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Abstract  
 
The strength of binding between human angiotensin converting enzyme 2 (ACE2) and the receptor 
binding domain (RBD) of viral spike protein plays a role in the transmissibility of the SARS-CoV-2 virus. In 
this study we focus on a subset of RBD mutations that have been frequently observed in infected 
individuals and probe binding affinity changes to ACE2 using surface plasmon resonance (SPR) 
measurements and free energy perturbation (FEP) calculations. Our SPR results are largely in accord 
with previous studies but discrepancies do arise due to differences in experimental methods and to 
protocol differences even when a single method is used. Overall, we find that FEP performance is 
superior to that of other computational approaches examined as determined by agreement with 
experiment and, in particular, by its ability to identify stabilizing mutations. Moreover, the calculations 
successfully predict the observed cooperative stabilization of binding by the Q498R N501Y double mutant 
present in Omicron variants and offer a physical explanation for the underlying mechanism. Overall, our 
results suggest that despite the significant computational cost, FEP calculations may offer an effective 
strategy to understand the effects of interfacial mutations on protein-protein binding affinities and in 
practical applications such as the optimization of neutralizing antibodies.  

 
   
Introduction 
 

The ability to accurately predict binding affinity changes upon mutations of interfacial residues is a 
problem of significant importance, ranging from the general problem of understanding of interaction 
specificity and the design of therapeutics such as potent monoclonal antibodies that target antigens to 
revealing the mechanism of action of cancer driver mutations. Multiple approaches to the problem have 
been developed including machine learning methods (1-5), statistical potentials (6) and various force field 
related scoring functions (7-11) embedded in programs such as FoldX (11) and Rosetta (7). Each 
approach is associated with its own set of issues, such as conformational changes upon mutation, that 
are nicely discussed in reviews of Bonvin and co-workers (12). Moreover, some methods succeed on 
some test sets and fail on others, suggesting either over-training or simply that some protein-protein 
interfaces have different properties than others. Issues of experimental validation can also arise (13); not 
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all experimental methods are equally accurate and, as discussed below, the nuances of the experimental 
system can have significant effects on the outcome.  

Detailed atomic-level simulations have not been extensively applied to the prediction of mutation 
effects, in part due to the computational requirements involved. Free-energy perturbation (FEP) methods 
have the potential to impact the field as physics-based force fields are, in principle, agnostic to the system 
being studied. Most current applications have involved the optimization of ligand-protein interaction in the 
context of small molecule drug design (reviewed in (14)) but recent publications have begun to explore 
the use of FEP methods to the study of protein-protein interactions (PPIs); specifically, to the effects of 
interfacial mutations on protein-protein binding free energies (8, 9, 15-19). This is an inherently complex 
problem since, as opposed to relatively rigid ligand binding pockets, protein-protein interfaces are often 
quite large and less constrained so that they can more easily undergo conformational change as a result 
of a mutation. Moreover, FEP calculations involve a complex computational infrastructure and are 
extremely time consuming. However, fast graphical processing units (GPUs) made such calculations 
feasible and a number of recent publications, involving different software packages, suggest that the 
methodology has reached the point that good correlation with experiment is to be expected (8, 9, 15-19). 
Clearly, if FEP methods are capable of providing meaningful results, then in many applications, the 
computational cost will be worthwhile. 
 

Here we explore the ability of  FEP calculations to reproduce the effects of mutations on the 
binding of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein with the human 
angiotensin converting enzyme 2 (ACE2) using the FEP+ implementation (see Methods). Given that the 
pathogen entry into the host cell is mediated by RBD::ACE2 binding, the problem has attracted 
considerable interest and multiple experimental (20-46) and computations studies (33, 47-63) have been 
reported.  We chose to study a set of 23 frequently observed RBD mutations (Table S1) located in the 
RBD::ACE2 interface (Fig. 1) of Alpha, Beta, Gamma, Delta, or Omicron SARS-CoV-2 variants (Table 
S2). Surface Plasmon Resonance (SPR) experiments were carried out for each and compared to 
previous experimental work(20-46). A number of computational methods were applied to predict binding 
free energy changes upon mutations, ΔΔG. We found FEP to be the best performer and, in particular, 
provides a good starting point for an experimental program to optimize protein-protein binding affinities. In 
particular FEP trajectory analysis has allowed us to characterize the underlying biophysical effects that 
produce stabilizing mutations. In this regard, we show that FEP successfully recapitulates the stabilizing 
epistatic effect of the Q498R N501Y mutant present in every Omicron variant. The ability to anticipate 
non-additive effects of multiple mutations is likely to be an important element of future efforts in protein 
interface design. 
 
Results 
 
SPR Measurements of Binding Affinity Changes. The second column in Table 1 lists experimental 
changes in binding affinity (ΔΔG) of the ACE2::RBD complex when RBD is mutated. Of 23 single point 
RBD mutations probed, only four were identified as stabilizing with ΔΔG values ≤ -0.4 which is our 
measure of experimental accuracy (see Methods): N501Y, Y453F, S477N and N501T (Table 1, see Fig. 
S1 for corresponding fitted SPR data and Methods for experimental detail). The third column lists ΔΔG 
values from the deep mutational scanning study of Starr et al.(20). Although the methods are quite 
different and our SPR results are obtained with monomeric ACE2 while Starr et al. used dimeric ACE2, 
the results are in good agreement (high Pearson correlation coefficient (PCC)=0.9 and low root mean 
square error (RMSE)=0.2 kcal/mol). Given that our calculations are carried out on a structure containing 
monomeric ACE2 and the likelihood that the SPR results are more accurate than the high-throughput 
yeast display values, we use the SPR values to compare to computational predictions. 

Table 1 also lists ΔΔG values obtained previously with SPR (21-33) and other experimental 
methods; bio-layer interferometry (BLI) (34-46) and yeast display (64). Direct comparisons are difficult 
since, for example, different constructs were used in different experiments and different proteins were 
used as analytes in some SPR experiments (see Methods for details). The differences in constructs result 
from the choice of monomeric vs. multimeric forms of interacting proteins as well as the selection of 
protein domain boundaries. Nevertheless, overall, there is good agreement among most experimental 
results with the outliers attributable to the factors mentioned here. Moreover, there is good consensus 
regarding the identity of the most stabilizing mutations. For example, our results for N501Y (-0.8 
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kcal/mol), Y453F (-0.7 kcal/mol), S477N (-0.5 kcal/mol) and N501T (-0.5 kcal/mol) are in good agreement 
with previously published values (20-32, 34, 36-38, 40-46, 65) regardless of constructs/experimental 
setup differences: N501Y (-1.7 < ΔΔG < -0.5), Y453F (-1.2 < ΔΔG < -0.8), S477N (-0.6< ΔΔG < -0.1) and 
N501T (-0.9 < ΔΔG < 0.0).  
 
Computational Prediction of the Effect of Mutations on Binding Affinity.  

Table 2 presents FEP results for the 23 experimental ΔΔG values obtained from SPR 
measurements listed in Table 1. Correlation plots for the data in Table 2 are given in Figures 2 and S2. 
The overall performance of FEP is in line with previous work (8, 9, 14, 66-68); a PCC of 0.6 and an RMSE 
of 0.8 kcal/mol (Table 2). The FEP calculations clearly predict that all four stabilizing mutations, N501Y, 
N501T, S477N, and Y453F have ΔΔG values < 0 although the prediction for S477N is a weak one. Of 
note, previous FEP calculations on N501Y (53, 55, 56) have yielded results very similar to ours attesting 
to the robustness of the method. The most significant failure of FEP is its prediction that A475V is 
stabilizing when the SPR results indicate that it is weakly destabilizing. A likely explanation for this result 
is that A475 is located close to the N-terminal residue of ACE (Q18) for which no coordinates were 
assigned in the crystal structure (69). Another problematic result, a largely overestimated ΔΔG for Q498R, 
will be discussed below.  The FEP results in Table 2 and Figure 2 were obtained from 100 ns simulations.  
Extensive prior work (8, 9)  has demonstrated that shorter simulations are often inadequate for some 
mutations, typically those involving residues with a low degree of solvent exposure (i.e. partially or fully 
buried at the protein-protein interface).  The results of 10 ns FEP simulations are shown in the 
Supplementary Material (Table S3 and Fig. S2) for comparison.  Of particular note is the N501Y mutation, 
which is predicted to be destabilizing at 10 ns but is then correctly predicted to be stabilizing at 100 ns.   

Machine learning (ML) methods; Mutabind2 (5), mCSM-PPI2 (3) and SAAMBE-3D (1)  uniformly 
have a weak correlation with experiment (PCC<0.4). As we have pointed out previously (60) ML methods 
tend to overpredict destabilizing mutations presumably due to the preponderance of destabilizing 
mutations in training sets.  A related factor likely accounts for relatively low RMSEs of ML methods since 
most mutations in training sets have only small effects on binding affinities. BeAtMuSiC evaluates 
mutation effects using a statistical potential (6) while FoldX uses an empirical physics-based force field 
(10, 11). Both methods assume a rigid backbone although FoldX allows for side chain rearrangement 
upon mutation. Neither method produces a meaningful correlation with experiment. BeAtMuSiC identifies 
no stabilizing mutations though FoldX correctly identifies N501T and Y453F. Of note, we have found 
FoldX to be quite effective in predicting mutation effects in two families of neuronal adhesion proteins that 
bind via a canonical interface not prone to backbone rearrangement (70).   

Other than FEP, Rosetta flex ddG (7)  is the only method that allows for backbone flexibility. Its 
PCC is still significantly less than that of FEP and, as can be seen in Table 2, it predicts two of the four 
stabilizing mutations (although the prediction for Y453F is a weak one). Nevertheless, even its partial 
success highlights the need to account for the ability of proteins to relax in response to interfacial 
mutations.  

 
Physical Insights from Trajectory Analysis. An important feature of the FEP approach is that analysis 
of trajectories can reveal insights that can be useful in the design of mutations with desired properties. 
The following cases offer examples of the type of information that can be extracted from the simulations. 

The N501Y mutation is responsible for a high infectivity and transmissibility of the Alpha variant of 
SARS-CoV-2 (71) and has the largest stabilizing effect (Table 1). The N501T mutation found in the 
SARS-CoV-2 variants transmitted from mink to humans (72, 73)  occurs at the same position. Analysis of 
FEP trajectories reveals that the stabilization effect associated with N501Y and N501T mutations is due 
to substitution of the asparagine with less polar side chains of tyrosine and threonine. N501 has only one 
of its polar groups satisfied in the wild-type (WT) structure while, throughout the course of the relevant 
trajectories, the hydroxyl groups of both tyrosine and threonine participate in hydrogen bonds (see 
dashed lines, Fig. 3A). In addition to enhanced stability due to the absence of unsatisfied hydrogen 
bonds, both mutants undergo stabilizing interactions with Y41 of ACE2; the aromatic ring of Y501 
participates in π-π stacking interactions (see purple lines in Fig. 3A) while the methyl group of T501 forms 
a hydrophobic contact with the aromatic ring of Y41 (see gray shading in Fig. 3A). Of note, previous 
studies have identified the role of π-π stacking as a source of stabilization of the N501Y mutant (47, 53, 
56, 58) but the role of the unsatisfied hydrogen bond in the WT protein has not been emphasized.  
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Analysis of trajectories associated with the Y453F mutation shows that in the WT protein, a 
hydrogen bond between the hydroxyl group of Y453 and the Nε atom of H34 is present in ~25% of the 
WT trajectory (Fig. 3B) while, in most cases, these two residues form hydrogen bonds with trapped 
solvent molecules. In the Phe mutant, there is no need to satisfy the buried hydroxyl of the tyrosine while 
the Nε of H34 is satisfied by structured waters or backbone atoms (see dashed lines showing hydrogen 
bonds in Fig. 3B). Thus, the enhanced stability of the mutant is likely due to the greater hydrophobicity of 
a Phe relative to a Tyr.  Of note, our trajectory analysis is in agreement with a previous study comparing 
crystallographic structures of the WT and Y453F mutant (32). 

The simulations correctly predict that the S477N mutation is stabilizing but only weakly so. This 
residue faces the N-terminal of ACE2, and, specifically, the Q18 residue for which coordinates were 
missing in the crystal structure and, hence, modelled as an acetyl group cap in our simulations (Fig. 3C). 
Thus, the calculations may suffer from conformational uncertainties in this region. The trajectories reveal 
that the longer Asn side chain makes more contacts with the ACE2 N-terminal than does the WT Ser. We 
show only one snapshot from wild-type and mutant trajectories in Fig. 3C, but in reality, due to the 
flexibility of the ACE2 N-terminal, no specific contact is retained throughout the simulations.  

The largest error in the FEP calculations is for the Q498R mutant whose destabilizing effect is 
over-predicted by about 2.5 kcal/mol. Analysis of the 100 ns Q498R trajectory reveals that the Arg side 
chain samples different conformations with the most prevalent state (~53%) involving an unfavorable 
polar-hydrophobic contact between N501 and the aliphatic chain of the Arg, leaving both polar groups of 
the Asn unsatisfied (Fig. 4A). This is likely a contributor to the destabilizing ΔΔG value. As we have noted 
previously (9), a computationally unfavorable outlier of this magnitude is typically attributable to the failure 
of the molecular dynamics trajectories (100 ns in this study) to achieve a converged reorganization of the 
protein structure. To test this possibility, we carried out a 300 ns simulation which appears to reach 
convergence at ~200ns (Fig. S3) where the destabilizing effect of Q498R is calculated to be 1.9 kcal/mol; 
reduced from  3.6 kcal/mol at 10 ns and 2.7 kcal/mol at 100 ns. It may well be the case that the system 
has converged to a metastable state at 300ns and that there are lower energy states not sampled in the 
course of the simulation.  
 
Epistatic Effect of the Q498R N501Y Double Mutant in the Omicron variant. Zahradnik et al. (64) 
demonstrated that the Q498R N501Y double mutant is more stabilizing than the additive effect of two 
single point mutations as estimated by their yeast display assay (a “cooperativity energy” of ~ -1.7 
kcal/mol). Our SPR results on the single Q498R and N501Y mutants predict, if their effects were additive, 
that the double mutant would be stabilizing by -0.6 kcal/mol (-0.8 + 0.2 kcal/mol for the single mutations, 
respectively) while the experimental value for the double mutant is -1.2 kcal/mol yielding a cooperativity 
energy of -0.6 kcal/mol (see Fig. 4B for the experimental ΔΔG values and Fig. S1 for corresponding fitted 
data and dissociation constants). While the experimental SPR and yeast display ΔΔG values differ, both 
methods indicate that a substantial epistatic effect is playing a role, perhaps contributing to the greater 
infectivity of the Omicron variants where these mutations are present.  

FEP calculations on the double mutant predict a ΔΔG of -1.4 kcal/mol whereas the predicted 
additive effect of the two single mutants (Table S3) is +1.5 kcal/mol – corresponding to a cooperativity 
energy of -2.9 kcal/mol (Fig. 4B).  Thus, the 100 ns calculations successfully predict the existence of 
cooperativity. A detailed examination of the structure of the double mutant provides a compelling physical 
interpretation as to why it behaves so differently from the single Q498R mutation.  In the double mutant, 
Arg 498 forms a favorable pairing with the side chain of Tyr 501. The aliphatic portion of the Arg side 
chain packs against the Tyr aromatic ring creating an enhanced hydrophobic contact in the double mutant 
compared to the N501Y single mutant (grey shading, Fig. 4A), while one hydrogen of the Arg guanidinium 
head group forms a hydrogen bond with the oxygen of the Tyr hydroxyl group (dashed lines, Fig. 4A). The 
geometries of the two residues are such that this pairing can be carried out without introducing any 
conformational strain, either in the backbone or in the side chains themselves.  Thus, in the presence of 
N501Y, the mutation from Gln to Arg actually enhances binding rather than diminishing it.   

As a control, we considered a second double mutant (L452R T478K) where no cooperativity is 
observed experimentally (Fig. 4C). The FEP calculations at 100ns predict values of both single and 
double mutant within 0.4 kcal/mol from the experiment and a cooperativity energy of -0.1 kcal/mol (same 
as SPR) (Fig. 4C). Thus, FEP accurately predicts the absence of cooperativity in the double mutant 
belonging to the Delta SARS-CoV-2 variant (Table S2).  
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Discussion 
 
We have carried out experimental and computational studies of a series of RBD mutants located in the 
RBD::ACE2 interface. The choice was based in part on their frequency in infective SARS-CoV-2  variants 
and in part because they have been extensively studied (20-63) and thus provided a useful data set to 
compare different approaches. A central goal has been to assess the ability of the FEP free energy 
perturbation methodology to predict the effect of mutations at the protein-protein interface on binding 
affinities but this in turn required an assessment of experimental accuracy. To this end we carried out 
SPR experiments on each mutant and compared our findings to those previously reported. We also 
applied easily accessible computational methods to our data set and compared their results to those 
obtained from FEP.  
 As shown in Table 1 and discussed above, there is excellent agreement between our SPR results 
and previous yeast display results from the Bloom group (20). Moreover, both sets of results are in the 
range reported in other studies. In particular, all methods agree on the identification of stabilizing 
mutations although the experimental values vary by as much as 1 kcal/mol, likely due to some of the 
issues discussed in Methods. As pointed out above, FEP yields the best correlation with our SPR results 
and, crucially, is the most effective in identifying stabilizing mutations (Table 2). In contrast, ML methods 
fail to yield meaningful correlations with experiment. This is not surprising since long simulations are often 
required to allow the system enough time to relax into a stable conformation while ML methods are based 
on data derived from fixed crystal structures. FoldX (a rigid backbone method) and Rosetta flex ddG 
(which accounts in part for backbone flexibility) are at least partially successful in identifying stabilizing 
mutations (Table 2).  

In addition to the methods we were able to test on our data set, many other studies on RBD 
mutants have been reported. Table S4 lists published results on RDB::ACE2 on different sets of mutants 
than studied here but it is of interest to compare cases where there is overlap with previous work. 
Previous FEP studies (53, 55, 56) also carried out long simulations and all identify N501Y and N501T as 
stabilizing. TopNetTree(49), a topology-based ML method, does not perform well on our data set. The 
MM/GBSA study from the Bahar group (58) successfully predicts that N501Y is stabilizing but was not run 
on other mutants in our data set. Finally, Maranas and co-workers (47) used physical interactions 
extracted from MM/GBSA simulations to train a neural network to predict ΔΔG values (NN_MM-GBSA 
method). Since many of the mutants in our set were used in the NN_MM-GBSA training (Table S4) it is 
difficult to make comparisons with our own results. It is worth emphasizing that all simulation methods are 
at least partially successful in identifying stabilizing mutants thus, again, emphasizing the importance of 
allowing the system to relax . 
 Despite the success of the FEP approach revealed in this work, significant challenges remain. In 
previous work on a variety of systems, we have demonstrated that the FEP results correlate well with 
experiment (PCC values on the order of 0.6-0.8) and display RMS errors in the range expected for the 
OPLS4 (74)  and related molecular mechanics force fields (0.5-1 kcal/mol) (8, 9, 14, 66-68). Precision 
beyond the above cited statistics is very difficult to obtain, indeed we have found (see Methods) that 
experimental reproducibility errors are typically on the order of 0.4 kcal/mol, even for the high quality SPR 
results that we report here.  
 As highlighted in this work, the major challenge in using FEP to predict mutation effects on 
protein-protein binding affinities, as opposed to small molecule binding, is the possibility of significant 
conformational change induced by mutation, for example if a buried charge is created by mutating a 
buried hydrophobic residue at the interface to one with a net charge. The key issue is whether the 
conformational changes required to make accurate predictions are accessible on the timescale of the 
FEP simulation. When the conformational changes consist primarily of side chain rearrangements and 
relatively minor backbone motion, FEP will typically deliver reliable results (as in N501Y). When there are 
significant backbone conformational changes, the accuracy of the FEP results will depend upon whether 
the barrier to conformational change can be surmounted on the time scale of the simulation.  

In terms of overall accuracy, the results obtained here are consistent, in terms of both RMSD 
errors and correlation coefficients, with those we have reported previously in studying HIV derived gp120-
antibody binding and also more diverse sets of protein-protein complexes via FEP simulations (8,9).  The 
most significant errors may result from structural uncertainties (as in A475V) or from the prediction of 
overly unfavorable free energy changes (as in Q498R) which often result from electrostatic or steric 
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clashes or from the burial of a charge in a hydrophobic pocket (9). However, mutations that are predicted 
to be highly    
destabilizing would be of little or no consequence in the context of binding optimization project since such 
mutations would be rejected in an initial screen even if converged results were obtained.   

Our results suggest how FEP might be used in a strategy to optimize the binding of two proteins, 
for example in the optimization of antibodies. FEP calculations appear to have sufficient rank ordering 
capability to enable prioritization of specific single residue mutations. The initial step in a design strategy 
would be an exhaustive screening of single mutations at the various positions across the protein-protein 
interface (perhaps a few hundred to a few thousand calculations, which would require relatively modest 
expenditure, given the steadily decreasing cost of GPU-based computation).  A key advantage of FEP is 
that analysis of trajectories can reveal insights as to the response of the interface to different 
perturbations, enhanced when needed by loop modeling procedures that more efficiently sample 
conformational space.  These insights could then be translated into the investigation of a selected subset 
of double and triple mutations, with the goal of achieving favorable nonadditive effects.  The 
understanding we gained about the Q498R N501Y double mutant could not have been accomplished by 
any of the other methods tested here. 

It is important to clarify that, despite identifying cooperativity of the N501Y Q498R double mutant, 
the FEP results have not reached the point where the calculated values have experimental accuracy. It is 
then interesting to consider how a researcher interested in designing a stabilizing mutation would respond 
to calculated single mutant values of -1.2 kcal/mol for N501Y, +2.7 kcal/mol for Q498R and -1.4 kcal/mol 
for the double mutant. We would argue that the large calculated cooperativity energy of -2.9 kcal/mol, and 
the physical basis of this effect revealed by the simulations, would provide a strong hint that the double 
mutant is worth testing experimentally. Moreover, the experience we gained in this study would make 

that decision more likely. In conclusion, a careful exploration of a particular system of biological 
importance as enabled by FEP simulations would then appear to offer a way forward in many practical 
applications.  

  
 
 

Materials and Methods 
 
Dataset. We focused on missense RBD mutations at the interface with ACE2 that occurred most 
frequently in the US at the beginning of 2021 or were a part of known variants of concern. Among single 
point mutations with a frequency above 100 as of Jan 4, 2021, only seven mutations (S477N, N439K, 
N501Y, L452R, Y453F, S477R and S477I) were both missense and interfacial.  To expand the dataset, 
we added missense interfacial mutations with a lower frequency (in the range of 10-100) if mutations 
were stabilizing or destabilizing in the study of Bloom and co-workers (20) while nearly neutral positions 
were ignored. Stabilizing mutations were of interest as potentially increasing infectivity of the virus, while 
destabilizing mutations were a necessary addition to create a balanced dataset for a proper testing of 
ΔΔG predictors.  The K417T and Q498R mutations were added due to occurrence in the SARS-CoV-2 
variants of concern and not based on frequency counts. The K417T mutation was added due to its 
emergence in Brazil (as a part of the Gamma variant) at the time. The Q498R mutant was studied in the 
context of double mutant effects alongside N501Y due to the co-occurrence of these two mutations in 
Omicron variant (Table S2) and a recent study on in vitro evolution suggesting cooperativity between the 
two mutations (64). Although the cumulative frequency (i.e. a number of times a given mutation has been 
found in the sequenced SARS-CoV-2 genomes) has changed during 2021, the majority of the most 
frequently observed mutations in January 2021 were still among the most recurrent mutations at the end 
of the year, with our data set including 16 out of 20 interfacial missense RBD mutations that had the 
highest frequency (>1000) on December 31, 2021 (Table S2). 

Frequencies of SARS-CoV-2 mutations were obtained from the Mutation Tracker resource 
(https://users.math.msu.edu/users/weig/SARS-CoV-2_Mutation_Tracker.html) (75) that relies on data 
from the GISAID database of coronavirus genomes (https://www.gisaid.org/). 
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ΔΔG calculations. All calculations presented in Table S3 were performed using as input a crystal 
structure of the SARS-CoV-2 RBD complex with ACE2 of highest available resolution (2.45Å, PDBID: 
6m0j).  

Mutabind2 predictions were run on the https://lilab.jysw.suda.edu.cn/research/mutabind2/ 
webserver. mCSM-PPI2 predictions were submitted as a query to the following webserver: 
http://biosig.unimelb.edu.au/mcsm_ppi2/.  

Standalone version (http://compbio.clemson.edu/saambe_webserver/standaloneCode.zip) was 
used for binding affinity calculations of SAAMBE-3D. FoldX calculations were performed as described in 
Sergeeva et al. (70). Rosetta flex ddG calculations were run using a standalone version 
(https://github.com/Kortemme-Lab/flex_ddG_tutorial) with the following parameters (considered to give 
optimized performance of this method (7)): nstruct = 35, max_minimization_iter = 5000, 
abs_score_convergence_thresh = 1.0, number_backrub_trials = 35000, backrub_trajectory_stride = 
35000.  

We used Schrödinger software (2021-2 release) and default FEP+ protocols (implementing 
guidelines for protein-protein interactions published earlier (8, 9)) for our predictions of binding affinity 
changes in the ACE2/RBD complex upon RBD mutations. The release incorporates a recently developed 
OPLS4 force field (74),  replica exchange with solute tempering (REST) enhanced sampling methodology 
for mutated residues, and an improved grand canonical Monte Carlo (GCMC) protocol for sampling 
solvent molecules around mutated residues (76). FEP+ is a fully physics-based model that uses explicitly 
represented water. During FEP+ simulations, an alchemical transformation of a wild type amino acid 
residue into a mutant residue is conducted, which is implemented by running a series of separate 
molecular dynamics simulations (“lambda windows”) with varied energy weighting. The differences 
between each adjacent lambda window are first calculated using a perturbative expansion and then 
summed up to estimate the total free energy change between a wild-type and mutant states. To enhance 
the convergence of the free energy calculations, our default protocols use 12 lambda windows for charge 
conserving mutations and 24 lambda windows for the charge changing mutations. All mutations were run 
for 10 ns and 100 ns (see Table S4). Calculations of double mutant effects were performed by 
simultaneous alchemical transformation of the two mutated residues. This procedure minimizes errors 
associated with a more common FEP protocol where mutations are introduced sequentially. For example, 
the ΔΔG (Q498R N501Y) is predicted to be -1.4 kcal/mol using the simultaneous protocol and -0.6  
kcal/mol using the sequential protocol. Of note, the results from the simultaneous protocol are in better 
agreement with the experimental value of -1.2 kcal/mol. 

FEP+ requires GPU computing and the time required per single point mutation depends on the 
length of simulation (in nanoseconds), system size (in atoms), and type of mutation (with charge-
changing mutations taking longer to compute compared to charge-neutral mutations as the number of 
lambda windows is twice as large). In the ACE2/RBD system (~100,000 atoms including explicit waters in 
the solvent box), the shortest 10 ns charge-neutral mutations take less than a day, while the longest 100 
ns charge-changing simulations take ~2 weeks when complex and solvent legs are run in parallel with 
each simulation leg using 4GPUs.  

 
Protein Expression and Purification. The SARS-CoV-2 RBD wild-type and its mutants (residues 331-
528), were cloned into the pVRC-8400 mammalian expression plasmid, with a C-terminal 6XHis-tag and 
an intervening HRV-3C protease cleavage site. Plasmid constructs were transfected into HEK293 cells 
using polyethyleneimine (Polysciences). Cell growths were harvested four days after transfection, and the 
secreted proteins were purified from supernatant by nickel affinity chromatography using Ni-NTA IMAC 
Sepharose 6 Fast Flow resin (Cytiva) followed by size exclusion chromatography on a Superdex 200 
column (Cytiva) in 10 mM Tris, 150 mM NaCl, pH 7.4. 

A plasmid encoding ACE2 residues 1-615 (pcDNA3-sACE2(WT)-8his) was a gift from Erik Procko 
(Addgene plasmid # 149268 ; http://n2t.net/addgene:149268 ; RRID:Addgene_149268) (77). This plasmid 
was then mutated to encode ACE2 residues 1-620, followed by a C terminal HRV-3C protease cleavage 
site, and an 8X HIS tag. This construct was transfected into ExpiHEK293 cells using Expifectamine 
according to manufacturer’s instructions. Supernatants were harvested seven days after transfection, and 
ACE2 was purified by nickel affinity chromatography using His60 Ni Superflow Resin (Takara) followed by 
size exclusion chromatography on a Superdex 200 column (Cytiva) in 10 mM Tris, 150 mM NaCl, pH 8.0. 
400 ug of purified ACE2 was then digested overnight at 4 degrees with 20 units of HRV-3C protease 
(Thermo Scientific). Digested ACE2 was then incubated with His60 Ni Superflow Resin, which was then 
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washed with 2 column volumes of 10 mM Tris, 150 mM NaCl, 5 mM imidazole, pH 8.0.   The flow through 
and wash were determined by SDS-PAGE to contain cleaved ACE2, which was purified by size exclusion 
chromatography on a Superdex 200 column (Cytiva) in 10 mM Tris, 150 mM NaCl, pH 8.0. 
 
Surface Plasmon Resonance. SPR binding assays for monomeric ACE2 binding to RBDs were 
performed using a Biacore T200 biosensor, equipped with a Series S CM5 chip, at 25°C, in a running 
buffer of 10mM HEPES pH 7.4, 150mM NaCl, 0.1mg/mL BSA and 0.01% (v/v) Tween-20 at 25°C. Each 
RBD was captured through its C-terminal his-tag over an anti-his antibody surface, generated using the 
His-capture kit (Cytiva, MA) according to the instructions of the manufacturer.  

During a binding cycle, each RBDs was captured over individual flow cells at approximately 250 
RU. An anti-his antibody surface was used as a reference flow cell to remove bulk shift changes from the 
binding signals. Monomeric ACE2 was prepared at six concentrations in running buffer using a three-fold 
dilution series, ranging from 1.1-270 nM. Samples were tested in order of increasing protein 
concentration, with each series tested in triplicate. Blank buffer cycles were performed by injecting 
running buffer instead of the analyte, after two ACE2 injections to remove systematic noise from the 
binding signal. The association and dissociation rates were each monitored for 180s and 300s 
respectively, at 50μL/min. Bound RBD/Fab complexes were removed using a 10s pulse of 15 mM H3PO4 
at 100μL/min, thus regenerating the anti-his surface for a new cycle of recapturing of each RBD, followed 
by a 60s buffer wash at 100μL/min. The data was processed and fit to 1:1 interaction model using the 
Scrubber 2.0 (BioLogic Software). The number in brackets for each kinetic parameter represents the error 
of the fit. 

We have developed an SPR assay to measure the binding kinetics and affinities of interactions 
between ACE2 and wild-type or mutant RBD with the RBD captured to the chip to avoid compromised 
binding activity resulting from chemical immobilization or repeated surface harsh regeneration steps 
during the experiments. The SARS-CoV-2 RBD is a basic molecule with a pI ~9, so capture to the chip 
surface will also minimize artifacts such as non-specific interactions between the positively charged RBDs 
and the negatively charged dextran layer of the sensor chips at physiological pH. Monomeric ACE2 was 
flown over as analyte to avoid avidity effects resulting from using dimeric ACE2. Studies that have 
performed such experiments in both orientations (RBD tethered to the surface vs in solution as an 
analyte) showed that using RBD as an analyte yielded affinities that were approximately three-fold 
stronger for the wild type RBD/ACE2 interaction, suggesting the presence of such non-specific 
interactions (24). In our SPR experiments we have determined the KD for wild type RBD binding to 
monomeric ACE2 is 162.9 nM (Fig. S1), consistent with similar KDs reported from other groups that have 
used similar methodologies to perform their biosensor-based measurements (21, 78, 79). Fig. S1A shows 
the binding kinetics for interactions of mutant RBD proteins with ACE2 and Fig. S1B shows the kinetic 
parameters along with affinities calculated for each binding interaction, while Table 1 and Fig. 4B list 
experimental changes in binding affinities (ΔΔG=RTln(KD(MT)/KD(WT))) when RBD is mutated. Experimental 
reproducibility errors in our SPR data is expected not to exceed 15% according to previous estimates 
based on multiple independent measurements  (70); this corresponds to ~0.4 kcal/mol experimental error 
in the ΔΔG(SPR) values reported in this study.  Of 23 single point RBD mutations probed, four mutations 
were identified as stabilizing: N501Y, Y453F, S477N and N501T (Table 1), which could bind monomeric 
ACE2 with affinities stronger than the wild-type interaction with ACE2.   

 
Differences in Experimental Setup Affecting Binding Affinity Changes. Previously reported 
experimental binding affinity changes upon RBD mutation of the ACE2/RBD complex span different 
choice of protein constructs and orientation of molecules used in the binding assays.  

The differences in the constructs lie in the choice of monomeric vs. multimeric forms of interacting 
proteins and selection of protein domain boundaries. Some studies relied on monomeric ACE2 and RBD 
(21, 22, 24, 25, 27-30), whereas others used at least one of the molecule in a multimeric form (trimeric 
spike, dimeric ACE2 or monomeric ACE2 fused to a dimeric Fc tag) (20, 25, 26, 31, 32, 64). RBD domain 
starts at residue 333 and ends at residue 526. It is common that constructs used in studies flank the RBD 
construct with a few residues before and after the domain boundary (e.g. 331-528 (this study), 331-531 
(20), 328-531 (21, 22)) though some studies use constructs where such flanking regions are too long so 
they could result in non-specific binding (especially when containing unpaired cysteine residues, e.g. RBD 
319-591 (25)). Poor selection of protein domain boundaries can affect protein folding/integrity when a 
construct has incomplete domain sequence (e.g. RBD 343-532 construct is missing a β-strand (23)).  
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Orientation of molecules in the binding experiments (which molecule is tethered to the chip in 
SPR) can affect both absolute and relative binding affinities (discussed in SPR methods). Studies using a 
highly positively charged RBD molecule as analyte and ACE2 immobilized on a chip (27-32) can be 
affected by non-specific binding of RBD to the chip. For example, using RBD as analyte in experiments 
measuring binding affinity of Alpha, Beta, Gamma, and Delta variants (80) results in stronger binding (by 
0.4-0.6 kcal/mol) compared to a setup minimizing non-specific binding by immobilizing RBD on a chip 
(81). We used the latter as a reference to assess performance of ΔΔG on predicting double mutant effects 
of the Delta variant (Fig. 4C).  
 
Data Availability. All study data are included in the article and/or supporting information. 
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Figures and Tables 
 

 
Figure 1. ACE2/RBD system of interest. (A) Ribbon representation of the ACE2/RBD complex. (B)  
Side chains of interfacial RBD residues in contact with ACE2  probed in this study are shown in stick 
representation with C� atoms shown as spheres. 
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Figure 2. Correlation plot between FEP and SPR  binding affinity changes.  FEP results are 
calculated at 100ns. Mutations discussed in the text are labeled. The ΔΔG values are given in Table 2 
along with comparison of FEP performance to other theoretical methods. 
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Figure 3. Structural origins of stabilizing ACE2/RBD interactions. Closeups of the 
ACE2(cyan)/RBD(pink) showing key interactions in wild-type (WT) and mutant proteins. Hydrophobic 
contacts are in grey, -  interactions are in purple, hydrogen bonds are shown as black dashed lines, 
unsatisfied polar group of N501 is in cyan, favorable hydrophobic contact between T501 and Y41 in grey, 
and all distances are in Å. 
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Figure 4. Epistatic effect of the double Q498R N501Y mutant. (A) A closeup of the complex between
ACE2 (in cyan) and RBD (in pink) showing chemical interactions involving RBD residues 501 and 498.
Hydrophobic contacts are in grey, -  interactions are in purple, hydrogen bonds are shown as black
dashed lines, unsatisfied polar groups are in cyan, and all distances are measured in Å. (B) Cooperativity
of the Q498R N501Y double mutant probed by FEP+ and SPR computed as a difference between a
hypothetical ∆∆G (if the double mutant had an additive effect of two single point mutations) and the actual
∆∆G of the double mutant. Yeast display assay values are from Zahradnik et a (64). (C) Absence of
cooperativity probed by FEP+ and SPR for the L452R T478K double mutant. Experimental result for the
Delta RBD variant is from Liu et al. (81) (see Methods for details), ∆∆G of single mutants are from the
current study (Table 2).  The FEP+ results are from 100ns trajectories.  
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Table 1. Experimental ACE2/RBD binding affinity changes for RBD mutants. 
 

Mutation ΔΔG 
(SPR,  
this study) 

ΔΔG        
(Yeast Display, 
Starr et al.)(20) 

ΔΔG (other studies)  
SPR(21-33) 

BLI(34-46) 
Yeast Display(64) 

(range) 
N501Y -0.8 -0.3 (-1.7 … -0.5) 
Y453F -0.7 -0.3 (-1.2 … -0.8) 
S477N -0.5 -0.1 (-0.6 … -0.1) 
N501T -0.5 -0.1 (-0.9 … 0.0) 
N439K -0.1 0.0 (-0.4 … 0.0) 
N440K 0.0 -0.1  
F490S 0.0 0.0  
L452M 0.0 -0.1  
L452R 0.0 0.0 -0.2 
E484Q 0.1 0.0  
T478K 0.1 0.0 0.2 
N481K 0.1 0.0  
E484K 0.1 0.1 (-0.6 … 0.3) 
Q498R  0.2 0.1 (-0.5 … 0.5) 
S477I 0.2 0.1  
G446V 0.2 0.4 0.5 
T478R 0.2 0.1  
S477R 0.3 0.0 -0.5 
A475V 0.3 0.2 0.2 
L455F 0.4 0.3  
K417T 0.4 0.4 (0.1 … 0.7) 
F486L 0.6 0.6 0.9 
K417N 0.6 0.6 (-0.5 … 1.1) 
Experimental binding affinity difference values were calculated based on 
binding affinity (KD) measurements for wild-type (WT) and single mutant (MT) 
proteins using the following formula:  
ΔΔG = RT ln (KD(MT) / KD(WT)), in units of kcal/mol 
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Table 2. Calculated ACE2/RBD binding affinity changes for RBD mutants. Pearson correlation 
coefficient (PCC), Pearson phi for stabilizing mutations (PCC �) and root mean square error (RMSE) are 
calculated for every method tested based on comparison to SPR results in Table 1.  Stabilizing mutations 
with ΔΔG ≤ -0.4 kcal/mol in green, destabilizing mutations with ΔΔG ≥ 0.4 kcal/mol in red. Experimental 
binding affinity difference values were calculated based on SPR binding affinity (KD) measurements for 
wild-type (WT) and single mutant (MT) proteins using the following formula: ΔΔG = RT ln (KD(MT) / 
KD(WT)), in units of kcal/mol. Correlation plots for all theoretical methods are provided in Fig. S2. 
Calculations were performed on a crystal structure of ACE2/RBD (PDBID 6M0J). Protein specific residue 
numbering of all the mutants as in Uniprot ID P0DTC2. 
 

RBD 

mutation 

ΔΔG 

experiment 

SPR 

ΔΔG 

Mutabind2 

ΔΔG       

mCSM-

PPI2 

ΔΔG    

SAAMBE-

3D 

ΔΔG    

BeAtMusic 

ΔΔG       

FoldX 

ΔΔG    

Rosetta 

flex ddG 

ΔΔG     

FEP+ 

100ns 

N501Y  -0.8 0.7 0.5 0.0 0.1 6.0 0.4 -1.2 

Y453F  -0.7 -0.2 0.1 0.1 0.3 -0.4 -0.2 -0.6 

S477N  -0.5 -0.1 -0.1 0.2 0.1 0.0 0.1 -0.1 

N501T  -0.5 -0.6 -0.9 -0.1 0.4 -0.9 -0.4 -1.8 

N439K  -0.1 -0.1 0.5 0.6 0.3 0.0 0.0 0.6 

N440K  0.0 0.1 -0.1 0.5 0.0 -0.1 0.0 -0.4 

F490S 0.0 0.6 0.2 0.8 0.7 0.0 0.0 -0.1 

L452M 0.0 0.0 0.5 -0.3 0.2 0.0 0.0 0.2 

L452R 0.0 -0.8 0.0 0.1 0.2 -0.3 0.0 -0.3 

E484Q  0.1 0.1 0.3 0.5 0.2 -0.1 0.0 0.3 

T478K  0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.0 

N481K 0.1 0.0 0.0 0.6 0.2 0.0 0.0 -0.1 

E484K 0.1 0.2 0.3 0.3 0.1 -0.2 -0.1 0.2 

Q498R 0.2 0.4 1.4 1.1 0.8 -0.5 -0.6 2.7 

S477I 0.2 0.1 0.0 0.0 0.2 0.1 0.0 0.0 

G446V 0.2 -0.7 0.1 -0.3 1.3 0.1 0.0 0.9 

T478R 0.2 0.1 0.0 0.3 0.2 0.0 0.0 -0.1 

S477R 0.3 0.2 -0.1 0.0 0.1 0.0 -0.2 -0.2 

A475V 0.3 0.9 0.0 0.1 0.1 1.0 0.2 -1.1 

L455F 0.4 1.5 -0.7 0.2 -0.1 5.0 -0.6 0.9 

K417T  0.4 0.2 0.4 0.5 0.5 0.8 0.7 0.9 

F486L 0.6 0.3 0.9 0.5 0.7 1.1 1.8 1.3 

K417N  0.6 0.6 0.5 0.4 0.5 0.8 0.9 0.9 

 PCC 0.3 0.2 0.3 0.2 -0.1 0.4 0.6 

 RMSE 0.5 0.5 0.5 0.5 1.7 0.5 0.8 

 PCC � 

(stabilizing) 

0.2 0.3 - - 0.5 0.2 0.6 
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