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Abstract 1 

Humans and animals learn optimal behaviors by interacting with the environment. Research 2 

suggests that a fast, capacity-limited working memory (WM) system and a slow, incremental 3 

reinforcement learning (RL) system jointly contribute to instrumental learning. Situations that 4 

strain WM resources alter several decision-making processes and the balance between 5 

multiple decision-making systems: under WM loads, learning becomes slow and incremental, 6 

while reward prediction error (RPE) signals become stronger; the reliance on computationally 7 

efficient learning increases as WM demands are balanced against computationally costly 8 

strategies; and action selection becomes more random. Meanwhile, instrumental learning is 9 

known to interact with Pavlovian learning, a hard-wired system that motivates approach to 10 

reward and avoidance of punishment. However, the neurocognitive role of WM load during 11 

instrumental learning under Pavlovian influence remains unknown, while conflict between the 12 

two systems sometimes leads to suboptimal behavior. Thus, we conducted a functional 13 

magnetic resonance imaging (fMRI) study (N = 49) in which participants completed an 14 

instrumental learning task with Pavlovian–instrumental conflict (the orthogonalized go/no-go 15 

task); WM load was manipulated with dual-task conditions. Behavioral and computational 16 

modeling analyses revealed that WM load compromised learning by reducing the learning rate 17 

and increasing random choice, without affecting Pavlovian bias. Model-based fMRI analysis 18 

revealed that WM load strengthened RPE signaling in the striatum. Moreover, under WM load, 19 

the striatum showed weakened connectivity with the ventromedial and dorsolateral prefrontal 20 

cortex when computing reward expectations. These results suggest that the limitation of 21 

cognitive resources by WM load decelerates instrumental learning through the weakened 22 

cooperation between WM and RL; such limitation also makes action selection more random, 23 

but it does not directly affect the balance between instrumental and Pavlovian systems. 24 
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Introduction 1 

The process of learning about the environment from experience and making adaptive 2 

decisions involves multiple neurocognitive systems, among which reinforcement learning (RL) 3 

and working memory (WM) systems are known to significantly contribute to learning (Collins 4 

& Frank, 2012; Huys et al., 2021; Rmus et al., 2021). RL processes facilitate “incremental” 5 

learning from the discrepancy between actual and predicted rewards, known as reward 6 

prediction error (RPE); RL is regarded as a slow but steady process (Sutton & Barto, 2018). 7 

Dopaminergic activity in the basal ganglia conveys RPEs (Bornstein & Daw, 2011; Khamassi 8 

et al., 2005; Montague et al., 1996; Niv, 2009; Schultz, 1997, 1998; Schultz et al., 1997), and 9 

human imaging studies have found that blood-oxygen-level-dependent (BOLD) signals in the 10 

striatum are correlated with RPEs (Garrison et al., 2013; J. O’Doherty et al., 2004; J. P. 11 

O’Doherty et al., 2003). 12 

In addition to RL, WM is a crucial component in learning. In particular, WM allows the 13 

rapid learning of actions via retention of recent stimulus-action-outcome associations, while 14 

RL constitutes a slow learning process (Collins, Ciullo, et al., 2017; Collins, 2018; Collins & 15 

Frank, 2012; Yoo & Collins, 2022). WM can also offer various inputs to RL, such as reward 16 

expectations (Collins & Frank, 2018) and models of the environment (Dayan, 2009; Dolan & 17 

Dayan, 2013; Tanaka et al., 2008; Valentin et al., 2007) as well as complex states and actions 18 

(Collins & Shenhav, 2021; Rmus et al., 2021). In the brain, the WM system is presumably 19 

associated with sustained neural activity throughout the dorsolateral prefrontal cortex (dlPFC) 20 

and prefrontal cortex (PFC) (Baddeley & Hitch, 1974; Barbey et al., 2013; Curtis & D’Esposito, 21 

2003; Funahashi, 2006; Funahashi & Kubota, 1994; Rottschy et al., 2012). 22 

Because RL and WM cooperate to promote successful learning, the deterioration of 23 

either system can alter the learning and balance between the two systems. In particular, 24 

increasing WM load during learning and decision-making can lead to various consequences 25 

through the depletion of WM resources. For example, first, instrumental learning becomes 26 

slow and incremental under WM load (Collins, 2018; Collins, Albrecht, et al., 2017; Collins & 27 
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Frank, 2012; McDougle & Collins, 2020). Limited resources in the WM system cause WM 1 

contribution to decline while the RL contribution increases, causing learning to occur more 2 

slowly and strengthening the RPE signal in the brain (Collins, Ciullo, et al., 2017; Collins & 3 

Frank, 2018). Second, among the multiple RL systems that use varying degrees of WM 4 

resources, the demands of WM can be balanced against computationally costly strategies. 5 

Otto et al. demonstrated that under WM load, the reliance on computationally efficient model-6 

free learning was increased, compared with model-based learning (Otto et al., 2013). Lastly, 7 

limited WM resources may cause action selection to become more random and inconsistent. 8 

Different values must be compared to inform decision-making during the action selection stage 9 

(Rangel et al., 2008), but several studies have reported that WM load may interrupt these 10 

processes without affecting valuation itself (Franco-Watkins et al., 2006, 2010; Olschewski et 11 

al., 2018). 12 

While reductions of WM resources substantially alter instrumental learning, another 13 

important factor known to shape instrumental learning is the Pavlovian system. Through the 14 

motivation of hard-wired responses, such as active responses to appetitive cues and inhibitory 15 

responses toward aversive cues (Dickinson & Balleine, 2002; Mackintosh, 1983; Wasserman 16 

et al., 1974; Wasserman & Miller, 1997), the Pavlovian system may facilitate certain 17 

instrumental behaviors and impede others. This bias in instrumental learning is known as 18 

Pavlovian bias (Breland & Breland, 1961; Dayan et al., 2006; Hershberger, 1986; Williams & 19 

Williams, 1969). Pavlovian bias is generally presumed to be associated with maladaptive 20 

behaviors such as substance use disorder and compulsivity-related disorders (Everitt & 21 

Robbins, 2005; Garbusow et al., 2014, 2016; Glasner et al., 2005; Lüscher et al., 2020).  22 

Although it is well known that the enhancement of WM load alters instrumental learning 23 

in several ways, it remains unclear how WM load changes instrumental learning when it is 24 

under Pavlovian influence. To investigate this relationship, we conducted a functional 25 

magnetic resonance imaging (fMRI) study in which participants completed an instrumental 26 
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learning task that involved Pavlovian–instrumental conflicts (Guitart-Masip et al., 2012), with 1 

and without additional WM load.  2 

We tested the following three hypotheses. First, if the role of WM in learning is 3 

unaffected by Pavlovian influence, WM load will lead to slower learning and increased striatal 4 

RPE signals, consistent with previous findings (Collins, 2018; Collins, Ciullo, et al., 2017; 5 

Collins & Frank, 2012, 2018). Second, if WM load leads to a computational trade-off between 6 

Pavlovian and instrumental learning, as model-free and model-based learning (Otto et al., 7 

2013), WM load will enhance Pavlovian bias because the Pavlovian system is known to 8 

require fewer resources and to be computationally efficient as an evolutionarily embedded 9 

system that learns values as a function of cues, regardless of actions (Dayan et al., 2006). We 10 

also presumed that neural signaling associated with Pavlovian bias would increase under WM 11 

load. We focused on regions of the basal ganglia, such as the striatum and substantia 12 

nigra/ventral tegmental area (SN/VTA), which are considered important in Pavlovian bias 13 

(Boer et al., 2018; Chowdhury et al., 2013; Frank et al., 2004; Guitart-Masip et al., 2012; 14 

Guitart-Masip, Duzel, et al., 2014). Third, if the contribution of WM to consistent action 15 

selection remains consistent, WM load will cause action selection to become more random, 16 

as in previous studies (Franco-Watkins et al., 2006, 2010; Olschewski et al., 2018). We tested 17 

whether the value comparison signal in the brain would decrease under WM load because 18 

consistent action selection may be associated with the extent to which value difference 19 

information is utilized during the decision-making process (Gläscher & O’Doherty, 2010; 20 

Rangel et al., 2008).  21 

Our behavioral and computational modeling results revealed that Pavlovian bias did 22 

not increase under WM load, while learning decelerated and action selection became 23 

increasingly random; these findings supported hypotheses 1 and 3 but not 2. Increased striatal 24 

RPE signaling suggests that the increased contribution of RL and decreased contribution of 25 

WM may explain slower learning. Further analyses revealed weakened connectivity between 26 

the striatal and prefrontal regions under WM load, suggesting diminished cooperation between 27 

the WM and RL systems. 28 
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Results 1 

The participants (N = 56) underwent fMRI imaging while performing an instrumental 2 

learning task under a control condition and a WM load condition (Figure 1). In the control 3 

condition, they participated in the orthogonalized go/no-go (GNG) task (Guitart-Masip et al., 4 

2012), a model-free learning task that contained Pavlovian–instrumental conflicts. In the WM 5 

load condition, a 2-back task was added to the GNG task; the modified task was named the 6 

working memory go/no-go (WMGNG) task (see Materials and Methods for more detail).  7 

 8 

 9 

Figure 1. The GNG and WMGNG tasks. (A) In both tasks, four fractal cues indicated the combination 10 

of action (go/no-go) and valence at the outcome (win/loss). (B) In each trial, a fractal cue was presented, 11 

followed by a variable delay. After the delay, actions were required in response to a circle, and 12 
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participants had to decide whether to press a button. After an additional brief delay, the probabilistic 1 

outcome was presented, indicating monetary reward (green upward arrow on a ₩1000 bill) or monetary 2 

punishment (red downward arrow on a ₩1000 bill). A yellow horizontal bar indicated no win or loss. In 3 

the WMGNG task, the original GNG task was followed by a 2-back response and 2-back outcome 4 

phases. (C) The participants were asked to indicate whether the cue in the current trial was identical to 5 

the cue in the two preceding trials. Here, because the cue in trial 3 differed from the cue in trial 1, “DIFF” 6 

was the correct response. Similarly, because the cue in trial 4 was identical to the cue in trial 3, “SAME” 7 

was the correct response. The lines mark two cues for comparison: the purple line indicates that the 8 

cues differ, while the pink line indicates that the cues are identical. 9 

Task performance: Decreased performance and learning speed under WM load 10 

Comparison of overall task accuracy between the two tasks confirmed that our dual-11 

task manipulation with a 2-back task successfully imposed WM load. Participants performed 12 

better in the GNG task (M=0.80, SD=0.12) than in the WMGNG task (M=0.72, SD=0.16), as 13 

illustrated in Figure 2A (paired t-test, t(48)=3.86, p<0.001, d=0.55). We also confirmed that 14 

participants exhibited go bias and Pavlovian bias in both tasks, thus replicating the findings of 15 

earlier studies (Adams et al., 2020; Betts et al., 2020; Boer et al., 2018; Ereira et al., 2021; 16 

Guitart-Masip, Economides, et al., 2014; Guitart-Masip et al., 2012; Perosa et al., 2020; 17 

Richter et al., 2014, 2021). Two-way ANOVA on accuracy, with the factors action (go/no-go) 18 

and valence (reward/punishment) as repeated measures for both tasks, revealed a main effect 19 

of action (F(48)=6.05, p=0.018, η2=0.03 in GNG task,  F(48)=9.44, p=0.003, η2=0.04 in 20 

WMGNG task) and action by valence interaction (F(48)=22.43, p<0.001, η2=0.12 in the GNG 21 

task, F(48)=30.59, p<0.001, η2=0.10 in the WMGNG task); it showed no effect of valence 22 

(F(48)=0.00, p=0.99, η2=0.00 in the GNG task, F(48)=2.77, p=0.103, η2=0.01 in the WMGNG 23 

task). In both tasks (Figure 2B), participants exhibited superior performances in “go to win” 24 

and “no-go to avoid losing” conditions (i.e., Pavlovian-congruent conditions; blue columns) 25 

than in “no-go to win” and “go to avoid losing” trials (i.e., Pavlovian-incongruent conditions; 26 

red columns). Specifically, in the GNG task, accuracy was higher in the “go to win” (M=0.92, 27 

SD=0.12) than “no-go to win” condition (M=0.69, SD=0.35) (paired t-test, t(48)=4.13, p<0.001, 28 
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d=0.59), and in the “no-go to avoid losing” (M=0.85, SD=0.13) than in the “go to avoid losing” 1 

condition (M=0.76, SD=0.18) (paired t-test, t(48)=3.29, p=0.002, d=0.47). Similarly, in the 2 

WMGNG task, accuracy was higher in the “go to win” (M=0.82, SD=0.25) than in the “no-go 3 

to win” condition (M=0.57, SD=0.34) (paired t-test, t(48)=4.82, p<0.001, d=0.69), and in the 4 

“no-go to avoid losing” (M=0.79, SD=0.16) than in the “go to avoid losing” condition (M=0.72, 5 

SD=0.19) (paired t-test, t(48)=2.51, p=0.015, d=0.36). 6 

Next, we tested the effect of WM load on learning speed (hypothesis 1, Figure 2C). 7 

While the learning curves indicated that participants learned during both tasks, the learning 8 

curve was slower in the WMGNG task than in the GNG task (i.e., WM load reduced learning 9 

speed and overall accuracy). To test the effect of WM load on Pavlovian bias (hypothesis 2, 10 

Figure 2D), we quantified Pavlovian bias by subtracting the accuracy in Pavlovian-11 

incongruent conditions (“no-go to win” and “go to avoid losing”) from accuracy in Pavlovian-12 

congruent conditions (“go to win” and “no-go to avoid losing”), then compared it between the 13 

two tasks. No significant difference in Pavlovian bias was observed between the GNG and 14 

WMGNG tasks, confirming that WM load did not affect Pavlovian bias. 15 

 16 
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Figure 2. Task performance. (A) Task accuracies (mean percentages of correct responses) in the GNG 1 

and WMGNG tasks show that participants performed better in the GNG task than in the WMGNG task. 2 

(B) Accuracy in each of the four trial types between the two tasks demonstrated that participants 3 

performed better in “go to win” and “no-go to avoid losing” trials (Pavlovian-congruent, blue) than in “no-4 

go to win” and “go to avoid losing” trials (Pavlovian-incongruent, red). (C) The learning curve (i.e., the 5 

increase in accuracy across trials) was slower in the WMGNG task than in the GNG task. Note that 6 

moving average smoothing was applied with filter size 5 to remove the fine variation between time steps. 7 

Lines indicate group means and ribbons indicate ± standard errors of the mean. (D) Pavlovian bias was 8 

calculated by subtracting accuracy in Pavlovian-incongruent conditions (“no-go to win” + “go to avoid 9 

losing”) from accuracy in Pavlovian-congruent conditions (“go to win” + “no-go to avoid losing”). No 10 

significant difference in Pavlovian bias was observed between the GNG and WMGNG tasks. (A)-(B), 11 

(D) Dots indicate group means and error bars indicated ± standard errors of the mean. Gray dots 12 

indicate individual accuracies; lines connect a single participant’s performances. Asterisks indicate the 13 

results of pairwise t-tests. **** p < 0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05.  14 

Computational modeling: WM load influences learning rate and irreducible noise 15 

We used a computational modeling approach to test the three hypotheses. For this 16 

purpose, we developed eight nested models that assumed different learning rate, Pavlovian 17 

bias, or irreducible noise parameters under WM load. These models were fitted to the data 18 

using hierarchical Bayesian analysis, then compared using the leave-one-out information 19 

criterion (LOOIC), where a lower LOOIC value indicated better out-of-sample predictive 20 

accuracy (i.e., better fit) (Vehtari et al., 2017). Importantly, the use of computational modeling 21 

allowed us to test hypothesis 3 regarding whether WM load would increase random choices; 22 

this would have not been possible if we had performed behavioral analysis alone. 23 

Based on earlier studies (Cavanagh et al., 2013; Guitart-Masip et al., 2012), we 24 

constructed a baseline model (model 1) that used a Rescorla-Wagner updating rule and 25 

contained learning rate (ε), Pavlovian bias, irreducible noise, go bias, and separate 26 

parameters for sensitivity to rewards and punishments (Materials and Methods). In the model, 27 

state-action values are updated with the prediction error; learning rate (ε) modulates the 28 
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impact of the prediction error. Reward/punishment sensitivity (ρ) scales the effective size of 1 

outcome values. Go bias (b) and cue values weighted by Pavlovian bias (π) are added to the 2 

value of go choices. Here, as the Pavlovian bias parameter increases, the go tendency 3 

increases under the reward condition whereas the go tendency is reduced under the 4 

punishment condition; this results in an increased no-go tendency. Computed action weights 5 

are used to estimate action probabilities, and irreducible noise (ξ) determines the extent to 6 

which information about action weights is utilized to make decisions. As irreducible noise 7 

increases, action probabilities will be less reflective of action weights, indicating that action 8 

selection will become increasingly random. 9 

In models 2, 3, and 4, we assumed that WM load affects only one parameter. For 10 

example, in model 2, a separate Pavlovian bias parameter (πwm) was assumed for the WM 11 

load condition. Models 3 and 4 assumed different learning rates (εwm) and irreducible noise 12 

(ξwm) parameters in their respective WM load conditions. In models 5, 6, and 7, we assumed 13 

that WM load would affect two parameters: model 5 had different Pavlovian bias (πwm) and 14 

learning rate (εwm); model 6 had different Pavlovian bias (πwm) and irreducible noise (ξwm); and 15 

model 7 had different learning rate (εwm) and irreducible noise (ξwm). Finally, model 8 was the 16 

full model, in which all three parameters were assumed to be affected by WM load.  17 

The full model (model 8) was the best model (Figure 3A). In other words, it 18 

demonstrated that participant behavior could be best explained when separate parameters 19 

were included for Pavlovian bias, learning rate, and irreducible noise parameters. Next, we 20 

analyzed the parameter estimates of the best-fitting model; we focused on comparing the 21 

posterior distributions of the parameters that were separately fitted in the two tasks (Figure 22 

3B). The parameters were considered credibly different from each other if the 95% highest 23 

density intervals (HDI) of the two distributions showed no overlap (Kruschke, 2014). Figure 24 

3B illustrates that Pavlovian bias was not credibly different between the two tasks, consistent 25 

with the lack of support for hypothesis 2 (Pavlovian bias) in the behavioral results. Conversely, 26 

the learning rate was credibly lower, while irreducible noise was credibly greater in the 27 

WMGNG than in the GNG task. These results support hypothesis 1 (i.e., WM load will reduce 28 
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learning rate) and hypothesis 3 (i.e., WM load will increase random choices). While the best 1 

model was the full model that assumed separate Pavlovian bias in the two tasks, no credible 2 

group difference was observed between these parameters. This is presumably because the 3 

full model was able to capture individual variations among participants (Figure S3), despite 4 

the lack of credible difference in the group-level estimates between the two tasks. As expected, 5 

the 95% HDIs of go bias, reward sensitivity, and punishment sensitivity did not include zero, 6 

indicating that the participants exhibited go bias and reward/punishment sensitivity (see 7 

Supplementary Material for the posterior distributions of individual parameters; Figure S2-S5). 8 

To further compare choice randomness between the two tasks, we examined the 9 

extent to which choices were dependent on value discrepancies between the two options. We 10 

first plotted the percentage of go choices for the GNG and WMGNG tasks by varying the 11 

quantiles of differences in action weight between the “go” and “no-go” actions (Wgo - Wnogo) 12 

(Figure 4A). The trial-by-trial action weights were extracted from the best-fitting model. Higher 13 

quantiles corresponded to a greater “go” action weight than “no-go” action weight. Overall, the 14 

go ratio increased from the first to the tenth quantile, indicating that the value differences 15 

between the “go” and “no-go” actions affected participants’ choices. This result further 16 

illustrates the difference between the two tasks: the increase in the go ratio was steeper in the 17 

GNG task than in the WMGNG task. In particular, the go ratio significantly differed between 18 

the two tasks for the first (t(48)=-3.59, p=0.001, d=0.51), second (t(48)=-3.23, p=0.002, 19 

d=0.46), third (t(48)=-2.55, p=0.014, d=0.36), eighth (t(48)=2.95, p=0.005, d=0.42), and tenth 20 

(t(48)=2.76, p=0.008, d=0.39) quantiles. Thus, under WM load, participants were less 21 

sensitive to the significant value difference between “go” and “no-go”.  22 

To compare these patterns in a different way and further explore the extent to which 23 

performance was dependent on choice difficulty, we plotted accuracies for the two tasks and 24 

for different quantiles of the absolute value differences (|Wgo - Wnogo|; Figure 4B). We assumed 25 

that the choices would become easier when the absolute value difference was increased 26 

because a small value difference makes it difficult to choose between options. Overall, the 27 

accuracy increased from the first to the tenth quantile, indicating that participants performed 28 
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better as the choices became easier. This result further illustrates the difference between the 1 

two tasks: the increase in accuracy was steeper in the GNG task than in the WMGNG task. 2 

Specifically, the accuracy significantly differed between the two tasks for the fifth (t(48)=4.12, 3 

p<0.001, d=0.59), sixth (t(48)=2.95, p=0.005, d=0.42), seventh (t(48)=2.44, p=0.018, d=0.35), 4 

eighth (t(48)=3.13, p=0.003, d=0.45), ninth (t(48)=2.87, p=0.006, d=0.41), and tenth 5 

(t(48)=2.55, p=0.014, d=0.36) quantiles. Thus, participants performed worse in the WM load 6 

condition than in the control condition when choices were easier. Overall, Figure 4 7 

demonstrates that WM load reduced the effect of the value difference on participants, 8 

indicating increased choice randomness. 9 

 10 

Figure 3. Model comparison results and posterior distribution of the group-level parameters of the best-11 

fitting model. (A) Relative LOOIC difference indicates the difference in LOOIC between the best-fitting 12 

model and each of the other models. The best-fitting model was the full model, which assumed separate 13 

Pavlovian bias, learning rate, and irreducible noise in GNG and WMGNG tasks. Lower LOOIC indicates 14 

better model fit. (B) Posterior distributions of group-level parameters from the best-fitting model. 15 
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Learning rate and irreducible noise estimates were credibly different in the GNG and WMGNG tasks, 1 

while Pavlovian bias estimates were not. Dots indicate medians and bars indicate 95% HDIs. Asterisks 2 

indicate that the 95% HDIs of the two parameters’ posterior distributions do not overlap (i.e., differences 3 

are credible). 4 

 5 

 6 

Figure 4. Choice consistency. (A) Mean percentage of go choices for different quantiles of action weight 7 

differences (Wgo - Wnogo) between “go” and “no-go” choices, where higher quantiles indicate higher 8 

decision values for “go” choices. Under WM load, the increase in go ratio according to quantile was less 9 

steep. (B) Mean accuracies for different quantiles of absolute value differences (|Wgo - Wnogo|), where 10 

higher quantiles indicate larger value differences between two options or easier choices. Under WM 11 

load, the increase in accuracy according to quantile was less steep. (A)-(B) Dots are group means, and 12 

error bars are ± standard errors of the mean. Asterisks show the results of pairwise t-tests. **** p < 13 

0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05.  14 

Larger RPE signals in the striatum and weakened connectivity with prefrontal regions 15 

under WM load 16 

Behavioral analysis revealed that WM load caused learning to occur more slowly but 17 

did not affect Pavlovian bias. The computational approach confirmed that the learning rate 18 

decreased; Pavlovian bias did not change under the load; and WM load led to increased 19 

choice randomness. Here, we sought to investigate the underlying neural correlates of these 20 

effects of WM load on learning rate, Pavlovian bias, and random action selection. First, we 21 

hypothesized that RPE signaling in the striatum would increase under WM load (Collins, Ciullo, 22 

et al., 2017; Collins & Frank, 2018). We conducted a model-based fMRI analysis using RPE 23 
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as a regressor derived from the best-fitting model (see Materials and Methods for the full 1 

general linear models (GLMs) and regressor specifications). The RPE signal in the striatal 2 

region of interest (ROI) was significantly greater in the WMGNG task than in the GNG task 3 

(contrast: RPE in WMGNG > RPE in GNG, MNI space coordinates x = 13, y = 14, z = -3, Z = 4 

3.96, p < 0.05 small-volume corrected (SVC), Figure 5A, Table S4). This supports hypothesis 5 

1, which predicts an increased contribution of the RL system and decreased contribution of 6 

the WM system, to learning under WM load. We also tested hypothesis 2 regarding Pavlovian 7 

bias, but we found no main effect of Pavlovian bias between the GNG and WMGNG tasks 8 

(WMGNG > GNG [Pavlovian-congruent > Pavlovian-incongruent]) within the striatum or 9 

SN/VTA (p < 0.05 SVC). Note that previous studies showed no significant result for the same 10 

contrast (Pavlovian-congruent > Pavlovian-incongruent) within the same regions (Guitart-11 

Masip et al., 2012). With regard to hypothesis 3 concerning random choices, we observed no 12 

main effect of WM load on random choice (WMGNG > GNG [Wchosen - Wunchosen]) within the 13 

ventromedial prefrontal cortex (vmPFC; p < 0.05 SVC). See Supplementary Material for further 14 

details regarding these findings (Table S5). 15 

Increased RPE signals under WM load may indicate reduced WM contribution and 16 

increased RL contribution to learning because of the load, suggesting diminished cooperation 17 

between the two systems for learning. Therefore, we conducted a psychophysiological 18 

interaction (PPI) analysis (Friston et al., 1997) using the gPPI toolbox (McLaren et al., 2012) 19 

to test whether functional connectivity between areas associated with RL and WM systems 20 

would weaken under WM load. Specifically, we explored differences between the two tasks in 21 

terms of functional coupling between the striatum, which showed increased RPE signaling 22 

under WM load, and other regions when computing reward expectations. The striatum showed 23 

significantly decreased connectivity with the vmPFC (MNI space coordinates x = 13, y = 56, z 24 

= 0, Z!"!#$%&'(!p < 0.05 whole-brain cluster-level familywise error rate (FWE)) and dlPFC (MNI 25 

space coordinates x = -20, y = 63, z = 23, Z "!#$%)$(!p < 0.05 whole-brain cluster-level FWE, 26 

Figure 5B, Table S6) in the WMGNG task, compared with the GNG task.   27 
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 1 

Figure 5. fMRI results. (A) RPE signaling in the striatum was stronger in the WMGNG task than in the 2 

GNG task. Effects that were significant at p < 0.05 (SVC) are shown in yellow. (B) Functional 3 

connectivity between the striatum (seed region, top) and prefrontal regions, including vmPFC (bottom 4 

left) and dlPFC (bottom right), was weaker in the WMGNG task than in the GNG task when computing 5 

reward expectation (p < 0.05, whole-based cluster-level FWE). Overlays are shown with a threshold of 6 

p < 0.001 (uncorrected). Color scale indicates t-values. 7 

Discussion 8 

In this study, our main objective was to elucidate the neurocognitive effects of WM load 9 

on instrumental learning that involves Pavlovian–instrumental conflicts. We hypothesized that 10 

under WM load, 1) learning rate would decrease and RPE signals would become stronger, 2) 11 

Pavlovian bias would increase, and 3) action selection would become increasingly random. 12 

First, we found that the limitation of WM resources according to WM load led to a decrease in 13 

the learning rate and increases in striatal RPE signals. The striatum, which subsequently 14 

showed stronger RPE signals under WM load, demonstrated weakened functional 15 

connectivity with prefrontal regions including the dlPFC and vmPFC, during reward prediction. 16 

WM load also increased random action selection. However, Pavlovian bias did not increase 17 

under WM load, suggesting that WM load did not affect the balance between Pavlovian and 18 

instrumental systems.  19 
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Decreased contribution of the WM system and increased contribution of the RL system 1 

under WM load 2 

The effect of WM load on instrumental learning remained consistent despite Pavlovian 3 

bias. In particular, our behavioral analysis revealed a deceleration in learning speed under 4 

WM load (Figure 2C); modeling analysis confirmed that WM load reduced learning rate 5 

(Figure 3).  6 

These findings can be attributed to the reduced contribution of the WM system and 7 

increased contribution of the striatal RL system, consistent with previous findings that WM 8 

improves learning efficiency (in parallel with RL), as well as reward prediction precision in RL 9 

processes. First, as a rapid and immediate learning system, WM learns in parallel with the 10 

slow and incremental RL system by directly storing associations between states and actions 11 

(Collins, 2018; Collins, Ciullo, et al., 2017; Collins & Frank, 2012; Tsujimoto & Sawaguchi, 12 

2004; Yoo & Collins, 2022). Specifically, WM and RL systems compete with each other based 13 

on their reliability in a given situation. Under WM load, the fast and capacity-limited WM system 14 

becomes less reliable; thus, the slow and incremental RL system supersedes the WM system, 15 

causing learning to occur more slowly and incrementally (Collins, 2018; Collins, Albrecht, et 16 

al., 2017; Collins & Frank, 2012). Second, RL computations themselves are intertwined with 17 

WM; WM can represent feed reward expectations to the RL system (Ballard et al., 2011; Kahnt 18 

et al., 2011; D. Lee & Seo, 2007; Wallis & Miller, 2003) and improve reward prediction 19 

precision, which can reduce RPE and improve learning efficiency (Collins, Ciullo, et al., 2017; 20 

Collins & Frank, 2018). In our study, WM load, which limited the contribution of WM, may have 21 

increased the striatal RL contribution while reducing the accuracy of RL reward computation. 22 

Consistent with this interpretation, we found that RPE signaling in the striatum – a marker of 23 

RL – was strengthened under WM load (Figure 5A). This is consistent with previous findings 24 

that RPE-associated neural signals were increased under higher WM load (Collins, Ciullo, et 25 

al., 2017; Collins & Frank, 2018). 26 
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Overall, these findings suggest that WM load led to reduced cooperation between RL 1 

and WM by interrupting and reducing the contribution of WM. This notion is further supported 2 

by the finding that the striatum showed weakened functional connectivity with the dlPFC during 3 

reward prediction under WM load (Figure 5A). Taken together, these findings suggest that 4 

WM load may have weakened the interplay between WM in the dlPFC and RL in the striatum 5 

during the value estimation process, which subsequently led to stronger RPE signals. 6 

However, further research is necessary to demonstrate the directionality of functional 7 

connectivity between the two systems during reward prediction; frontostriatal connectivity is 8 

reportedly bidirectional, such that the striatum may also provide prefrontal regions with inputs 9 

that relate to reward information (Park et al., 2010; Pasupathy & Miller, 2005). 10 

Notably, we observed weakened connectivity between the vmPFC and the striatum. 11 

The vmPFC has been identified as a critical neural correlate of value-based decision-making; 12 

it integrates reward predictions (Kahnt et al., 2011), represents value signals or decision value 13 

(Economides et al., 2014; Lim et al., 2011; O’Doherty, 2011; Smith et al., 2010), and affects 14 

reward anticipation/processing in the striatum (Hiser & Koenigs, 2018; Pujara et al., 2016). 15 

Our findings suggest that value integration through the cortico-striatal loop was also weakened 16 

under WM load. 17 

No effect of WM load on Pavlovian bias 18 

Contrary to our hypothesis, WM load did not influence Pavlovian bias. Behavioral and 19 

modeling results showed that Pavlovian bias did not significantly differ between the GNG and 20 

WMGNG tasks (Figure 2D; Figure 3), while fMRI analysis revealed that neural signaling 21 

associated with Pavlovian bias did not significantly differ between the two tasks (Table S6). 22 

These findings indicate that the brain did not exhibit greater reliance on the computationally 23 

efficient system under WM load, in contrast to the results of previous studies (Otto et al., 2013). 24 

We identified two possible explanations for this discrepancy. First, instrumental and Pavlovian 25 

learning require similar amounts of WM resources; second, the WM system may not be 26 

involved in modulating the balance between Pavlovian and instrumental systems.  27 
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In the first potential explanation, the amounts of WM resources may be similar for 1 

Pavlovian and instrumental learning (especially model-free learning), in contrast to model-2 

based and model-free learning. Model-based learning system constructs an internal model to 3 

compute the values of actions; thus, it requires greater WM resources to compute and retain 4 

the model online (Balleine & O’doherty, 2010; Daw et al., 2005, 2011; Dolan & Dayan, 2013; 5 

Keramati et al., 2011). However, the model-free system simply uses the action-reward 6 

association history to compute action values (i.e., “cached values”), and does not require the 7 

internal model (Balleine & O’doherty, 2010; Daw et al., 2005; Dickinson, 1985). Pavlovian 8 

learning is similar to model-free learning but differs in terms of the dimensions for value 9 

learning–the Pavlovian system learns state-outcome associations, while the instrumental 10 

system learns state-action-outcome associations (Dayan et al., 2006; Dorfman & Gershman, 11 

2019). Therefore, the difference in WM demands between model-based and model-free 12 

learning could be significantly greater than the difference between model-free instrumental 13 

and Pavlovian learning. In our task, in particular, the instrumental learning was model-free; 14 

both instrumental and Pavlovian systems were required to learn the associations without prior 15 

information. Thus, the difference in WM demands may not have been sufficient to trigger a 16 

trade-off between the two learning systems. Rather than depending more on Pavlovian 17 

learning which has little computational benefit in our task, the participants may simply have 18 

compromised overall learning. 19 

In the second potential explanation, WM resources may be unimportant with respect 20 

to modulating the Pavlovian–instrumental interaction, despite earlier studies’ suggestions to 21 

the contrary. Several studies have proposed that prefrontal WM control systems are crucial 22 

for controlling Pavlovian bias. Electroencephalogram studies demonstrated that midfrontal 23 

theta oscillations are important for controlling Pavlovian bias (Cavanagh et al., 2013; Swart et 24 

al., 2018), suggesting top-down prefrontal control over Pavlovian bias (Cavanagh et al., 2013). 25 

Furthermore, recruitment of the inferior frontal gyrus (IFG) is involved in appropriate response 26 

inhibition, helping to overcome Pavlovian bias (Guitart-Masip et al., 2012). Finally, there is 27 

indirect evidence that administration of levodopa, which increases dopamine levels, reduced 28 
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Pavlovian influences on instrumental learning; such a reduction was speculated to result from 1 

increased dopamine levels in the PFC, which may have facilitated the operation of prefrontal 2 

WM functions (Guitart-Masip, Economides, et al., 2014). A related finding suggested that 3 

genetic determinants of prefrontal dopamine function may be important in overcoming 4 

Pavlovian bias (Richter et al., 2021).  5 

While the results of the present study appear to contradict these findings, several 6 

complex possibilities exist. In particular, although previous findings implied the involvement of 7 

prefrontal mechanisms (e.g., model-based prefrontal control (Cavanagh et al., 2013) and WM 8 

(Guitart-Masip, Duzel, et al., 2014; Guitart-Masip, Economides, et al., 2014)) in controlling the 9 

Pavlovian system, they did not directly suggest active recruitment of the prefrontal WM system. 10 

First, while Cavanagh et al. speculated that midfrontal theta power could be indicative of 11 

“model-based top-down prefrontal control” (Cavanagh et al., 2013), a subsequent study by 12 

Swart et al. suggested that midfrontal theta signals could only be involved in the detection of 13 

conflict by signaling “the need for control” (Cavanagh & Frank, 2014; Swart et al., 2018), rather 14 

than being a source of direct control. Next, the IFG showed an increased BOLD response only 15 

in the “no-go” condition (Guitart-Masip et al., 2012), implying that the IFG is important for 16 

“inhibitory” motor control (i.e., as a brake (Aron et al., 2014)); it does not participate in active 17 

maintenance or representation of goal-directed behaviors including both “go” and “no-go,” 18 

which would be more closely associated with WM (Levy & Goldman-Rakic, 2000; Petrides, 19 

2000; Rottschy et al., 2012). Finally, elevated dopamine levels should be cautiously 20 

interpreted as improvements in prefrontal WM function (Guitart-Masip, Economides, et al., 21 

2014). While dopamine has been shown to enable successful cognitive control in the prefrontal 22 

cortex, it may have three roles: gating behaviorally relevant sensory signals; maintaining and 23 

manipulating information in WM to guide goal-directed behavior; and relaying motor 24 

information to premotor areas for action preparation (Ott & Nieder, 2019). Moreover, distinct 25 

mechanisms have been known to modulate the influence of dopamine on WM in the PFC 26 

through distinct types of dopamine receptors (Ott & Nieder, 2019). Thus, there may be several 27 

ways to interpret the observation that dopamine level (Guitart-Masip, Economides, et al., 2014) 28 
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or function (Richter et al., 2021) was associated with the modulation of Pavlovian influences. 1 

Considerable research is needed to fully understand the mechanisms by which dopamine 2 

levels affect Pavlovian bias. Alternatively, the role of prefrontal WM in controlling Pavlovian 3 

bias may not require vast resources. It may only be responsible for signaling a need for control 4 

(Swart et al., 2018), promoting response inhibition (Guitart-Masip et al., 2012), or influencing 5 

subcortical areas (e.g., the striatum and subthalamic nucleus (Albrecht et al., 2016; Cools, 6 

2016)).  7 

Increased random choices under WM load 8 

Another notable finding was that random choice increased under WM load. Our 9 

modeling analysis revealed that irreducible noise parameter estimates were greater in the 10 

WMGNG task than in the GNG task (Figure 3), suggesting increased random action selection 11 

under WM load. Further analysis using the modeling outputs revealed that participants’ 12 

choices were less affected by the relative value difference between the “go” and “no-go” 13 

actions under WM load (Figure 4A). Moreover, analysis using the absolute difference between 14 

the two options (Figure 4B) revealed that the increase in accuracy became smaller as the 15 

absolute difference increased (i.e., the choice became easier). Both findings suggest that WM 16 

involvement led to an increase in random choices, regardless of value comparison and choice 17 

difficulty. 18 

Our findings are broadly consistent with the results of previous studies concerning the 19 

role of WM and prefrontal regions in action selection and execution (Barrouillet et al., 2007; 20 

Dalley et al., 2004; Granon et al., 1994; Oberauer, 2019; Ridderinkhof et al., 2004; Ripke et 21 

al., 2012; Seo et al., 2012; Szmalec et al., 2005). In particular, several studies have 22 

demonstrated that the interruption of WM function via WM load could increase the frequency 23 

of random choices in value-based decision-making tasks (Franco-Watkins et al., 2006, 2010; 24 

Olschewski et al., 2018). Additionally, transcranial direct current stimulation, a brain 25 

stimulation method, over the left PFC led to increased random action selection during an RL 26 

task, suggesting that the prefrontal WM component influenced action selection (Turi et al., 27 
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2015). Furthermore, the importance of WM in action selection during learning tasks is 1 

supported by the indirect evidence that individual differences in WM capacity were correlated 2 

with appropriate exploratory action selection in multi-armed bandit tasks (Laureiro-Martinez et 3 

al., 2019). Overall, the reduced availability of WM resources because of WM load in our study 4 

may have compromised the participants’ abilities to actively represent their current goals and 5 

actions, leading to reduced WM control over consistent choice based on value computation.  6 

No significant neural correlates were identified with respect to the increased random 7 

choices. We assumed that random action selection would be associated with the reduced 8 

sensitivity to value difference or value comparison between the two options (“go” and “no-go”) 9 

(Gläscher & O’Doherty, 2010); thus, we hypothesized that value comparison signals would 10 

decrease under WM load. Contrary to our hypothesis, no significant differences in value 11 

comparison signaling in ROIs were observed between GNG and WMGNG tasks. There are 12 

several possible explanations for this null finding. Our assumption of value sensitivity may not 13 

be the source of the random choice observed here. Alternatively, subsequent attentional lapse 14 

(Master et al., 2020; Nassar & Frank, 2016) or value-independent noise (Talmi et al., 2009) 15 

may have led to inconsistent action selection despite the presence of value comparison 16 

signals. Further research is necessary to distinguish these possibilities. 17 

In summary, the present study has shown that WM load compromises overall learning 18 

by reducing learning speed via weakened cooperation between RL and WM; it also increases 19 

random action selection without affecting the balance between Pavlovian and instrumental 20 

systems. To our knowledge, this is the first study to investigate the neurocognitive effect of 21 

WM load during interactions between Pavlovian and instrumental systems. By investigating 22 

how learning and decision-making using different systems are altered in the presence of WM 23 

load and by linking such behaviors to their underlying neural mechanisms, this study 24 

contributes to our understanding of how distinct cognitive components interact with each other 25 

and synergistically contribute to learning. Because impairments in learning, balance among 26 

multiple systems, and action selection have been reported in various neurological and 27 
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psychiatric disorders (Huys et al., 2016, 2021), our findings represent an important step toward 1 

improved understanding of various symptoms.  2 

Materials and methods 3 

Participants 4 

Fifty-six adults participated in this study (34 women; 24.5±3.6 years old). All 5 

participants were healthy, right-handed; they had normal or corrected-to-normal visual acuity. 6 

They were screened prior to the experiment to exclude individuals with a history of 7 

neurological, or psychiatric illness. All participants provided written informed consent, and the 8 

study protocol was approved by the Institutional Review Board of Seoul National University.  9 

The behavioral analysis included 49 participants (29 women; 24.3±3.3 y.o); the fMRI 10 

analysis included 44 participants (27 women; 24.2±3.3 y.o). Four participants were excluded 11 

because of technical issues; one participant was excluded because they slept during the task. 12 

Two participants were excluded because of poor performance in the 2-back task since the 13 

results in the dual-task paradigm could only be valid and interpretable when participants 14 

actually performed both tasks. The accuracy cutoff was 0.575, a value that rejects the null 15 

hypothesis that participants would randomly choose one of two options. After assessment of 16 

preprocessed image quality, five participants were excluded from the fMRI analysis because 17 

of head movements in the scanner, which can systematically alter brain signals; four out of 18 

these five were excluded because the mean framewise displacement exceeded 0.2 mm (Gu 19 

et al., 2015), while the remaining one was excluded after visual assessment of carpet plots 20 

(Power, 2017). 21 

Experimental design and task 22 

The experiment was performed in two blocks: one contained the original GNG task 23 

(Guitart-Masip et al., 2012) and one contained the GNG task paired with the 2-back task as a 24 

secondary task. The order of task completion was counterbalanced among participants. The 25 
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GNG and WMGNG tasks consisted of two blocks (four blocks in total); each block consisted 1 

of 60 trials. Therefore, each task contained 120 trials (240 trials in total). Participants 2 

underwent fMRI while performing the tasks for approximately 50 min, with a short (~60 s) 3 

break after each set of 60 trials. Before scanning, participants performed 20 practice trials 4 

each of GNG task and WMGNG task to help them become accustomed to the task structure 5 

and response timing. Participants received additional compensation based on their accuracy 6 

in the two tasks, along with the standard participation fee at the end of the experiment. 7 

Orthogonalized go/no-go (GNG) task  8 

Four trial types were implemented depending on the nature of the fractal cue (Figure 9 

1A): press a button to gain a reward (go to win); press a button to avoid punishment (go to 10 

avoid losing); do not press a button to earn a reward (no-go to win); and do not press a button 11 

to avoid punishment (no-go to avoid losing). The meanings of fractal images were randomized 12 

among participants. 13 

Each trial consisted of three phases: fractal cue presentation, response, and 14 

probabilistic outcome. Figure 1B illustrates the trial timeline. In each trial, participants were 15 

presented with one of four abstract fractal cues for 1000 ms. After a variable interval drawn 16 

from a uniform probability distribution within the range of 250-2000 ms, a white circle was 17 

displayed on the center of the screen for 1000 ms. When the circle appeared, participants 18 

were required to respond by pressing a button or not pressing a button. Next, the outcome 19 

was presented for 1000 ms: a green arrow pointing upwards on a ₩1000 bill indicated 20 

monetary reward, a red arrow pointing downwards on a ₩1000 bill indicated monetary 21 

punishment, and a yellow horizontal bar indicated no reward or punishment. 22 

The outcome was probabilistic; thus, 80% correct responses and 20% incorrect 23 

responses resulted in the best outcome. Participants were instructed that the outcome would 24 

be probabilistic; for each fractal image, the correct response could be either “go” or “no-go,” 25 

and they would have to learn the correct response for each cue through trial and error. The 26 

task included 30 trials for each of the four trial types (120 trials in total). Trial types were 27 

randomly shuffled throughout the duration of the task.  28 
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Orthogonalized go/no-go + 2-back (WMGNG) task  1 

In the WM load condition, the GNG task was accompanied by a 2-back task to induce 2 

WM load. The combined task was named the WMGNG task; each trial had 2-back response 3 

and 2-back outcome phases after the GNG task (fractal cue, response, and probabilistic 4 

outcome). Participants were required to indicated whether the cue in the current trial was 5 

identical to the cue presented in the two previous trials. For example, as shown in Figure 1C, 6 

the cue in the third trial differes from the cue in the first trial (two trials prior); thus, participants 7 

should respond “different” by pressing button after responding to the reinforcement learning 8 

task. In the fourth trial, they should respond “same.” The positions of “SAME” and “DIFF” were 9 

randomized among participants. 10 

Computational modeling 11 

Baseline RL model with Pavlovian bias 12 

We adopted a previously implemented version of an RL model (Guitart-Masip et al., 13 

2012) that can model Pavlovian bias and choice randomness as well as learning rate. In our 14 

baseline model, we assumed no difference in parameters between the control and load 15 

conditions.  16 

Expected values 𝑄(𝑎! , 𝑠!) were calculated for each action 𝑎, “go” or “no-go”, on each 17 

stimulus 𝑠  (i.e., four trial types of the task) on each trial 𝑡 . 𝑄(𝑎! , 𝑠!)  was determined by 18 

Rescorla-Wagner or delta rule updating: 19 

𝑄!(𝑎! , 𝑠!) 	= 	𝑄!"#(𝑎! , 𝑠!) 	+ 	𝜖(𝜌𝑟! − 𝑄!"#(𝑎! , 𝑠!)) 20 

where ε is the learning rate. The learning rate (ε) is a step size of learning (Sutton & Barto, 21 

2018) that modulates how much of the prediction error, a teaching signal, is incorporated into 22 

the value update.    23 

Rewards, neutral outcomes, and punishments were entered in the model through 𝑟!!*!24 

+#,(!'(!,-(!./010!2!10340567!6/0!.089/68:9!;<:=!033056!78>07?!@3!10.<1=7!<:=!AB:87/C0:67%!D:!<44!25 

C@=047(!2!5@B4=!E0!=833010:6!3@1!10.<1=7!<:=!AB:87/C0:67!;2rew for gain, ρpun for loss).  26 
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Action weights 𝑊(𝑎! , 𝑠!) were calculated from Q values, and the Pavlovian and go 1 

biases: 2 

𝑊!(𝑎! , 𝑠!) = 1𝑄!
(𝑎! , 𝑠!) + 𝑏 + 𝜋𝑉!(𝑠!)					𝑖𝑓	𝑎 = 𝑔𝑜

𝑄!(𝑎! , 𝑠!),																					𝑒𝑙𝑠𝑒
 3 

where 𝑏 was added to the value of go, while the expected value on the current state 𝑉!(𝑆!) 4 

was weighted by π and added to the value of go choices. 𝑉!(𝑆!) was computed as follows: 5 

𝑉!(𝑠!) 	= 	𝑉!"#(𝑠!) 	+ 	𝜖(𝜌𝑟! − 𝑉!"#(𝑠!)). 6 

If the Pavlovian bias parameter (π) is positive, it increases the action weight of “go” in 7 

the reward conditions because 𝑉!(𝑆!) is positive. In the punishment conditions, positive π 8 

decreases the action weight of “go” because 𝑉!(𝑆!) is negative.  9 

Action probabilities were dependent on these action weights 𝑊(𝑎! , 𝑠!), which were 10 

passed through a squashed softmax (Sutton & Barto, 2018): 11 

𝑃(𝑎! , 𝑠!) = >
exp[𝑊(𝑎! , 𝑠!)]

∑ exp[𝑊(𝑎$, 𝑠!)]%!
E (1 − 𝜉) +

𝜉
2
 12 

where ξ was the irreducible noise in the decision rule; it was free to vary between 0 and 1 for 13 

all models. The irreducible noise parameter explains the extent to which information about 14 

action weights is utilized in making a choice. As the irreducible noise increases, the influence 15 

of the difference between the action weights is reduced, indicating that action selection 16 

becomes random.  17 

Additional models 18 

To test our hypotheses regarding the effects of WM load on parameters, we 19 

constructed seven additional nested models assuming different Pavlovian biases (π), learning 20 

rate (ε), and irreducible noise (ξ) under WM load (Table 1). Model 1 is the baseline model. 21 

Model 2 assumed a separate Pavlovian bias parameter (π) for the WM load condition. 22 

Similarly, models 3 and 4 assumed different learning rates (ε) and irreducible noises (ξ) in the 23 

WMGNG block, respectively. To address the possibility that two of the three parameters would 24 

be affected by the WM load, we constructed three additional models with eight free parameters: 25 

model 5 with different Pavlovian bias (π) and learning rate (ε); model 6 with different Pavlovian 26 
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bias (π) and irreducible noise (ξ); and model 7 with different learning rate (ε) and irreducible 1 

noise (ξ). Finally, we constructed the full model, which assumed that all of these three 2 

parameters would be affected by WM load, leading to nine free parameters.  3 

 4 

Table 1. Free parameters of all models 5 

Model No. Model # of parameters 

1 𝜖, 𝜌&'( , 𝜌)*+, 𝑏, 𝜋, 𝜉 6 

2 𝜖, 𝜌&'( , 𝜌)*+, 𝑏, 𝜋, 𝜉, 𝜋(,  7 

3 𝜖, 𝜌&'( , 𝜌)*+, 𝑏, 𝜋, 𝜉, 𝜖(, 7 

4 𝜖, 𝜌&'( , 𝜌)*+, 𝑏, 𝜋, 𝜉, 𝜉(, 7 

5 𝜖, 𝜌&'( , 𝜌)*+, 𝑏, 𝜋, 𝜉, 𝜋(,, 𝜖(, 8 

6 𝜖, 𝜌&'( , 𝜌)*+, 𝑏, 𝜋, 𝜉, 𝜋(,, 𝜉(, 8 

7 𝜖, 𝜌&'( , 𝜌)*+, 𝑏, 𝜋, 𝜉, 𝜖(,, 𝜉(, 8 

8 𝜖, 𝜌&'( , 𝜌)*+, 𝑏, 𝜋, 𝜉, 𝜋(,, 𝜖(,, 𝜉(, 9 

 6 

Procedures for model fitting and model selection 7 

Model parameters were estimated using hierarchical Bayesian analysis (HBA). Group-8 

level distributions were assumed to be normally distributed, with mean and standard deviation 9 

parameters set as two free hyperparameters. We employed weakly informative priors to 10 

minimize the influences of those priors on the posterior distributions (Ahn et al., 2017; 11 

Kruschke, 2014). Additionally, for parameter estimation, the Matt trick was used to minimize 12 

the dependence between group-level mean and standard deviation parameters; it also 13 

facilitated the sampling process (Papaspiliopoulos et al., 2007). Moreover, bounded 14 

parameters such as learning rates and irreducible noise (∈ [0, 1]) were estimated within an 15 

unconstrained space; they were then probit-transformed to the constrained space, thus 16 

maximizing MCMC efficiency within the parameter space (Ahn et al., 2017; Wetzels et al., 17 

2010). 18 
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We ran four independent chains with 4000 samples each, including 2000 warm-up 1 

samples (i.e., burn-in) to ensure that the parameters converged to the target distributions. 2 

Four chains were run to ensure that the posterior distributions were not dependent on initial 3 

starting points (Vehtari et al., 2019). We visually checked convergence to target distributions 4 

by observing trace plots (Figure S1) and computing the R statistics - a measure of 5 

convergence across chains (Gelman & Rubin, 1992). R statistics were < 1.1 for all models, 6 

indicating that the estimated parameter values converged to their target posterior distributions 7 

(Table S1).  8 

Models were compared using the LOOIC, which is an information criterion calculated 9 

from the leave-one-out cross-validation (Vehtari et al., 2017). This method is used to estimate 10 

the out-of-sample predictive accuracy of a fitted Bayesian model for model comparison and 11 

selection. The LOOIC is computed using the log-likelihood evaluated from posterior 12 

distributions or simulations of the parameters. The R package loo (Vehtari et al., 2017), which 13 

provides an interface for the approximation of leave-one-out cross-validated log-likelihood, 14 

was used to estimate the LOOIC for each model. Lower LOOIC values indicated better fit.  15 

fMRI scans: acquisition and protocol 16 

fMRI was performed on the same scanner (Simens Tim Trio 3 Tesla) using a 32-17 

channel head coil across all participants. A high-resolution T1-weighted anatomical scan of 18 

the whole brain resolution was also acquired for each participant (TR = 2300ms, TE = 2.36ms, 19 

FOV = 256mm,1mm×1mm×1mm) to enable spatial localization and normalization. The 20 

participant’s head was positioned with foam pads to limit head movement during acquisition. 21 

Functional data was acquired using echo-planar imaging (EPI) in four scanning sessions 22 

containing 64 slices (TR = 1500ms, TE = 30ms, FOV = 256mm, 2.3mm × 2.3mm × 2.3mm). 23 

For the GNG task, functional imaging data were acquired in two separate 277-volume runs, 24 

each lasting about 7.5 min. For the WMGNG task, data were acquired in two separate 357-25 

volume runs, each lasting about 9.5 min.  26 
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fMRI scans: general linear models 1 

Preprocessing was performed using fMRIPrep 20.2.0 (Esteban et al., 2018, 2019; 2 

RRID:SCR_016216), which is based on Nipype 1.5.1 (K. Gorgolewski et al., 2011; K. J. 3 

Gorgolewski et al., 2018; RRID:SCR_002502). Details of preprocessing with fMRIPrep are 4 

provided in Supplementary Material. Subsequently, images were smoothed using a 3D 5 

Gaussian kernel (8mm FWHM) to adjust for anatomical differences among participants. 6 

BOLD-signal image analysis was then performed using SPM12 7 

[http://www.fil.ion.ucl.ac.uk/spm/] running on MATLAB v9.5.0.1067069(R2018b). 8 

We built participant-specific GLMs, including all runs – two runs for the GNG block and 9 

two runs for the WMGNG block – and calculated contrasts to compare the two blocks at the 10 

individual level. The first-level model included six movement regressors to control the 11 

movement-related artifacts as nuisance regressors. Linear contrasts at each voxel were used 12 

to obtain participant-specific estimates for each effect. These estimates were entered into 13 

group-level analyses, with participants regarded as random effects, using a one-sample t-test 14 

against a contrast value of 0 at each voxel. The group-level model included covariates for 15 

gender, age, and the task order. For all GLM analyses, we conducted  ROI analysis; the results 16 

were corrected for multiple comparisons using small volume correction (SVC) within ROIs. 17 

GLM1 (Hypothesis 1): GLM1 was used to test hypothesis 1: RPE signaling in the 18 

striatum would be increased under WM load. Therefore, GLM was implemented by the model-19 

based fMRI approach and included the following regressors: (1) cue onset of “go to win” trials, 20 

(2) cue onset of “no-go to win” trials, (3) cue onset of “go to avoid losing” trials, (4) cue onset 21 

of “no-go to avoid losing” trials, (5) target onset of “go” trials, (6) target onset of “no-go” trials, 22 

(7) outcome onset, (8) outcome onset parametrically modulated by the trial-by-trial RPEs, and 23 

(9) wait onset (i.e., inter-trial interval). The regressor of interest was “RPE”; we compared the 24 

main effect of RPE between two tasks (RPE(8)WMGNG - RPE(8)GNG). RPE regressors were 25 

calculated by subtracting the expected values (Q) from the outcome for each trial. Here, the 26 

outcome was the product of feedback multiplied by reward/punishment sensitivity. ROI was 27 
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the striatum, which is widely known to process RPE (Chase et al., 2015; Garrison et al., 2013; 1 

J. P. O’Doherty et al., 2003). 2 

GLM2 (Hypothesis 2): GLM2 was used to test hypothesis 2: neural responses 3 

associated with Pavlovian bias would be increased under WM load. Specifically, the GLM 4 

examined whether the difference between the anticipatory response to fractal cues in 5 

Pavlovian-congruent trials and Pavlovian-incongruent trials was greater in the WMGNG task 6 

than in the GNG task in regions associated with Pavlovian bias. Therefore, GLM included the 7 

following regressors: (1) cue onset of “go to win” trials, (2) cue onset of “no-go to win” trials, 8 

(3) cue onset of “go to avoid losing” trials, (4) cue onset of “no-go to avoid losing” trials, (5) 9 

target onset of “go” trials, (6) target onset of “no-go” trials, (7) outcome onset of win trials, (8) 10 

outcome onset of neutral trials, (9) outcome onset of loss trials, (10) wait onset (i.e., inter-trial 11 

interval). We compared the main effect of Pavlovian bias (Pavlovian-congruent trials - 12 

Pavlovian-incongruent trials) between two tasks ([(1) + (4) - ((2) + (3))]WMGNG - [(1) + (4) ((2) + 13 

(3))]GNG). ROIs included the striatum and SN/VTA. The striatum ROI was constructed by 14 

combining the AAL3 definitions of bilateral caudate, putamen, olfactory bulb, and nucleus 15 

accumbens. Furthermore, the SN/VTA was constructed by combining the AAL3 definitions of 16 

bilateral SN and VTA.  17 

GLM3 (Hypothesis 3): GLM3 was used to test hypothesis 3: value comparison signals 18 

would decrease under WM load. GLM3 was also implemented with a model-based fMRI 19 

approach: (1) cue onset of all trials, (2) cue onset parametrically modulated by the trial-by-trial 20 

decision values (Wchosen - Wunchosen), (3) target onset of “go” trials, (4) target onset of “no-go” 21 

trials, (5) outcome onset, and (6) wait onset (i.e., inter-trial interval). Decision value regressors 22 

were calculated by subtracting the action weights of the unchosen option (Wunchosen) from the 23 

action weights of the chosen option (Wchosen). We then compared the main effect of decision 24 

value between two blocks ((2)WMGNG-(2)GNG). ROIs for GLM3 included the vmPFC, which was 25 

suggested as a region that encodes the relative chosen value (Wchosen - Wunchosen) (Boorman et 26 

al., 2009; S. W. Lee et al., 2014). Here, ROI masks were created by drawing a sphere with a 27 
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diameter of 10 mm around the peak voxel reported in the previous studies ([-6,48,-8] for 1 

vmPFC (Boorman et al., 2009)). 2 

PPI analysis: In addition to GLMs, we used PPI analysis to test whether WM load led 3 

to reduced cooperation between WM and RL systems for learning (Collins, Ciullo, et al., 2017; 4 

Collins & Frank, 2018) by using PPI analysis. Here, to examine differences between the two 5 

blocks in terms of functional coupling between the prefrontal areas and the area computing 6 

RPE after choices, we performed PPI analysis using the gPPI toolbox (McLaren et al., 2012); 7 

the physiological variable was the time course of the striatum, and the psychological variable 8 

was the effect of WM load during the anticipation phase. As a seed region (i.e., a physiological 9 

variable), the cluster striatum ROI (peak MNI space coordinates x = 13, y = 14, z = -3) was 10 

derived from the results of GLM2, which revealed stronger RPE signaling in the WMGNG task 11 

than in the GNG task. The entire time series throughout the experiment was extracted from 12 

each participant in the striatum ROI. To create the PPI regressor, these normalized time series 13 

were multiplied by task condition vectors for the anticipation phase, which consisted of the cue 14 

representation and fixation phases as in GLM1. A GLM with PPI regressors of the seed region 15 

was thus generated together with movement regressors. The effects of PPI for each 16 

participant were estimated in the individual-level GLM; the parameter estimates represented 17 

the extent to which activity in each voxel was correlated with activity in the striatum during the 18 

anticipation phase. The contrast was constructed by subtracting activity during the anticipation 19 

phase in the GNG task from activity in the WMGNG task (WMGNG vs. GNG in the anticipation 20 

phase). Individual contrast images for functional connectivity were then computed and entered 21 

into one-sample t-tests in a group-level GLM together with nuisance covariates (i.e., gender, 22 

age, and task order). Whole-brain cluster correction was applied for PPI analysis. 23 

 24 
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