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Abstract 28 

Research in neuroscience often assumes universal neural mechanisms, but increasing 29 

evidence points towards sizeable individual differences in brain activations. What 30 

remains unclear is the extent of the idiosyncrasy and whether different types of analyses 31 

are associated with different levels of idiosyncrasy. Here we develop a new method for 32 

addressing these questions. The method consists of computing the within-subject 33 

reliability and subject-to-group similarity of brain activations and submitting these values 34 

to a computational model that quantifies the relative strength of group- and subject-level 35 

factors. We apply this method to a perceptual decision-making task (N=50) and find that 36 

activations related to task, reaction time (RT), and confidence are influenced equally 37 

strongly by group- and subject-level factors. Both group- and subject-level factors are 38 

dwarfed by a noise factor, though higher levels of smoothing increases their contributions 39 

relative to noise. Overall, our method allows for the quantification of group- and subject-40 

level factors of brain activations and thus provides a more detailed understanding of the 41 

idiosyncrasy levels in brain activations.  42 
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Introduction 43 

Human behavior is idiosyncratic: what elicits a certain behavior in one person is often 44 

very different from what elicits that same behavior in another (Eilam 2015; Forkosh et al. 45 

2019). Similarly, increasing amount of evidence points towards the existence of 46 

substantial idiosyncrasy in brain activations, such that the same task can elicit different 47 

patterns of activity in different subjects (Seghier et al. 2008; Miller et al. 2009, 2012). 48 

Yet, it remains unclear how to precisely quantify the strength of the observed 49 

idiosyncrasy, as well as whether different types of analyses are associated with different 50 

levels of idiosyncrasy.  51 

 52 

To address these questions, here we develop a method to determine the contribution of 53 

group- and subject-level factors to observed activations in functional MRI (fMRI) 54 

studies. The method requires the computation of subject-to-group similarity and within-55 

subject reliability of the observed activations. The idea is that the subject-to-group 56 

similarity can inform us about how different each person’s activation map is from the 57 

group. However, this information has to be interpreted in the context of the noisiness of 58 

each individual map, which can be quantified by assessing its within-subject reliability. 59 

Critically, these values can be submitted to a computational model that can assess the 60 

relative contribution of group- and subject-level factors to each activation map. 61 

 62 

We collected data from a perceptual decision-making task inside an MRI scanner where 63 

subjects (N = 50) judged whether a briefly presented display featured more red or blue 64 

dots and provided a confidence rating (Fig. 1A). The experiment was organized in 96 65 

blocks of 8 trials each (see Materials and Methods for full details). We performed 66 

standard analyses to assess the activation maps associated with task trials, as well as with 67 

RT and confidence (by comparing trials with higher- vs. lower than the trial-level median 68 

RT and confidence). We show that the model can successfully quantify the contribution 69 

of group- and subject-level factors to brain activations and that these two factors are 70 

approximately equally important in our task. 71 

 72 
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 73 

Figure 1. Task and results of standard group analyses. (A) Task. Subjects performed a 74 

simple perceptual decision-making task that required them to judge the dominant color in 75 

a display of colored dots and rate their confidence. (B) Results of standard second 76 

analyses for task-, RT-, and confidence-based contrasts. The analyses showed strong 77 

increases and decreases in activation across a range of brain regions for task- (top left), 78 

RT- (top middle) and confidence-based (top right) analyses. All maps thresholded at FDR 79 

< 0.01 corrected for display purposes. 80 

 81 

Materials and Methods 82 

Subjects 83 

Fifty-two healthy subjects were recruited for this study. Two subjects were excluded 84 

because one had metal braces in their teeth and one decided to stop the experiment after 85 

the second run. All analyses were thus based on the remaining 50 subjects (25 females; 86 

Mean age = 26; Age range = 19-40; Compensated 20,000 KRW or approximately 18 87 

USD). All subjects were screened for any history of neurological disorders or MRI 88 

contraindications. The study was approved by Ulsan National Institute of Science and 89 

Technology Review Board (UNISTIRB-20-30-C) and all subjects gave written consent. 90 

 91 

Task 92 

Subjects had to determine which set of colored dots (red vs. blue) was more frequent in a 93 

cloud of dots (Fig. 1A). Each trial began with a white fixation dot presented for a variable 94 

amount of time between 500-1500 ms at the center of the screen on a black background. 95 

Then, the stimulus was shown for 500 ms, followed by untimed decision and confidence 96 
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screens. The stimulus consisted of between 140 and 190 red- and blue-colored dots (dot 97 

size = 5 pixels) dispersed randomly inside an imaginary circle with a radius of 3° from 98 

the center of the screen. Four different dot ratios were used – 80/60, 80/70, 100/80, and 99 

100/90, where the two numbers indicate the number of dots from each color. The 100 

experiment was organized in blocks of 8 trials each, with each dot ratio presented twice 101 

in a random order within a block. The more frequent color was pseudo randomized so 102 

that there were equal number of trials where red and blue were the correct answer within 103 

a run (consisting of 16 blocks). Subjects used an MRI-compatible button box with their 104 

right hand to indicate their decision and confidence responses. For the decision response, 105 

the index finger was used to indicate a “red” response and the middle finger for a “blue” 106 

response. Confidence was given on a 4-point scale, where 1 is the lowest and 4 is the 107 

highest, with the rating of 1 mapped to the index finger and the rating of 4 mapped to the 108 

little finger. 109 

 110 

Subjects performed 6 runs each consisting of 16 blocks of 8 trials (for a total of 768 trials 111 

per subject). Three subjects completed only half of the 6th run and another three subjects 112 

completed only the first 5 runs due to time constraints. The remaining 44 subjects 113 

completed the full 6 runs. Subjects were given 5 seconds of rest between blocks, and self-114 

paced breaks between runs. 115 

 116 

MRI recording 117 

The MRI data was collected on a 64-channel head coil 3T MRI system (Magnetom 118 

Prisma; Siemens). Whole-brain functional data were acquired using a T2*-weighted 119 

multi-band accelerated imaging (FoV = 200 mm; TR = 2000 ms; TE = 35 ms; multiband 120 

acceleration factor = 3; in-plane acceleration factor = 2; 72 interleaved slices; flip angle = 121 

90°; voxel size = 2.0 x 2.0 x 2.0 mm3). High-resolution anatomical MP-RAGE data were 122 

acquired using T1-weighted imaging (FoV = 256 mm; TR = 2300 ms; TE = 2.28 ms; 192 123 

slices; flip angle = 8°; voxel size = 1.0 x 1.0 x 1.0 mm3). 124 

 125 

MRI preprocessing and general linear model fitting 126 
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MRI data were preprocessed with SPM12 (Wellcome Department of Imaging 127 

Neuroscience, London, UK). We first converted the images from DICOM to NIFTI and 128 

removed the first three volumes to allow for scanner equilibration. We then preprocessed 129 

with the following steps: de-spiking, slice-timing correction, realignment, segmentation, 130 

coregistration, normalization, and spatial smoothing with 10 mm full width half 131 

maximum (FWHM) Gaussian kernel. In control analyses, we used 5 and 20 mm FWHM 132 

smoothing to investigate whether the results are due to fine-grained differences in the 133 

activations maps between subjects, given that local differences would be substantially 134 

reduced by larger smoothing kernels. Despiking was done using the 3dDespike function 135 

in AFNI. The preprocessing of the T1-weighted structural images involved skull-136 

removal, normalization into MNI anatomical standard space, and segmentation into gray 137 

matter, white matter, and cerebral spinal fluid, soft tissues, and air and background. 138 

 139 

We fit a general linear model (GLM) that allowed us to estimate the beta values for each 140 

voxel in the brain. The model consisted of separate boxcar regressors for trials that had 141 

greater or smaller than the median RT or confidence (trial onset was set to the beginning 142 

of fixation and trial offset was set to the confidence response), inter-block rest periods, as 143 

well as linear and squared regressors for six head movement (three translation and three 144 

rotation), five tissue-related regressors (gray matter, white matter, cerebrospinal fluid, 145 

soft tissues, and air and background), and a constant term per run.  146 

 147 

Standard group-level analyses 148 

We first performed a standard group analysis by conducting t-tests across all subjects for 149 

each voxel. A task-based analysis compared the obtained beta values with zero to identify 150 

regions of activation and de-activation. Two behavior-based analyses compared the beta 151 

values for trials with faster- vs. slower-than-median average reaction times (RT) and 152 

higher- vs. lower-than-median average confidence. Significance was assessed using p < 153 

0.05 after Bonferroni correction for multiple comparisons. For display purposes, Fig. 1 154 

and Fig. S1 used the more liberal threshold of p < 0.001 uncorrected.  155 

 156 
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Within-subject reliability analyses 157 

We examined the within-subject reliability of the whole-brain maps produced by the task, 158 

RT, and confidence analyses. To do so, we first re-did each analysis by only using the 159 

odd trials, as well as by only using the even trials. We then compared the similarity 160 

between the maps obtained for odd and even trials using Pearson correlation. We 161 

performed the analysis five times based on the top 10, 25, 50, 75, or 100% of most 162 

strongly activated voxels in the following way. We first identified the X% most strongly 163 

activated voxels (i.e., the voxels with highest absolute activation values) when only 164 

examining the data from the odd trials. The activation values used were the average beta 165 

value for task-based analyses, and the t-value (obtained by using a t-test to compare the 166 

beta values for trials with above- vs. below-median RT or confidence) for the RT and 167 

confidence analyses. This selection procedure ensured that both positively and negatively 168 

activated voxels were selected and that an equal number of voxels were selected each 169 

time. The activations in the selected top X% of voxels from the odd trials were then 170 

correlated with the activations in the same voxels in the even trials, thus obtaining an 171 

“odd-to-even” correlation value. Then, using an equivalent procedure, we identified the 172 

top X% of most activated voxels in the even trials, and correlated their activations with 173 

the activations in the corresponding voxels in the odd trials, thus obtaining an “even-to-174 

odd” correlation value. Finally, we computed the overall within-subject reliability as the 175 

average of the odd-to-even and even-to-odd correlation values.  176 

 177 

We limited our analysis to a single session because the objective was to develop a 178 

method that estimate the contribution of subject- and group-level factors in brain 179 

activation using reliability and similarity values. The framework developed here can be 180 

extended to include data from multiple sessions but the benefit using a single session is 181 

that it will maximize within-session reliability since the reliability between sessions could 182 

be affected by multiple exogenous factors (Poldrack et al. 2015; Nakuci et al. 2023). 183 

 184 

Subject-to-group similarity analyses 185 
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Critically, we examined the subject-to-group similarity in the maps produced by each 186 

analysis. For each subject, we correlated their individual task-, RT-, and confidence-187 

based activation maps with the corresponding group map obtained by averaging the maps 188 

of the remaining 49 subjects. Similar to the within-subject reliability analyses, we 189 

conducted these analyses separately for the top 10, 25, 50, 75, or 100% of most activated 190 

voxels. These voxels were selected in the same way as for the within-subject reliability 191 

analyses using all of the data in a given subject; the activations in the voxels identified for 192 

a given subject were then correlated with the average activations in the same voxels for 193 

the remaining 49 subjects. 194 

 195 

Consistency in activation analysis 196 

As another test of the across-subject similarity, we computed the consistency in the sign 197 

of activation. Our main analyses relied on taking correlations, but it is possible that just 198 

considering the sign of activation (rather than the strength of activation) would produce 199 

different results. To investigate this possibility, we examined the consistency of the sign 200 

of voxel activations (positive or negative) across subjects. To do so, we first set all voxels 201 

values that were equal to zero to not-a-number value (NaN). This applied to regions that 202 

are outside the brain. We then binarized the voxel activation values �����������  such 203 

that:  204 

 205 

 	���
�� � 1, ����������� � 0
0, ����������� � 0� 

 206 

The consistency of the sign of a voxel’s activation across subjects (��) was then 207 

calculated as percentage of subjects for which a voxel � was positively or negatively 208 

activated using the formula: 209 

 210 

�� � 100 � 1
50 � 	���
��

��

���

 

 211 
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As defined, ��  goes from 0 (all subjects having negative activation for that voxel) to 100 212 

(all subjects having positive activations for that voxel), with a value of 50 indicating that 213 

half of the subjects had positive and half had negative activation. However, when 214 

reporting the values of �� , we flipped values under 50 using the formula ��,���		
� �215 

100 � �� , so that these values represent the percent of subjects with negative activations. 216 

The analysis was performed separately for task-based activation maps, RT-based 217 

activation maps, and confidence-based activation maps. The activation values were the 218 

average beta value (for task-based analyses) or t-value (for RT and confidence analyses). 219 

 220 

Low across-subject similarity in these analyses would result in most voxels having 221 

consistency, �� , values close to 50 (corresponding to the voxel activation having positive 222 

sign in half the subjects and negative sign in the other half). However, due to chance, the 223 

consistency values are bound to sometimes be higher. Therefore, to enable the 224 

appropriate interpretation of the obtained results, we computed the expected consistency 225 

values in the maps of 50 subjects whose maps have no relationship to each other. 226 

Specifically, we generated a random set of voxel activation values for each of 50 sample 227 

subjects. Maximal consistency from the random data was calculated in the same manner 228 

as the empirical values and the procedure was repeated 1000 times. This analysis 229 

revealed that completely random data would produce a maximal consistency of 80% (for 230 

both positive and negative activations) given the number of voxels and number of 231 

subjects that we had, which was close to the empirically observed values for RT and 232 

confidence analyses. 233 

 234 

Distribution of top-10% most strongly activated voxels 235 

As a final test of the across-subject similarity for the different maps, we sought to identify 236 

the consistency of the location of the most strongly activated brain regions across 237 

subjects. For each subject, we selected the top-10% most strongly activated voxels by 238 

considering the absolute value of either the average beta value (for task-based analyses) 239 

or t-value (for RT and confidence analyses). Note that this procedure selected positive 240 

and negative activations. We then estimated, for each voxel, the percent of subjects for 241 
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which the voxel was selected as one of the top-10% most strongly activated voxels. As 242 

before, the analysis was performed separately for task-based activation maps, RT-based 243 

activation maps, and confidence-based activation maps.  244 

 245 

Low across-subject similarity in these analyses would result in most voxels being 246 

selected about 10% of the time. However, due to chance, some voxels are bound to be 247 

selected more than 10% of the time. Therefore, to enable the appropriate interpretation of 248 

the obtained results, we computed the expected level of maximal overlap in the maps of 249 

50 subjects whose maps have no relationship to each other. Specifically, for each of the 250 

50 subjects, we generated a random set voxel activation values. We then selected the top-251 

10% of the highest absolute values from each subject and calculated the overlap across 252 

subjects. The expected value from random data was computed as the average maximal 253 

overlap after 1000 iterations. This analysis revealed that completely random data would 254 

produce a maximal overlap of 28% given the number of voxels and number of subjects 255 

that we had, which was only a little less than the empirically observed values for RT and 256 

confidence analyses (32% for RT-based analyses and 30% for confidence-based 257 

analyses).  258 

 259 

Model specification 260 

The model jointly generates behavior and brain activity maps using minimal assumptions 261 

in a way that makes it generalizable across different contexts. The model assumes that the 262 

activation map for each trial is a function of seven different factors. The first three are 263 

group-level factors (i.e., factors common to all subjects) for the task itself, the influence 264 

of RT, and the influence of confidence. The next three factors are subject-level factors 265 

(i.e., factors specific to each subject) for the task itself, the influence of RT, and the 266 

influence of confidence. Finally, the 7th factor is simply Gaussian noise. Critically, each 267 

factor is weighed by a corresponding factor weight that determines the strength of 268 

influence of that factor to the final voxel activation values, such that the activation 269 

strength (�) for a given voxel on a given trial is: 270 

 271 
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� � ���������
� ��������� � ��������

� �������� � �� � ����������
� ���������� � ���� 

�  ��������
� �������� � �������

� ������� � �� � ���������
� ���������

� ���� � �����
 � �����
 

 272 

where �� and ���� are the empirical the reaction time and confidence trial, the �’s are 273 

the weights associated with each factor, and the �’s are the factors that influence the 274 

voxel activity for a given trial. Without loss of generality, the weight of the noise factor 275 

(�����
) was fixed to 1. The � variables are the component of activation that influence 276 

the voxel activity for a given trial and f can be thought of as the latent (unobserved) 277 

component of activation that is associated with the task, RT, confidence, and noise. The 278 

value of each factor � was randomly sampled from a standard normal distribution such 279 

that group-level factors were randomly sampled for each voxel, subject-level factors were 280 

randomly sampled for each voxel and subject, and the noise factor was randomly sampled 281 

for each voxel, subject, and trial. We note that the model does not predict beta values for 282 

individual regressors. Instead, it generates beta values that already take into account all 283 

regressors, which are then used to compute subject-to-group similarity and within-subject 284 

reliability values.  285 

 286 

The advantage of a model-based approach is that (1) it provides the ratio of subject to 287 

group level contribution and (2) it allows us to compare the contribution of subject- and 288 

group-level factors relative to the noise in the data. Alternatively, the ratio can be 289 

calculated directly from the within-subject reliability and subject-to-group similarity, but 290 

the advantage of the model is that it allows us to compare the group- and subject-level 291 

factors to the noise level. Therefore, a model-based approach allows for a more thorough 292 

analysis of the contribution of subject- and group-level factors to the brain activation. 293 

 294 

Model fitting 295 

We first fit the model to the empirically observed within-subject reliability and subject-296 

to-group similarity values. The model had six free parameters corresponding to the 297 

weights, �, of the group- and subject-level factors that determined the simulated � value 298 
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for each voxel in each trial. For a given set of weights, we simulated a complete 299 

experimental dataset by generating simulated data for 50 subjects with 768 trials per 300 

subjects. Based on these data, we then computed the within-subject reliability and 301 

subject-to-group similarity values in the same way as for the empirical data. When 302 

simulating the model, we observed that the exact number of voxels used made no 303 

systematic difference to the observed values of the obtained within-subject reliability and 304 

subject-to-group similarity values. Therefore, we used 10,000 voxels, which allowed for 305 

stable values to be obtained on different iterations. The fitting minimized the mean 306 

squared error (MSE) between the simulated and empirically observed within-subject 307 

reliability and subject-to-group similarity values calculated using the top-100% most 308 

activated voxels (that is, using all voxels). Once the fitting was completed, we also 309 

generated the predictions of the best-fitting model for the within-subject reliability and 310 

subject-to-group similarity values calculated using the top 10, 25, 50, and 75% most 311 

activated voxels. The fitting itself was carried out using the Bayesian Adaptive Direct 312 

Search (BADS) toolbox (Acerbi and Ma 2017). We fit the model 10 times are reported 313 

the best fitting model among the 10 iterations. We repeated the model fitting 10x to avoid 314 

local minima when estimating parameters, as is standard practice in the field and our 315 

laboratory (Shekhar and Rahnev 2020; Yeon and Rahnev 2020). 316 

 317 

Model Comparison  318 

We have compared the Full model (Subject + Group + Noise factors) with a Subject-319 

Only model (Subject + Noise factors) and Group-Only model (Group + Noise factors). 320 

We simulated each model 25x and calculated the mean-squared error (MSE) between the 321 

model-based and empirical values for the subject-to-group similarity and within-subject 322 

reliability values. In addition, we compared the different models using Akaike 323 

Information Criterion (AIC) and Bayesian Information Criterion (BIC). 324 

 325 

Data and code availability  326 
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Processed data and code are available at https://osf.io/gyw8f/. 327 

 328 

Results 329 

We first performed standard group fMRI analyses by conducting t-tests across all 330 

subjects for each voxel. We found that contrasts related to the task (Task > Background), 331 

RT (Fast RT > Slow RT), and confidence (High confidence > Low confidence) all 332 

produced regions of strong activation and de-activation (Fig. 1B). We inspected the 333 

activations for task, RT, and confidence in subjects 1-3 and found that all three subjects 334 

demonstrated relatively consistent activation patterns (Fig. 2). However, there appeared 335 

to be consistent across-subject differences in the activation maps, which could not be 336 

attributed purely to noise as they also appeared in maps produced by only the odd or only 337 

the event trials for a given subject. These results hint at the idea that both group- and 338 

subject-level factors may be contributing to the observed activations.  339 

 340 
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 341 

 342 

Figure 2. Trial-level activations for task, RT, and confidence for three example 343 

subjects. Trial-level activation maps for (A) task, (B) RT, and (C) confidence contrasts 344 

from the first three subjects. Small brains underneath represent the same contrasts 345 

conducted only on odd or even trials. Similar activations for all three subjects appear for 346 

all trial-level contrasts. 347 

 348 

To formally test these impressions, we first examined both the within-subject reliability 349 

and subject-to-group similarity of the whole-brain maps for the task, RT, and confidence 350 

contrasts. We computed within-subject reliability by performing Pearson correlations 351 
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between the activations obtained when examining only the odd or only the even trials. 352 

We computed subject-to-group similarity by correlating each subject’s brain map with 353 

the group map obtained by averaging the maps of the remaining 49 subjects.  354 

 355 

As may be expected from Figure 2, for task-based activation we found strong within-356 

subject reliability (ract = 0.81 ± 0.013, p < 0.001) and subject-to-group similarity in task 357 

activations (ract = 0.72 ± 0.013, p < 0.001; Fig. 3A). In the same manner, RT- and 358 

confidence-based maps exhibit strong within-subject reliability (rrt = 0.74 ± 0.014, p < 359 

0.001; rconf  = 0.55 ± 0.028, p < 0.001; Fig. 3B-C, top). Critically, we examined the 360 

subject-to-group similarity for the RT and confidence maps. Echoing the qualitative 361 

impressions from Figure 2, we found a high degree of similarity across subjects for the 362 

RT-based maps (rrt = 0.69 ± 0.014, p < 0.001; Fig. 3B, bottom) and confidence-based 363 

maps (rconf  = 0.52 ± 0.025; Fig. 3C, bottom). 364 

 365 

 366 

Figure 3. Within-subject reliability and subject-to-group similarity. Within-subject 367 

reliability and subject-to-group similarity values as a function of the percent of most 368 

activated voxels selected for (A) task- (B) RT- and (C) confidence-based activation. 369 

Subject-to-group similarity is computed as the average similarity between the maps of 370 

each person and the group map of the remaining subject. Error bars show SEM. 371 
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 372 

One potential concern with these types of analyses could be that they may be biased by 373 

voxels that are either particularly noisy or not involved in the task in any way. Therefore, 374 

to test whether these results are robust, we repeated them by first selecting the top 75, 50, 375 

25, or 10% of the most strongly activated voxels for each subject (see Methods). These 376 

analyses showed that selecting smaller percentages of the most highly activated voxels 377 

generally increased both the within-subject reliability and subject-to-group similarity, but 378 

the pattern of results remained essentially unchanged. 379 

 380 

To gain further intuition for the underlying effects, we conducted two additional analyses. 381 

First, we tested the consistency of the sign of voxel activations (whether they were 382 

positive or negative) across subjects. We found that for the task maps, there were large 383 

portions of the brain that showed consistently positive or consistently negative activations 384 

(Fig. 4A left). Indeed, the maximal overlap across subjects was 100% for both positive 385 

and negative activations. Further, we found many areas of strong consistency with 386 

maximal overlap of 100% and 98% for positive and negative activations in the RT maps, 387 

and maximal overlap of 100% and 88% for positive and negative activations in the 388 

confidence maps (Fig. 4A middle and right). (Note that the expected values in random 389 

data are 80% for positive and negative activations) 390 

 391 
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 392 

Figure 4. Maps of the activation consistency and distribution of the top-10% most 393 

activated voxels across subjects. (A) Maps of voxel consistency computed as the 394 

proportion of subjects showing a positive or negative relationship between voxel activity 395 

and behavior. Task activations maps, as well as RT and confidence maps show a high 396 

level of consistency. (B) Maps of the distribution of the top-10% most activated voxels. 397 

Task activations maps, as well as RT and confidence maps contain areas with a high level 398 

of consistency in occipital and parietal lobes.  399 

 400 

Second, we examined the distribution of the locations of the top-10% most strongly 401 

activated voxels for each subject (both positive and negative activations were 402 

considered). The most strongly activated voxels clustered in the occipital and parietal 403 

lobes (Fig. 4B left). The maximum overlap among the 10% most activated voxels across 404 

subjects was 98%. Further, there were again areas of strong clustering of the most 405 

activated voxels (mostly in the occipital lobe) for both RT and confidence maps 406 

(maximal overlap: 98% and 78%, respectively; Fig. 4B middle and right). Altogether, 407 

both additional analyses further underscore the high level of consistency for task, RT and 408 

confidence maps across subjects. We also repeated the same analyses above with a wide 409 

range of smoothing levels (from 5 to 20 mm) and obtained very similar results (Fig. S1 410 

and S2). 411 
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Having quantified the within-subject reliability and subject-to-group similarity between 413 

different types of analyses, we used this information to quantify the contribution of 414 

group- and subject-level factor by building a simple computational model. The critical 415 

idea behind the model is to separately model group-level factors (i.e., factors that are 416 

identical for all subjects) and subject-level factors (i.e., factors that are different for each 417 

subject). The inputs into the model are the empirical within-subject reliability and 418 

subject-to-group similarity values, as well as the empirical RT and confidence values. 419 

The simulation generates idealized beta values (voxel activations) for each trial 420 

characterized by a given RT and confidence values. Note that the activations produced by 421 

the model are not mapped onto specific voxels in the brain and do not form a meaningful 422 

spatial map. That is, to keep the model simple, individual voxel activation for each 423 

group- and task-level factor were generated randomly by ignoring known temporal and 424 

inter-regional dependencies.  425 

 426 

Critically, the model produces the idealized beta values based on three group-level 427 

factors (group task map, group RT map, and group confidence map), three subject-level 428 

factors (subject-specific task map, subject-specific RT map, and subject-specific 429 

confidence map), and one noise factor (Fig. 5A). The weight of the noise factor was fixed 430 

to 1, leaving the model with a total of six free parameters (one for the weight of each 431 

group- and subject-level factor). We then fit the within-subject reliability and subject-to-432 

group similarity produced by the model to the observed values computed using 100% of 433 

the voxels. 434 
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 435 

Figure 5. Model structure and model fits. (A) Graphical depiction of the model at the 436 

trial level. The model generates an idealized set of beta values for an individual trial as 437 

the confluence of three group-level, three subject-level, and one noise factor. The 438 

thickness of the arrows and associated numbers correspond to the weights obtained from 439 

fitting the model to the data. (B-C) Model fits to the within-subject reliability (top) and 440 

subject-to-group similarity (bottom) values for (B) task, (C) RT, and (D) confidence 441 

analyses. The model was fit only to the empirical data with 10-mm smoothing where 442 

100% of voxels selected. Despite its simplicity, the model is able to reproduce the 443 

empirical data for the remaining analyses with smaller percentages of selected voxels 444 

very well. 445 

 446 
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Despite its simplicity, the model was able to provide excellent fit to the data from Fig. 3 447 

by capturing closely the observed patterns of within-subject reliability (Fig. 5B-D, top) 448 

and subject-to-group similarity (Fig. 5B-C, bottom) for the data with 10 mm smoothing. 449 

We also separately fit the data with 5 and 20 mm smoothing and obtained equally good 450 

fits.  451 

 452 

Critically, the model allowed us to examine the weights of the group- and subject-level 453 

factors, thus providing insight into the relative contribution of each. We found slightly 454 

larger contribution weights for the group- than subject-level task factors (subject-level 455 

factor weight = 0.150, group-level factor weight = 0.170, ratio = 0.88; Fig. 6A, B). Thus, 456 

the group-level factors were only slightly higher than the subject-level factors, pointing to 457 

a balance between influences that are common across all subjects and influences that are 458 

specific to each individual. On the other hand, we observed slightly higher relative 459 

weights for the subject-level factors for the RT and confidence maps at the trial level 460 

(RT: subject-level factor weight = 0.123, group-level factor weight = 0.091, ratio = 1.35; 461 

Confidence: subject-level factor weight = 0.101, group-level factor weight = 0.061, ratio 462 

= 1.65). In other words, our model suggests that group- and subject-level factors have 463 

relatively similar influence on task activation maps, which corresponds well to recent 464 

findings about group- and subject-level influences on brain connectivity (Gratton et al. 465 

2018). However, the relative contribution of all group- and subject-level factors is small 466 

relative to the contribution of noise (Fig. 6C).   467 

 468 

 469 

Figure 6. Model weights, ratios, and proportions. A) Model weights. Subject- and 470 

group-level weights obtained from fitting the model separately to each level of smoothing 471 

(5, 10, and 20 mm). B) Weight ratios. Relative weights of the subject-level and 472 
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corresponding group-level factors from each analysis. C) Factor proportions. The 473 

combined percent accounted for by subject, group, and noise factors contributing to the 474 

activation on an individual trial. Subject and group factors reflect the summed task, RT, 475 

and confidence weights.  476 

 477 

To examine the robustness of the modeling results, we repeated the model fitting on data 478 

with 5 to 20 mm smoothing. These two additional analyses produced similar results: the 479 

weights ratio between the subject- and group-level factors was between 0.8 and 1.21 for 480 

the task factors in all cases, between 0.9 and 1.4 for RT, and between 0.9 and 1.8 for 481 

confidence (Fig. 6B). 482 

 483 

Additionally, we compared the Full model (Subject + Group + Noise factors) with a 484 

Subject-Only model (Subject + Noise factors) and a Group-Only model (Group + Noise 485 

factors) (Fig. S3A-C). We simulated each model 25x and calculated the mean-squared 486 

error (MSE), Akaike Information Criterion (AIC), and Bayesian Information Criterion 487 

(BIC) between the model-based and empirical within-subject reliability and subject-to-488 

group similarity values. The reliability and similarity values estimated from the Full 489 

model exhibited lower MSE, AIC and BIC values compared to the Subject-Only or 490 

Group-Only models (paired sample t-test, p < 10-26; Fig. S3D-F). These results indicate 491 

that there are both subject and group components in both task- and behavior-based brain 492 

activation maps. 493 

 494 

Lastly, we explored whether we would obtain similar results if we repeat these analyses 495 

at the level of blocks (of eight trials each) rather than trials. Similar to the trial-level 496 

analyses, we found relatively high subject-to-group similarity and within-subject 497 

reliability values for task activations. However, analyses of average RT and confidence 498 

on the block level revealed very low subject-to-group similarity values but reasonably 499 

high within-subject reliabilities, which was reflected in much higher values for subject- 500 

compared to group-level factors in our model (Fig. S4-S8). These results suggest that 501 

other types of analyses than the standard ones included here may result in different 502 

contributions of subject- and group-level factors.  503 
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 504 

Discussion  505 

A major goal of neuroscience research has been to understand the neural correlates of 506 

behavior. Behavior is a complex phenomenon that is often specific to a person (Eilam 507 

2015; Forkosh et al. 2019). Idiosyncratic behavioral responses are ubiquitous in social 508 

situations (Durlauf 2001), economic decisions (Kable and Glimcher 2007), judgments of 509 

beauty (Martinez et al. 2020), confidence ratings (Navajas et al. 2017), response bias 510 

(Rahnev 2021), and even low-level perception (Afraz et al. 2010). Here we develop a 511 

method to quantify the level of idiosyncrasy in brain activations by estimating the relative 512 

contributions of group- and subject-level factors. By applying this method to a new 513 

dataset where subjects (N=50) completed a perceptual decision-making task, we find that 514 

for standard analyses at the trial level, the influence of subject-level factors is only 515 

slightly stronger than the influence of group-level factors.  516 

 517 

There are at least two important conclusions that one can draw from the current results. 518 

First, across all analyses performed here, subject-level factors were at least as important 519 

as group-level factors. While this effect could be at least partly driven by issues such as 520 

misalignment across different brains, the results were remarkably stable whether they 521 

were computed using 5-, 10-, or 20-mm smoothing. If brain misalignment were the main 522 

source of the observed idiosyncrasy here, one would expect that larger smoothing would 523 

produce different results. These results suggest that idiosyncratic, subject-level factors 524 

may play a large role in observed brain activations. Our findings thus highlight the need 525 

for a renewed focus on investigating the brain-behavior relationship at the level of single 526 

subjects (Gilmore et al. 2021; Gordon and Nelson 2021; Naselaris et al. 2021; Song and 527 

Rosenberg 2021).  528 

 529 

Our current results also suggest novel ways for finding robust biomarkers for various 530 

mental disorders (Kaufmann et al. 2017; Elliott et al. 2018; Li et al. 2020; Parkes et al. 531 

2020). Most research in the field has focused on biomarkers unrelated to behavior such as 532 

functional connectivity patterns at rest (Woodward and Cascio 2015; Drysdale et al. 533 
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2017). An exciting possibility is that subject-level activations maps for disease-relevant 534 

behaviors could serve as much more powerful biomarkers because of their high reliability 535 

and clear differences among people. Focusing directly on the relationship between one’s 536 

behavior and one’s brain activations may help to delineate the intricate relationship 537 

between the brain and psychopathology (Gratton et al. 2020). Therefore, subject-level 538 

effects could be crucial to diagnosing and treating different mental illnesses. 539 

Additionally, an analysis that is focused on subject-level variability might be more 540 

informative since between-subject analyses ignore the large degree of within-subject 541 

variability (Fisher et al. 2018; Lebreton et al. 2019). 542 

 543 

It is worth noting that contribution of group- and subject-level factors might change. In 544 

some tasks, the group-level factors might play a larger role, whereas in other tasks the 545 

subject-level factor might play a larger role. These different tasks might be valuable for 546 

isolating the group- and subject-level components of cognitions. Future research should 547 

estimate the contribution of these factors in a wider variety of tasks and contrasts. 548 

 549 

Previous work has utilized mixed-effect modeling to estimate the contribution of subject- 550 

and group-factors (Woolrich et al. 2004; Friston et al. 2005; Chen et al. 2013). This prior 551 

work has relied on estimating these effects directly from the underlying brain activation 552 

patterns associated with given condition. The framework developed here builds upon this 553 

work to simulate brain activation to estimate the contribution of subject- and group-level 554 

factors. In a similar fashion to previous work, the subject-level factors can be thought of 555 

as random effects and the group-level factors as fixed effects. 556 

 557 

Despite the fact that our model is able to fit the data quite well, it is nonetheless important 558 

to highlight the model’s limitations. In particular more complex models such as 559 

hierarchical models might perform better. However, we are not able to fit a more 560 

complex model because we are fitting group-level data (e.g., average subject-to-group 561 

similarity values) rather than each individual separately. A second limitation pertains to 562 

whether the observed subject-level effects are stable across multiple sessions. In the 563 
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current analysis, we used fMRI data from a single session, but fMRI signals are highly 564 

variable between sessions even for the same subject (McGonigle et al. 2000; Zandbelt et 565 

al. 2008). Future studies should utilize multiple sessions to confirm the stability of the 566 

subject-level effects. Third, nearby voxels are known to be related to each other, thus 567 

resulting in substantial spatial autocorrelations in fMRI (Shinn et al. 2023). Our analyses 568 

do not account for such spatial autocorrelations because they do not attempt to generate 569 

voxel-level predictions. Nonetheless, it could be useful for future models to include such 570 

autocorrelations. Fourth, in our analyses we split trials based on the median, but median 571 

split can have undesirable statistical properties. An alternative would be to use parametric 572 

modulation to estimate the relationship between brain activation and RT and confidence.  573 

 574 

In conclusion, we develop a computational model to quantify the contribution of group- 575 

and subject-level factors in activation patterns. Our model suggests that activations 576 

related to task, RT, and confidence in a perceptual decision-making task are influenced 577 

equally strongly by group- and subject-level factors. However, both group- and subject-578 

level factors are dwarfed by a noise factor. Taken together, our method provides a more 579 

detailed understanding of the idiosyncrasy levels in brain activations. 580 

  581 
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 692 

 693 

Fig. S1. Trial-level analysis maps of voxel activation consistency across subjects. A) 694 

Task-based activation. B) RT-based activation. C) Confidence-based activation. All maps 695 

exhibited strong areas of consistency. Analysis was conducted on fMRI data smoothed 696 

with 5, 10, and 20 mm FWHM kernels. The 10 mm results are the same as in the main 697 

manuscript and are shown here for comparative purposes. Again, similar results are 698 

obtained for different levels of smoothing. 699 
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 702 

 703 

Fig. S2. Trial-level maps of the distribution of the top-10% most activated voxels. A) 704 

Task-based activation. B) RT-based activation. C) Confidence-based activation. All maps 705 

exhibited strong areas of consistency compared. Analysis was conducted on fMRI data 706 

smoothed with 5, 10, and 20 mm FWHM kernels. The 10 mm results are the same as in 707 

the main manuscript and are shown here for comparative purposes. Again, similar results 708 

are obtained for different levels of smoothing. 709 
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 712 

 713 

 714 

Fig S3. Comparing the Full, Subject-Only, and Group-Only models. Sample within-715 

subject reliability and subject-to-group similarity from the simulation using the Full, 716 

Subject-Only, and Group-Only factors in the simulation for (A) task-, (B) RT-, and (C) 717 

confidence-based activations. The full simulation model used subject-, group-, and noise-718 

factors. The Subject-Only simulation model used subject and noise factors. The Group-719 

Only simulation model used group and noise factors. (D-F) Model performance. The 720 

within-subject reliability and subject-to-group similarity values estimated in 25 721 

simulations, (D) the mean-squared error (MSE), (E) AIC, and (F) BIC were estimated by 722 

comparing the within-subject reliability and subject-to-group similarity from the 723 

simulation with the empirical values. The Full model outperformed both the Subject-Only 724 

and Group-Only models. Error bars show SEM. *** p < 0.001. 725 
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 727 

 728 

 729 

Fig. S4. Within-subject reliability and subject-to-group similarity for analyses 730 

conducted at the block level.  Within-subject reliability and subject-to-group similarity 731 

values of the whole-brain maps produced by the (A) task-, (B) RT-, and (C) confidence-732 

based analyses. We fit a general linear model (GLM) that allowed us to estimate the beta 733 

values for each voxel in the brain. For the block-analyses, the model consisted of 734 

regressors for each individual block (block onset was set to the beginning of fixation on 735 

the first trials and block offset was set to the confidence response of the last trial in the 736 

block), inter-block rest periods, as well as linear and squared regressors for six head 737 

movement (three translation and three rotation), five tissue-related regressors (gray 738 

matter, white matter, cerebrospinal fluid, soft tissues, and air and background), and a 739 

constant term per run. Two behavior-based analyses compared the beta values for blocks 740 

with faster- vs. slower-than-median average reaction times (RT) and higher- vs. lower-741 

than-median average confidence. Within-subject reliability and subject-to-group 742 

similarity of the whole-brain maps produced by the task, RT, and confidence analyses 743 

was examined in the same manner as for the trial level analysis. The fMRI data were 744 

spatially smoothed with 5 mm, 10 mm, or 20 mm full width half maximum (FWHM) 745 

Gaussian kernel. As can be observed, very similar results are obtained for different levels 746 

of smoothing, indicating that the results obtained are likely due to large-scale rather than 747 

small-grained differences in the maps. Error bars show SEM. 748 
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 753 

 754 

Fig. S5. Block-level maps of voxel activation consistency across subjects. A) Task-755 

based activation. B) RT-based activation. C) Confidence-based activation. Task-based 756 

activations exhibited strong areas of consistency, but both the RT and confidence maps 757 

showed much weaker consistency across subjects. Analysis was conducted on fMRI data 758 

smoothed with 5, 10, and 20 mm FWHM kernels. Again, similar results are obtained for 759 

different levels of smoothing. 760 
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 763 

 764 

Fig. S6. Block-level maps of the distribution of the top-10% most activated voxels. 765 

A) Task-based activation. B) RT-based activation. C) Confidence-based activation. Task-766 

based activations exhibited strong areas of consistency, but both the RT and confidence 767 

maps showed much weaker consistency across subjects. Analysis was conducted on 768 

fMRI data smoothed with 5, 10, and 20 mm FWHM kernels. Again, similar results are 769 

obtained for different levels of smoothing. 770 
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 772 

 773 

Figure S7. Block-level model weights, ratios, and proportions. A) Model weights. 774 

Subject- and group-level weights obtained from fitting the model separately to the data 775 

with each smoothing level. B) Weight ratios. Relative weights of the subject-level and 776 

corresponding group-level factors for each smoothing level. C) Factor proportions. The 777 

relative weight of subject, group, and noise factors contributing to the activation on an 778 

individual block. Subject and group factors reflect the summed task, RT, and confidence 779 

weights.  780 
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 784 

Fig S8. Comparing the Full, Subject-Only, and Group-Only models for block-level 785 

analysis. Sample within-subject reliability and subject-to-group similarity from the 786 

simulation using the Full, Subject-Only, and Group-Only factors in the simulation for (A) 787 

task-, (B) RT-, and (C) confidence-based activations. The full simulation model used 788 

subject-, group-, and noise-factors. The Subject-Only simulation model used subject and 789 

noise factors. The Group-Only simulation model used group and noise factors. (D-F) 790 

Model performance. The within-subject reliability and subject-to-group similarity values 791 

estimated in 25 simulations, (D) the mean-squared error (MSE), (E) AIC, and (F) BIC 792 

were estimated by comparing the within-subject reliability and subject-to-group 793 

similarity from the simulation with the empirical values. The Full model outperformed 794 

both the Subject-Only and Group-Only models. Error bars show SEM. *** p < 0.001. 795 
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