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Abstract 8 

The world’s languages differ substantially in their sounds, grammatical rules, and expression 9 

of semantic relations. While starting from a shared neural substrate, the developing brain must 10 

therefore have the plasticity to accommodate to the specific processing needs of each 11 

language. However, there is little research on how language-specific differences impacts  brain 12 

function and structure. Here, we show that speaking typologically different languages leaves 13 

unique traces in the brain’s white matter connections of monolingual speakers of English (fixed 14 

word order language), German (with grammatical marking), and Chinese (tonal language). 15 

Using machine learning, we classified with high accuracy the mother tongue based on the 16 

participants’ patterns of structural connectivity obtained with probabilistic tractography. More 17 

importantly, connectivity differences between groups could be traced back to relevant 18 

processing characteristics of each native tongue. Our results show that the life-long use of a 19 

certain language leaves distinct traces in a speaker’s neural network.  20 
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Introduction 21 

All humans share the neurobiological equipment that allows them to learn the language they 22 

are born into1,2. Considering the universality of the cognitive infrastructure underlying 23 

language2, one could easily deduce that all languages should be rather similar. Yet, this stands 24 

in stark contrast with the actual scope of variation that can be observed in the languages across 25 

the globe3. How the human cognitive system and its neurobiological basis are able to deal with 26 

this linguistic variety still is an open question. We will approach this question by first 27 

considering the language differences and their different processing demands and then explore 28 

to what extend these differences lead to modulations in the human neural system underlying 29 

language.  30 

The languages of the world are grouped into families according to their genealogy, that is, 31 

which ancestors they have and how long ago they diverged. For example, Italian or French are 32 

classified as Romance languages because both evolved from Latin. Together with Germanic 33 

(e.g. German and English) and Slavic languages, they belong, in turn, to the higher-order family 34 

of the Indo-European languages. Yet, some of the closely related languages within each of these 35 

families are still typologically very diverse and underwent changes both with respect to their 36 

lexicon and grammar4,5.  37 

The diversity across the languages of the world expresses itself in three main language 38 

domains: phonology, concerning its externalisation in sounds (for spoken languages) or signs 39 

(for sign languages), semantics, which deals with content, and syntax, regarding how words are 40 

structured into sentences. Starting with the sound systems that underlie each language, there 41 

are virtually no limits to their possible phonetic repertoires6. Among spoken languages, there 42 

is a fundamental distinction between those that only use vowels and consonants to 43 
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differentiate between words as in the Indo-European languages, and tonal languages, such as 44 

Chinese or Vietnamese, which also use different pitches or melodies on each syllable to 45 

distinguish words that otherwise would sound identical. Concerning semantics, the lexicon is 46 

organised according to general principles7, which remain considerably stable along language 47 

evolution4,5. Here, differences are more specific to particular topics8,9, especially as to how the 48 

words of a certain language reflect its particular sociocultural context10,11. Regarding syntax, 49 

human languages seem to follow a basic computational principle that combines words into 50 

hierarchical structures, building phrases and sentences2. However, the way this hierarchical 51 

structure is externalised into a sequence strongly depends on the specific language. A sentence 52 

usually describes who is doing what to whom, by saying what the subject (S) of the main verb 53 

(V) is doing to a person or object (O). Languages are classified typologically according to the 54 

preferred order in which these elements appear, the so-called canonical word order12, with a 55 

strong preference worldwide for either SVO (e.g., English and German) or SOV (e.g., Japanese). 56 

Additionally, languages use different cues to distinguish the subject from the object. English, 57 

for example, has a fixed SVO canonical word order, which clearly determines that the first noun 58 

phrase is the subject and the second the object. Other SOV languages like German, mark the 59 

subject and the object grammatically (e.g., by a particular word ending to convey case marking 60 

information), which allows sentence elements to move more freely in the sequence12. In sum, 61 

the diversity among languages and the way they convey information lead to the conclusion 62 

that the cognitive apparatus allowing us to acquire language is originally universal and open 63 

for each language, but then progressively adapts to the particular characteristics of the 64 

speaker’s mother tongue along lifetime. 65 

In fact, psycholinguistic research focussing on language processing has shown that the 66 
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complex task of acquiring language starts in the mother’s womb with learning the melody and 67 

rhythm of our native language13. The human new-born proceeds with fine-tuning to its 68 

particular sound repertoire14, which is achieved mostly within a year at the cost of a substantial 69 

loss of the ability to discriminate and learn new sounds from then on1. Subsequently, after 70 

having acquired their first words, children begin to combine words into bigger chunks, and 71 

eventually start building sentences. They have to recognise the different cues in their language 72 

in order to identify who did what to whom in a sentence15. Thus, adult speakers of different 73 

languages prioritise different information types (e.g. word order, case marking) during 74 

language comprehension16. Such cross-linguistic processing differences can be observed in the 75 

brain activity of speakers of different languages while listening to sentences with similar 76 

properties17. Brain imaging studies often stressing commonalities across languages18,19, also 77 

report cross-linguistic differences in brain activity20. In conclusion, not only do languages vary 78 

strongly in the way they are organised, speakers seem to adapt to such characteristics when 79 

processing their mother tongue. 80 

If so, one would expect that such differences would be traceable in the human brain. The brain 81 

is known to generally adapt to its environment during development21, and connections in the 82 

brain can undergo extensive rewiring even in the adult brain22. This can be achieved by 83 

strengthening the connections in stronger use23, which makes the conduction of the neuronal 84 

signal more efficient, while losing those that become obsolete. Most studies investigating brain 85 

plasticity so far focus on the short-term effects of an experimental intervention involving a 86 

specific task24, a lifelong scale such as the use of a particular language processing strategies 87 

should reveal observable effects in the brain. This hypothesis is further motivated by the fact 88 

that the fibre pathways connecting the brain areas within the language network still undergo 89 
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strong maturation after birth well into adolescence25,26, and that their maturation stage is 90 

linked to language performance27. It is, thus, plausible that the trajectory of the growth of these 91 

white matter pathways is influenced by the use of one’s native language. 92 

To test this hypothesis we selected three typologically different languages that represent some 93 

of the strongest linguistic differences we have discussed above. Here, we selected English and 94 

German, two Indo-European languages of the Germanic branch that, despite being closely 95 

related, differ fundamentally in their syntactic structure. As a third and final language, we opted 96 

for Chinese, a Sino-Tibetan language which exhibits lexical tone, among other singularities 97 

introduced subsequently. In particular, we used diffusion MRI data to compare the brain 98 

structural connectivity of speakers of different mother tongues. We expected the differences in 99 

processing across languages to be structurally reflected in the white matter connections that 100 

support language processing. 101 

Neurally, language is processed in a brain network mainly comprising brain regions around the 102 

Sylvian fissure in the left hemisphere, which are connected by fibre pathways that run either 103 

dorsally or ventrally to this anatomical landmark28-32, and can be partly found mirrored in the 104 

right hemisphere33. The posterior temporal cortex is a region where these white matter 105 

pathways overlap, being a point of convergence of dorsal and ventral processing streams28,34, 106 

frequently being implicated in integration of different types of information and sentence-level 107 

processing28,34,35. That is why we reconstructed the white matter connections that cross this 108 

region, hence obtaining a map of structural connectivity36 of the language regions in each 109 

participant. Additionally, this also allowed us to analyse the transcallosal connections of the 110 

temporal cortex connecting the two hemispheres, which were shown to be crucial for the 111 

processing of intonation and the integration of prosody in sentence comprehension37,38. As a 112 
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novel approach in language studies, we used machine learning39 to assess whether the overall 113 

pattern of connectivity of each participant contained information to infer their respective 114 

native language. After establishing that the connectivity maps allowed an accurate 115 

classification, we set out to identify the regions of the language network showing a significant 116 

modulation of their connectivity according to one’s mother tongue. By comparing the 117 

connectivity maps of the three groups, we could assess whether the processing differences 118 

between the three languages corresponded to differences in structural connectivity. 119 

Concerning our hypothesis, we addressed the differences between each of the languages. We 120 

started to consider the differences between English and German. German – as already 121 

mentioned – is a language with free word order and is highly marked by grammatical cues40-42, 122 

which are used by speakers to retrieve the sentence structure15-17,43. These processes were 123 

shown to recruit the left inferior frontal gyrus (IFG)28,34,40, at the frontal end of the dorsal 124 

pathway27,28, which deals with the abstract sentence structure that is inferred from grammatical 125 

rules44. English sentences mostly have a reliable, fixed word order15,41, and speakers of English 126 

are more influenced by semantic cues, such as animacy16, or meaning associations between 127 

sentence elements, which are mainly processed in the ventral stream29,30. For this reason, we 128 

expected stronger dorsal connectivity to the inferior frontal cortex in the German-speaking 129 

group, whereas the English-speaking should in turn display stronger connectivity in the ventral 130 

stream. Concerning Chinese, we first focus on the differences between tonal and non-tonal 131 

languages. To date a number of studies have shown a more bilateral involvement while 132 

processing lexical tone in both spoken45 and written46 language, in comparison to atonal 133 

languages20,47, which was also shown to be reflected in brain morphology48. Although the lexico-134 

semantic processing of lexical tone is mainly left-lateralised, the processing of pitch 135 
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information is in general less lateralised than the processing of the acoustic features that 136 

distinguish other speech sounds as consonants and vowels49. Additionally, the pitch 137 

information from lexical tone must be integrated with sentence prosody, known to be 138 

processed in the right hemisphere33. Altogether, this would require a stronger cross-talk 139 

between both hemispheres in Chinese speakers. That is why we expected stronger connectivity 140 

in the right hemisphere and in the fibres of the corpus callosum in this language group. Besides, 141 

Chinese is known for its exceptionally large number of homophones20, even when taking lexical 142 

tone into account. These three languages also differ in other aspects, for example in their 143 

writing systems and orthography depth, which will be discussed in more detail later19. In sum, 144 

we hypothesised that the specific processing demands from each of these three typologically 145 

different languages would lead to differences in the strength of the white matter fibre pathways 146 

of their speakers. Here, we show that this is indeed the case by using a multivariate pattern 147 

recognition analysis on the structural connectivity of two independent samples of speakers for 148 

each of the three languages, followed by a mass univariate analysis to localise those 149 

differences.  150 
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Results 151 

Mapping connectivity of language regions with fibre tractography followed by 152 

classification with machine learning. Using probabilistic tractography36 with seeds in the 153 

posterior superior and middle temporal gyri (pSTG, and pMTG respectively), we mapped the 154 

structural connectivity in a total of 134 monolingual native speakers of Chinese, English, and 155 

German, with two independent subsamples for each language, matched for sex, age, and 156 

education (Chinese: N = 30 + 18; English: 20 + 18; German: 30 + 18). First, we were able to 157 

consistently map a universal network of white matter pathways connecting the brain regions 158 

typically involved in language processing, which was common to all subjects in both 159 

subsamples of each language (Supplementary Figure S1). The brain images of all subjects were 160 

registered to a balanced sample-specific template to minimise potential effects of any 161 

population differences in global brain morphology. First, we did not find significant differences 162 

in brain volume across groups. Additionally, to prevent further analyses from yielding results in 163 

regions with systematic differences in brain shape between groups, we excluded all areas 164 

requiring strong deformation during normalisation to our template (Supplementary Figure S2). 165 

We then applied machine learning to classify the connectivity maps we obtained for each 166 

language data set. We trained a Gaussian process classifier in a k-fold cross-validation scheme 167 

on the whole dataset, which was able to predict the language corresponding to the brain 168 

structure in the test data-set with high accuracy. The classifier performed significantly above 169 

chance (p < 0.001, assessed by a permutation test with 10,000 permutations) with classification 170 

accuracies ranging from 68.64% to 76.46%. Figure 1 graphically displays the performance of 171 

the Gaussian process classifier in the left hemisphere (Supplementary Figure S3 corresponds 172 

to the analogous analysis performed in the right hemisphere). Additionally, to assess whether 173 
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this result was generalizable between independent datasets with different scanning 174 

conditions, we conducted a prediction analysis by training the classifier in the first and bigger 175 

subsample of matched participants (N = 80) to predict the language of the second subsample 176 

on the basis of their connectivity (N = 54). The classifier still performed significantly above-177 

chance accuracy for three of the seed ROIs (left pSTG, right STG, and right MTG), with accuracies 178 

ranging 55.12-61.11% (p < 0.01, assessed with permutation test). We finally ran the classifier 179 

only within the datasets acquired in the same scanner at the same site (48 German speakers, 180 

and 18 Chinese speakers), to exclude a scanner-specific effect, and its performance remained 181 

above chance (p < 0.01, assessed with permutation test, taking into account uneven sample 182 

sizes).  183 

 184 

 185 

Figure 1. Performance of the classifier. Performance of the classifier on the connectivity map 186 

of the two temporal seed ROIs in the left hemisphere, (A) the left posterior superior temporal 187 

gyrus (pSTG) and (B) the left posterior middle temporal gyrus (pMTG). Performance for the 188 

three different languages is colour coded red for Chinese, blue for English and green for 189 

German. 190 

 191 
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Localisation of connectivity differences using voxel-wise analysis. After showing that the 192 

connectivity maps contained information to decode the mother tongue of a subject accurately, 193 

we proceeded to localise the regions with significant differences in structural connectivity 194 

across the three groups, using a conventional mass univariate approach. More concretely, we 195 

performed spatial voxel-wise statistical comparisons of the connectivity maps of the speakers 196 

of each language. As one would expect from the previous results, the white matter network, 197 

while fundamentally shared between all participants, showed locally specific modulations by 198 

each of the three languages. Once again, areas requiring strong deformation in the registration 199 

to the template space were excluded. 200 

Connectivity differences from seed ROIs in the left hemisphere: Conjunction analysis. To 201 

summarise the main findings concerning regional differences in brain connectivity across the 202 

three languages, we first present the result of a conjunction analysis for the sake of 203 

conciseness. Figure 2 therefore shows brain areas where one language group displayed 204 

significantly higher connectivity values than either of the other two languages across the two 205 

subsamples (see Supplementary Figure S4 for slice views). However, the results from the direct 206 

pair-wise comparison of the connectivity maps of each of the three pairs of languages are 207 

largely superposable (and are thus exhaustively presented in the next section). In particular, 208 

German speakers exhibited a cluster with stronger connectivity between the pSTG with the IFG 209 

via the dorsally located arcuate fascicle. English speakers, in turn, showed a stronger 210 

connectivity of the pMTG with a cluster in the anterior temporal cortex via the ventrally located 211 

inferior and middle longitudinal fascicles and extreme capsule fibre system. Finally, Chinese 212 

speakers displayed stronger connectivity of the left pSTG to the right hemisphere, with clusters 213 

spanning through the corpus callosum to the contralateral temporal cortex and another cluster 214 
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reaching into the subcortical grey matter, especially at the thalamus. Furthermore, the left 215 

pMTG in this group similarly presented stronger connectivity to cortical and subcortical regions 216 

in the right hemisphere via the corpus callosum. Additionally, we found connections in the left 217 

hemisphere to the contiguous planum temporale extending to the parietal cortex and 218 

ipsilateral subcortical grey matter regions. In sum, the group comparison of the connectivity 219 

maps across the three languages demonstrated significant differences along the white matter 220 

pathways of different processing streams (Figure 2, Supplementary Figure S5, Supplementary 221 

Figure S6). 222 

 223 

 224 

Figure 2. Cross-linguistic differences in white matter connectivity. White matter connectivity 225 

from left Wernicke’s area (posterior superior/middle temporal gyrus, pSTG, pMTG) to (A) the 226 

left inferior frontal gyrus (IFG), and (B) the left anterior temporal lobe (ATL) and to (C) the right 227 

hemisphere. Conjunction analysis on the seed regions in the left hemisphere. The connectivity 228 

strength for the three languages is colour coded in red for Chinese, blue for English and green 229 

for German. The box-plot shows median, quartiles, 1.5x interquartile range and all individual 230 

data points. 231 
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Connectivity differences from seed ROIs in the left hemisphere: Pair-wise comparison. A 232 

more detailed pair-wise direct comparison between each two languages corroborated the 233 

previous results (Figure 3). First, the comparison between English and German speakers yielded 234 

higher ventral connectivity from the pMTG to the anterior temporal lobe in the English group, 235 

as opposed to higher dorsal connectivity along the arcuate fascicle from both the pSTG and the 236 

pMTG to the inferior frontal gyrus in the German group. Furthermore, the pSTG seed in the 237 

German group displayed higher bilateral subcortical connectivity and transcallosal 238 

connectivity in premotor regions. Second, when comparing Chinese and English speakers, the 239 

former showed stronger inter-hemispheric connectivity with the contralateral temporal lobe, 240 

at the corpus callosum in the frontal and temporal regions from both the pSTG and pMTG. 241 

Additionally, both the pSTG and pMTG seeds displayed higher connectivity along the dorsal 242 

stream to the IFG. The English group showed, in turn, no significant clusters with stronger 243 

connectivity. Finally, when comparing Chinese and German speakers, Chinese speakers 244 

exhibited a stronger connectivity between both the pSTG and the pMTG and the cortical and 245 

subcortical contralateral regions. Additionally, the pMTG in Chinese speakers showed stronger 246 

connectivity to a cluster in the left pSTG. In turn, the German group showed no significant 247 

clusters with stronger connectivity from the left pSTG or pMTG. In the right hemisphere, we 248 

mainly found stronger transcallosal connectivity to the left hemisphere in the Chinese group, 249 

in line with our findings for this language in the left hemisphere (see Supplementary Figure S7 250 

and Supplementary Figure S8 for more detail). 251 

 252 
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 253 

Figure 3. Pair-wise differences in connectivity. Connectivity differences between each pair of 254 

the three languages from left seed regions (pSTG and pMTG), (A) Chinese versus English, (B) 255 

Chinese versus German, (C) English versus German.  256 
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Discussion 257 

Our study provides evidence that the life-long use of a particular language leaves a distinct 258 

footprint in the brain’s structural connectivity. We showed that the individual connectivity 259 

pattern was sufficient to accurately classify the specific mother tongue of each participant in 260 

our sample. We found that although the major white matter fibre pathways comprising the 261 

language network are present in all participants, the strength of the connections along the 262 

different neural pathways is modulated according to the specific characteristics of the 263 

speaker’s mother tongue. Specifically, the results indicate that different processing demands 264 

of a given language leave particular traces in the white matter language network. Cross-265 

linguistic differences have been reported earlier in behavioural studies3,9,50 and 266 

electrophysiological studies17 for phonological and lexical processing, and moreover, for how 267 

grammatical rules of a language relate to the way a language conveys information17,51,52. Even 268 

though there are universal principles guiding language acquisition53-56, the languages of the 269 

world provide their users with different cues to retrieve the underlying structure of a given 270 

sentence15,17. Here, we demonstrated that three languages which have different cues and 271 

correspondingly imply different processing demands lead to differences in the brains’ 272 

structural connectivity within the language network. 273 

The connectivity differences we found at the brain level are congruent with the specific 274 

processing demands proposed for each language investigated in this study. First, we 275 

demonstrated a clear contrast between the dorsal and ventral pathways between English and 276 

German speakers. Although both languages belong to the Indo-European family, English has 277 

fairly scarce grammatical marking, while German uses grammatical markers to convey the 278 

relations between sentence elements41. Accordingly, German speakers resort to the 279 
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grammatical cues during sentence processing15,17, implying higher demands in application of 280 

syntactic rules concerning sentence structure. Here we showed that such demands give rise to 281 

a stronger recruitment of the arcuate fascicle in the dorsal pathway – a white matter fibre 282 

pathway that has been correlated with processing complex sentence structures27,44. English 283 

speakers, in contrast, resort less to the infrequent cues concerning grammatical marking15,44, 284 

comparatively depending more on semantic information to infer the content of an utterance. 285 

We showed that at the neural level, English speakers more strongly engage the ventral pathway 286 

– a pathway which has been associated with language comprehension and in particular 287 

semantic processing30,57,58. The comparison between German and English speakers shows that 288 

two languages that belong to the same language family, but differ in their processing demands, 289 

influence the white matter brain structure differentially.  290 

Chinese, in contrast to English and German, is a tonal language belonging to the Sino-Tibetan 291 

family. This implies that Chinese requires steady tracking of pitch information, partly processed 292 

in the right hemisphere, and phonological and lexical information processed in the left 293 

hemisphere. The stronger white matter connection between the two hemispheres via the 294 

posterior part of the corpus callosum we found in Chinese speakers compared to German 295 

speakers is taken to reflect the stronger bilateral involvement shown for processing tonal 296 

languages19,47 and the transcallosal connectivity which is the basis for the integration of pitch 297 

information with other linguistic information37,38. 298 

German, English and Chinese also differ from each other in their writing systems. Whereas 299 

Chinese is logographic both English and German are alphabetic languages with German having 300 

a very shallow orthography with an almost direct correspondence between graphemes and 301 

phonemes, while English has a rather deep orthography with a more opaque correspondence 302 
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between how a word is written and its pronunciation. These two types of processing of 303 

alphabetic writing have respectively been associated with either a stronger engagement of the 304 

dorsal or ventral pathway19. In the case of Chinese there is no clear evidence as to which brain 305 

regions are preferentially recruited in reading19,46. 306 

A final consideration about the cross-linguistic differences in this study regards word order and 307 

length of the dependencies established between elements in a sentence, for example, the 308 

dependency between the verb and its object. Some languages (such as German and 309 

Chinese59,60) have on average a much higher dependency length than other languages (such as 310 

English and most Romance languages59). The processing of long distance dependencies, 311 

necessary in Chinese and German, should recruit the dorsal stream given their role in sentence 312 

structure building28 and its connection to the inferior frontal gyrus, recruited in time-dependent 313 

reordering of sentence elements31,61. This hypothesis is once again in agreement with our 314 

findings concerning connectivity differences across languages and especially the stronger 315 

dorsal connectivity of German and Chinese speakers in direct comparison to English speakers. 316 

In conclusion, our results point to a link between the specific processing demands of each 317 

language and the observed differences in brain structure. 318 

Several precautions were taken to prevent unwanted misinterpretations due to possible 319 

confounds. First, we obtained two independent samples of speakers for each of the three 320 

languages to improve generalisability of the results and ensure the differences were not 321 

sample-specific. In fact, we could train the classifier with a first subsample for each language 322 

to then accurately predict the corresponding language on the basis of the connectivity in the 323 

other subsample. Second, in each of the two subsamples the participants in the three groups 324 

were matched for socio-demographic variables, in particular age, sex, and educational 325 
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background. Third, to avoid that our results could be attributed to systematic differences in 326 

brain geometry, we excluded areas with strong differences in brain shape between groups from 327 

the voxel-wise analysis. Finally, the brain regions used as seeds for tractography as well as the 328 

regions exhibiting significant group differences we found here occur in white matter fibre 329 

pathways with a major role in language processing27,30,62 and their differences can be explained 330 

by the specific processing demands of the languages under investigation. 331 

Moreover, the present results show no anatomical overlap with imaging studies assessing 332 

social and cultural differences between Western and Eastern populations. The effects in these 333 

studies consistently involved another set of brain regions, frequently including the medial 334 

prefrontal cortex63, but not areas belonging to the language network. In sum, the enumerated 335 

arguments strongly indicate that the present white matter differences are indeed due to the 336 

life-long use of the respective language. Recent genetic and neurobiological data support the 337 

view that the differences in brain structure we observed result from experience rather than 338 

from strong biological predisposition64. If our results were a mere consequence of innate 339 

genetic differences, we would expect that geographical proximity65 should strongly determine 340 

the extent of the differences in brain structure, with the connectivity of German speakers and 341 

English speakers being very similar, and Chinese speakers with much stronger differences. 342 

However, the degree of dissimilarity in white matter connectivity in several regions between 343 

the Chinese group and both the English and the German group was comparable to the 344 

difference between the two European groups. This suggests that other mechanisms play a 345 

major role here. 346 

Our data rather suggest that brain plasticity occurs due to the differential recruitment of parts 347 

of the brain network, putatively as an instance of activity-dependent white matter plasticity23,66. 348 
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In fact, the white matter pathways that compose the language network are already present, 349 

but not fully developed at birth67, which allows them to be shaped as a function of 350 

environmental requirements. This view is additionally supported by a functional brain study47. 351 

The present results illustrate how plasticity in white matter21 allows the brain to adapt to its 352 

environment, even with respect to a higher cognitive function shared by all humans. The innate 353 

neural system with universal principles1,55,56,68 adapts progressively to its input13,68 and is 354 

ultimately shaped by it. A common genetic endowment providing the neurobiological 355 

foundations of cognition, eventually gives rise to different structures in accordance to 356 

environmental exposure. Here, we provide evidence that the systematic yet subtle life-long 357 

processing differences required by a cognitive function, namely language processing, can give 358 

rise to structural brain differences. In conclusion, the outstanding human capacity to 359 

proficiently learn the complex system of symbols and rules that constitutes a human language 360 

seems to not only lie in a neurobiological predetermined faculty, but also requires the ability 361 

of our brain to adapt to the specific demands of each language in human development. 362 
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Methods 505 

Participants. Three groups of young German, English, and Chinese speaking students were 506 

scanned in a Siemens 3T TimTrio magnetic resonance imaging (MRI) device (Siemens 507 

Healthineers, Erlangen, Germany). From these groups, we selected datasets that meet strict 508 

quality criteria of no measurement artifacts or neurological anomalies. We further matched the 509 

demographic variables gender (71 female, 63 male), age (24.8 +/- 3 years), handedness1, and 510 

level of education between groups, resulting in a total of 134 monolingual native speakers 511 

participants of each of the three languages. 512 

The data was acquired in two different samples covering all three languages in each study. The 513 

first sample included 30 German, 20 English and 30 Chinese datasets scanned on MRI machines 514 

of the same model in Leipzig (Germany), Cambridge (UK) and Beijing (China), with a well-515 

matched scanning protocol2,3. The second sample included 18 German, 18 British and 18 516 

Chinese datasets. The German and Chinese datasets were scanned on the same MRI device in 517 

Leipzig (Germany), and the English speaking participants were scanned on an MRI machine of 518 

the same model in Glasgow (UK) with the same protocol as the German group. The detailed 519 

scanning parameters are described in the following section. Written informed consent was 520 

obtained from all participants, and data acquisition was approved by the respective local 521 

ethics committees, the Institutional Review Board of Beijing Normal University Imaging Center 522 

for Brain Research, the ethics committee of the College of Science and Engineering at the 523 

University of Glasgow, the Cambridge Psychology Research Ethics Committee, and the Ethics 524 

Committee of the University of Leipzig. 525 

Imaging data acquisition, preprocessing, and generation of group-specific template. All 526 

participants obtained a T1-weighted structural image with 1 mm isotropic resolution using a 527 
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3D MPRAGE sequence with whole-brain coverage. In the first sample, in the English and German 528 

groups, diffusion MRI images where acquired using 64 diffusion directions and a b-value of 1000 529 

s/mm² and one non-diffusion-weighted image2 (parameters: repetition time, TR = 6.5 s, echo 530 

time, TE = 93 ms, GRAPPA acceleration factor 2, 12-channel acquisition head coil, 48 axial slices, 531 

2.5 mm thickness, in-plane resolution=1.8×1.8 mm²). The diffusion MRI datasets of the Chinese 532 

participants were acquired with a very similar protocol using 64 diffusion directions with 533 

b=1000 s/mm² and one non-diffusion-weighted image3 (parameters: TR = 7.2 s, TE = 104 ms, 49 534 

axial slices, 2.5 mm thickness, in plane resolution= 2.0×2.0 mm²). In the second sample, for all 535 

three groups diffusion MRI images where acquired using 60 diffusion direction with a b-value 536 

of 1000 s/mm² and seven non-diffusion-weighted images with an isotropic voxel size of 1.7 mm 537 

and a 32-channel acquisition head coil. 538 

Preprocessing was done in a consistent way for the datasets of all three groups in both samples. 539 

The brain was segmented from the T1 weighted image and aligned with the AC-PC coordinate 540 

system4. The diffusion images were denoised5, corrected for motion and registered6 to the 541 

structural image using the FSL software (University of Oxford, UK). The diffusion tensor and the 542 

fractional anisotropy (FA) images were computed in the native diffusion resolution. Finally, the 543 

distribution of up to two crossing fibre directions per voxel were computed using FSL for 544 

probabilistic crossing fibre tractography7. 545 

Additionally, a high-resolution FA image was created at 1 mm isotropic resolution for each 546 

participant, and a balanced sample-specific template was generated from those images using 547 

the ANTs software8 using a random selection of 60 participants (20 from each language group). 548 

This template was used for the definition of regions of interest (ROIs) for tractography and for 549 

the normalisation of the tractography results of each participant. This avoided having a bias 550 
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towards the specific brain structure of any of the three groups. The two datasets from each 551 

sample were combined for each language group to perform statistical analysis across groups 552 

to increase the robustness and reproducibility of the results. 553 

Definition of regions of interest (ROIs). ROIs for tractography were defined based on 554 

anatomical landmarks on the common template. We defined two ROIs, in the pSTG, and in the 555 

pMTG, corresponding to a definition of Wernicke's area based on anatomical connectivity9 and 556 

functional relevance for sentence-level processing10,11. Taking into account the lack of 557 

agreement in the definition of this area12,13, we opted for a straightforward anatomical 558 

definition of our seed ROIs (described in detail in the Supplementary Methods). 559 

Probabilistic tractography, generation of connectivity maps in common space. Using 560 

diffusion MRI probabilistic tractography, we conducted seed-to-brain tractography from each 561 

seed ROI without exclusion or waypoint masks. For each seed ROI in each participant, we 562 

obtained a map of the connectivity between each brain voxel and the respective seed region, 563 

corresponding to the whole-brain connectivity fingerprint of that seed ROI. In particular, 564 

crossing fibre probabilistic tractography7 was computed by starting 10,000 streamlines in each 565 

voxel of the seed ROI. This algorithm creates a map for the entire brain that represents the 566 

number of streamlines that cross each voxel representing the connectivity of this voxel to the 567 

seed region. These maps were then logarithmised to obtain a normal distribution of 568 

connectivity values, and normalised by the logarithm of the total number of streamlines 569 

started in the respective seed ROI, so that we obtained maps with connectivity values ranging 570 

between 0 and 1. These maps were spatially registered to the template space with a nearest 571 

neighbour interpolation, and smoothed with a Gaussian kernel of 4 mm (FWHM) using the 572 

software SPM 12 (University College London, UK). In this way, the voxel values related to the 573 
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structural connectivity of that particular voxel with the corresponding seed region and will 574 

henceforth be called connectivity, and the corresponding maps labelled connectivity maps. 575 

Supplementary Figure 1 displays the average connectivity maps across all participants and in 576 

each of the language groups. 577 

Statistical analysis – Machine learning with a Gaussian process classifier. First, we trained 578 

a Gaussian process classifier on the complete dataset (N = 134) of the connectivity maps for 579 

each of the four seed ROIs (left and right pSTG and pMTG) as implemented in the PRoNTo 580 

toolbox, as this was the more adequate procedure for a three-class classification14. The cross-581 

validation scheme was implemented by a balanced 10-fold cross-validation from which the 582 

average balanced prediction accuracies were obtained. The classifier was run within white 583 

matter areas (FA ≥ 0.2) with systematic connections across groups (mean connectivity ≥ 0.2) for 584 

each of the seed regions. The double mask was used in all brain analyses to ensure statistics 585 

would be computed in white matter regions with connectivity values that are sufficiently 586 

sampled by the probabilistic tractography method and therefore might show relevant effect 587 

sizes. To prevent the results from being a mere product of group-specific systematic distortions 588 

related to macroanatomical differences in brain shape, we computed the mean deformation at 589 

each brain voxel from the normalisation field, and excluded in brain areas with strong 590 

deformations (Supplementary Figure S3). The performance of the classifier is measured by the 591 

average balanced accuracy of the test sets. To obtain the statistical significance of the 592 

classification accuracy above chance, a permutation test was run for each of the classifications, 593 

with 10,000 permutations14. The histograms in Figure 1 (for the left hemispheric ROIs) and 594 

Supplementary Figure S2 (for the right hemispheric ROIs) show the probability distribution of 595 

the function values of the Gaussian classifier per class, that is language group. Finally, to assess 596 
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the replicability in independent datasets, we trained the classifier on the connectivity maps 597 

pertaining to the larger data set (N = 80) and tested it in the smaller sample (N = 54). To exclude 598 

that this effect was due to the use of different scanners, we also ran the classifier in the three 599 

subsamples acquired at the same site (German N = 48, Chinese N = 18; taking the unbalanced 600 

sample size into account). Again, to verify the statistical significance of the classification 601 

accuracy, a permutation test was run for each of the classifications, with 10,000 permutations. 602 

Statistical analysis – Mass univariate voxel-wise statistics. We then performed spatial voxel-603 

wise statistical comparisons of the normalised connectivity maps of the speakers of each 604 

language to identify areas with significant differences in structural connectivity across groups15 605 

using SPM 12. This enabled us to identify areas where the connectivity strength was higher in 606 

one language group than in the others. Once again, we only considered voxels within the 607 

previously defined mask (mean FA ≥ 0.2 and mean connectivity ≥ 0.2). We computed t-tests and 608 

report results at p < 0.001 peak-level, p < 0.05 cluster-level family-wise error (FWE) corrected. 609 

We both computed direct bidirectional pair-wise comparisons between two languages (Figure 610 

3), and conjunction analysis (Figure 2 and S4). The direct comparisons were performed as a 611 

one-sided t-test in the typical implementation of SPM. Besides, we performed a conjunction 612 

analysis between the comparisons between each language and the other two. Such an analysis 613 

provides us with the particularities of brain structure associated with each language group 614 

compared with the other two.  615 

Tractography from seed ROIs to significant clusters in conjunction analysis. Statistical 616 

differences in a specific region obtained in probabilistic tractography do not necessarily reflect 617 

local effects. That is why it is fundamental to integrate them in the fibre pathways that connect 618 

the seed regions and the significant clusters. In particular, they might result from the overall 619 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 31, 2022. ; https://doi.org/10.1101/2022.07.30.501987doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.30.501987
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

30 

differences along those fibre pathways. We used probabilistic tractography to establish the 620 

course of these pathways crossing both the seed ROI and the region where significant 621 

differences had been found. The results of this analysis serve two purposes. On the one hand, 622 

the connectivity maps outline the fibre tracts passing by both the posterior temporal cortex 623 

and the regions showing stronger connectivity modulation in function of one’s mother tongue. 624 

Thus, Supplementary Figure 5 assists us in diagnosing which fibre pathways are involved to a 625 

higher degree in a given language. 626 

Furthermore, to assess the magnitude of the connectivity differences across groups in the areas 627 

with significant differences, we computed the connectivity strength in a seed to target 628 

tractography from the seed ROIs to the respective significant areas. The connectivity values 629 

were normalised in the same way as for the creation of the connectivity maps (i.e., 630 

logarithmised and divided by the logarithm of the total of streamlines started in the seed 631 

region). The plots in the lower row of Figure 2 display the probability distribution of 632 

connectivity strength in each of three groups from the seed regions to one of three target areas 633 

with significant connectivity differences between groups (left IFG, left ATL, and conjoined 634 

significant clusters in the right hemisphere). The white lines in the plots correspond to the 635 

percentiles 75, 50, and 25. In these plots, we can see that the magnitude of the differences 636 

between the European groups and the Chinese group is comparable with the difference 637 

between the two European groups in the significant regions. The Cohens’s d effect sizes of the 638 

group differences are shown in a detailed estimation graphic16 (see Supplementary Results and 639 

Supplementary Figure S9). 640 

Visualisation of the group averaged tractography. To illustrate the group averaged 641 

tractography and relate the areas of significant connectivity differences with the fibre 642 
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pathways of the language system, we performed an additional group average deterministic 643 

tractography as previously used17,18 (for details see Supplementary Methods). These 644 

representative tractograms were used in Figure 2 and Supplementary Figure 6 to help visualise 645 

the fibre tracts where connectivity differences were found.   646 
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