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Abstract

Skin injuries heal through coordinated action of fibroblast-mediated extracellular matrix
(ECM) deposition, ECM remodeling, and wound contraction. Defects involving the
dermis result in fibrotic scars featuring increased stiffness and altered collagen content
and organization. Although computational models are crucial to unravel the underlying
biochemical and biophysical mechanisms, simulations of the evolving wound biomechanics
are seldom benchmarked against measurements. Here, we leverage recent quantifica-
tions of local tissue stiffness in murine wounds to refine a previously-proposed systems
bio-chemo-mechanobiological finite-element model. Fibroblasts are considered as the
main cell type involved in ECM remodeling and wound contraction. Tissue rebuilding is
coordinated by the release and diffusion of a cytokine wave, e.g. TGF-β, itself developed
in response to an earlier inflammatory signal triggered by platelet aggregation. We
calibrate a model of the evolving wound biomechanics through a custom-developed
hierarchical Bayesian inverse analysis. Further calibration is based on published bio-
chemical and morphological murine wound healing data over a 21-day healing period.
The calibrated model recapitulates the temporal evolution of: inflammatory signal,
fibroblast infiltration, collagen buildup, and wound contraction. Moreover, it enables in
silico hypothesis testing, which we explore by: (i) quantifying the alteration of wound
contraction profiles corresponding to the measured variability in local wound stiffness;
(ii) proposing alternative constitutive links connecting the dynamics of the biochemical
fields to the evolving mechanical properties; (iii) discussing the plausibility of a stretch-
vs. stiffness-mediated mechanobiological coupling. Ultimately, our model challenges the
current understanding of wound biomechanics and mechanobiology, beside offering a
versatile tool to explore and eventually control scar fibrosis after injury.

Author summary

Wounds constitute a major healthcare burden, often yielding overly stiff scars that
feature altered collagen content and organization. Accurate computational models have
the potential to impact the understanding, treatment, and ultimately the outcome of

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 31, 2022. ; https://doi.org/10.1101/2022.07.28.501924doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.28.501924
http://creativecommons.org/licenses/by-nc-nd/4.0/


wound healing progression by highlighting key mechanisms of new tissue formation
and providing a versatile platform for hypothesis testing. However, the description
of wound biomechanics has so far been based on measurements of uninjured tissue
behavior, limiting our understanding of the links between wound stiffness and healing
outcome. Here, we leverage recent experimental data of the local stiffness changes
during murine wound healing to inform a computational model. The calibrated model
also recapitulates previously-measured biochemical and morphological aspects of wound
healing. We further demonstrate the relevance of the model towards understanding scar
formation by evaluating the link between local changes in tissue stiffness and overall
wound contraction, as well as testing hypotheses on: (i) how local tissue stiffness is
linked to composition; (ii) how a fibrotic response depends on mechanobiological cues.

Introduction

Caused by a variety of possible conditions, including surgeries, traumas, and pathologies,
wounding of the skin triggers a well-coordinated repair program that aims to rebuild
the damaged tissue and recover its function via biological, chemical, and physical
events [1]. Classical descriptions of healing progression consider three overlapping but
distinct stages [2, 3]: inflammation, proliferation, and remodeling. Inflammation begins
immediately after injury, when a coagulation cascade attracts platelets to the injury
site [1,3]. Their rapid aggregation in a crosslinked fibrin mesh results in a blood clot,
a provisional scaffold for inflammatory cell migration [1, 3, 4]. Platelet aggregation
and degranulation triggers the release of various chemokines, including platelet-derived
growth factor (PDGF), vascular endothelial growth factor (VEGF), transforming growth
factor beta (TGF-β), and tumor necrosis factor alpha (TNF-α) [1, 2, 4, 5]. These play a
key role in recruiting neutrophils, which are the first inflammatory cells to infiltrate the
wound and contribute to fight pathogens and avoid infection [2, 4]. A second wave of
inflammatory cells involves monocyte migration, driven by chemoattractants such as
monocyte chemotactic protein 1 (MCP-1) [2] and TGF-α [5]. Monocytes differentiate
primarily into macrophages [2, 3, 5], which amplify earlier wound signals by releasing
growth factors such as PDGF, VEFG, TGF-β, and fibroblast growth factors (e.g. FGF-
2) [1, 2, 6]. The growth factor profiles established by macrophages coordinate tissue
rebuilding during the proliferation phase, which occurs through the activity of various
cell types [3, 7]. Keratinocytes are the first to intervene, crawling over the injured tissue
in the process of epithelialization to restore the skin barrier function [2, 3]. Within
angiogenesis, endothelial cells contribute to form new blood vessels [2, 5]. Fibroblasts
have a key role in rebuilding the dermis — the collagen-rich layer mainly responsible for
the skin structural function [8,9] — by producing and organizing the extracellular matrix
(ECM) that ultimately forms the bulk of the mature scar [3, 10], in a process stimulated
by TGF-β, PDGF, and FGF-2 [5] and facilitated by cell-mediated secretion of proteolytic
enzymes termed matrix metalloproteinases (MMPs) [2]. PDGF and TGF-β are also key
mediators of fibroblast differentiation into myofibroblasts [5], a contractile cell phenotype
that tends to approximate wound edges. Both cell types exert active stresses on the
surrounding ECM and regulate collagen remodeling [2,3], which contribute to determine
the geometry and mechanical properties of the scar together with externally-applied
tissue deformations [7,11,12]. Lastly, remodeling is a long-term process characterized
by downregulation of overall cellular activity, cell population density, and collagen
remodeling [3, 5].

Defects involving the dermis result in scars that lack the organization and full
functionality of unwounded skin, exhibiting excessive stiffness, reduced strength, and
permanent contracture that can persist for months or even years [10, 13–15]. This
represents a significant healthcare burden, with an estimated cost per wound requiring
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treatment of about $4′000 in the US [16] and an annual management cost over £5 billion in
the UK [17]. Several exogenous agents, such as medications [18], environmental conditions
[19], and mechanical loading [7], may negatively affect wound healing. Fibroblast
differentiation, migration, and gene expression pathways is widely acknowledged to
depend on biomechanical cues [20–22]. Indeed, clinical evidence demonstrates reduction of
hypertrophic scar formation via disruption of relevant mechanobiological pathways [23,24]
or by modulating local tissue tension [25,26]. Moreover, negative-pressure therapy can
accelerate the healing of chronic wounds through a process involving macroscopic
deformations of the wound bed [27,28], shock waves can enhance tissue vascularization,
collagen synthesis, and cell proliferation [28], and ultrasounds can stimulate granulation
via tissue cavitation [28]. While these mechanotherapies can influence the course
and outcome of healing, their working principles remain elusive due to insufficient
understanding of the corresponding biophysical phenomena [22].

Owing to the complexity of tissue repair processes, computational models have
become key tools to study the interplay of biological, chemical, and physical events,
as well as to formulate and test hypotheses by providing access to quantities that are
otherwise hard to determine [29]. The first computational models date back to the
1990s and mainly focused on the dynamics of cell populations, described with either
ordinary [30] or partial [31] differential equations (ODEs or PDEs, respectively) or
with agent based models [32]. Further developments incorporated wound contraction
by imposing conservation of collagen density and linear momentum for the ECM [33],
including myofibroblast contributions [34] . However, these models often featured a
simplistic description of mechanics, leading to a superficial treatment of the pathways
linking cell behavior to mechanical cues. We and others have been interested in incorpo-
rating detailed representations of tissue mechanics into wound healing models. Bowden
et al. [35] proposed a purely mechanical model including tissue growth, while our most
recent approaches [36–38] couple basic biochemical fields with tissue nonlinear mechanics,
including permanent changes in shape and stiffness that result from growth and remod-
eling. Importantly, all these models adopt mechanical constitutive parameters that are
representative of uninjured skin, strongly limiting their relevance towards investigating
the link between ECM biomechanics and the outcome of healing.

Here, we set out to overcome this limitation by leveraging one of the very few available
experimental datasets on the time-course evolution of wound mechanics at physiological
deformation levels, which have been recently measured on murine tissue by Pensalfini
et al. [39]. Through a custom-developed hierarchical Bayesian calibration procedure,
we establish the change in mechanical behavior during healing, and use the calibrated
constitutive model to refine our systems bio-chemo-mechanobiological finite-element
(FE) model of wound healing. We further leverage the versatility of our model to test
hypotheses regarding the link between tissue composition and evolving tissue stiffness,
as well as the role of mechanobiological coupling to trigger fibrosis.

Materials and methods

Systems-mechanobiological model of wound healing

The Lagrangian FE model that we use is publicly available [40] and follows closely
our original formulation [37]. Here, we briefly state the main equations and modeling
assumptions, both for completeness and to reflect changes from our previous work.

Kinematics and modeled fields

Following standard continuum mechanics notation, the current tissue geometry is de-
scribed by the coordinates x. The reference configuration, X, coincides with the initial
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tissue geometry in its ex vivo, unloaded state. Wound healing is simulated starting from
an intermediate state, xi.v., accounting for in vivo skin pre-tension. Local deformation
is captured by the deformation gradient tensor, F = ∂x/∂X.

Motivated by the overview provided in the Introduction, we model the biochemical
fields by grouping the release of pro-inflammatory cytokines into two waves. The first
signal, α, is triggered upon platelet aggregation and helps direct inflammatory cells such
as neutrophils and macrophages towards the wound bed. The second wave, c, represents
the growth factors and cytokines that coordinate and regulate tissue rebuilding and
remodeling via fibroblasts and myofibroblasts. Being mainly interested in new tissue
formation and remodeling, we limit our description of inflammation to the fields α and
c, avoiding explicit modeling of the corresponding cell species. Accordingly, the cell
population density, ρ, coincides with the amount of fibroblasts/myofibroblasts in the
tissue, owing to their widely-recognized role towards determining ECM deposition and
organization in wounds and scars. Lastly, the tissue composition is mainly described
by its collagen content, ϕc, and by the plastic deformation, F p, which reflects on the
permanent stretch ratios, λp

a and λp
s, measured along the in-plane eigenvectors of F p,

a0 and s0. Note that we take the values of c, ρ, ϕc, λ
p
a, and λp

s in an unwounded tissue
subjected to a physiological deformation level to be 1, while α = 0 in such conditions.

Balance laws for mass and linear momentum

The balance of linear momentum follows the standard relation ∇ · σ = 0, where σ
denotes the Cauchy stress tensor and is determined by two contributions:

σ = σact + σpas. (1)

In Eq. (1), σact is the active stress exerted by the cell population, ρ, on the collagenous
ECM, ϕc, and our model assumes that it can be influenced by two factors, cf. Eqs. (10,11)
and Fig. 1: (i) the mechanical state of the wound, affected by the ECM deformation and
its material properties; (ii) the cytokines c, affecting cell-mediated ECM contraction.
The passive stress, σpas, only depends on the mechanical state of the tissue via Eq. (2),
cf. Fig. 1.

The balance of mass for the fields α, c, and ρ also follows standard equations. For
instance, the second inflammatory signal must satisfy the relation ċ+∇ · qc = sc, where
sc and qc are the source and flux terms in the current configuration, respectively. In
the Lagrangian setting, the flux of c is expressed by Qc = JF−1qc. Conversely, the
tissue microstructural fields, ϕc, λ

p
a, λ

p
s, are updated locally and without accounting

for any diffusion; their rate of change is defined later on, along with the corresponding
constitutive equations. Owing to lack of diffusion in the microstructural fields, we refer
to α, c, and ρ as diffusible biochemical fields (Fig. 1).

Constitutive equations for the tissue mechanical behavior

The passive stress in the tissue derives purely from the elastic part of the deformation
gradient tensor F e = FF p−1 and is assumed to follow from a hyperelastic potential
similar to the one used in the Gasser-Ogden-Holzapfel (GOH) model [41]:

Ψ(F e) = C10 (I
e
1 − 3) +

k1
2k2

{
exp

[
k2

(
Ie1
3

− 1

)2
]
− 1

}
, (2)

where Ie1 = tr(Ce) is the first invariant of the elastic right Cauchy-Green deformation
tensor, Ce = F e⊤F e, and C10, k1, k2 are material parameters. This constitutive
model describes the characteristic J-shaped stress-strain response observed in many
soft biological tissues [41–46] by assuming a neo-Hookean ground substance with shear
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FGF TGF-Ø

VEGF PDGF

...

0 200 400 600 800 1000
0

5

10

15

20
Fibroblasts Myofibroblasts

Hemostasis & Inflammation

Proliferation Remodeling

Wound maturation

Wound contraction

F p F e F ¡c

æpas æact æ
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Figure 1. Schematic summarizing the developed systems-mechanobiological model
of wound healing, which aims to capture the temporal evolution of key biochemical,
microstructural, and macroscopic mechanical and geometrical variables by representing
the cell and tissue regulatory pathways and their interaction across structural scales.
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modulus µ0 = 2C10 and a collagen-based network whose emergent stiffening upon
stretching is controlled by the phenomenological parameters k1 and k2. Note that we
consider a simplified model with respect to the original formulation [41], by assuming that
skin and wound/scar tissues are isotropic materials subjected to plane stress conditions,
since the modeled skin region has thickness much smaller than its in-plane dimensions.
The constitutive parameters are first determined from experimental data [39] in order
to perform wide-range model calibration, and later derived from constitutive equations
linking them to the time-course evolution of the microstructural fields.

Constitutive equations for the diffusible biochemical fields

The fluxes of α, c, and ρ in the reference configuration are expressed by:

Qα = − θp Dα,α C−1 ∇Xα,

Qc = − θp Dc,c C
−1 ∇Xc,

Qρ = − θp
(
Dρ,ρ C

−1 ∇Xρ + Dρ,c C
−1 ∇Xc

)
.

(3)

Since inflammatory cell recruitment is mostly completed within the first few days
after injury [5], we assume an exponentially-decaying source term for α, with rate dα:

sα = −dα α. (4)

The source term for the second inflammatory wave, c, accounts for its dependence on the
first inflammatory wave, α, and on the fibroblast/myofibroblast population density, ρ:

sc = pc,α α+ pc,ρ ⟨ ctgt − c ⟩ ρ

Kc,c + c
− dc c, (5)

where ctgt is an attractor for c and is selected to ensure homeostasis of this biochemical
field for an unwounded tissue subjected to physiological deformation, while ⟨ ⟩ denote
the Macauley brackets that prevent the second term on the right-hand side of Eq. (5)
from becoming negative when c > ctgt. Kc,c determines the saturation of c in response
to itself, pc,α and pc,ρ are coefficients capturing the effects of α and ρ on the release of
cytokines, c, (Fig. 1), and dc is the decay rate when all production terms are zero.

The source term for ρ is an extension of logistic models with cytokine feedback and
mechanobiological coupling, and is purely a reformulation of our previous works [37, 38]:

sρ = ρ

[
pρ,n

(
1 + Ωb

ρ

c

Kρ,c + c
+Ωm

ρ Ĥρ

)(
1− ρ

Kρ,ρ

)
− dρ

]
. (6)

The function Ĥρ encodes the dependence of fibroblast/myofibroblast proliferation on the
mechanical state of the tissue (Fig. 1), as discussed in more detail below. pρ,n defines the
natural mitotic rate of the cells in the absence of cytokines and mechanical effects (c = 0,
Ĥρ = 0), while Ωb

ρ and Ωm
ρ are coefficients capturing the enhanced cell proliferation in

response to c and Ĥρ (Fig. 1). Kρ,c and Kρ,ρ determine the saturation of ρ in response
to c and to itself, and dρ is again the decay rate when all production terms are set
to zero. We select dρ to ensure that ρ respects homeostasis for an unwounded tissue
subjected to physiological deformation.

Constitutive equations for the tissue microstructural fields

The tissue microstructure changes in two ways during wound healing: one of them is the
change in composition, e.g. the collagen mass fraction ϕc, and the other is the change in
permanent deformation, F p, which reflects on the permanent stretch ratios, λp

a and λp
s .
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Similar to our previous works [37, 38], we assume that ϕc depends linearly on the
fibroblast/myofibroblast population density, ρ, in a way that is mediated by c (Fig. 1):

ϕ̇c = ϕ̇c
+ − ϕ̇c

−
=

= pϕc,n

(
1 + Ωb

ϕc

c

Kϕc,c + c
+Ωm

ϕc
Ĥϕc

)
ρ

Kϕc,ρ + ϕc
− (dϕc + ρ c dϕc,ρ,c)ϕc.

(7)

The function Ĥϕc
encodes the dependence of cell-mediated collagen deposition on the

mechanical state of the tissue (Fig. 1). For simplicity, we set Ĥρ = Ĥϕc
= Ĥ, i.e. we

assume that mechanical cues impact cell proliferation and collagen deposition in the
same fashion up to a scaling factor, Ωm

ρ vs. Ωm
ϕc
. pϕc,n defines the natural rate of collagen

deposition in the absence of cytokines and mechanical effects (c = 0, Ĥϕc
= 0), while

Ωb
ϕc

and Ωm
ϕc

are coefficients capturing the enhanced collagen deposition in response

to ρ and Ĥϕc
. Kϕc,c and Kϕc,ρ determine the saturation of ϕc in response to c and to

ρ. Note that, beside a spontaneous decay mediated by the coefficient dϕc
, selected to

ensure homeostasis of ϕc in unwounded physiological conditions, the collagen degradation

rate (ϕ̇c
−
) also depends on ρ and c via dϕc,ρ,c, capturing the role of cells within MMP

production [2] and the corresponding modulation by cytokines [47].
Lastly, the remodeling law operates independently along the principal directions a0

and s0 according to the equation (Fig. 1):

λ̇p
a = λ̇p

s =


ϕ̇c

+

τλp
(λe − 1) , if λe ≤ 1,

0, if 1 < λe <
√
ϑph,

ϕ̇c
+

τλp

(
λe −

√
ϑph
)
, if λe ≥

√
ϑph,

(8)

where λe is the current elastic stretch of the tissue along the direction of interest, τλp

is the time constant for tissue growth in either direction, and ϑph captures the elastic
areal deformation of the tissue in its physiological in vivo state. Different from our
previous approaches [36–38], Eq. (8) implies that the tissue grows when stretched past its
physiological state, shrinks when subjected to prolonged compression, but accumulates
no permanent deformation when stretched to sub-physiological levels.

Mechano-biological and bio-mechanical pathways

The modeled biochemical fields can determine (bio→mechanics) and be determined
(mechano→biology) by the mechanical state of the tissue ECM in multiple ways (Fig. 1).
A first relevant bio-mechanical pathway has been discussed in the previous section:
plastic deformation is influenced by collagen turnover, itself a function of cell activity.
Plastic deformation also dissipates elastic energy, affecting tissue deformation, F e. This
has a direct mechano-biological effect on the cell population and collagen deposition, as
mediated by the function Ĥ, cf. Eqs. (6, 7). A leading hypothesis in the field, which we
have also used previously [37,38], postulates a dependence of Ĥ on strain:

Ĥ = Ĥ(θe, ϑph, γe) =
1

1 + exp [−γe (θe − ϑph)]
, (9)

where θe = ||cofF e ·N|| captures the current in-plane elastic tissue deformation, while γe

controls the slope of Ĥ around its midpoint, ϑph. While the majority of this manuscript
adopts Eq. (9), we will also explore an alternative coupling as part of our hypothesis
testing efforts, cf. Results.
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A further bio-mechanical pathway of interest is represented by cell-induced contraction,
yielding an active tension that depends on ρ and c (Fig. 1):

f(ρ, c) =

(
1 + Ωb

f

c

Kf,c + c

)
ρ fρ,n. (10)

In the above expression, which is purely a reformulation of what we have previously
used [37, 38], fρ,n is the baseline tension exerted by a physiological population of
fibroblasts/myofibroblasts on the surrounding ECM in the absence of any cytokine
(ρ = 1, c = 0), Ωb

f captures the tension increase in response to c, e.g. due to enhanced
fibroblast-myofibroblast transition, and Kf,c determines the saturation of f in response
to c. The active stress resulting from the tension introduced in Eq. (10) reads:

σact = ϕc f(ρ, c)
b

tr(b)
, (11)

where b = FF⊤. Note that, owing to the assumption of tissue isotropy, the current
expression for active stress is simplified with respect to our previous approach [37], which
adopted a deformed structural tensor based on a direction of anisotropy.

Hierarchical Bayesian calibration of mechanical parameters

To determine the constitutive parameters of unwounded and wounded tissues at various
healing time points, we leverage the experimental measurements previously presented in
Pensalfini et al. [39], where several specimens including a 7- or 14-day-old wound were
subjected to ex vivo uniaxial tensile tests and compared to the mechanical response of
unwounded skin. Contrary to most traditional material parameter-fitting approaches,
which either focus on the average measured mechanical response for a set of homogeneous
specimens [45, 48, 49], or treat each tested specimen completely independently [43, 45, 50,
51], we adopt a hierarchical Bayesian calibration procedure.

Consider a generic mechanical constitutive model that can be specified by prescribing
an m-tuple of parameters, µ = (µ1, ..., µm), providing a deterministic relation between
applied deformation, e.g. the stretch ratio λ, and stress: P = P (µ, λ). We wish to
determine values of µ yielding the experimentally-measured stresses for each of the Ns

tested tissue specimens at each healing time point t̄. We denote each such parameter set

as µ(J)(t̄) =
(
µ
(J)
1 (t̄), ..., µ

(J)
m (t̄)

)
, with J = 1, ..., Ns. Since wound infliction and healing

progression are presumably the major factors determining the mechanical differences

measured in Ref. [39], we reason that all the Ns parameters µ
(J)

ī
(t̄), where ī denotes

a fixed value of i, must share some underlying similarity. Indeed, all t̄-old tested
wounds were obtained from mice of comparable genotype, age, sex, etc... and subjected
to similar handling until the moment of tissue excision and testing, which were also
performed using the same devices and data analysis procedures. This suggests that

all the µ
(J)

ī
(t̄) can be regarded as originating from a common probability distribution;

similar considerations apply to the unwounded skin specimens. To restrict the mechanical

constitutive parameters to be non-negative, we assume that µ
(J)

ī
(t̄) originate from a

log-normal distribution,

µi(t̄) = exp [log (αµi
) + σµi

µ̃i] = αµi
exp (σµi

µ̃i) , (12)

where µ̃i ∼ N (0, 1) is a normally-distributed variable (N ) with zero mean and unit
variance, while log (αµi

) and σµi
are the expected value and standard deviation of

µi(t̄)’s natural logarithm. Importantly, log (αµi
) and σµi

are not fixed values, but they
also originate from distributions (Fig. 2), highlighting the hierarchical (or nested, or
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multilevel) structure of the posed statistical model, where the moments of the mechanical
parameter distributions are themselves obtained from distributions. To stress the
generating role of log (αµi

), σµi
, and N (0, 1) with respect to µi(t̄), we refer to the former

as hyperdistributions. In the absence of more detailed information, we will assume
uniform hyperdistributions (U) with lower and upper bounds depending on the subscript
i: log(αµi) ∼ U(log(αlb

µi
), log(αµi)

ub) and σµi ∼ U(σlb
µi
, σub

µi
). Thus, each independent

sampling of the hyperdistributions log (αµi), σµi , and N (0, 1) generates, via Eq. (12),

one value for the i-th entry of the m-tuple of mechanical parameters, µ
(J)
i (t̄). In turn,

the mechanical constitutive model provides a deterministic relation between stretch and
stress, P = P

(
µ(J)(t̄), λ

)
(Fig. 2), and the experimental measurement process introduces

further uncertainty, which we model as Gaussian noise N
(
P,Σ2

)
.

While the above specifications define the direct link between a set of statistical model
parameters, Θ = (log(αµ1

), ..., log(αµm
), σµ1

, ..., σµm
,Σ), and the measured tensile re-

sponse predicted by the model, N
(
P,Σ2

)
, we are interested in the corresponding inverse

relation, from the experimental measurements to the parameters, Θ. In Bayesian terms,
the hierarchical model prescribes the likelihood p

(
N
(
P,Σ2

)
| Θ
)
, i.e. the probability

distribution of the observed data given a set of parameters, and we wish to determine
the posterior p (Θ | Pexp), i.e. the probability distribution of the parameters given the

…

…

…

…

Figure 2. Schematic of the hierarchical Bayesian model posed to capture the
experimentally-measured mechanical response of a set of Ns inter-related tissue speci-
mens. A set of 3 (m+ 1) hyperdistributions, common across all specimens, generates the
mNs mechanical model parameters corresponding to each tested specimen, and the Ns

parameters representing experimental uncertainty. These parameters yield deterministic
predictions for the mechanical behavior of each specimen, which are to be compared
to the corresponding experimental evidence in order to establish a best-fitting set of
hyperparameters.
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data, Pexp. According to Bayes’ theorem,

p (Θ | Pexp) ≈ p
(
Θ | N

(
P,Σ2

))
=

p
(
N
(
P,Σ2

)
| Θ
)
p (Θ)∫

Θ
p (N (P,Σ2) | Θ)p (Θ) dΘ

, (13)

where p (Θ) is the prior, i.e. the probability distribution of the parameters Θ before
any observation has been made, and

∫
Θ
p
(
N
(
P,Σ2

)
| Θ
)
p (Θ) dΘ is the evidence, a

normalization factor coinciding with the probability distribution of the observed data
independently from any parameter set. To determine the posterior without computing
the evidence, whose integral can easily become intractable, it is possible to resort to
numerical methods such as Markov Chain Monte Carlo (MCMC) or Variational Inference
(VI) [52]. A key difference between the two approaches is that MCMC assumes no model
for the posterior, while VI casts inference as an optimization problem and seeks the best
approximant of the posterior within a parameterized family of distributions according to
a suitable cost function, e.g. the Kullback-Leibler divergence, or a likelihood function,
e.g. the Evidence Lower Bound (ELBO) [52]. This allows reducing the variance of the
method at the cost of introducing some bias, such that VI approaches are generally
less accurate than MCMC but tend to be faster and scale better to large datasets [52].
Given the complexity of our hierarchical model and the fairly large datasets that we
aim to fit, featuring thousands of experimental data points, we adopt a VI approach
and specify the model using the Python-based probabilistic programming framework
PyMC3 [53]. Specifically, we adopt a gradient-based approach known as Automated
Differential Variational Inference (ADVI) [54] and assume that the posterior follows a
spherical Gaussian distribution without correlation of parameters, which we estimate by
maximizing the ELBO [53]. The corresponding code is publicly available [40].

Results

Evolution of wound mechanical behavior throughout healing

To determine GOH constitutive parameters describing the tensile experiments performed
in Ref. [39], we focus on each of the three available datasets and conduct separate
parameter optimizations for the unwounded skin specimens (Ns = 8), the 7-day-old
wounds (Ns = 8), and the 14-day-old wounds (Ns = 8). For simplicity of analysis,
we focus on the wound core regions identified in Ref. [39] and assume that they were
subjected to uniaxial tensile loading, neglecting any possible influence of the surrounding
tissue on the measured response. We also assume a tissue thickness of 1.7 mm, in line
with [10].

For each of the three separate parameter optimizations, we train the hierarchical
model with 200′000 samples by prescribing fairly broad search ranges, cf. S1 Table, and
ensuring convergence of the ELBO, cf. S1 Fig. We then use the calibrated statistical
models to generate 10′000 independent samples, each of them yielding Ns = 8 realizations
of the mechanical parameters C10, k1, and k2, one for each specimen in the considered
dataset. This allows visualizing the specimen-specific mechanical parameter posteriors,
which are reported in S2 Fig, S3 Fig, and S4 Fig, along with the priors, traces, and
posteriors of the corresponding statistical model parameters. For simplicity, Fig. 3a-c only
shows the median values of the specimen-specific mechanical parameter posteriors (dots),
along with boxplots indicating the corresponding median (orange line), interquartile
range (box), and the 95% confidence interval (CI, indicated by the extension of the
whiskers) for each of the three analyzed datasets. Remarkably, the posterior of the
constitutive parameter k2, which mainly controls tissue stiffening at large stretches, can
only be inferred for the unwounded specimens (Fig. 3c and S2 Fig), which are indeed
those consistently reaching the largest deformations (Fig. 3d vs. Fig. 3e,f). Instead,
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for the wounded specimens, we fix k2 = 0.88 according to the median of the specimen-
specific posteriors obtained for unwounded skin (Fig. 3c) and restrict our analysis to the
parameters C10 and k1.

Despite the large variability in the inferred mechanical parameters, which is certainly
not unexpected when quantifying the properties of biological materials, the adopted
hierarchical model provides information on each tested specimen, allowing us to discuss
the evolution of C10 and k1 throughout healing. On the one hand, C10, whose median
value across 7-day-old specimens is about 2.2× the one of unwounded skin, reaches
about 1/20 of the unwounded value at day 14, showing a 42.5× reduction. Instead,
k1 is consistently larger in the wounds (11.9× at day 7, 5.6× at day 14) than in the
unwounded skin specimens, despite a 2.1× reduction between days 7 and 14. Since the
GOH model uses k1 to capture the stiffening of the collagenous ECM, the evolution of this
parameter can be interpreted as indicative of pronounced and sustained tissue fibrosis in

Figure 3. Hierarchical Bayesian calibration of tissue mechanical parameters. (a)
C10, corresponding to the behavior of the non-collagenous ground substance, exhibits
marked decrease between 7- and 14-days post-wounding, while mostly remaining within
the broad range of values characterizing unwounded skin. (b) k1, corresponding to the
behavior of the tissue collagenous matrix, tends to decrease between 7- and 14-days
post-wounding, but is typically larger in the wounds than in unwounded skin. (c) k2,
relating to the large deformation behavior of the tissue collagenous matrix, can only be
inferred for unwounded skin due to the limited deformability of wounded tissues prior
to failure. (d–f) Model-based predictions of the specimen tensile behavior accounting
for the experimental uncertainty match the experimental data reasonably well. The
dots in (a–c) indicate median values of the specimen-specific mechanical parameter
posteriors, cf. S2 Fig, S3 Fig, and S4 Fig. The boxplots in (a–c) are constructed based
the values indicated by the dots, with orange lines denoting the median and the extension
of the whiskers denoting the 95% CI. The shadings (d–f) indicate the 95% CI obtained
from 1′000 random tensile curves generated using the calibrated Bayesian model and
accounting for experimental uncertainty.
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the wound/scar with respect to the unwounded tissue. Concomitantly, the GOH model
parameter C10, capturing the mechanical contribution of the non-collagenous ground
substance, also appears significantly affected by wound healing progression, suggesting
marked softening of this tissue component.

Lastly, we access the calibrated statistical model traces to visualize the tensile curve
posteriors. For each specimen, we randomly generate 1′000 curves that account for
experimental uncertainty, as captured by the modeling parameter Σ, and confirm that the
95% CI of the model-based predictions match the experimental measurements (Fig. 3d–f).
Thus, the determined constitutive parameters capture the tensile response of the tissue
specimens, suggesting that they can be used to infer the time-evolving mechanical
behavior of wounded skin throughout healing.

Influence of wound deformability on the healing outcome

Having established plausible ranges and trends for the mechanical constitutive parameters
of wounded and unwounded tissues, we aim to investigate their influence on the evolution
and outcome of healing. To this end, we first perform wide-range calibration of our
custom FE model using the median values of the constitutive parameters at each time
point, and then vary them according to the determined 95% CI.

To simulate in vivo wound healing, we start from a square skin patch with side length
50 mm in its reference state (Fig. 4a and S1 Video), and set its mechanical constitutive
parameters according to the median values obtained from Bayesian calibration: CSkin

10 =
12 kPa, kSkin

1 = 1.6 MPa, kSkin
2 = 0.88. To limit the computational cost, we restrict

our model to 1/4 of the considered patch and impose symmetric boundary conditions
on x = 0 and y = 0 (cf. Fig. 4 and S1 Video). We approximate in vivo pre-tension by
subjecting the unwounded tissue to an equibiaxial stretch with λx = λy = 1.15 (Fig. 4b
and S1 Video), which is within the broad range of previously-reported post-excisional

Figure 4. Model preparation before solving the wound healing problem. (a) Modeled
square tissue patch, with symmetric boundary conditions along x = 0 and y = 0 and
mechanical constitutive parameters corresponding to unwounded skin. (b) Unwounded
skin patch in its in vivo state (i.v.), characterized by an equi-biaxial pre-stretch that can
be fully released upon unloading. (c) Wound infliction in vivo, obtained by setting the
mechanical parameters in a circular tissue region to extremely small values; the values of
the biochemical and microstructural quantities (α, c, ρ, ϕc) are also adjusted to reflect a
freshly-wounded tissue. Note that, immediately after infliction, the wound enlarges due
to the corresponding release of tissue pre-stretch, as shown in the inset (white dashed
line vs. boundary of the blue region). The reached deformation is made permanent to
ensure that the newly-deposited tissue has no initial stress.
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skin shrinkage values [51,55,56]. Following equilibration, we introduce a wound by setting
the constitutive parameters C10 and k1 in a 5 mm-diameter tissue region located at the
center of the computational domain to extremely small values (Ci.w.

10 = 0.0 kPa and
ki.w.
1 = 0.0 MPa, i.w.: immediately after wounding), while leaving k2 unchanged. Owing

to the stark contrast between the mechanical properties of the wound and those of the
surrounding skin, this causes the wound region to expand (inset in Fig. 4c and S1 Video),
much like the classical problem of a membrane featuring a circular hole and subjected
to tension. Shortly after infliction, at time point d0 (day 0 of the healing time-course,
Fig. 4c), we also impose that the wound exhibits a peak in the first inflammatory
wave (αd0 = 1), which is associated with platelet aggregation, and negligible values for
the second inflammatory wave (cd0 = 0), cell density (ρd0 = 0), and collagen content
(ϕd0

c = 0). Meanwhile, all biochemical and microstructural variables in the surrounding
skin have physiological values: αSkin,d0 = 0, ρSkin,d0 = 1, cSkin,d0 = 1, and ϕSkin,d0

c = 1.
As for the mechanical parameters, we reason that no collagen deposition can occur prior
to day 0. Thus, tissue integrity must be supported by the fibrin clot, leading us to
assume kd01 = ki.w.

1 and to linearly extrapolate the value of Cd0
10 > Ci.w.

10 based on its
values at days 7 and 14 post-wounding (Fig. 3a,b).

We then simulate wound healing over a 21-day period by assuming that the material
parameters vary linearly between their known values at days 7 and 14, and then remain
constant between days 14 and 21 (Fig. 5a,b, S1 Video, and S5 Table). All other model
parameters are set according to the values reported in the Supporting information
(S2 Table–S5 Table) in order to match available literature data on the amount of
cytokines [57–60], cells [57, 61], and collagen [62–65] in murine wounds, cf. Fig. 5d–f
and S1 Appendix, as well as previously published data on changes in the visible wound
area [10], cf. Fig. 5i. Lastly, the parameters of Eq. (9) are selected in order to capture
previously-reported information on the stretch-dependence of human patellar tendon
fibroblasts proliferation [66], cf. S1 Appendix.

Irrespective of the imposed constitutive parameters, α simply decays exponentially to
zero over 7–10 days (Fig. 5c and S1 Video) as prescribed by Eq. (4). Similarly, c increases
from its initial value of 0 to a maximum of about 3.5× at day 2–3 post-wounding, before
returning to its physiological value of 1 in a way that is also largely independent of
mechanics (Fig. 5d and S1 Video). The contours to the right of the chart in Fig. 5d
show the spatial variation of c over time. As expected from the dependence of c on α
(Eq. (5)), and based on the role of diffusion, the profiles for c exhibit a peak at the center
of the wound in the early stages of healing (days 0–3), which diffuses smoothly into the
surrounding tissue over time (days 3–7).

The cell density, ρ, exhibits a peak of about 4.2× around day 7 post-wounding,
followed by gradual decay over time (Fig. 5e and S1 Video). The entire evolution
of ρ lags behind that of c, as also visible in the corresponding contour plots. This
delay originates from both fibroblast chemotaxis (Eq. (3)) and increased proliferation
(Eq. (6)) in response to c. Fibroblasts infiltrating the wound have a key role in depositing
collagen, one of the main microstructural fields in the current model, leading its content
to gradually increase starting from day 7 post-wounding. Remarkably, the collagen
content in the wound peaks at a value of 1.4–1.5×, which is first reached around day 10
and persists until day 21 (Fig. 5f and S1 Video). Note that, while ρ and ϕc explicitly
depend on the mechanical deformation of the tissue (Eqs. (6,7)), varying the mechanical
constitutive parameters according to the determined 95% CI has almost no influence on
Fig. 5e,f. This counterintuitive finding will be discussed in a later section.

The other main microstructural field that we quantify from the FE simulations is the
plastic deformation, θp = λp

aλ
p
s (Fig. 5h), which is governed by Eq. (8) and is intimately

related to the elastic deformation, θe (Fig. 5g). Shortly after injury, the wound void —
enlarged due to in vivo pre-tension — is filled by a fibrin clot made of a virgin material
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Figure 5. Results of wound healing simulations over a 21-day period using the
wound mechanical parameters directly obtained from the Bayesian calibration procedure
(median and 95% CI) and assuming linear variation between known values. (a, b)
Hard-coded time evolution of the mechanical parameters C10/C

Skin
10 and k1/k

Skin
1 , along

with the corresponding values from Bayesian calibration (dots, cf. Fig. 3). (c) Decay
of the first inflammatory signal, α, in the wound. (d–h) Time and spatial evolution
of: second inflammatory signal, c; cell population, ρ; tissue collagen content, ϕc; tissue
elastic stretch, θe; tissue plastic stretch, θp. (i) Time evolution and illustration of wound
area changes. Dots and error bars in (d–i): mean ± standard deviation of previously-
published experimental data, cf. S1 Appendix and Ref. [10].
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that has no initial stress, as ensured by setting its plastic deformation to an initial
value θp = θe, i.w., where θe, i.w. ≈ 2.3 is the elastic deformation of the wound void
after it has enlarged as a consequence of wound infliction, measured with respect to the
reference configuration, X (S1 Video). Correspondingly, the elastic deformation in the
clot is initially 1 and its value throughout healing is affected both by the active stress
applied by the infiltrating fibroblasts and by the growth/shrinkage of the wound tissue
(Eq. (8)). Notably, θe < 1 for the majority of wound healing progression, determining
a progressive decrease of the plastic deformation throughout healing (Fig. 5h and S1
Video). Correspondingly, the visible wound area (Fig. 5i) decreases drastically over the
first 10 days post-wounding, before stabilizing or even slightly increasing towards the
end of the considered 21-day period. Note that, unlike the amount of elastic or plastic
deformation in the wound, its size is typically measured in wound healing experiments,
allowing our model to be compared to quantitative data such as those presented in
Ref. [10].

Remarkably, the temporal evolution of the fields directly associated with deformation
is strongly influenced by the constitutive behavior of the wound ECM. Both the plastic
deformation and wound area are smaller/larger for softer/stiffer ECMs, while the influence
of C10 and k1 on the elastic deformation is more complex and depends on the ratio
between the ECM deformability in the wound and that of the surrounding skin. Indeed,
when the wound ECM is softer than the surrounding skin for the majority of the healing
time-course (lower bound curves in Fig. 5), the infiltrating cells can easily contract the
wound, resulting in a strong initial decrease in θe — until a minimum of about 0.7 around
day 7 — that yields a drastic reduction in θp, as prescribed by Eq. (8). Around day 14,
the plastic deformation has practically vanished in such case, so that the active stress
reduction associated with the downregulation of c and ρ allows the tissue to approach its
physiological elastic deformation, ϑph. Conversely, when the wound ECM is consistently
stiffer than the surrounding tissue (median and upper bound curves in Fig. 4), the effect
of the active stresses on the wound deformation is mitigated, resulting in a more modest
reduction of θp during the early stages of healing, which never approaches the value of
1. This leads to a much more modest increase in wound deformation when the active
stresses are subsequently reduced, such that θe never approaches ϑph in this case.

The present wide-range model calibration allows recapitulating the temporal evolution
of several key aspects of wound healing, such as infiltration of cytokines and fibroblasts,
collagen deposition, as well as the size and deformation of a developing scar. As such,
our model offers a versatile platform to address the plausibility of alternative hypotheses
concerning the biomechanical and mechanobiological pathways involved in wound healing.
A first example is provided by the present analysis, demonstrating that wound ECM
deformability can have a major influence on the healing outcome by significantly affecting
the wound contraction profiles.

Linking the wound mechanical behavior to tissue microstructure

Having established a reliable model of wound progression, we now aim to propose
plausible links between the emergent mechanical behavior of the healing tissue and the
microstructural fields that, in turn, depend on the biochemical fields. Hence, we turn
our attention to replacing the hard-coded evolution of wound mechanical properties by
constitutive hypotheses. Collagen being among the major determinants of soft tissue
biomechanics [8], a common approach in the literature [67–70] — which we have also
previously followed [37,38] — is to make k1 proportional to ϕc. In addition, our material
parameter calibration indicated a clear reduction of the value of C10, capturing the
mechanical behavior of the tissue non-collagenous ground substance, throughout healing
(Fig. 3a). Accordingly, we posit that C10 might represent the mechanical contribution
of the fibrin clot that is formed at the onset of the healing response and is gradually
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depleted by the infiltrating cells via fibrinolytic enzymes and MMPs [5]. Thus, we
introduce a microstructural field encoding the wound fibrin content, ϕw

f , and assume a
purely decaying temporal evolution mimicking that of collagen:

ϕ̇w
f = −(dϕw

f
+ ρ c dϕw

f ,ρ,c)ϕ
w
f , (14)

where dϕw
f
defines the extent of spontaneous fibrin decay and dϕw

f ,ρ,c defines the magnitude
of cell-mediated fibrin depletion, which we assume to be affected by c in line with the
overall modulation of cell activity by cytokines. Note that the microstructural field ϕw

f

is specific to the wound, hence the superscript w. Here, we set dϕw
f
= dϕc

and choose

dϕw
f ,ρ,c to ensure that most fibrin decays prior to day 7 (Fig. 6c). Similar to the classical

link between k1 and ϕc, we also assume proportionality of Cw
10 to ϕw

f , leading to the
following relations between tissue mechanics and microstructure:

Cw
10 = ϕw

f CClot, d0
10 ,

k1 = ϕc k
Skin
1 .

(15)

In Eq. (15), CClot, d0
10 is the value of C10 in the wound right after the blood clot has

formed, such that Cw
10 = CClot, d0

10 when ϕw
f = 1 and Cw

10 = 0 when ϕw
f = 0. Conversely,

C10 in the surrounding unwounded tissue is assumed constant throughout healing and
set equal to the baseline skin value (C10 = CSkin

10 ). On the other hand, kSkin
1 is the value

of k1 for an unwounded tissue, such that k1 = kSkin
1 when ϕc = 1 (physiological value).

To address the plausibility of the constitutive hypotheses in Eqs. (14, 15), we simulate
the evolution of C10 and k1 throughout wound healing (cf. S2 Video), in relation to the

respective baseline values, CSkin
10 and kSkin

1 . Notably, selecting CClot, d0
10 = 300 kPa, which

is in line with previously-reported shear modulus values for venous thrombi [71], allows
capturing the experimentally-informed evolution of C10/C

Skin
10 in the wound (Fig. 6d),

supporting a dependence on ϕw
f . Conversely, the strong increase in k1 throughout healing,

which we inferred from Bayesian parameter calibration, is not adequately captured by a
proportional dependence on ϕc. Indeed, even when varying the parameter Ωb

ϕc
in the

range of 0.5–2.0× to account for possible variability in collagen production (Fig. 6e), the
predicted values of k1 hardly exceed the unwounded baseline (Fig. 6f). Importantly, this
limitation does not affect the model ability to represent the temporal evolution of the
diffusible fields c (Fig. 6a) and ρ (Fig. 6b), or its ability to capture visible wound area
changes (Fig. 6g).

Based on the inadequacy of a proportional link between k1 and ϕc, we hypothesize
that this constitutive relation should additionally account for the progressive maturation
of the newly-formed collagen network. Indeed, alterations in the degree and type of
crosslinking have been reported to affect the emergent mechanical behavior of soft tissues
such as tendons [72], uterine cervix [73], and skin wounds [10]. For simplicity, we focus
on the degree of network crosslinking and consider a nonlinear relation between k1 and
ϕc, mediated by a crosslinking agent, ξc:

k1 = ϕc ξ
a
c k

Skin
1 , (16)

where a ≥ 1 is a phenomenological exponent controlling the degree of tissue nonlinearity
associated with a given crosslinking. To prescribe the temporal evolution of ξc, which
constitutes an additional microstructural field in our model, we reason that crosslink
formation should be positively correlated with ϕc, since a higher collagen content should
provide increased opportunities for physico-chemical interactions, and that the degree of
network crosslinking cannot increase indefinitely with ϕc but should exhibit a saturating
behavior given the finite size of crosslinks. On the other hand, the amount of crosslinks
could be reduced spontaneously, as a consequence of stochastic unbinding [74], or
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Figure 6. Results of wound healing simulation over a 21-day period for alternative
links between the tissue collagen content, ϕc, and the mechanical parameter k1, and
alternative values of the parameter Ωb

ϕc
that controls collagen production by cells. (a–d)

Temporal evolution of second inflammatory signal, c, cell population, ρ, wound fibrin
content, ϕw

f , and mechanical parameter C10/C
Skin
10 for either considered constitutive

link. These quantities do not depend explicitly on ϕc, hence we report them only once.
(e–g) Temporal evolution of tissue collagen content, ϕc, mechanical parameter k1/k

Skin
1 ,

and wound area change resulting from assuming that k1 is proportional to ϕc. (h–j)
Temporal evolution of collagen crosslinking, ξc, mechanical parameter k1/k

Skin
1 , and

wound area change resulting from assuming that k1 depends nonlinearly on ϕc via ξc.
Dots and error bars in (a,b,e,g,j): mean ± standard deviation of previously-published
experimental data, cf. S1 Appendix and Ref. [10]. Dots in (d,f,i): values of C10/C

Skin
10

and k1/k
Skin
1 obtained from Bayesian calibration, cf. Fig. 3.

indirectly, via depletion of some fibers within the ECM [75]. Accordingly, we express
the source term for ξc as:

ξ̇c =
pξc,ϕc

Kξc,ϕc + ξc
ϕc −

(
dξc + d

ξc,ϕ̇c
− ϕ̇c

−)
ξc, (17)

where pξc,ϕc defines the natural forward rate of collagen crosslinking, Kξc,ϕc determines
the saturation of ξc in reponse to ϕc, dξc is the spontaneous decay rate for crosslinks,
selected to ensure homeostasis of ξc in unwounded physiological conditions, and d

ξc,ϕ̇c
−

defines the relation between collagen fiber depletion and the associated crosslink depletion,
which relates to the average number of crosslinks per collagen fiber.

Under the constitutive hypotheses in Eqs. (16, 17), collagen crosslinking increases
concomitantly with ϕc during wound healing, from its initial value of 0 at the onset of
wound healing to a supra-physiological value of 1.1–1.4× (depending on the value of
Ωb

ϕc
) that is mostly preserved throughout days 10–21 post-wounding (Fig. 6h). Selecting
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a value a = 10 for the exponent in Eq. (16) allows our model to capture the strong
increase and subsequent stabilization of k1 during the proliferation and remodeling stages
of healing (Fig. 6i), while continuing to recapitulate previously-measured changes in
the visible wound area (Fig. 6j). Importantly, the temporal evolution of the diffusible
biochemical fields, of the fibrin content, and of the mechanical parameter C10 in the
wound are largely unaffected by the assumed link between k1 and ϕc (cf. S3 Video),
since the only possible dependence of these quantities on k1 is through the mechanical
deformation of the wounded tissue, which we have already established to have a minor
influence on ρ and ϕc in our model. Also note that the nonlinear relation between k1
and ϕc results in an increased sensitivity of k1 to the modeling parameter Ωb

ϕc
(Fig. 6i

vs. Fig. 6f), allowing us to ascribe at least part of the experimental variability in k1
to potential specimen-specific differences in terms of collagen content and its degree of
crosslinking.

A closer look at mechano-biological signals: stretch vs. stiffness

Thus far, we have discussed the influence of wound deformability on the healing outcome
and linked the emergent mechanical parameters to the biochemical and microstructural
fields. In both cases, we have assumed that cell proliferation and collagen deposition
depend on the elastic tissue deformation, as measured by θe, via the function Ĥ.
Selecting the parameters of Ĥ according to our previous works [37, 38] and to match
available experimental data on the influence of stretching on fibroblast proliferation [66]
yielded a surprisingly modest sensitivity of ρ and ϕc on θe, cf. Fig. 5e,f and Fig. 6b,c.
Since fibroblasts are known to be mechanosensitive, we now turn our attention to the
mechano-biological pathway that links cell function to the mechanical state of the ECM.
Specifically, we progressively increase the strength of this coupling to test its effect. Note
that, for each considered value of Ωm, we also adjust the coefficients ctgt, dρ, and ϕc so
that physiological homeostasis is achieved in the unwounded tissue.

Surprisingly, increasing the value of Ωm = Ωm
ρ = Ωm

ϕc
in Eqs. (6,7) appears to

strongly mitigate fibrosis, leading to a marked decrease in ρ, ϕc, and ξc (Fig. 7b,d,e). In
turn, reduced cell infiltration mitigates the active stresses and the corresponding elastic
pre-stretch in the wound (θe, cf. Fig. 7c), leading to decreased area reduction over time
(Fig. 7f). Slower cell infiltration in the wound also delays fibrin degradation, resulting in
a slower decay for C10 (Fig. 7g). Concomitantly, the reduction in ϕc and ξc determines a
marked decrease in k1 (Fig. 7h), which does not even reach the unwounded baseline value
when the mechano-biological feedback is increased to Ωm = 0.8, cf. S4 Video. Moreover,
the emergent mechanical behavior of mature scar tissue (day 21 post-wounding) under
uniaxial tensile conditions, evaluated analytically using Eq. (2), appears significantly
softer with larger Ωm (Fig. 7i). Taken together, these results indicate that positing a
primary dependence of cell activity on ECM deformation might not allow capturing
the onset of scar fibrosis. Importantly, this result follows from imposing an initially
stress-free fibrin clot, implying an initially much smaller elastic deformation in the wound
compared to the physiological state (Fig. 7c) and yielding sub-physiological values for
Ĥ. As shown in S2 Appendix, this leads the source term sρ to decrease when Ωm is
increased if ρ ≥ 1, as also reflected by the trends in Fig. 7.

To capture the enhanced tissue fibrosis that would be expected when strengthening
the mechano-biological coupling [23, 24], we revisit the definition of Ĥ according to
the widely accepted notion that stiffness can play a major role in regulating fibroblast
activity [76–78]. Specifically, we assume that the mechanical parameter k1 provides a
proxy of tissue stiffness and adopt once again the same definition for Ĥρ and Ĥϕc

:

Ĥ = Ĥ(c, kc1, k
ph
1 , γk1) =

c

1 + exp
(
−γk1

kc
1−kph

1

kph
1

) , (18)
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Figure 7. Results of wound healing simulation over a 21-day period for stretch-mediated
mechanosensitivity and alternative values of the coupling strength, as controlled by
the parameter Ωm. Temporal evolution of: second inflammatory signal, c, (a); cell
population, ρ, (b); tissue elastic stretch, θe (c); tissue collagen content, ϕc, (d); collagen
crosslinking, ξc, (e); wound area change (f); mechanical parameters C10/C

Skin
10 (g) and

k1/k
Skin
1 (h). The wound healing outcome in terms of tissue mechanical behavior is

visualized by evaluating its tensile response at day 21 post-wounding (i).

where kph1 = kSkin
1 is the physiological value of k1, i.e. that of unwounded skin, kc1 is the

local value of k1, influenced by collagen deposition and crosslinking (Eq. (16)), and γk1

controls the slope of Ĥ around its midpoint, kc1 = kph1 , with a role analogous to that of
γe in Eq. (9). Unlike Eq. (9), Eq. (18) also depends on c, linking the mechanosensitivity
of cell proliferation and collagen deposition to ECM inflammation and reflecting the
involvement of inflammatory pathways in tissue fibrosis [23].

As visible in Fig. 8, the mechanobiological coupling encoded by Eq. (18) induces
a marked increase in ρ, ϕc, and ξc (Fig. 8b,d,e and S5 Video) when the value of
Ωm = Ωm

ρ = Ωm
ϕc

is increased, contrary to what observed in Fig. 7. The higher cell density
also yields larger active stresses and stronger ECM contraction (Fig. 8c), enhancing the
wound area reduction over time (Fig. 8f and S5 Video) and causing faster depletion
of the fibrin clot, which results in a more rapid decay of C10 (Fig. 8g and S5 Video).
Concomitantly, the increase in ϕc and ξc determines a marked increase in k1 (Fig. 8h
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Figure 8. Results of wound healing simulation over a 21-day period for stiffness-
mediated mechanosensitivity and alternative values of the coupling strength, as controlled
by the parameter Ωm. Temporal evolution of: second inflammatory signal, c, (a); cell
population, ρ, (b); tissue elastic stretch, θe (c); tissue collagen content, ϕc, (d); collagen
crosslinking, ξc, (e); wound area change (f); mechanical parameters C10/C

Skin
10 (g) and

k1/k
Skin
1 (h). The wound healing outcome in terms of tissue mechanical behavior is

visualized by evaluating its tensile response at day 21 post-wounding (i).

and S5 Video) and a corresponding stiffening of the emergent mechanical behavior for a
21-day-old scar tissue (Fig. 8i and S5 Video). Unlike for the previous mechanobiological
coupling, the k1 increase resulting from a larger value of Ωm now triggers a positive
feedback loop encoded by Eq. (18). In fact, for the extreme case of Ωm = 0.8 (S6 Video),
this loop causes ρ, ϕc, ξc, and thus k1, to maintain sustained overexpression with respect
to their physiological baseline values. This aspect is further analyzed in S3 Appendix,
where we examine the equilibrium points of an ODE system derived from Eqs. (6, 7,
16–18), which can be considered representative of a 0-dimensional tissue region without
biochemical field diffusion (Eq. (3)) or remodeling (Eq. (8)). Our analysis shows that
Ωm affects the number of equilibrium points for the system, and setting Ωm = 0.8 leads
to a bi-stable system. Thus, the wound can reach a supra-physiological steady state,
indicative of permanent fibrosis, while the surrounding unwounded tissue evolves toward
the physiological steady state.
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Discussion

Computational models of cutaneous wound healing are gaining increasing popularity as
promising tools in bioengineering and clinical contexts, e.g. personalized medicine [29,79]
and in silico clinical trials [80]. However, recent advances in the representation of the
biochemical processes underlying tissue repair have not been paralleled by similar
developments in the description of the wound mechanics, mainly hindered by scant
experimental evidence. In this study, we proposed to overcome these limitations by
leveraging one of the very few available experimental datasets on the evolution of murine
wound biomechanics throughout healing [39].

In order to determine constitutive model parameters for wounded and unwounded skin,
and quantify their variability, we have established a novel hierarchical Bayesian inverse
analysis procedure that is broadly applicable towards determining sets of inter-related,
specimen-specific mechanical parameters from corresponding experimental data (Figs. 2–
3). Despite the large variability intrinsic to biological tissue properties, our approach
allowed identifying overall trends for the wound constitutive parameters, highlighting
clear softening of the non-collagenous ground substance throughout healing (Fig. 3a)
and sustained stiffening of the collagenous ECM with respect to the unwounded baseline
(Fig. 3b); we interpret the latter as indicative of wound/scar fibrosis.

Aiming to establish a versatile in silico tool to test alternative hypotheses on the
bio-mechanical and mechano-biological pathways involved in wound healing, we then
calibrated our systems bio-chemo-mechanobiological FE model [37,40] to recapitulate the
temporal evolution of several key biochemical and morphological aspects of murine wound
healing over a 21-day period (Fig. 5). Altering the tissue biomechanical parameters
according to the 95% CI obtained from the Bayesian calibration procedure allowed us to
assess their influence on the healing outcome in terms of wound permanent contracture
and visible area changes. Specifically, we observed that softer/stiffer wounds develop into
smaller/larger scars with reduced/increased permanent deformation (Fig. 5), highlighting
a cell-mediated mechanism whereby the wound ECM mechanics influences the outcome
of the tissue repair processes.

Next, we used our model to propose bio-mechanical constitutive links for the emer-
gent mechanical parameters of wounded tissue (C10, k1), starting from the underlying
microstructural protein content (ϕw

f , ϕc), whose spatial and temporal evolution is deter-
mined by the biochemical (c, ρ) and mechanical (θe, θp) fields. In stark contrast with
several previous works [67–70], we found that a simple proportional relation between
tissue stiffness and collagen content is unable to explain the changes in the mechanical
parameters k1 that we derived from experimental data. Conversely, a nonlinear relation
captures the strong increase and subsequent stabilization of k1 during the proliferation
and remodeling stages of healing (Fig. 6), and allows ascribing at least part of the
experimental variability in k1 to potential specimen-specific differences in ϕc and ξc.
In line with previous works on the mechanics of collagen and actin networks, whose
emergent response depends nonlinearly on crosslink density [81–83], our constitutive
hypothesis was based on a power law, which we speculate to have a microstructural origin.
Indeed, murine wound/scar tissue has been reported to feature an increased proportion
of collagen crosslinks associated with fibrotic tissue with respect to the unwounded
baseline [10, 84]. Similarly, the ratio between such crosslinks and those typical of soft
connective tissues was upregulated in idiopathic pulmonary fibrosis, as were the density
of mature crosslinks and the tissue stiffness, but not the collagen content [85]. Further
supporting our modeling approach, the mature/immature crosslink ratio correlated
positively with changes in the mechanical stiffness of lateral collateral ligament following
injury [72], suggesting a dominant role of tissue ‘quality’ over its ‘quantity’ towards
determining tissue fibrosis.

Lastly, we have leveraged our model to analyze the mechano-biological coupling from
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the mechanical state of the wound to the fibroblast proliferation and collagen deposition.
In line with ubiquitous clinical evidence of the role of mechanical forces within tissue
fibrosis [23–26], we expected that increasing this coupling would enhance cell infiltration,
collagen deposition, and thus increase k1 in the wound bed, ultimately exacerbating scar
fibrosis. However, we found that a deformation-driven link between cell activity and
the ECM mechanical state — supported by several works on stretch mechanosensitivity
in fibroblasts [20, 21] — led to mitigated scarring, owing to the sub-physiological de-
formations of the wound ECM (Fig. 7). On the other hand, extensive recent work in
cell mechanobiology has highlighted a strong sensitivity of fibroblast activity to ECM
stiffness [76–78,86] through a pathway involving integrin-mediated adhesion [77,87, 88],
which we have also recently used to explain stretch-mediated mechanosensitivity in
cells by combining Bell’s adhesion kinetics with the typical nonlinear strain-stiffening
of collagenous ECMs [89]. Indeed, considering stiffness-driven cell mechanosensitiv-
ity (Fig. 8) led all markers of tissue fibrosis included in our model (ϕc, ξc, k1) to be
overexpressed when increasing the coupling strength, suggesting that the nature of
fibroblast mechanosensing and its involvement in wound healing remain open questions.
Interestingly, for the strongest coupling that we considered (Ωm = 0.8), the wound and
the surrounding skin evolved towards different steady states, suggesting irreversible
changes in the scar tissue. This result, obtained by analyzing bifurcations in the ODE
system comprising the key evolution equations of our FE model (S3 Appendix), matches
the evidence that injured tissues can never regain the properties of native skin [10,13–15].

This study explored several what if scenarios that challenge our fundamental under-
standing of the interplay between the biological, chemical and physical events involved in
wound healing. However, it is not without limitations. First, while we have informed the
model with experimental data, we have also neglected a few key aspects of wound healing.
We focused on the evolving mechanics of the rebuilding dermal tissue, ignoring the
role of keratinocytes within wound epithelialization and that of endothelial cells within
angiogenesis. Both cell types are known to strongly affect the outcome of wound healing,
e.g. by stimulating fibroblast function [18,90], so that including them in our model would
contribute to a broader and deeper understanding of the tissue repair process. Second,
we have ignored any possible role of tissue anisotropy and three-dimensional geometries
— both in the wound and in the surrounding skin — due to the lack of corresponding
experimental information. Future experimental investigations of wound healing biome-
chanics should specifically address these aspects, providing invaluable quantitative data
for further model developments. We have also considered a continuum representation
of the tissues, which can provide an accurate description of their mechanics but is only
one of the strategies for modeling wound healing. Since biological processes such as cell
mechanosensing might be better captured by computational models at smaller scales, e.g.
discrete fiber network and agent based models, a natural future development of this work
is to include a coupled multi-scale approach. Finally, a key result of this study is the
proposition of a nonlinear link between the emergent mechanical response of the wound
tissue and its collagen content. While this is not surprising, given the known network-like
characteristics of collagenous tissues, the exponent a that we have used in Eq. (16) was
selected arbitrarily and with the specific goal of matching the available experimental data.
Future work should focus on including a physically-based link between the emergent
mechanical behavior of the newly-formed collagenous networks and microstructural
parameters such as the ratio between various collagen isoforms, the density, type, and
kinetics of crosslinks, relevant network statistics (e.g. fiber diameters, stiffness, length
between crosslinks), as well as the possible mechanical role of non-collagenous proteins
(e.g. proteoglycans and glycoproteins).
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Conclusion

Motivated by its potential relevance within bioengineering and clinical contexts, we have
presented a calibrated systems bio-chemo-mechanobiological FE model of wound healing
progression that accounts, for the first time, for the local changes in stiffness of the
wounded tissue. The time-evolving mechanical characteristics of the repairing skin were
inferred based on a novel, broadly applicable Bayesian inverse analysis procedure. The
uncertainty propagation step following calibration allowed us to investigate the direct
dependence between the local changes in wound stiffness to macroscopic contraction upon
healing. The versatility of our model towards formulating and testing biomechanical and
mechanobiological hypotheses was demonstrated by evaluating alternative links between
the wound microstructural composition and its emergent mechanical behavior, as well
as by discussing the implications of stretch- vs. stiffness-dominated mechanobiological
coupling towards explaining the onset of irreversible scar fibrosis.
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Supporting information

S1 Fig Convergence of ELBO for hierarchical Bayesian model calibrations.
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S2 Fig Hierarchical Bayesian model calibration for unwounded skin.
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S3 Fig Hierarchical Bayesian model calibration for 7-day-old wounds.
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S4 Fig Hierarchical Bayesian model calibration for 14-day-old wounds.
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S1 Video. Simulation of wound healing progression with hard-coded me-
chanical parameters evolving linearly between the experimentally-informed
median values, and strain-driven mechanosensing with Ωm = 0.01.

S2 Video. Simulation of wound healing progression assuming that the
mechanical parameter k1 depends linearly on the collagen content, and
strain-driven mechanosensing with Ωm = 0.01.

S3 Video. Simulation of wound healing progression assuming a power law
linking the mechanical parameter k1 to the collagen content, and strain-
driven mechanosensing with Ωm = 0.01.

S4 Video. Simulation of wound healing progression assuming a power law
linking the mechanical parameter k1 to the collagen content, and strain-
driven mechanosensing with Ωm = 0.8.

S5 Video. Simulation of wound healing progression assuming a power law
linking the mechanical parameter k1 to the collagen content, and stiffness-
driven mechanosensing and Ωm = 0.01.

S6 Video. Simulation of wound healing progression assuming a power law
linking the mechanical parameter k1 to the collagen content, and stiffness-
driven mechanosensing and Ωm = 0.8.
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S1 Appendix. Literature data for wound biochemistry and mechanobiology.
To perform wide-range calibration of our custom FE model, we derive temporal

evolutions of the biochemical fields c, ρ, and ϕc from published data on full-thickness
excisional wounds in wild type mice (diameter: 3–8 mm). Unless numerical values are
explicitly reported, we extract them from published charts using the web-based tool
‘WebPlotDigitizer’ [91]. For studies featuring measurement replicates, we focus on their
average at each available time point. When multiple data from different studies are
available for the same time point, we quantify and display their average and standard
deviation (cf. Figs. 5-6 and Fig. A1.1).

To inform the temporal evolution of c, we consider TGF-β1 as a reliable indicator of
the second inflammatory wave progression, owing to its undisputed role as the growth
factor with the broadest spectrum of actions on cell activity within wound healing [59].
Focusing on experimental studies reporting the evolution of TGF-β1 throughout healing
and the corresponding baseline values in unwounded tissue [57–60], we obtain the
temporal evolutions in Fig. A1.1a.

For the cell content, ρ, we focus on previous studies reporting the number of fibroblasts
in wounded and unwounded tissue [57, 61], and obtain the temporal evolutions in
Fig. A1.1b.

For the collagen content, ϕc, we consider measurements of wound hydroxyproline
content [62–65] and obtain the corresponding collagen amount per mass of wet tissue
according to the relation:

ϕ∗
c =

4H

0.13πD2TP
, (A1.1)

where H is the hydroxyproline mass measured in a tissue biopsy of diameter D, thickness
T , and density P , while 0.13 is a conversion factor corresponding to the typical percentage
of hydroxyproline within collagen [92]; in line with previous measurements, we take
P = 1.1 mgmm−3 [93]. Using a similar approach, we also estimate the average collagen
content in unwounded murine skin to be ϕ∗,Skin

c = 4.9% [64, 94–99], leading to the
normalized wound collagen contents shown in Fig. A1.1c and in Figs. 5-6.

For the dependence of cell activity on tissue deformation, we consider previous in
vitro data on the proliferation of human patellar tendon fibroblasts under uniaxial
cyclic stretch of increasing magnitude [66]. For comparability with our study, where we
simulate tissue biaxial stretching from a physiological deformation state, we assume that
the data in Ref. [66] can be interpreted as representative of fibroblast overproduction

Figure A1.1. Temporal evolution of cytokines, c, cells, ρ, and collagen content, ϕc,
according to several published studies (colored translucent dots connected by dashed
lines showing trends). The data points for comparison with simulations are obtained
by averaging information at corresponding time points obtained from different studies
(black dots and error bars: mean ± standard deviation; dashed lines show trends).
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induced by a tissue overstretching θe/θph ∼ (λover/λref )2, where λover are the uniaxial
stretch values used in Ref. [66] and λref = 1 is the corresponding reference value (no
stretch). To determine the overexpression of ρ for an unwounded tissue under stretch,
we consider the ODE system comprising Eqs. (5–7) and predict the values of c, ρ, and ϕc

after 210 days of application of an areal deformation θe. Specifically, we set α = 0 and
select all parameters except for Ωm = Ωm

ρ = Ωm
ϕc

according to S3 Table and S4 Table.
Since we are interested in stretch-mediated mechanosensing, we adopt the definition of
Ĥ in Eq. (9). As shown in Fig. A1.2, increasing/decreasing the tissue stretch around its
physiological value results in increased/decreased fibroblast production, in a way that
depends on the value of Ωm. Since values of Ωm in the range of 0.005− 0.02 well capture
the experimental data in Ref. [66], we select Ωm = 0.01 as the reference value for this
study.

Figure A1.2. Dependence of fibroblast production on tissue stretch for alternative
values of the coupling parameter Ωm, in comparison with experimental data (black dots
connected by a dashed line).
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S2 Appendix. Sensitivity of sρ to Ωm for sub-physiological elastic stretch.
In Fig. 7, we have shown that assuming a stretch-mediated mechanobiological coupling

yields a marked decrease in ρ and other variables in the wound when increasing the
strength of the coupling (Ωm), a behavior that we have explained in terms of the sub-
physiological elastic deformation in the wound that results from imposing an initially
stress-free fibrin clot. Here, we further analyze the link between ρ and Ωm by analytically
computing the derivative of the source term in Eq. (6), sρ, with respect to the parameter
defining the coupling strength, Ωm:

∂sρ
∂Ωm

= ρ pρ,n

(
1− ρ

Kρ,ρ

)
Ĥ(θe, ϑph, γe)− ρ

∂dρ
∂Ωm

, (A2.1)

where dρ depends on Ωm through the homeostasis constraint imposed considering an
unwounded and physiologically-loaded tissue

dρ = pρ,n

(
1 +

Ωb

Kc,c + 1
+

Ωm

2

)(
1− 1

Kρ,ρ

)
, (A2.2)

such that

∂sρ
∂Ωm

=
ρ pρ,n
2

[
2Ĥ(θe, ϑph, γe)

(
1− ρ

Kρ,ρ

)
−
(
1− 1

Kρ,ρ

)]
. (A2.3)

Since we are considering sub-physiological values of the elastic deformation, we can
use the inequality Ĥ(θe, ϑph, γe) < 1/2 to write

∂sρ
∂Ωm

<
pρ,n
2Kρ,ρ

ρ (1− ρ) , (A2.4)

whose right-hand side term provides an upper bound for ∂sρ/∂Ω
m and has sign depending

on ρ, indicating that sρ will decrease for increasing Ωm for values of ρ ≥ 1 when θe < ϑph.
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S3 Appendix. Equilibrium points for ODE system comprising Eqs. (6,7,17).
In Fig. 8, we have observed that a sufficiently large value of Ωm, e.g. Ωm = 0.8,

induces sustained overexpression of ρ, ϕc, ξc, and k1 throughout the simulated wound
healing time span. To provide an explanation for this peculiar behavior, we study the
equilibrium of the ODE system comprising Eqs. (6,7,17), where the definitions of k1 and
Ĥ are given in Eq. (16) and Eq. (18), respectively. This system of equations can be
regarded as descriptive of a 0-dimensional tissue region lacking any biochemical field
diffusion (Eq. (3)) or ECM remodeling (Eq. (8)). Note that we exclude Eq. (5) from
the ODE system, and thus set c = 1, corresponding to the assumption of a negligible
contribution of the secondary inflammation wave on the long-term tissue behavior.
Focusing on the region of space ρ × ϕc × ξc = [0; 8] × [0; 3] × [0; 3], we set the model
parameters to the values indicated in S3 Table and S4 Table and identify the loci of
points satisfying the conditions sρ = 0, ϕ̇c = 0, and ξ̇c, respectively. More explicitly, we
solve each of the following nonlinear algebraic equations for alternative choices of Ωm,
knowing that the system will be in equilibrium when all equations are satisfied:

0 = pρ,n

(
1 +

Ωb
ρ

Kρ,c + 1
+ Ωm Ĥ

)(
1− ρ

Kρ,ρ

)
ρ− dρ ρ

0 = pϕc,n

(
1 +

Ωb
ϕc

Kϕc,c + 1
+ Ωm Ĥ

)
ρ

Kϕc,ρ + ϕc
− (dϕc

+ ρ dϕc,ρ,c)ϕc

0 =
pξc,ϕc

Kξc,ϕc + ξc
ϕc −

[
dξc + d

ξc,ϕ̇c
− (dϕc + ρ dϕc,ρ,c)ϕc

]
ξc

(A3.1)

First, we consider the default value Ωm = 0.01. As shown in Fig. A3.1a, the surfaces
corresponding to sρ = 0 (blue), ϕ̇c = 0 (green), ξ̇c = 0 (red) intersect along multiple lines,
but there are only 2 points where all of them are satisfied, i.e. where the system is in
equilibrium. One is the trivial solution (ρ, ϕc, ξc) = (0, 0, 0), capturing the notion that a
system without cells or collagen will not spontaneously accumulate any of these quantities
nor crosslinks. Instead, the non-trivial solution (ρ, ϕc, ξc) = (1, 1, 1) corresponds to the
physiological condition and will act as attractor for any tissue in supra-physiological
conditions, indicating that the wound behavior shown in Fig. 8 for Ωm = 0.01 will
eventually evolve towards the physiological state of the unwounded tissue. Similar
observations hold for the case Ωm = 0.4, Fig. A3.1b. Conversely, when Ωm = 0.8,
the system exhibits 3 non-trivial and 1 trivial equilibrium points (Fig. A3.1c). This
phase-space topology implies a bi-stable system, with one stable point continuing to
be the physiological equilibrium, and the other stable point corresponding to a fibrotic
state. To confirm this, we consider the results of our FE simulations for Ωm = 0.8 and
represent the streamlines on planes of constant ξc, ρ, or ϕc, both for the unwounded
(far field) and wounded tissue at day 21 post-wounding. As visible in Fig. A3.1d–f, the
equilibrium point at (1, 1, 1) acts as an attractor for the far field (black dot), which will
thus eventually return to the physiological state. On the contrary (Fig. A3.1g–i), the
day-21 values of ρ, ϕc, and ξc place the wounded tissue (red dot) in a different landscape
region, where the attractor is the point at (ρ, ϕc, ξc) = (6.1, 2.4, 1.7), leading the system
towards a supra-physiological steady state that corresponds to permanent fibrosis.
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Figure A3.1. Stability analysis of an ODE system representative of long-term tissue
progression. (a–c) Loci of points independently satisfying the conditions sρ = 0 (blue

surface), ϕ̇c = 0 (green surface), and ξ̇c (red surface), as well as their intersections (cyan,
magenta, and yellow lines). Line intersections identify equilibrium points for the ODE
system. The phase-space topology, and thus the number of equilibrium points, is affected
by the value of the coupling parameter Ωm. (d–f) Streamlines on planes of constant ξc,
ρ, or ϕc for unwounded skin tissue and Ωm = 0.8. The black dot indicates the state of
skin at day 21 post-wounding, as obtained from FE simulations. (g–i) Streamlines on
planes of constant ξc, ρ, or ϕc for wounded tissue and Ωm = 0.8. The red dot indicates
the state of the wound at day 21 post-wounding, as obtained from FE simulations.
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S1 Table. Search ranges for Bayesian model parameters.

Model parameter Search range

αC10
0.0001− 1 MPa

αk1
0.1− 1′000 MPa

αk2 0.1− 1′000
αΣ 0.0001− 1 MPa
σC10

0− 2
σk1 0− 2
σk2

0− 2
σΣ 0− 1

S2 Table. Global simulation parameters.

Parameter Value Notes

Total simulation time 504 h = 21 d From range of available data
Simulation time step 0.05 h Smaller than τλp

a
= τλp

s

Domain size in X: LX 50 mm 10Dw

Domain size in Y : LY 50 mm 10Dw

Wound diameter: Dw 5.0 mm Ref. [39]
Skin thickness 1.7 mm Ref. [10]
Physiological stretch along x: λx 1.15 Within range from Refs. [51, 55,56]
Physiological stretch along y: λy 1.15 Within range from Refs. [51, 55,56]
Physiological value of θe: ϑph 1.3225 = λxλy
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S3 Table. Parameters for diffusible biochemical fields.

Parameter Value Notes

Dα,α 0.075 mm2/h Assumed equal to Dc,c

dα 0.01 1/h Assumed equal to dc
Dc,c 0.075 mm2/h Ref. [37]
dc 0.01 1/h Ref. [37]
pc,α 0.23 1/h Selected to match peak in c
pc,ρ 1.5 1/h Ref. [100]
Kc,c 0.5 Assumed
Dρ,ρ 0.035 mm2/h Ref. [37]
Dρ,c 8× 10−5 mm2/h Ref. [37]
pρ,n 0.034 1/h Ref. [37]
Ωb

ρ 5 Selected to to match peak in ρ

Ωm
ρ 0.01 (Range: 0− 0.8) Varied in Figs. 7-8

γe 5 Ref. [37]
γk1 0.016 Assumed
Kρ,ρ 30 Selected to to match peak in ρ
Kρ,c 10 Selected to to match peak in ρ
Kf,c 10−5 Ref. [37]
fρ,n 0.04 MPa/mm3 Ref. [37]
Ωb

f 1 Ref. [37]

S4 Table. Parameters for microstructural fields.

Parameter Value Notes

pϕc,n 0.002 1/h Ref. [37]
Ωb

ϕc
2.5 Selected to to match peak in ϕc

Ωm
ϕc

= Ωm
ρ Assumed

Kϕc,c 10−4 Ref. [37]
Kϕc,ρ 1.06 Ref. [37]
dϕc,c,ρ 4.85× 10−4 1/h Ref. [37]
pξc,ϕc

1 1/h Assumed
Kξc,ϕc 0.5 Assumed
d
ξc,ϕ̇c

− 1 Assumed

a 10 Assumed
dϕw

f
= dϕc Assumed

dϕw
f ,ρ,c 0.00325 1/h Selected to ensure fibrin decay by day 7

τλp 0.485 Ref. [37]
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S5 Table. Emergent constitutive biomechanical parameters.

Parameter Value Notes

CSkin
10 12 kPa Median value from Fig. 3a

kSkin
1 1.6 MPa Median value from Fig. 3b

kSkin
2 0.88 MPa Median value from Fig. 3c

Ci.w.
10 0.0 kPa Due to tissue removal as part of wounding

ki.w.
1 0.0 MPa Due to tissue removal as part of wounding

CClot, d0
10 300.0 kPa Assumed in line with Ref. [71]

Cd0, lb
10 2.5 kPa Linear extrapolation from values at days 7 and 14

Cd7, lb
10 1.2 kPa Lower bound from 95% CI in Fig. 3a

Cd14, lb
10 0.0 kPa Lower bound from 95% CI in Fig. 3a

kd0, lb1 0.0 MPa = ki.w.
1 since no collagen is deposited prior to day 0

kd7, lb1 0.6 MPa Lower bound from 95% CI in Fig. 3b

kd14, lb1 1.2 MPa Lower bound from 95% CI in Fig. 3b

Cd0,m
10 51.2 kPa Linear extrapolation from values at days 7 and 14

Cd7,m
10 25.9 kPa Median value from Fig. 3a

Cd14,m
10 0.6 kPa Median value from Fig. 3a

kd0,m1 0.0 MPa = ki.w.
1 since no collagen is deposited prior to day 0

kd7,m1 19.0 MPa Median value from Fig. 3b

kd14,m1 9.0 MPa Median value from Fig. 3b

Cd0, ub
10 167.2 kPa Linear extrapolation from values at days 7 and 14

Cd7, ub
10 94.3 kPa Upper bound from 95% CI in Fig. 3a

Cd14, ub
10 21.4 kPa Upper bound from 95% CI in Fig. 3a

kd0, ub1 0.0 MPa = ki.w.
1 since no collagen is deposited prior to day 0

kd7, ub1 86.2 MPa Upper bound from 95% CI in Fig. 3b

kd14, ub1 148.1 MPa Upper bound from 95% CI in Fig. 3b
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