortic valve replacement. Case
476	Reports Cardiol 2021:5569533.
477	8. Francés-Cuesta C, Ansari I, Fernández-Garayzábal JF, Gibello A,
478	González-Candelas F. 2022. Comparative genomics and evolutionary analysis of
479	Lactococcus garvieae isolated from human endocarditis. Microb Genomics 8:
480	000771.
481	9. Tejedor JL, Vela AI, Gibello A, Casamayor A, Domínguez L, Fernández-Garayzábal
482	JF. 2011. A genetic comparison of pig, cow and trout isolates of Lactococcus
483	garvieae by PFGE analysis. Lett Appl Microbiol 53:614–619.
484	10. Plumed-Ferrer C, Barberio A, Franklin-Guild R, Werner B, McDonough P, Bennett
485	J, Gioia G, Rota N, Welcome F, Nydam D V, Moroni P. 2015. Antimicrobial
486	susceptibilities and random amplified polymorphic DNA-PCR fingerprint
487	characterization of Lactococcus lactis ssp. lactis and Lactococcus garvieae
488	isolated from bovine intramammary infections. J Dairy Sci 98:6216-6225.
489	11. Eraclio G, Ricci G, Moroni P, Santisteban C, Plumed-Ferrer C, Bennett J, Fortina
490	MG. 2019. Sand bedding as a reservoir for Lactococcus garvieae dissemination in
491	dairy farms. Can J Microbiol 65:84–89.
492	12. Scillieri Smith JC, Moroni P, Santisteban CG, Rauch BJ, Ospina PA, Nydam D V.
493	2020. Distribution of Lactococcus spp. in New York State dairy farms and the
494	association of somatic cell count resolution and bacteriological cure in clinical
495	mastitis samples. J Dairy Sci 103:1785–1794.

496	13. Song X, Huang X, Xu H, Zhang C, Chen S, Liu F, Guan S, Zhang S, Zhu K, Wu C.
497	2020. The prevalence of pathogens causing bovine mastitis and their associated
498	risk factors in 15 large dairy farms in China: An observational study. Vet
499	Microbiol 247:108757.
500	14. Rowe SM, Godden SM, Royster E, Timmerman J, Boyle M. 2021. Postcalving
501	udder health and productivity in cows approaching dry-off with intramammary
502	infections caused by non-aureus Staphylococcus, Aerococcus, Enterococcus,
503	Lactococcus, and Streptococcus species. J Dairy Sci 104:6061-6079.
504	15. de Oliveira RP, Aragão BB, de Melo RPB, da Silva DMS, de Carvalho RG, Juliano
505	MA, Farias MPO, de Lira NSC, Mota RA. 2022. Bovine mastitis in northeastern
506	Brazil: Occurrence of emergent bacteria and their phenotypic and genotypic
507	profile of antimicrobial resistance. Comp Immunol Microbiol Infect Dis
508	85:101802.
509	16. Zadoks RN, Middleton JR, McDougall S, Katholm J, Schukken YH. 2011.
510	Molecular epidemiology of mastitis pathogens of dairy cattle and comparative
511	relevance to humans. J Mammary Gland Biol Neoplasia 16:357–372.
512	17. Kempf F, Slugocki C, Blum SE, Leitner G, Germon P. 2016. Genomic comparative
513	study of bovine mastitis Escherichia coli. PLoS One 11:1-22.
514	18. Li T, Lu H, Wang X, Gao Q, Dai Y, Shang J, Li M. 2017. Molecular characteristics
515	of Staphylococcus aureus causing bovine mastitis between 2014 and 2015. Front
516	Cell Infect Microbiol 7:1–10.

- 517 19. Cheng J, Zhou M, Nobrega DB, Barkema HW, Xu S, Li M, Kastelic JP, Shi Y,
- 518 Han B, Gao J. 2021. Genetic diversity and molecular epidemiology of outbreaks
- 519 of *Klebsiella pneumoniae* mastitis on two large Chinese dairy farms. *J Dairy Sci*
- 520 104:762-775.
- 521 20. Zheng Z, Gorden PJ, Xia X, Zheng Y, Li G. 2022. Whole-genome analysis of
- 522 *Klebsiella pneumoniae* from bovine mastitis milk in the U.S. *Environ Microbiol*
- 523 24:1183–1199.
- 524 21. Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin
- 525 PJ, Piddock LJ V. 2016. Understanding the mechanisms and drivers of
- 526 antimicrobial resistance. *Lancet* 387:176–187.
- 527 22. Ture M, Altinok I. 2016. Detection of putative virulence genes of Lactococcus
- 528 garvieae. Dis Aquat Organ 119:59–66.
- 529 23. Meyburgh CM, Bragg RR, Boucher CE. 2018. Detection of virulence factors of
- 530 South African *Lactococcus garvieae* isolated from rainbow trout, Oncorhynchus
- 531 mykiss (Walbaum). Onderstepoort J Vet Res 85:e1–e9.
- 532 24. Rao S, Chen MY, Sudpraseart C, Lin P, Yoshida T, Wang PC, Chen SC. 2022.
- 533 Genotyping and phenotyping of *Lactococcus garvieae* isolates from fish by
- 534 pulse-field gel electrophoresis (PFGE) and electron microscopy indicate
- 535 geographical and capsular variations. *J Fish Dis* 45:771–781.
- 536 25. Ballhausen B, Kriegeskorte A, van Alen S, Jung P, Köck R, Peters G, Bischoff M,
- 537 Becker K. 2016. The pathogenicity and host adaptation of livestock-associated

538 MRSA CC398. Vet Microbiol 200:39-45.

539	26. Gori A, Harrison OB, Mlia E, Nishihara Y, Chan JM, Msefula J, Mallewa M, Dube
540	Q, Swarthout TD, Nobbs AH, Maiden MCJ, French N, Heyderman RS. 2020.
541	Pan-GWAS of Streptococcus agalactiae highlights lineage- specific genes
542	associated with virulence and niche adaptation. <i>mBio</i> 11:e00728-20.
543	27. Garvie EI, Farrow JAE, Phillips BA. 1981. A taxonomic study of some strains of
544	streptococci which grow at 10°C but not at 45°C including Streptococcus lactis
545	and Streptococcus cremoris. Zentralblatt fur Bakteriol Angew und Okol Microbiol
546	<i>Abt1 OrigC Hyg</i> 2:151–165.
547	28. Aguado-Urda M, Gibello A, Blanco M del M, Fernández-Garayzábal JF,
548	López-Alonso V, López-Campos GH. 2013. Global transcriptome analysis of
549	Lactococcus garvieae strains in response to temperature. PLoS One 8:e79692.
550	29. Aguado-Urda M, López-Campos GH, Fernández-Garayzábal JF, Martín-Sánchez F,
551	Gibello A, Domínguez L, Blanco MM. 2010. Analysis of the genome content of
552	Lactococcus garvieae by genomic interspecies microarray hybridization. BMC
553	Microbiol 10:79.
554	30. Hoai TD, Nishiki I, Yoshida T. 2016. Properties and genomic analysis of
555	Lactococcus garvieae lysogenic bacteriophage PLgT-1, a new member of
556	Siphoviridae, with homology to Lactococcus lactis phages. Virus Res 222:13-23.

557	31. Kim.	JH, Ka	ing D-H	, Park SC.	2015. Di	raft genome	sequence of	f human-1	oathogenic

- 558 *Lactococcus garvieae* LG-ilsanpaik-gs201105 that caused acute acalculous
- 559 cholecystitis. *Genome Announc* 3:e00464-15.
- 560 32. Shahi N, Mallik SK. 2020. Emerging bacterial fish pathogen Lactococcus garvieae
- 561 RTCLI04, isolated from rainbow trout (Oncorhynchus mykiss): Genomic features
- and comparative genomics. *Microb Pathog* 147:104368.
- 33. Moumene M, Drissi F, Croce O, Djebbari B, Robert C, Angelakis E, Benouareth
- 564 DE, Raoult D, Merhej V. 2016. Complete genome sequence and description of
- 565 *Lactococcus garvieae* M14 isolated from Algerian fermented milk. *New Microbes*
- 566 *New Infect* 10:122–131.
- 567 34. Morita H, Toh H, Oshima K, Yoshizaki M, Kawanishi M, Nakaya K, Suzuki T,
- 568 Miyauchi E, Ishii Y, Tanabe S, Murakami M, Hattori M. 2011. Complete genome
- 569 sequence and comparative analysis of the fish pathogen *Lactococcus garvieae*.
- 570 *PLoS One* 6:e23184.
- 571 35. Nishiki I, Oinaka D, Iwasaki Y, Yasuike M, Nakamura Y, Yoshida T, Fujiwara A,
- 572 Nagai S, Katoh M, Kobayashi T. 2016. Complete genome sequence of
- 573 nonagglutinating *lactococcus garvieae* strain 122061 isolated from yellowtail in
- 574 Japan. *Genome Announc* 4:e00592-16.
- 575 36. Chang CI, Hung PH, Wu CC, Cheng TC, Tsai JM, Lin KJ, Lin CY. 2012.
- 576 Simultaneous detection of multiple fish pathogens using a naked-eye readable
- 577 DNA microarray. Sensors (Basel) 12:2710–2728.

578 37. Thiry D, Billen F, Boyen F, Duprez JN, Quenault H, Touzain F, Blan	chard Y,
--	----------

579	Clercx C, Mainil JG. 2021. Genomic relatedness of a canine Lactococcus garvieae
580	to human, animal and environmental isolates. Res Vet Sci 137:170-173.
581	38. Ferrario C, Ricci G, Milani C, Lugli GA, Ventura M, Eraclio G, Borgo F, Fortina
582	MG. 2013. Lactococcus garvieae: Where is it from? A first approach to explore
583	the evolutionary history of this emerging pathogen. PLoS One 8:e84796.
584	39. Nelson MC, Varney JS, Welch TJ, Graf J. 2016. Draft genome sequence of
585	Lactococcus garvieae strain PAQ102015-99, an outbreak strain isolated from a
586	commercial trout farm in the Northwestern United States. Genome Announc
587	4:e00781-16.
588	40. Miyauchi E, Toh H, Nakano A, Tanabe S, Morita H. 2012. Comparative genomic
589	analysis of Lactococcus garvieae strains isolated from different sources reveals
590	candidate virulence genes. Int J Microbiol 2012:728276.
591	41. Werner B, Moroni P, Gioia G, Lavín-Alconero L, Yousaf A, Charter ME, Carter
592	BM, Bennett J, Nydam D V., Welcome F, Schukken YH. 2014. Short
593	communication: Genotypic and phenotypic identification of environmental
594	streptococci and association of Lactococcus lactis ssp. lactis with intramammary
595	infections among different dairy farms. J Dairy Sci 97:6964-6969.
596	42. Malek A, De la Hoz A, Gomez-Villegas SI, Nowbakht C, Arias CA. 2019.
597	Lactococcus garvieae, an unusual pathogen in infective endocarditis: case report
598	and review of the literature. BMC Infect Dis 19:301.

599	43. Kotzamanidis C	. Malousi A	. Bitchava K.	. Vafeas G.	Chatzidimitriou D.	. Skoura L.

- 600 Papadimitriou E, Chatzopoulou F, Zdragas A. 2020. First report of isolation and
- 601 genome sequence of *L. petauri* strain from a rainbow trout Lactococcosis outbreak.
- 602 *Curr Microbiol* 77:1089–1096.
- 44. Reguera-Brito M, Galán-Sánchez F, Blanco MM, Rodríguez-Iglesias M,
- 604 Domínguez L, Fernández-Garayzábal JF, Gibello A. 2016. Genetic analysis of
- 605 human clinical isolates of *Lactococcus garvieae*: Relatedness with isolates from
- 606 foods. *Infect Genet Evol* 37:185–191.
- 45. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP,
- 608 Yi H, Xu XW, De Meyer S, Trujillo ME. 2018. Proposed minimal standards for
- 609 the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol
- 610 68:461–466.
- 611 46. Naushad S, Adeolu M, Goel N, Khadka B, Al-Dahwi A, Gupta RS. 2015.
- 612 Phylogenomic and molecular demarcation of the core members of the
- 613 polyphyletic pasteurellaceae genera actinobacillus, haemophilus, and pasteurella.
- 614 Int J Genomics 2015:198560.
- 615 47. Kimura H, Kusuda R. 1982. Studies on the pathogenesis of streptococcal infection
- 616 in cultured yellowtails, Seriola spp.: effect of crude exotoxin fractions from cell-
- 617 free culture on experimental streptococcal infection. *J Fish Dis* 5:471–478.
- 618 48. Schmidtke LM, Carson J. 2003. Antigen recognition by rainbow trout
- 619 (Oncorhynchus mykiss) of whole cell proteins expressed by *Lactococcus garvieae*

620	when obtained directly from fish and under iron limited culture conditions. Vet
621	Microbiol 93:63–71.
622	49. Kawanishi M, Yoshida T, Kijima M, Yagyu K, Nakai T, Okada S, Endo A,
623	Murakami M, Suzuki S, Morita H. 2007. Characterization of Lactococcus
624	garvieae isolated from radish and broccoli sprouts that exhibited a KG+
625	phenotype, lack of virulence and absence of a capsule. Lett Appl Microbiol
626	44:481–487.
627	50. Shahi N, Mallik SK, Sahoo M, Chandra S, Singh AK. 2018. First report on
628	characterization and pathogenicity study of emerging Lactococcus garvieae
629	infection in farmed rainbow trout, Oncorhynchus mykiss (Walbaum), from India.
630	Transbound Emerg Dis 65:1039–1048.
631	51. Aguado-Urda M, Rodríguez-Bertos A, de las Heras AI, Blanco MM, Acosta F, Cid
632	R, Fernández-Garayzábal JF, Gibello A. 2014. Experimental Lactococcus
633	garvieae infection in zebrafish and first evidence of its ability to invade
634	non-phagocytic cells. Vet Microbiol 171:248-254.
635	52. Tsai MA, Wang PC, Cao TT, Liao PC, Liaw LL, Chen SC. 2013.
636	Immunoprotection of glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
637	from Lactococcus garvieae against Lactococcosis in tilapia. J Gen Appl Microbiol
638	59:437–449.
639	53. Walther C, Rossano A, Thomann A, Perreten V. 2008. Antibiotic resistance in
640	Lactococcus species from bovine milk: presence of a mutated multidrug

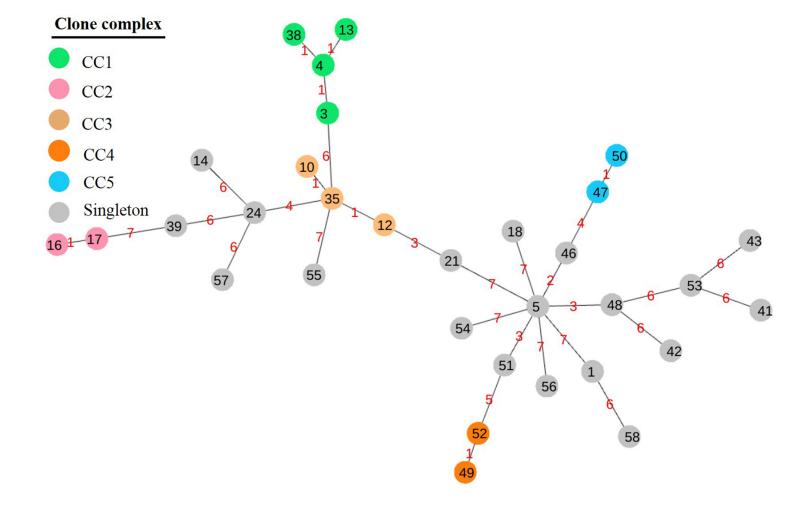
641	transporter mdt(A)	gene in susceptible	Lactococcus garvieae	strains. Vet
-----	--------------------	---------------------	----------------------	--------------

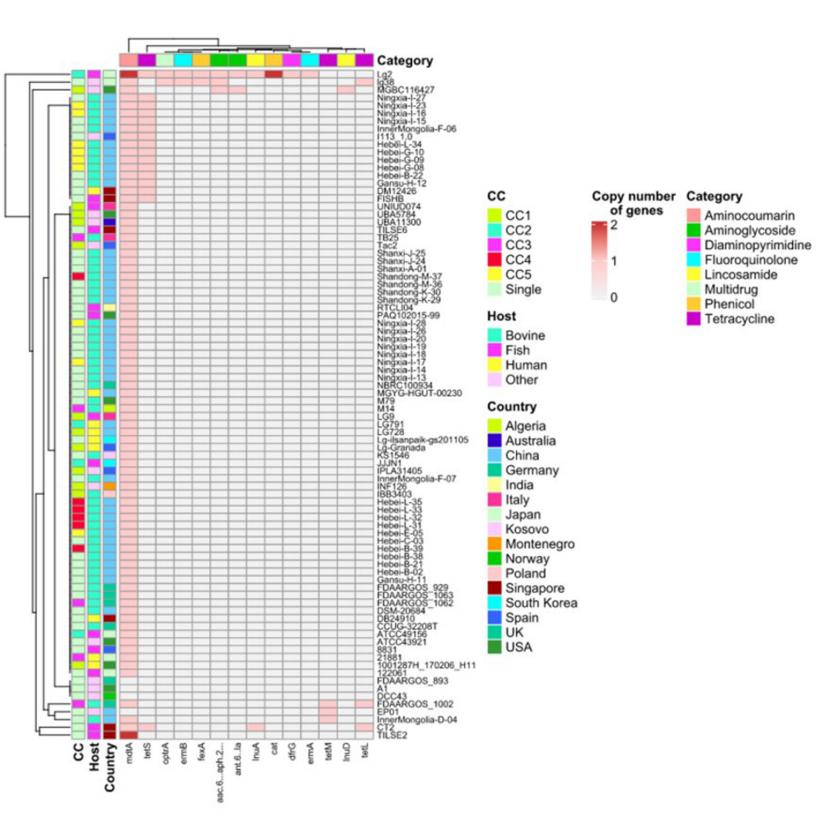
- 642 *Microbiol* 131:348–357.
- 643 54. Elliott JA, Facklam RR. 1996. Antimicrobial susceptibilities of Lactococcus lactis
- 644 and *Lactococcus garvieae* and a proposed method to discriminate between them. J
- 645 *Clin Microbiol* 34:1296–1298.
- 55. Shi YZ, Yoshida T, Fujiwara A, Nishiki I. 2021. Characterization of lsa(D), a novel
- 647 gene responsible for resistance to lincosamides, streptogramins A, and
- 648 pleuromutilins in fish pathogenic *Lactococcus garvieae* Serotype II. *Microb Drug*
- 649 *Resist* 27:301–310.
- 650 56. Kehrenberg C, Ojo KK, Schwarz S. 2004. Nucleotide sequence and organization of
- 651 the multiresistance plasmid pSCFS1 from *Staphylococcus sciuri*. J Antimicrob
- 652 *Chemother* 54:936–939.
- 57. Malbruny B, Werno AM, Murdoch DR, Leclercq R, Cattoir V. 2011.
- 654 Cross-resistance to lincosamides, streptogramins A, and pleuromutilins due to the
- 655 lsa(C) gene in *Streptococcus agalactiae* UCN70. *Antimicrob Agents Chemother*
- 656 55:1470–1474.
- 58. Singh K V, Murray BE. 2005. Differences in the Enterococcus faecalis lsa locus
- 658 that influence susceptibility to quinupristin-dalfopristin and clindamycin.
- 659 *Antimicrob Agents Chemother* 49:32–39.
- 660 59. Ali T, Ur Rahman S, Zhang L, Shahid M, Zhang S, Liu G, Gao J, Han B. 2016.
- 661 ESBL-producing *Escherichia coli* from cows suffering mastitis in China contain

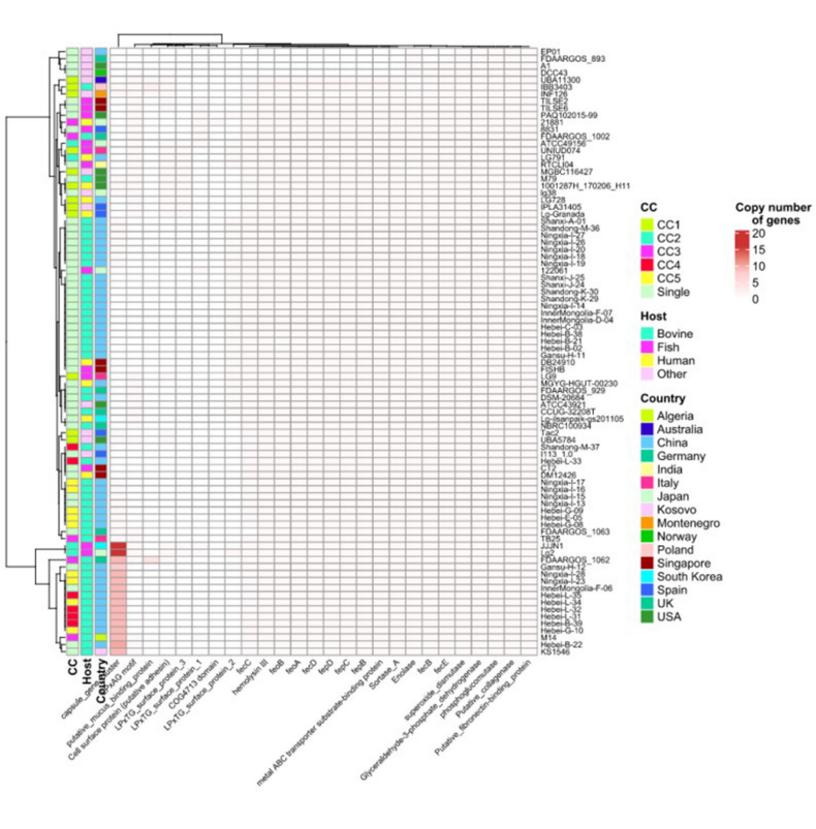
662	clinical class 1 integrons with CTX-M linked to ISCR1. Front Microbiol 7:1–11.
663	60. Perreten V, Schwarz F V., Teuber M, Levy SB. 2001. Mdt(A), a new efflux protein
664	conferring multiple antibiotic resistance in Lactococcus lactis and Escherichia
665	coli. Antimicrob Agents Chemother 45:1109–1114.
666	61. Cai J, Chen J, Schwarz S, Wang Y, Zhang R. 2021. Detection of the plasmid-borne
667	oxazolidinone/phenicol resistance gene optrA in Lactococcus garvieae isolated
668	from faecal samples. Clin Microbiol Infect 27:1358-1359.
669	62. Baker S, Thomson N, Holt KE. 2018. Genomic insights into the emergence and
670	spread of antimicrobial-resistant bacterial pathogens Science 360: 738:733-738.
671	63. Kim SR, Nonaka L, Suzuki S. 2004. Occurrence of tetracycline resistance genes
672	tet(M) and tet(S) in bacteria from marine aquaculture sites. FEMS Microbiol Lett
673	237:147–156.
674	64. Eraclio G, Ricci G, Fortina MG. 2015. Insertion sequence elements in Lactococcus
675	
	garvieae. Gene 555:291–296.
676	<i>garvieae. Gene</i> 555:291–296. 65. Eraclio G, Tremblay DM, Lacelle-Côté A, Labrie SJ, Fortina MG, Moineau S. 2015.
676 677	
	65. Eraclio G, Tremblay DM, Lacelle-Côté A, Labrie SJ, Fortina MG, Moineau S. 2015.
677	65. Eraclio G, Tremblay DM, Lacelle-Côté A, Labrie SJ, Fortina MG, Moineau S. 2015. A virulent phage infecting <i>Lactococcus garvieae</i> , with homology to <i>Lactococcus</i>
677 678	65. Eraclio G, Tremblay DM, Lacelle-Côté A, Labrie SJ, Fortina MG, Moineau S. 2015. A virulent phage infecting <i>Lactococcus garvieae</i> , with homology to <i>Lactococcus lactis</i> phages. <i>Appl Environ Microbiol</i> 81:8358–8365.
677 678 679	 65. Eraclio G, Tremblay DM, Lacelle-Côté A, Labrie SJ, Fortina MG, Moineau S. 2015. A virulent phage infecting <i>Lactococcus garvieae</i>, with homology to <i>Lactococcus lactis</i> phages. <i>Appl Environ Microbiol</i> 81:8358–8365. 66. Colagrossi L, Costabile V, Scutari R, Agosta M, Onori M, Mancinelli L, Lucignano
677 678 679 680	 65. Eraclio G, Tremblay DM, Lacelle-Côté A, Labrie SJ, Fortina MG, Moineau S. 2015. A virulent phage infecting <i>Lactococcus garvieae</i>, with homology to <i>Lactococcus lactis</i> phages. <i>Appl Environ Microbiol</i> 81:8358–8365. 66. Colagrossi L, Costabile V, Scutari R, Agosta M, Onori M, Mancinelli L, Lucignano B, Muda AO, Baldo G Del, Mastronuzzi A, Locatelli F, Trua G, Montanari M,

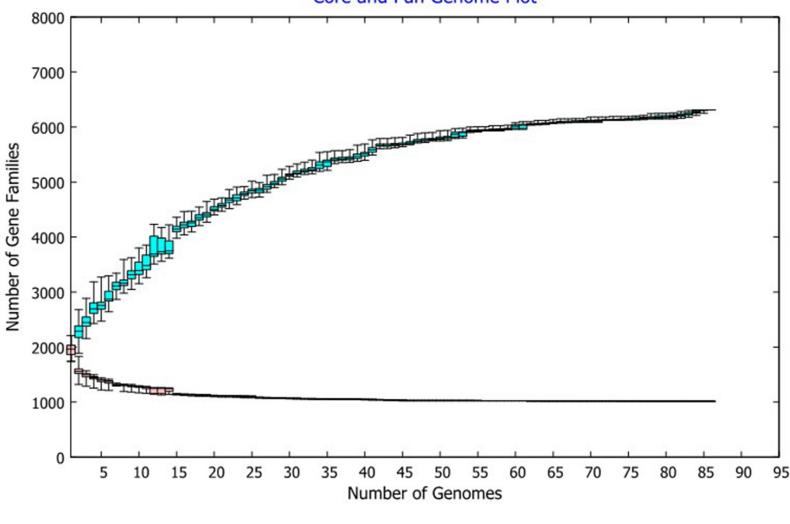
683	Microbes	Infect	11:1325-1334.

684	67. NMC. 2017. Laboratory Handbook on Bovine Mastitis, 3rd ed. National Mastitis
685	Council, Minnesota, USA.
686	68. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy
687	TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN,
688	Copeland A, Clum A, Becraft ED, Malmstrom RR, Birren B, Podar M, Bork P,
689	Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S, Sutton G, Glöckner FO,
690	Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe S,
691	Konstantinidis KT, Liu WT, Baker BJ, Rattei T, Eisen JA, Hedlund B, McMahon
692	KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW,
693	Rinke C, Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield
694	JF, Hugenholtz P, Woyke T. 2017. Minimum information about a single amplified
695	genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria
696	and archaea. Nat Biotechnol 35:725–731.
697	69. Lin YS, Kweh KH, Koh TH, Lau QC, Abdul Rahman NB. 2020. Genomic analysis
698	of Lactococcus garvieae isolates. Pathology 52:700-707.
699	70. Aguado-Urda M, López-Campos GH, Blanco MM, Fernández-Garayzábal JF,
700	Cutuli MT, Aspiroz C, López-Alonso V, Gibello A. 2011. Genome sequence of
701	Lactococcus garvieae 21881, isolated in a case of human septicemia. J Bacteriol
702	193:4033–4034.
702	

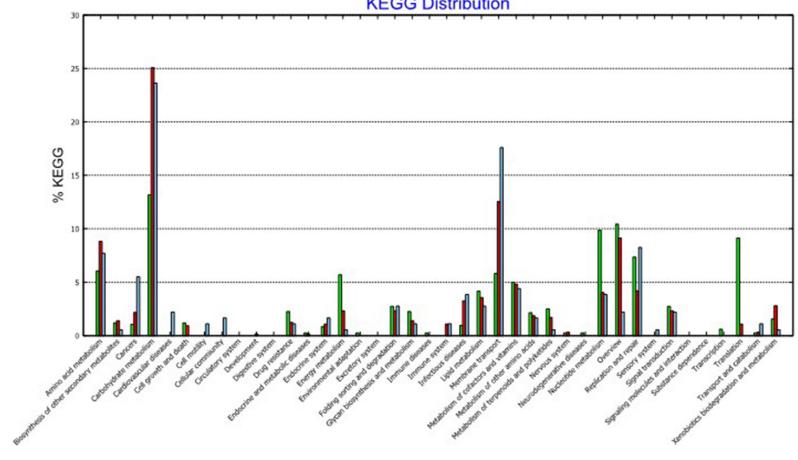

704 FIGURE CAPTIONS

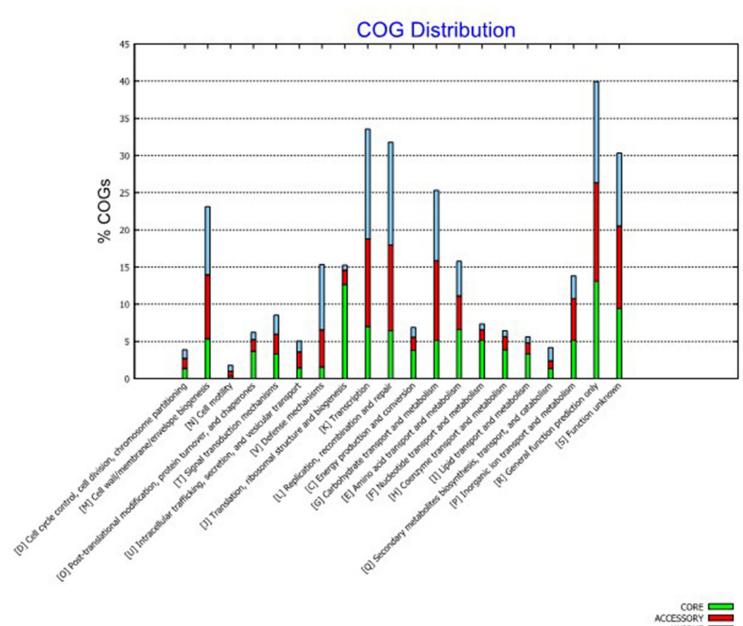

705	FIG 1 Minimum spanning tree based on Multi-Locus Sequence Typing for 86
706	Lactococcus garvieae isolates involving 32 sequence types performed by
707	geoBURST algorithm and visualized by PhyloViz. Five clonal complexes
708	(CC1-CC5) were clustered with similar STs (5 - 7 shared alleles); the number
709	between nodes indicates the number of distinct alleles within them.
710	
711	FIG 2 Distribution of antimicrobial resistance genes against each category of
712	antimicrobial resistance, together with source of host, country, and clonal
713	complex (CC) of 86 Lactococcus garvieae isolates.
714	
715	FIG 3 Distribution of virulence factor genes, source of host, country, and clonal
716	complex (CC) of 86 Lactococcus garvieae isolates.
717	
718	FIG 4 Pan-genome of 86 Lactococcus garvieae isolates in this study. The
719	pan-genome consisted of 6310 genes, of which, 1015 core genes, 3641 accessory genes
720	and 1654 unique genes; the size of the genome in the pan-genome increased as the
721	number of isolates increased, but pan-genome size approached convergence. The
722	number of core genes (shared by all isolates) was fairly constant at 1015 genes (A).
723	Distribution of KEGG (B) and COG (C, D) functional categories in core, accessory and
724	unique genes of 86 Lactococcus garvieae.


725

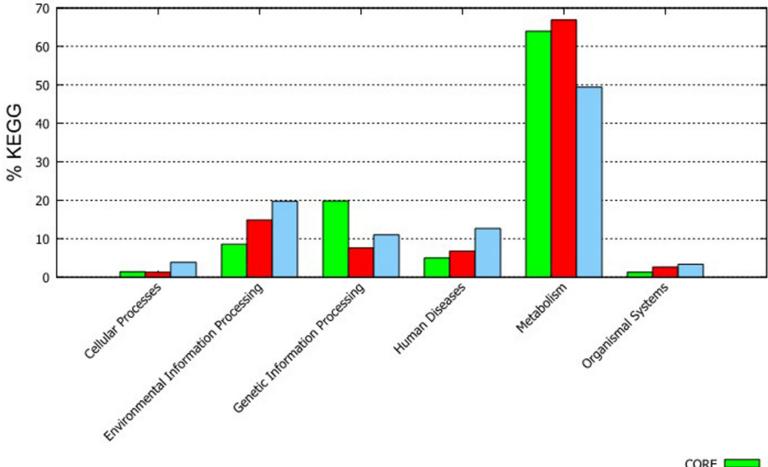

726	FIG 5 Phylogenetic tree. (A). based on 16S rRNA with source of host (4 hosts, the
727	first ring indicated by a rectangle) and country (16 countries, the second ring indicated
728	by a circle) as well as sequence types (STs, 32 STs, the outermost ring indicated by a
729	triangle) of 86 Lactococcus garvieae isolates. (B). Phylogenetic tree based on core
730	genes with source of host (4 hosts, the innermost ring indicated by a rectangle) and
731	country (16 countries, the second ring indicated by a circle) as well as sequence types
732	(STs, 32 STs, the outermost ring indicated by a triangle) of 86 Lactococcus garvieae
733	isolates.
734	
735	FIG 6 Phylogenetic tree based on core genome single nucleotide polymorphism of
736	86 Lactococcus garvieae isolates.
737	

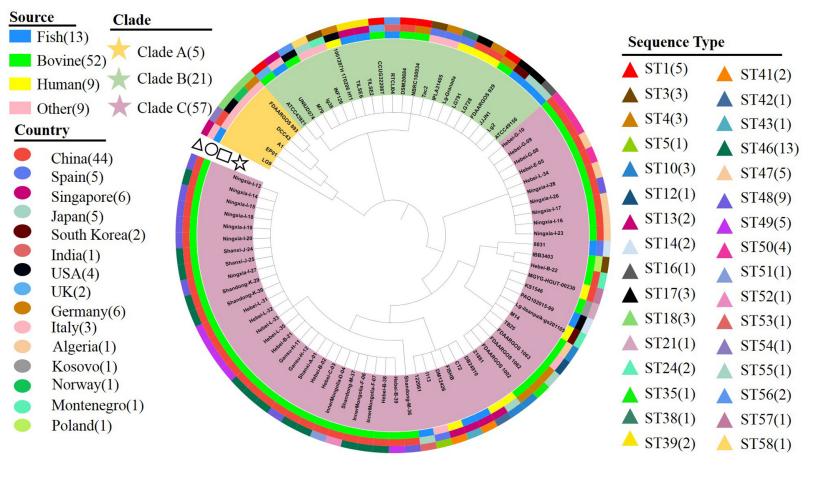
738 FIG 7 Co-occurrence of virulence genes in 86 Lactococcus garvieae isolates.

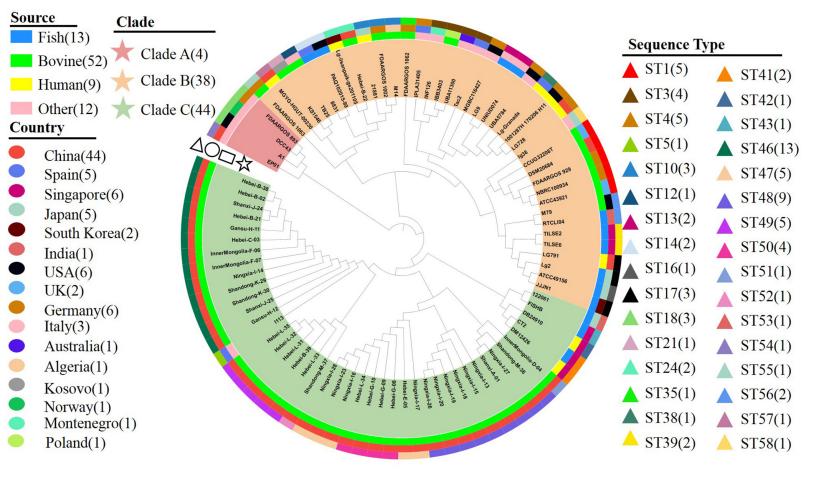


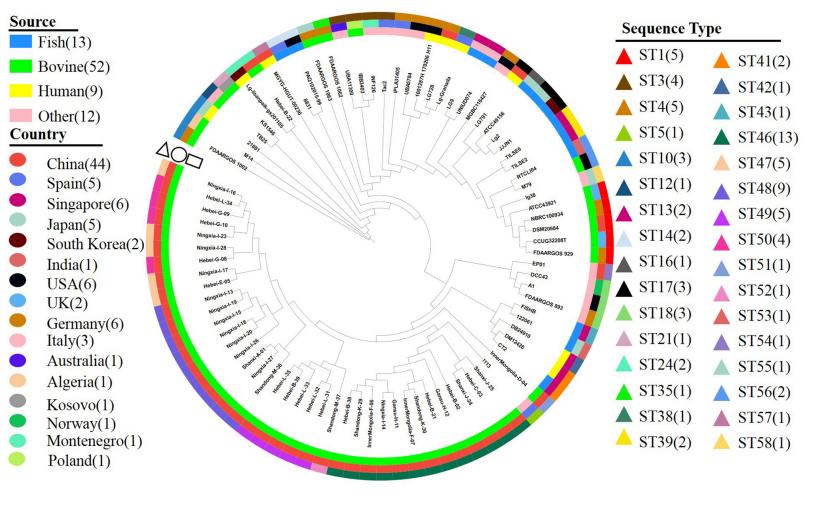

Pan Genome Core Genome Median Values

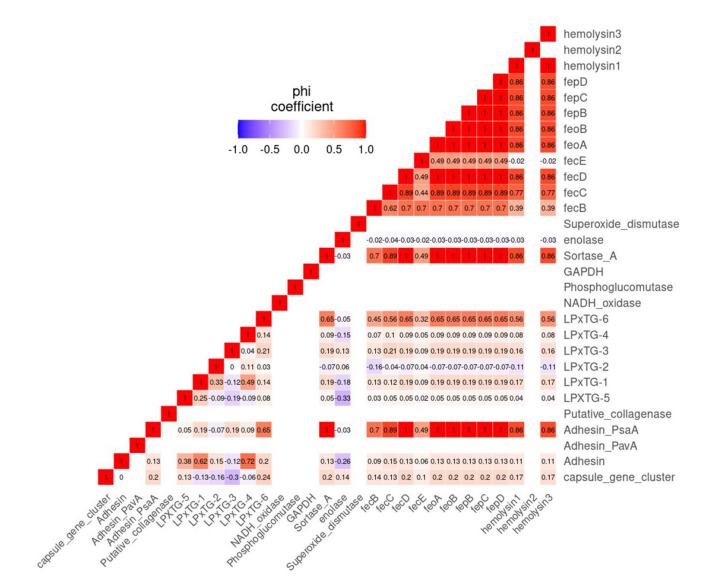
Core and Pan Genome Plot


KEGG Distribution




CORE ACCESSORY UNIQUE





CORE ACCESSORY

Isolate	Province	Farm	Date
Shanxi-A-01	Shanxi	А	2018.1.29
Hebei-B-02	Hebei	В	2018.4.9
Hebei-C-03	Hebei	С	2018.5.11
InnerMongolia-D-04	Inner Mongolia	D	2018.6.26
Hebei-E-05	Hebei	Е	2018.7.16
InnerMongolia-F-06	Inner Mongolia	F	2019.6.25
InnerMongolia-F-07	Inner Mongolia	F	2019.6.25
Hebei-G-08	Hebei	G	2019.6.29
Hebei-G-09	Hebei	G	2019.6.29
Hebei-G-10	Hebei	G	2019.6.29
Gansu-H-11	Gansu	Н	2020.8.12
Gansu-H-12	Gansu	Н	2020.8.12
Ningxia-I-13	Ningxia	Ι	2020.8.12
Ningxia-I-14	Ningxia	Ι	2020.8.12
Ningxia-I-15	Ningxia	Ι	2020.8.12
Ningxia-I-16	Ningxia	Ι	2020.8.12
Ningxia-I-17	Ningxia	Ι	2020.8.24
Ningxia-I-18	Ningxia	Ι	2020.8.24
Ningxia-I-19	Ningxia	Ι	2020.8.24
Ningxia-I-20	Ningxia	Ι	2020.8.24
Hebei-B-21	Hebei	В	2020.8.27
Hebei-B-22	Hebei	В	2020.8.27
Ningxia-I-23	Ningxia	Ι	2020.10.2
Shanxi-J-24	Shanxi	J	2020.11.1
Shanxi-J-25	Shanxi	J	2020.11.1
Ningxia-I-26	Ningxia	Ι	2020.11.6
Ningxia-I-27	Ningxia	Ι	2020.11.6
Ningxia-I-28	Ningxia	Ι	2021.1.29
Shandong-K-29	Shandong	Κ	2021.6.9
Shandong-K-30	Shandong	Κ	2021.6.9
Hebei-L-31	Hebei	L	2021.6.10
Hebei-L-32	Hebei	L	2021.6.10
Hebei-L-33	Hebei	L	2021.6.10
Hebei-L-34	Hebei	L	2021.6.10
Hebei-L-35	Hebei	L	2021.6.10
Shandong-M-36	Shandong	М	2021.6.28
Shandong-M-37	Shandong	М	2021.6.28

Table 1 Lactococcus garvieae isolates (n=39) recovered from bovine mastitis from2899 bovine mastitis (CM) milk samples collected from farms in China.

Hebei-B-38 Hebei B 2021.7.12	
------------------------------	--

garvieae isolates.			A 11 - 1*	musfil.					
Isolate id	ST	CC	als	e profile galP	gapC	gyrB	atpA	rpoC	tuf
ATCC43921	ST1	Sing	1	1	1	1	1	1	1
CCUG32208T	ST1	Sing	1	1	1	1	1	1	1
DSM20684	ST1	Sing	1	1	1	1	1	1	1
FDAARGOS 929	ST1	Sing	1	1	1	1	1	1	1
NBRC100934	ST1	Sing	1	1	1	1	1	1	1
IBB3403	ST3	CC1	3	3	2	3	3	3	3
INF126	ST3	CC1	3	3	2	3	3	3	3
Tac2	ST3	CC1	3	3	2	3	3	3	3
UBA11300	ST3	CC1	3	3	2	3	3	3	3
1001287H_170206_H11	ST4	CC1	3	3	2	3	3	3	4
IPLA31405	ST4	CC1	3	3	2	3	3	3	4
LG728	ST4	CC1	3	3	2	3	3	3	4
MGBC116427	ST4	CC1	3	3	2	3	3	3	4
UBA5784	ST4	CC1	3	3	2	3	3	3	4
I113	ST5	Sing	4	4	3	4	4	4	5
21881	ST10	CC3	9	9	4	7	7	9	3
FDAARGOS_1002	ST10	CC3	9	9	4	7	7	9	3
 M14	ST10	CC3	9	9	4	7	7	9	3
TB25	ST12	CC3	9	9	2	7	7	10	3
LG9	ST13	CC1	10	3	2	3	3	3	4
UNIUD074	ST13	CC1	10	3	2	3	3	3	4
8831	ST14	Sing	11	8	2	9	6	11	10
PAQ102015-99	ST14	Sing	11	8	2	9	6	11	10
ATCC49156	ST16	CC2	12	12	6	10	8	13	6
JJJN1	ST17	CC2	12	12	7	10	8	13	6
Lg2	ST17	CC2	12	12	7	10	8	13	6
LG791	ST17	CC2	12	12	7	10	8	13	6
A1	ST18	Sing	13	13	8	11	9	14	12
DCC43	ST18	Sing	13	13	8	11	9	14	12
FDAARGOS_893	ST18	Sing	13	13	8	11	9	14	12
KS1546	ST21	Sing	9	9	10	7	11	10	3
Hebei-B-22	ST24	Sing	17	16	2	7	12	9	3
Lg-ilsanpaik-gs201105	ST24	Sing	17	16	2	7	12	9	3
FDAARGOS_1062	ST35	CC3	9	9	2	7	7	9	3
Lg-Granada	ST38	CC1	3	23	2	3	3	3	4
TILSE2	ST39	Sing	5	24	2	23	17	19	6
TILSE6	ST39	Sing	5	24	2	23	17	19	6
CT2	ST41	Sing	25	25	9	25	10	21	21
DM12426	ST41	Sing	25	25	9	25	10	21	21
DB24910	ST42	Sing	26	25	13	20	18	22	22

Table 2 Allelic profiles, sequence types and clonal complexes of 86 *Lactococcus garvieae* isolates

FISHB	ST43	Sing	27	26	9	26	19	23	23
Gansu-H-11	ST46	Sing	29	4	3	27	4	4	5
Gansu-H-12	ST46	Sing	29	4	3	27	4	4	5
Hebei-B-02	ST46	Sing	29	4	3	27	4	4	5
Hebei-B-21	ST46	Sing	29	4	3	27	4	4	5
Hebei-B-38	ST46	Sing	29	4	3	27	4	4	5
Hebei-C-03	ST46	Sing	29	4	3	27	4	4	5
InnerMongolia-F-06	ST46	Sing	29	4	3	27	4	4	5
InnerMongolia-F-07	ST46	Sing	29	4	3	27	4	4	5
Ningxia-I-14	ST46	Sing	29	4	3	27	4	4	5
Shandong-K-29	ST46	Sing	29	4	3	27	4	4	5
Shandong-K-30	ST46	Sing	29	4	3	27	4	4	5
Shanxi-J-24	ST46	Sing	29	4	3	27	4	4	5
Shanxi-J-25	ST46	Sing	29	4	3	27	4	4	5
Hebei-E-05	ST47	CC5	29	27	3	27	4	24	14
Ningxia-I-16	ST47	CC5	29	27	3	27	4	24	14
Ningxia-I-17	ST47	CC5	29	27	3	27	4	24	14
Ningxia-I-23	ST47	CC5	29	27	3	27	4	24	14
Ningxia-I-28	ST47	CC5	29	27	3	27	4	24	14
Ningxia-I-13	ST48	Sing	4	4	3	20	4	24	14
Ningxia-I-15	ST48	Sing	4	4	3	20	4	24	14
Ningxia-I-18	ST48	Sing	4	4	3	20	4	24	14
Ningxia-I-19	ST48	Sing	4	4	3	20	4	24	14
Ningxia-I-20	ST48	Sing	4	4	3	20	4	24	14
Ningxia-I-26	ST48	Sing	4	4	3	20	4	24	14
Ningxia-I-27	ST48	Sing	4	4	3	20	4	24	14
Shandong-M-36	ST48	Sing	4	4	3	20	4	24	14
Shanxi-A-01	ST48	Sing	4	4	3	20	4	24	14
Hebei-B-39	ST49	CC4	30	28	3	28	21	4	18
Hebei-L-31	ST49	CC4	30	28	3	28	21	4	18
Hebei-L-32	ST49	CC4	30	28	3	28	21	4	18
Hebei-L-33	ST49	CC4	30	28	3	28	21	4	18
Hebei-L-35	ST49	CC4	30	28	3	28	21	4	18
Hebei-G-08	ST50	CC5	29	29	3	27	4	24	14
Hebei-G-09	ST50	CC5	29	29	3	27	4	24	14
Hebei-G-10	ST50	CC5	29	29	3	27	4	24	14
Hebei-L-34	ST50	CC5	29	27	3	27	4	24	14
InnerMongolia-D-04	ST51	Sing	31	4	3	4	14	4	14
Shandong-M-37	ST52	CC4	31	28	3	28	21	4	18
122061	ST53	Sing	32	26	14	28	10	25	14
EP01	ST54	Sing	33	Ab	15	29	22	26	24
FDAARGOS 1063	ST55	Sing	34	21	16	30	7	27	25
M79	ST56	Sing	35	30	17	31	23	28	26
RTCLI04	ST56	Sing	35	30	17	31	23	28	26

MGYG-HGUT-00230	ST57	Sing	36	6	2	32	24	8	27
lg38	ST58	Sing	37	31	1	33	25	29	28

CC, clonal complexes; Sing, singleton; ST, sequence type; Ab, absent.

mastitis composite milk samples in China and control strain ATCC 43921 ¹ .	amples i	n China	and cor	ntrol str	ain AT	rcc 43	921 ¹ .)			
	TTO V	(1/~									Resistance	MIC50	MIC90	
Antimicrobial		MILC (µg/IIIL)								ra	rate (%)	(μg/mL) (με	(µg/mL)	
	0.12	0.25	0.5	1	2	4	8	16	32	64				
Penicillin		6	Ζ	19	5						0	1	2	
Ampicillin		3	6	24	4						0	1	1	
Amoxicillin/clavulanic				1	4	26	6				C	~	0	
acid											D	4	0	
Imipenem	11	17	11	1							0	0.25	0.5	
Cephalothin						10	26	4			10	8	8	
Cefazolin				2	20	11	6	-			45	2	8	
Cefpodoxime				2	5	21	12				82.5	4	8	
Ceftiofur	16	17	Ζ								0	0.25	64	
Amikacin								4	5	31	06	64	64	
Gentamicin				1	12	12	15				37.5	4	8	
Erythromycin	19	9	13	2							5	0.25	0.5	
Clindamycin							1	23	11	5	100	16	32	
Enrofloxacin	1	3	17	15	ε						0	0.5	1	
Marbofloxacin			2	20	15	3					0	1	2	
Chloramphenicol							18	14	2	6	100	16	64	
Vancomycin			15	22	3					i	0	1	1	

Table 3 Minimum inhibitory concentration (MIC) of the 15 antimicrobials tested for 39 Lactococcus garvieae isolates isolated from clinical

1. Resistance breakpoints are highlighted by dark gray shading; intermediate breakpoints are highlighted by light gray shading; cells without shading indicate that no breakpoints were available in the literature.