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ABSTRACT

Systems of reproduction differ with respect to the magnitude of neutral genetic diversity
maintained in a population. In particular, the partitioning of reproductives into mating
types and regular inbreeding have long been recognized as key determinants of effective
population number. Here, the Ewens Sampling Formula provides the framework for a com-
parison of a range of reproductive systems, including full gonochorism, full hermaphroditism,
androdioecy, and gynodioecy. In addition, sex-specific viability differences and the evolving
quantitative trait of the population sex ratio also influence the maintenance of genetic di-
versity. Under the assumption that the reproduction is limited by large gametes (eggs or
seeds) and not by small gametes (sperm or pollen), the relative proportions of gonochores
and hermaphrodites affect these various evolutionary processes and levels of neutral genetic
diversity in different ways under androdioecy and gynodioecy.

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.07.29.502020doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502020


1 Introduction

Genomic patterns of neutral variation reflect the evolutionary context that generated them,
including selection targeted to linked and unlinked genomic locations (Stephan 2019), pop-
ulation structure, and the system of reproduction. This analysis uses the Ewens Sampling
Formula (ESF, Ewens 1972) as a standard of comparison of the level of neutral genetic di-
versity across systems of reproduction, including full gonochorism with random mating, full
hermaphroditism, androdioecy, and gynodioecy.

We consider a range of anisogamous systems, in which zygotes represent the fusion of
a large gamete (egg or seed) with a small gamete (sperm or pollen). Under full gonocho-
rism, mating occurs only between organisms of opposite mating types, each a specialist in
the production of one type of gamete. Hermaphroditism introduces the possibility of self-
fertilization, the production of offspring through fusion of gametes generated by a single
individual. In our models, a proportion s of offspring of reproductive age of hermaphrodites
are uniparental, with both small and large gametes deriving from the same parent, and the
complement (1 − s) biparental, fertilized by a small gamete derived from the population
pollen or sperm pool.

Androdioecious populations comprise 2 mating types: males, which produce only small
gametes, together with hermaphrodites (Figure 1). A male contributes to the population
pollen pool σA small gametes for each small gamete contributed by a hermaphrodite. Relative

Hermaphrodites Males

Pollen sA

NH NM

s 1 – s

Figure 1: Offspring production under androdioecy. A proportion s of the offspring of repro-
ductive age of hermaphrodites are uniparental and (1 − s) biparental, with the biparental
offspring fertilized from the pollen cloud. Each of the NM males contributes pollen at rate
σA relative to each of the NH hermaphrodites.

to other systems of reproduction, androdioecy is rare among plants as well as animals.
Model systems include the plant Datisca glomerata (Wolf et al. 2001) and the nematode
Caenorhabditis elegans (Steward and Phillips 2002).

Gynodioecious taxa, comprising hermaphrodites together with females, appear to derive
from multiple independent origins throughout the flowering plants (Rivkin et al. 2016). A
female contributes σG large gametes for each large gamete contributed by a hermaphrodite
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(Figure 2). Only hermaphrodites produce small gametes, which fertilize large gametes pro-

Hermaphrodites Females

Pollen

sG

NH NF

s 1 – s

Figure 2: Offspring production under gynodioecy. As under androdioecy (Figure 1),
a proportion s of the offspring of reproductive age derived from seeds produced by
NH hermaphrodites are uniparental, with the complement biparental. Relative to a
hermaphrodite, each of the NF females generates σG offspring of reproductive age through
seeds. Biparental offspring derive from seeds fertilized by the pollen cloud, to which
hermaphrodites alone contribute.

duced by females and hermaphrodites. Our models assume that the expression of any positive
level of male fertility by hermaphrodites or males is fully sufficient to fertilize large gametes.
This assumption gives rise to quantitative and qualitative differences in the level of neutral
genetic diversity among the reproductive systems studied here.

Here, we use the framework of the Ewens Sampling Formula (ESF, Ewens 1972) to
compare the level of neutral genetic diversity across systems of reproduction. Under the
ESF, the state of the ancestor sample (a) or its descendant (d) corresponds to an allele
frequency spectrum (AFS) of the form

a = {a1, a2, . . . , an}, (1)

in which ai denotes the number of alleles that appear with multiplicity i in a sample of n
genes. Sample size corresponds to ∑

i

iai = n,

and the number of distinct alleles in the sample to∑
i

ai = k.

Mutation follows the infinite-alleles model, under which lineages undergo mutation to a novel
allelic class at rate u per generation.

Appendix A describes a modification of the ESF that incorporates relative effective num-
ber, an index of the effects of population structure on genomic diversity. Relative effective
number (R) corresponds to the ratio of Ne, the effective number determined by the rate of
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coalescence between a pair of genes randomly sampled from distinct individuals, to N , the
total number of reproductives. On the timescale implied by the total number of reproductives
(N), the set of parameters governing evolutionary change corresponds to

Φ = {θ, R}, (2)

in which

lim
N→∞
u→0

4Nu = θ (3a)

lim
N,Ne→∞

Ne

N
= R. (3b)

Under androdioecy, for example, N corresponds to (NH +NM) (Figure 1), and to (NH +NF )
under gynodioecy (Figure 2). The probability of observing AFS a in a random sample of n
genes is

pn(a) =
n!

Rθ(Rθ + 1) . . . (Rθ + n− 1)

n∏
i=1

(
Rθ

i

)ai 1

ai!
. (4)

This expression corresponds to the ESF (Ewens 1972) under the substitution of Rθ for θ.

Reproductive systems characterized by higher relative effective number (R) maintain
more neutral genetic diversity for a given value of the scaled mutation rate θ. Both the
level of inbreeding and the partitioning of reproductives among mating types affect R. Of
particular interest are the implications for neutral genetic diversity of the evolution of the
sex ratio to the evolutionarily stable strategy (ESS) in each reproductive system. An ESS
corresponds to an “unbeatable” population sex ratio (Hamilton 1967), at which no alleles
that modify the relative rate of production of the sexes increase at a geometric rate (see
Maynard Smith 1978, Chapter 9).

2 Full gonochorism

We use 1/NP to denote the rate of parent-sharing: the probability that a pair of genes
randomly sampled from distinct individuals derive from the same parent. In the substantial
literature on effective number, NP has been called “inbreeding effective number” (Crow 1954;
Crow and Denniston 1988; Ewens 1982). We use 1/2Ne to denote the rate of coalescence: the
rate at which lineages ancestral to a pair of genes randomly sampled from distinct individuals
coalesce. As coalescence entails descent of the gene pair from the same parent and then from
the same gene in that individual, the rates of parent-sharing (1/NP ) and coalescence (1/2Ne)
are clearly closely related, and indeed, they differ only by a factor of 2 under some forms of
panmixis. However, we distinguish between them because the conceptual and quantitative
differences between these notions that arise in non-panmictic populations can offer useful
insights into the nature of population structure (see Section 3).

We first discuss the familiar case of a gonochoristic population comprising NF reproduc-
tive females and NM reproductive males. Let P denote the collective contribution of female
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reproductives to the pool of autosomal genes transmitted to offspring and (1 − P ) the col-
lective contribution of male reproductives. Parent-sharing between a random pair of genes
sampled from distinct offspring of reproductive age requires either that both genes derive
from females or both from males:

1

NP

=
P 2

NF

+
(1− P )2

NM

.

Offspring receive half their autosomal genome from each parent (P = 1/2), with the rate of
parent-sharing reducing to

1

NP

=
1

2

[
1

2NF

+
1

2NM

]
. (5)

That the effective number of reproductives corresponds to the harmonic mean of twice the
number of females and twice the number of males, has been derived under various definitions
of effective number (e.g., Wright 1931; Ewens 1982; Caballero 1994). Crow and Kimura
(1970, p. 102) appear to have presented the earliest retrospective (coalescent) argument that
refers explicitly to the probability of parent-sharing.

In this base case, the effective numbers implied by the rates of parent-sharing and coa-
lescence are in fact equal,

NP = Ne,

with relative effective number (3b) corresponding to

R = lim
NP

N
.

From (5), under the assignment of the arbitrary scaling factor N as the sum of the numbers
of female and male reproductives, we obtain

R =
NP

NF +NM

= 4x(1− x), (6)

for x the frequency of females among reproductives:

x =
NF

NF +NM

.

Clearly,
R ≤ 1,

with equality only if the sex ratio at reproduction is equal to unity (x = 1/2).

We now address the effect on R of the evolution of the sex ratio in the population. Fisher’s
(1958) concept of reproductive value of an individual of a given sex is proportional to the
collective contribution of the sex to the population gene pool: each reproductive female has
a reproductive value of

P

NF
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and each male
1− P
NM

.

For Z the number of female reproductives that can be reared per male reproductive, the ESS
corresponds to the point at which the returns on investing a unit of reproduction in each sex
are equal:

ZP

NF

=
1− P
NM

(Fisher 1958). At this ESS, the sex ratio among reproductives is

NF

NM

=
x

1− x
=

ZP

1− P
, (7)

for x the proportion of females.

In general, various factors reflecting sex-specific demands by offspring on parental re-
sources may influence Z. For simplicity, we here restrict consideration to Z deriving solely
from sex-specific viability: Z is the rate at which female zygotes survive to reproductive age
relative to male zygotes. Under this interpretation of Z, Fisher (1958) noted that the ESS
sex ratio at conception corresponds to

x

Z(1− x)
=

P

1− P
.

Under the evolution of sex ratio under the control of autosomal modifiers expressed in par-
ents, for which P = 1/2, the ESS sex ratio at conception is unity, irrespective of the value
of Z.

Substituting the relative frequencies of female and male reproductives at the ESS (7) for
P = 1/2 into (6), we obtain

R =
4Z

(Z + 1)2
.

Relative effective number assumes its maximum value (R = 1) only in the absence of sex-
specific differences in viability (Z = 1). Alternatively, any viability differences (Z 6= 1) cause
a disparity between the sex ratio at conception and at reproductive age, reducing R. for
a sample of a given size (n) and scaled mutation parameter (θ), this form of population
structure lowers the neutral genetic diversity below the level expected under the ESF.

3 Hermaphroditism

We now address reproductive systems comprising hermaphrodites, which offer the potential
for self-fertilization (selfing). In contrast with full gonochorism, the effective numbers inferred
from rates of coalescence (Ne) and parent-sharing (NP ) are in general unequal.

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.07.29.502020doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502020


3.1 Regular inbreeding

3.1.1 Relative rate of coalescence

We use s to denote the uniparental fraction: the probability that a random reproductive
individual is uniparental. Figure 3 depicts the ancestry of the lineages of the genes held
by a random diploid reproductive individual. If the individual is uniparental, the lineages

𝑠/2
1 − 𝑠

𝑠/2

Outcross
Coalescence

Figure 3: Ancestry of lineages borne by a single individual, for s the probability that a
random reproductive individual is uniparental.

either coalesce in the immediately preceding generation with probability c (Coalescence) or
remain distinct, with probability (1 − c). For clarity, we distinguish between these events
even though

c = 1− c = 1/2.

Alternatively, with probability (1−s), the individual is biparental, implying that the lineages
descend in the immediately preceding generation from lineages held by distinct individuals
(Outcross). Of the two absorbing states (Coalescence and Outcross), this process resolves
to coalescence with probability

sc

1− s+ sc
(8)

and to separation of the lineages into distinct individuals with the complement probability.
Accordingly, the rate of coalescence between a pair of genes sampled from distinct individuals
corresponds to

1

2Ne

=
c

NP

+
1− c
NP

sc

1− s+ sc
=

1

2NP (1− s/2)
. (9)

For selfing rates on the order of the mutation rate (s = O(u)), this rate reduces to 1/2NP ,
the value expected in the absence of regular inbreeding. For outcrossing rates on the order of
the mutation rate (1−s = O(u)), the rate reduces to 1/NP , consistent with the near-cloning
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of NP highly homozygous lines. Otherwise (s, 1−s� O(u)), the rate of coalescence between
lineages held by a single individual (9) increases with the rate of selfing. Relative effective
number (3b) corresponds to

R =
Ne

N
=
NP (1− s/2)

N
. (10)

In the special case of full hermaphroditism (absence of gonochores), we assign N as the
number of diploid reproductives. Let s∗ denote the fraction at conception of zygotes that
are uniparental (derived from gametes of a single individual), with the complement (1− s∗)
formed by the fusion of a pair of gametes sampled at random from the local gamete pool.
At conception, the proportion of zygotes that are uniparental is

s∗ + (1− s∗)/N,

reflecting that uniparental offspring can also arise through random union of gametes. Uni-
parental offspring survive to reproductive age at rate τ relative biparental offspring. The
uniparental fraction corresponds to the probability that a random individual of reproductive
age is uniparental:

s =
[s∗ + (1− s∗)/N ]τ

[s∗ + (1− s∗)/N ]τ + (1− s∗)(1− 1/N)
=

s∗τ

s∗τ + 1− s∗
+O(u), (11)

under the usual large-population assumptions (1/N = O(u)). Appendix B shows that under
full hermaphroditism, a pair of genes randomly sampled from distinct reproductive individu-
als derive from the same parent with probability 1/N , irrespective of the uniparental fraction
(s), implying

NP = N

(B.1). In this case, (9) reduces to Pollak’s (1987, p. 354) expression for effective number
under partial selfing, and (10) to

R = 1− s/2. (12)

3.1.2 ESS sex ratio in dioecious systems

We now address dioecious systems in which NH hermaphrodites and NG gonochores (females
or males) contribute to the next generation. As in the case of full gonochorism (Section 2),
the probability of parent-sharing between a random pair of genes sampled from distinct
reproductive individuals depends on the proportion of the gene pool that derives from each
mating type:

1

NP

=
P 2

NG

+
(1− P )2

NH

, (13)

for P the proportion of the gene pool contributed by gonochores. As gonochores are obligated
to outcross to hermaphrodites,

1/2 ≥ P, (14)
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with equality only for cases in which hermaphrodites are also obligated to outcross to gono-
chores.

The heuristic reproductive value argument presented for full gonochorism would suggest
that the ESS sex ratio corresponds to the point of equality between the marginal reproductive
values of gonochores and hermaphrodites:

ZP

NG

=
1− P
NH

,

for Z the number of gonochores that can be generated per hermaphrodite. The ratio of
gonochores to hermaphrodites among reproductives implied by this argument is

ZP

1− P
=

x

1− x
, (15)

for x the proportion of gonochores among reproductives. For each of the mixed mating
models addressed here, this expression does in fact agree with the unbeatable sex ratio
determined from full dynamic analyses of the evolution of sex ratio modifiers (Uyenoyama
and Takebayashi 2017).

At the ESS sex ratio (15), relative effective number (10) corresponds to

R =
NP (1− s/2)

N
=

Z(1− s/2)

[ZP + 1− P ][P + Z(1− P )]
, (16)

for s the probability that a random reproductive individual is uniparental. This expression
indicates that

R ≤ (1− s/2),

with equality only at P = 0 (complete hermaphroditism) or Z = 1 (absence of sex-specific
viability). In reproductive systems that maintain gonochores (P > 0), relative effective
number R may depend not only on the uniparental fraction (s), but on all model parameters
through their effects on the collective genetic contribution of gonochores (P ).

Using the chain rule, the derivative of R with respect to Z is

dR

dZ
=
∂R

∂Z
+
∂R

∂P

dP

dZ
+
∂R

∂s

ds

dZ
. (17)

From (16), the first term corresponds to

∂R

∂Z
=

(1− Z2)P (1− P )(1− s/2)

[P (1− P )(1− Z)2 + Z]2
, (18)

indicating that the partial derivative of R with respect to Z is negative for Z > 1 and
positive for Z < 1. The partial derivative of R with respect to P is non-positive:

∂R

∂P
=
−(1− 2P )Z(1− Z)2(1− s/2)

[P (1− P )(1− Z)2 + Z]2
≤ 0, (19)
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with equality only if
1/2 = P

(see (14)). Lastly, R declines under higher rates of selfing (s):

∂R

∂s
=

−Z
P (1− P )(1− Z)2 + Z

. (20)

A full examination of the nature of the effect of sex-specific viability Z on R (17) requires
determination of the uniparental fraction among reproductives (s) and the contribution to
the gene pool of gonochores (P ), as well as an assessment of their dependence on Z (dP/dZ,
ds/dZ). We obtain explicit expressions for these components for the models of androdioecy
and gynodioecy addressed here.

3.2 Androdioecy

Under androdioecy, uniparental fraction s is independent of the proportion of reproductive
males, a reflection of our assumption of a sufficiency of small gametes (sperm or pollen) at any
frequency of males or hermaphrodites. Accordingly, the probability that a random individual
of reproductive age is uniparental is identical to the expression under full hermaphroditism
(11),

sA = s. (21)

That the uniparental fraction is independent of Z implies

∂R

∂s

ds

dZ
= 0

in (17).

In an androdioecious population comprising NH hermaphroditic and NM male reproduc-
tives, males produce small gametes at rate σA relative to hermaphrodites (Figure 1). Among
biparental offspring of reproductive age, the proportion that have a male parent corresponds
to the fraction of the small gamete pool generated by males:

GA =
σANM

σANM +NH

=
σAx

σAx+ 1− x
,

for x the proportion of males among reproductives. A gene randomly sampled from an
offspring of reproductive age derives from a male parent with probability

PA = GA(1− sA)/2, (22)

and from a hermaphroditic parent with the complement probability.

The ESS sex ratio at reproductive age (15) corresponds to

ZPA

1− PA

=
x

1− x
.
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Eliminating x from the 2 expressions for PA, we obtain the proportion of the gene pool
contributed by males at the ESS,

PA =
σAZ(1− sA)/2− 1

σAZ − 1
, (23)

which declines with fraction of offspring that are biparental (1− sA). Using (23), we obtain
an expression for the ESS sex ratio (15) among reproductives:

x

1− x
=
σAZ(1− sA)/2− 1

σA(1 + sA)/2
, (24)

in agreement with Equation (7) of Lloyd (1975). It is valid only if

σAZ(1− sA)/2 > 1; (25)

otherwise, the ESS sex ratio corresponds to full hermaphroditism (x = 0, Uyenoyama and
Takebayashi 2017).

Expression (23) confirms that males contribute less to the gene pool than hermaphrodites,

1/2 > PA

(14), and that ∂R/∂PA (19) is negative. As one might expect, the gonochore contribution
to the gene pool increases with gonochore viability

dPA

dZ
=
σA(1 + sA)/2

(σAZ − 1)2
=

(1− PA)

Z(σAZ − 1)
> 0, (26)

in which sA is independent of Z. We then have

∂R

∂PA

dPA

dZ
< 0.

This relation, together with the negativity of ∂R/∂Z (18) for Z > 1, indicates that relative
effective number R declines as Z increases in cases in which males have higher viability than
hermaphrodites (Z > 1). In this range, R declines from its maximum of (1−sA/2), the level
expected under full hermaphroditism, as the sex ratio at reproduction departs from the sex
ratio at conception in favor of males.

We now address the case in which hermaphrodite viability exceeds male viability (1 > Z).
Because males are maintained only if (25) holds, we restrict consideration to the range

1 > Z >
2

σA(1− sA)
. (27)

For Z near the lower bound, hermaphrodites contribute nearly the entire gene pool (PA ≈ 0),
implying that R approaches its maximum (1−sA/2) at both ends of this range. This behavior
suggests non-monotonic dependence of R on male viability Z. We obtain an expression for
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the derivative of R with respect to Z by substituting (18), (19), and (26) into (17). In the
range (27), this expression is proportional to a quadratic in Z,

dR

dZ
∝ Z2(1− sA)σ2

A + Z(1− sA)σA(σA − 3) + 4− σA(3 + sA), (28)

which is positive at Z = 1 and negative at Z = 2/[σA(1 − sA)], the limits of the range of
validity. From the maximum of (1− sA/2) at Z = 1, R first declines as Z declines, reaching
its minimum value at the single positive root of this quadratic (28). As Z declines further,
R increases, again approaching its maximum (1− sA/2) as Z approaches its lower bound.

3.3 Gynodioecy

We now consider a gynodioecious population comprising NH hermaphroditic and NF female
reproductives, in which females produce large gametes (eggs or seeds) at rate σG relative to
hermaphrodites (Figure 2). As before, a proportion s∗ of the large gametes produced by a
hermaphrodite are fertilized by its own gametes, with the complement fertilized from the
small gamete pool. To terms larger than the rate of mutation, the probability that a random
individual of reproductive age is uniparental is now

sG =
NHs

∗τ

σGNF +NH(s∗τ + 1− s∗)

=
NHs

σ̃GNF +NH

=
(1− x)s

σ̃Gx+ 1− x
, (29)

for x the proportion of females among reproductives, s given by (11), and

σ̃G = σG/(s
∗τ + 1− s∗). (30)

Relative to a hermaphrodite, a female generates σ̃G offspring of reproductive age through
large gametes. The presence of females (obligate outcrossers) reduces the fraction of offspring
that are uniparental:

sG < s.

This aspect of gynodioecy contrasts with androdioecy, under which the presence of males
has no effect on the uniparental fraction (21).

While all uniparental offspring necessarily derive from hermaphrodites, the proportion of
biparental offspring that have a female parent is

GG =
σGNF

σGNF +NH(1− s∗)

=
σ̃GNF

σ̃GNF +NH(1− s)
,

for σ̃G given by (30). Using (29), we obtain the probability that a gene randomly sampled
from the offspring generation at the point of reproduction derives from a female parent:

PG = GG(1− sG)/2 =
σ̃GNF/2

σ̃GNF +NH

. (31)
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This expression reflects that females contribute half of the genome of its offspring.

The ESS sex ratio at reproductive age (15) is

x

1− x
=

ZPG

1− PG

,

for x the proportion of females among reproductives. Solving (31) at this ESS sex ratio, we
obtain the proportion of the gene pool contributed by females at the ESS:

PG =
σ̃GZ/2− 1

σ̃GZ − 1
. (32)

The collective contribution of females to the gene pool increases with the relative viability
of females (Z), while remaining less than the collective contribution of hermaphrodites (14).
The sex ratio among reproductives,

x

1− x
=
σ̃GZ/2− 1

σ̃G/2
, (33)

is valid only if
σ̃GZ/2 > 1; (34)

otherwise, the ESS sex ratio corresponds to full hermaphroditism (x = 0, Uyenoyama and
Takebayashi 2017).

Lloyd (1975) presented a highly parameter-dense model of gynodioecy, including 3 stages
at which self-pollen may fertilize ovules produced by hermaphrodites (“males” in Lloyd’s
terminology). Agreement between (33) and Lloyd’s Equation (2) requires that his o = 1/σG,
S = 1/Z, i = τ , and b = e = 1 (equal fertilization rates of ovules produced by females and
hermaphrodites). Also required are that either a = s∗ with w = 1 or a = 0 with w = (1−s∗),
conditions under which the large bracket in Lloyd’s Equation (2) reduces to (s∗τ + 1− s∗),
the average viability of zygotes produced through ovules generated by hermaphrodites.

The derivative with respect to Z of the collective contribution of females is

dPG

dZ
=

σ̃G/2

(σ̃GZ − 1)2
> 0.

As ∂R/∂PG (19) is negative, the effect of Z on relative effective number through the collective
contribution of females is also negative:

∂R

∂PG

dPG

dZ
=
−(1− 2PG)Z(1− Z)2(1− sG/2)σ̃G/2

[PG(1− PG)(1− Z)2 + Z]2(σ̃GZ − 1)2

=
−(1− 2PG)(1− Z)2(1− sG/2)(1− PG)

[PG(1− PG)(1− Z)2 + Z]2(σ̃GZ − 1)
< 0.

A novel feature of gynodioecy is that the uniparental fraction sG (29) at the ESS sex
ratio (33) depends on Z:

sG =
s

σ̃GZ − 1
. (35)
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Higher female viability Z increases the proportion of obligately outcrossing reproductives,
reducing the uniparental fraction:

dsG
dZ

=
−σ̃Gs

(σ̃GZ − 1)2
< 0.

An increase in the number of females tends to promote higher neutral genetic diversity under
the ESF (4) through this effect:

∂R

∂sG

dsG
dZ

=
Zσ̃Gs

[PG(1− PG)(1− Z)2 + Z](σ̃GZ − 1)2

=
2(1− PG)s

[PG(1− PG)(1− Z)2 + Z](σ̃GZ − 1)
> 0.

Under androdioecy, for which the uniparental fraction (sA) is wholly determined by
hermaphrodites, higher gonochore viability (Z) increases R only for Z between unity and
the positive root of (28). Under gynodioecy, the first terms in (17),

∂R

∂Z
+
∂R

∂P

dP

dZ
,

exhibit similar behavior. However, the effect of Z on R through the uniparental fraction sG,

∂R

∂s

ds

dZ
> 0,

induces qualitatively new aspects into the relationship between R and Z. While the general
finding (16) that relative effective number R cannot exceed (1−sG/2) continues to hold, this
upper bound increases with Z. For Z near the minimum value that permits the maintenance
of females (34), both R and its upper bound (1 − sG/2) increase with Z. This increase of
R with Z also occurs in the range in which female viability exceeds hermaphrodite viability
(Z > 1), up to very large values of Z.

4 Discussion

The Ewens Sampling Formula (ESF) provides an elegant description of the magnitude and
pattern of neutral genetic diversity in a sample. For a given per-generation mutation rate
(u) and total number of reproductives (N), higher relative effective number (R) promotes
higher diversity. We use R (3b) as a standard of comparison across several mating systems,
including full gonochorism, full hermaphroditism, androdioecy, and gynodioecy. Of particu-
lar interest is the effect on R of the mating system in populations in which relative mating
type proportions have evolved to the evolutionarily stable strategy.
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4.1 Inbreeding and the ESF

The ESF (Ewens 1972) provides the probability of the allele frequency spectrum observed in a
random sample of genes from a panmictic population evolving under the infinite-alleles model
of mutation. Here, we have preserved the mutation model, but permitted some population
structure: subdivision into mating types and regular inbreeding (Appendix A).

Central to the ESF (4) is independence among the sampled lineages. In the presence of
inbreeding, lineages of genes sampled from the same organism remain associated by virtue
of their shared genealogical history since the most recent outcross. Independence might be
ensured by sampling no more than a single lineage per locus per organism. Alternatively, the
shared history might be accommodated by regarding sample size (n) as a random variable.
At the most recent point at which the ancestral lineages of all sampled genes reside in distinct
organisms, n in (4) corresponds to the number of lineages remaining after coalescence between
lineages during the generations of inbreeding until the most recent outcross (Figure 3).

Addressing samples comprising multiple loci entails accounting for identity disequilibrium
(Cockerham and Weir 1968). That lineages sampled from an individual organism experience
the most recent outcross event at precisely the same time induces associations in heterozy-
gosity or non-identity throughout the genome. The Bayesian analysis of Redelings et al.
(2015) incorporated, for each organism sampled, a latent variable representing the number
of generations since the most recent outcross. Lineages ancestral to genes sampled from a
given organism were assumed to be conditionally independent, given that latent variable.
This approach holds advantages over restricting sampling to a single gene per individual. In
particular, information contained in the joint pattern of diversity across loci sampled from
the same organism facilitates the estimation of the uniparental fraction (s), opening the way
to the estimation of other parameters and functions of parameters of the model.

4.2 Empirical estimation of key evolutionary components

Each reproductive system studied here is characterized by a set of basic parameters: for ex-
ample, rates of selfing by hermaphrodites (s∗), the intensity of inbreeding depression (τ), and
rates of production of gametes by gonochores (females or males) relative to hermaphrodites
(σG, σA). The generation of posterior distributions of the basic parameters of course permits
generation of posterior distributions of functions of those parameters. Of particular interest
here are the collective contribution to the gene pool of gonochores (P ), relative effective
number (R), and relative viability of gonochores (Z).

Figure 4, from Uyenoyama and Takebayashi (2017), depicts the posterior distribution of
the proportion of the gene pool contributed by hermaphrodites (1 − P ), inferred from the
pattern of variation observed at microsatellite loci in a population of the gynodioecious plant
Schiedea salicaria and in 2 populations of the androdioecious fish Kryptolebias marmoratus.
Under androdioecy, the collective contribution of males corresponds to PA (22), and the
collective contribution of females under gynodioecy to PG (31). Figure 4 indicates strong
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Figure 4: Posterior distributions of collective contribution of hermaphrodites to the gene
pool (1−P ), inferred from microsatellite data derived from the gynodioecious plant Schiedea
salicaria and from 2 populations (BP and TC) of the androdioecious fish Kryptolebias mar-
moratus (Redelings et al. 2015).

support for a greater collective contribution to the gene pool by hermaphrodites compared
to gonochores. This empirical finding is consistent with our models: obligately outcrossing
gonochores contribute only half of the genomes of their offspring, implying that PG and
PA cannot exceed 1/2 (14). The posterior distributions for K. marmoratus suggest that
the hermaphroditic contribution is higher in the BP population than in the TC population,
concordant with the higher uniparental fraction s inferred for the BP population.

Central to the present analysis is relative effective number R (3b), a ratio of 2 effective
numbers:

R =
Ne

N
,

for Ne determined from the rate of coalescence and N corresponding to the total number
of reproductives. While the estimation of either effective number would require additional
information (e.g., the per-generation rate of mutation u), their ratio can be estimated directly
(Redelings et al. 2015). Figure 5 shows the posterior distribution of relative effective number
(R) scaled to its maximum value (1−s/2), for s the uniparental fraction among reproductives
under androdioecy (21) or gynodioecy (29). The abscissa axis label has been corrected from
Redelings et al. (2015) and Uyenoyama and Takebayashi (2017).

Imposing the assumption that the sampled populations had evolved to the ESS sex
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Figure 5: Posterior distributions of relative effective number R scaled to its maximum value
(1−s/2), for s the uniparental fraction for the corresponding breeding system (modified from
Uyenoyama and Takebayashi 2017). These distributions derive from the MCMC analysis of
Redelings et al. (2015) based on observations of microsatellite variation in the gynodioecious
plant Schiedea salicaria and from 2 populations (BP and TC) of the androdioecious fish
Kryptolebias marmoratus, without assumptions on sex ratios.

ratio, Uyenoyama and Takebayashi (2017) obtained posterior distributions of the relative
viability of gonochores (Z). Figure 6 indicates little support for viability differences between
females and hermaphrodites in the gynodioecious S. salicaria, but strong support for a
substantial (twofold) reduction in the viability of males relative to hermaphrodites in the
androdioecious K. marmoratus. Of note is that relative male viability appears to be similar
in the 2 Kryptolebias populations, in spite of marked differences in both male frequency
and collective contribution of hermaphrodites (Figure 4). Turner et al. (2006) described
K. marmoratus males as more conspicuous and observed higher frequencies of males in
laboratory-reared populations than in natural populations. These findings are consistent
with the view that predation in the wild may contribute to the reduction in male viability.

4.3 ESS sex ratios

An “unbeatable” (Hamilton 1967) or evolutionarily stable (Maynard Smith 1978) sex ratio
corresponds to a population sex ratio at which rare modifiers of sex expression fail to increase
at geometric rates. While mating type may represent a discrete trait, the proportion of the
resources devoted to the production of each mating type can be regarded as a quantitative
trait, evolving under the influence of QTLs (modifiers) throughout the genome.
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Figure 6: Posterior distributions of the viability of gonochores relative to hermaphrodites (Z)
in the androdioecious fish Kryptolebias marmoratus and the gynodioecious plant Schiedea
salicaria (from Uyenoyama and Takebayashi 2017).

Here, we have restricted consideration to population sex ratios that evolve under the
influence of autosomal modifiers expressed in individuals that are uniformly related to zygotes
of any mating type. In other cases, non-uniform relatedness to the mating types produced
may affect the ESS sex ratio (Uyenoyama and Bengtsson 1981). Haplodiploidy provides
a striking example: modifiers expressed in females that affect the sex of their siblings can
generate asymmetries in the unbeatable sex ratio that mirror asymmetries in relatedness to
male and female siblings (Hamilton 1967).

As an ESS sex ratio is a property of the population, and not of any particular modifier
locus, it is ideally independent of dominance or other locus-specific properties. Applying
Fisher’s (1958) heuristic (7) to a range of plant mating systems, Lloyd (1975) derived what
would now be called ESS sex ratios by determining points of equality between the marginal
values of the mating types. He further conjectured that the evolutionary dynamics among
modifier alleles would cause convergence to those sex ratios. A number of workers (Ross
and Weir 1975, 1976; Charlesworth and Charlesworth 1978; Wolf and Takebayashi 2004)
have shown that the equilibria to which populations evolve depend on locus-specific prop-
erties, particularly dominance. While Lloyd (1977) explicitly acknowledged the failure of
his secondary conjecture, the expressions he obtained by equating marginal values do in
fact correspond to population sex ratios at which modifiers of sex expression fail to increase
when rare, irrespective of dominance and other locus-specific properties (Uyenoyama and
Takebayashi 2017).
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Our analysis compares the level of neutral genetic diversity across systems of reproduc-
tion at their respective unbeatable strategies, population sex ratios at which all modifiers fail
to increase at geometric rates. Conditions for the existence of an ESS are necessarily closely
related to the conditions for the invasion or exclusion of modifiers with specified character-
istics. For example, the minimum twofold advantage in the production of small gametes
(sperm or pollen) that is required for the maintenance of males at the ESS (25) mirrors the
condition for the invasion into a purely hermaphroditic population of a dominant or recessive
modifier allele that causes female sterility (Equation (8) of Charlesworth and Charlesworth
1978). Similar correspondences occur under gynodioecy.

4.4 Neutral diversity across reproductive systems

For a given per-generation rate of mutation (u) and total number of reproductives (N), the
level of neutral genetic diversity under the ESF (4) depends on relative effective number R
(3b), which in turn reflects not only the population sex ratio but also the relative viability
of mating types (Z). We have explored the nature of the dependence of R on Z (17) across
reproductive systems.

An important assumption of the models studied here is that any positive level of pro-
duction of small gametes (sperm or pollen) is fully sufficient to fertilize the available large
gametes (eggs or seeds). Under androdioecy, it is the production of small gametes by males
relative to hermaphrodites (σA) that drives the evolution of the sex ratio and determines the
level of neutral diversity in the population, not the relative investment in male versus female
function in hermaphrodites. Similarly, for gynodioecy, a key determinant is the production
of large gametes (eggs or seeds) by females relative to hermaphrodites (σG). Among the
implications of this assumption is that the relative viability of gonochores (Z) has qualita-
tively different effects on the pattern of neutral genetic diversity under androdioecy versus
gynodioecy.

4.4.1 Full gonochorism

In the classical case, without inbreeding and with reproduction restricted to mating between
2 sexes, the effective numbers inferred from rates of parent-sharing and coalescence are
identical (NP = Ne), with relative effective number (3b) corresponding to

R =
NP

NF +NM

.

for NF and NF the numbers of reproductive females and males and NP the harmonic mean
of 2NF and 2NM (5). This expression reflects the structuring of the gene pool into mating
types. In the absence of viability differences between the sexes (Z = 1), the ESS sex ratio (7)
is unity (NF = NM), both at conception and at reproductive age, implying equal arithmetic
and harmonic means and a relative effective number R of 1. Sex-specific differences in
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viability (Z 6= 1, Figure 6) cause the harmonic mean to decline relative to the arithmetic
mean, diminishing relative effective number (R < 1).

4.4.2 Dioecy with selfing

Self-fertilization reduces the number of parental individuals contributing to the offspring
generation. Each uniparental offspring derives from a single parent and each biparental
offspring from two distinct parents, implying an average of

s+ 2(1− s) = 2− s

parents per offspring, for s the probability that a random reproductive offspring is uni-
parental. In the dioecious systems of mating studied here, this effect of inbreeding combines
with the partitioning of the gene pool into mating types to reduce further the relative effective
number R and neutral genetic diversity compared to dioecy without inbreeding.

Our generalization to androdioecy and gynodioecy of the Fisherian heuristic (Section 2)
indicates that the ESS sex ratio at conception corresponds to P/(1 − P ), for (1 − P ) the
proportion of the gene pool derived from hermaphrodites (Figure 4). In reproductive systems
that permit self-fertilization, the collective contribution to the gene pool of hermaphrodites
always exceeds that of gonochores (14), reflecting that uniparental offspring derive solely
from hermaphrodites while gonochores and hermaphrodites make equal contributions to
biparental offspring. Accordingly, the ESS sex ratio at conception favors hermaphrodites
for any positive level of production of uniparental offspring. That our results do not agree
with those of Charnov et al. (1976) appears to reflect their assumption of equal collective
contributions of mating types to the gene pool, with hermaphrodites regarded as fractional
females and fractional males. Our determination of the unbeatable sex ratio reflects the
evolutionary dynamics of genetic modifiers of sex expression (Uyenoyama and Takebayashi
2017).

Under androdioecy (Section 3.2), the uniparental fraction sA (21) is independent of the
frequency of males, and relative effective number R takes its maximum value of (1− sA/2)
only in the absence of sex-specific viability (Z = 1). As Z departs from 1 in either direction,
R tends to decline. However, for Z quite low (less than the single positive root of (28)), R
again approaches its maximum value of (1 − sA/2) as the frequency of male reproductives
approaches zero.

Under gynodioecy (Section 3.3), R again takes its maximum value of (1 − sG/2) in the
absence of sex-specific viability (Z = 1). In contrast with androdioecy, the presence of
females reduces the uniparental fraction sG (29). Departures of the relative viability of
gonochores from unity also affect sG and consequently the maximum value of R. Relative
effective number R exhibits a non-monotone dependence on Z in multiple regions across its
range under gynodioecy. The introduction of females can increase the level of neutral genetic
diversity beyond the level expected under full hermaphroditism.
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4.5 Evolutionary responses to environmental change

Estimation of census or effective population numbers or their ratio has received much at-
tention in the conservation biology literature (Luikart et al. 2010). Estimation of effective
number generally poses challenges, with some approaches requiring sampling at multiple
time points or observation of tightly linked loci (Waples 2006). The extent to which neu-
tral genetic diversity can aid in identifying endangered species, detecting past bottlenecks in
population size, or gauging resilience to major future shifts in habitat or population size (see
Teixeira and Huber 2021; Garcia-Dorado and Caballero 2021) lies beyond the objectives of
this study.

We use a ratio of effective numbers, R (3b), to compare a range of reproductive systems.
Under a model-based approach, this index can be directly inferred from the pattern of neutral
genetic diversity in a random sample (Figure 5). Relative effective number R depends on
both the number of reproductives (N) and the sex ratio among them. Factors that influence
the sex ratio among reproductives affect the level of neutral genetic diversity maintained in a
population. An extrapolation of the non-monotone dependence of R on relative viability Z in
gynodioecious systems (Section 4.4.2) may suggest that management policies that promote
female-bias among reproductives in captive populations may reduce inbreeding but have
complex implications for the level of neutral genetic diversity.

Evolutionarily stable sex ratios reflect the evolution of autosomal modifiers throughout
the genome in response to the local sex ratio and conditions that affect the collective con-
tribution to the gene pool of the mating types. In Kryptolebias marmoratus, an emerging
model system for environmental sex determination (ESD, Kelley et al. 2016), functional
hermaphrodites may transform into fertile males (secondary males). In addition, incuba-
tion at lower temperatures promotes the development of fertile primary males directly from
self-fertilized eggs (Harrington 1967). Ellison et al. (2015) reported that interactions be-
tween incubation temperature and methylation patterns affect the proportion of primary
males, with the source population from which the laboratory lines were derived affecting
the nature of the response to experimental treatments. This study appeared to suggest that
ESD, mediated by methylation of genes controlling sex expression, may provide a means
of regulating the rate of selfing. Our models assume that any positive level of male func-
tion is fully sufficient to fertilize all eggs or seeds. Accordingly, increasing the proportion of
obligately-outcrossing female reproductives does tend to reduce the rate of inbreeding, but
increasing the proportion of male reproductives has no effect on the uniparental fraction s.
An alternative view is that ESD may number among the mechanisms through which sex
ratio evolves in response to the selfing rate.
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Appendix A Labeled coalescent

We review the approach developed by Karlin and McGregor (1972) in the course of proving
the Ewens Sampling Formula (Ewens 1972). While their original formulation described
changes on the timescale of generations, we here summarize the method on the timescale
of the most recent evolutionary event, which may for example correspond to coalescence,
mutation, or migration (see Uyenoyama et al. 2019).

A.1 Basic recursion

The labeled coalescent describes the relationship between the allele frequency spectrum (1) of
a sample of genes (descendant) to the AFS immediately prior to the most recent evolutionary
event (ancestor). Let random variable D represent the state of the descendant, with d a
particular realization, and A the state of the ancestor, with a a particular realization. For a
given model with parameters Φ (2), the likelihood corresponds to

Pr[D = d|Φ] =
∑
e∈Ωe

Pr[D = d, E = e|Φ]

=
∑
e∈Ωe

Pr[D = d|E = e,Φ] Pr[E = e|Φ].
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in which random variable E represents the most recent evolutionary event, e a particular
realization of E, and and Ωe the set of all evolutionary events. Under the law of total
probability, we have

Pr[D = d|Φ] =
∑
e∈Ωe

∑
a∈Ωa

Pr[D = d, A = a|E = e,Φ] Pr[E = e|Φ]

=
∑
e∈Ωe

Pr[E = e|Φ]
∑
a∈Ωa

Pr[D = d|A = a, E = e,Φ] Pr[A = a|E = e,Φ],

for Ωa the set of all possible states of A. Under the assumption that the state of the ancestor
lineage is independent of E, the evolutionary event forward in time, we have

Pr[A = a|E = e,Φ] = Pr[A = a|Φ],

with

Pr[D = d|Φ] =
∑
a∈Ωa

Pr[A = a|Φ]
∑
e∈Ωe

Pr[E = e|Φ] Pr[D = d|A = a, E = e,Φ]. (A.1)

This expression represents a recursion that relates the probability of D, the present state
of the sample, to the probability of ancestral state A, immediately prior to the most recent
evolutionary event. In general, determination of the transition term

Pr[D = d|A = a, E = e,Φ]

is straightforward, proceeding from ancestor to descendant through a specified evolutionary
event. The number of ancestor states a that can generate descendant state d through event
e is limited.

A.2 Modified ESF

Among independent lineages, the most recent evolutionary event corresponds either to coa-
lescence (E = e1) or to mutation (E = e2), both of which may depend on genomic location
or system of reproduction.

For a sample comprising n genes, the probabilities that mutation or coalescence corre-
spond to the most recent evolutionary event are

Pr[E = e1|Φ] = lim

(
n
2

)
/2Ne(

n
2

)
/2Ne + nu

=
n− 1

n− 1 +Rθ

Pr[E = e2|Φ] = lim
nu(

n
2

)
/2Ne + nu

=
Rθ

n− 1 +Rθ
,

for θ and R defined in (3).
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We first address the case in which coalescence (E = e1) is the most recent event backward
in time, which corresponds to the splitting or duplication of a lineage forward in time. The
ancestor AFS (A = a) comprises only (n− 1) genes and has the form

a = d + ei − ei+1,

in which ej denotes a unit vector, with unity in the jth position and zeros elsewhere, and
i is the multiplicity in A of the allelic class involved in the splitting event. We define the
probability of AFSs with negative elements or other unmeaningful characteristics as zero. A
splitting event in an allelic class with multiplicity i increases the multiplicity of that allele
to (i + 1) and decreases by 1 the number of alleles with multiplicity i. Using that the split
occurs uniformly at random in any of the (n− 1) lineages of A, we have

Pr(D = d|A = a, E = e1,Φ) = i(di + 1)/(n− 1),

reflecting that (di + 1) allelic classes have multiplicity i in A.

Alternatively, the most recent event may correspond to mutation (E = e2). For an
ancestor with AFS identical to the descendant (D = A = d), the mutation can only have
occurred in a lineage representing a singleton allelic class (i = 1) in the ancestor AFS, with

Pr(D = d|A = d, E = e2,Φ) = d1/n.

Given this ancestor A, a mutation in any other lineage would imply zero probability of
generating the descendant D. Mutation in an allelic class with multiplicity greater than
unity (i > 1) generates a new singleton allele and reduces the multiplicity of the allelic class
in which the mutation arose. The AFS of ancestors with a positive probability of generating
D = d through this route must have the form

a = d + ei − ei−1 − e1.

In this case,
Pr(D = d|A = a, E = e2,Φ) = i(di + 1)/n,

for i(di + 1) the total number of genes that represent an allele present in multiplicity i in the
ancestor sample A. This expression also reflects that the mutation arises in any gene with
equal probability.

At stationarity, the probability of a sample of size n with AFS a is independent of time
period:

Pr[A = a] = Pr[D = a] = pn(a)

The labeled coalescence recursion (A.1) then reduces to

pn(a) =
n− 1

n− 1 +Rθ

n−1∑
i=1

pn−1(a + ei − ei+1)i(ai + 1)/(n− 1) (A.2)

+
Rθ

n− 1 +Rθ

[
pn(a)a1/n+

n−1∑
i=2

pn(a + ei − ei−1 − e1)i(ai + 1)/n

]
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(compare Tavaré 2004), in which unmeaningful expressions (e.g., probability of spectra with
negative elements) are defined as zero.

In the absence of population structure (R = 1), Karlin and McGregor (1972) proved the
formula given by (Ewens 1972) by showing that it is a solution of (A.2). Some population
structures, including those comprising multiple mating types and some forms of regular
inbreeding, can be summarized by relative effective number R (3b). For such cases, the
probability of a sample comprising n genes with AFS a corresponds to (4):

pn(a) =
n!

Rθ(Rθ + 1) . . . (Rθ + n− 1)

n∏
i=1

(
Rθ

i

)ai 1

ai!
.

This formula and the probability mass function of the number of alleles observed in a sample
of size n correspond to Ewens’s (1972) expressions under the substitution of Rθ for θ. Other
remarkable properties of the ESF that are preserved include that the probability that the
nth-sampled gene represents a novel allele corresponds to

Rθ

n− 1 +Rθ

and that the distribution of allele multiplicities conditioned on a given number of alleles in
the sample is independent of Rθ (Ewens 1972).

Appendix B Parent-sharing under full hermaphroditism

The rate of parent-sharing corresponds to the probability that a pair of genes, each randomly
sampled from distinct individuals in the offspring generation, derive from the same parent.

A pair of uniparental offspring share their parent with probability(
1
1

)(
N
1

) =
1

N
,

for N the number of parental individuals. A uniparental offspring and a biparental offspring
share a parent with probability (

1
1

)(
N−1

1

)(
N
2

) =
2

N
,

corresponding to the probability that 1 of the parents of the biparental individual is identical
to the parent of the uniparental individual. A pair of biparental offspring may have 2, 1, or
0 parents in common. The probability that the second individual shares both parents with
the first individual is of order 1/N2, (

2
2

)(
N
2

) =
2

N(N − 1)
.
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It shares exactly one parent with probability(
2
1

)(
N−2

1

)(
N
2

) =
4

N
+ o(1/N).

To order 1/N , the probability that a random pair of offspring share exactly one parent
corresponds to

s2(1/N) + 2s(1− s)(2/N) + (1− s)2(4/N) = (2− s)2/N,

for s the probability that a random offspring of reproductive age is uniparental.

Given parent-sharing between the pair of offspring individuals, the probability that 2
genes, 1 sampled from each individual, derive from the shared parent is 1 for two uniparental
individuals, 1/4 for two biparental individuals, and 1/2 in the remaining case. Consequently,
the probability that 2 genes, each sampled from distinct offspring individuals, derive from
the same parent is

1/NP = s2(1/N)(1) + 2s(1− s)(2/N)(1/2) + (1− s)2(4/N)(1/4) = 1/N, (B.1)

This index of effective number is independent of the uniparental fraction (s).
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