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ABSTRACT

Motivation: Genomes of multicellular systems are compartmentalized and dynamically folded within the
three-dimensional (3D) confines of the nucleus in order to facilitate gene regulation. Among the 3D-genome
mapping technologies currently in use, droplet-based, barcode-linked sequencing (ChIA-Drop) has the unique
capability to capture complex multi-way chromatin interactions at the single-molecule level. ChIA-Drop data gives
rise to higher-order interaction networks in which nodes represent genomic fragments while (hyper)edges capture
observed physical contacts. The problem of interest is to use this data to create a “dictionary” of interaction
patterns (subnetworks) that accurately describe all global chromatin structures and associate dictionary elements
with cellular functions.
Results: To construct interpretable chromatin dictionaries, we introduce a new algorithm termed online convex
network dictionary learning (online cvxNDL). Unlike classical dictionary learning for image or text processing,
online cvxNDL uses special subgraph sampling methods and produces interpretable subnetwork representatives
corresponding to “convex mixtures” of patterns observed in real data. To demonstrate the utility of the method,
we perform an in-depth study of RNAPII-enriched ChIA-Drop data from Drosophila Melanogaster S2 cell lines.
Our results are two-fold: First, we show that online cvxNDL allows for accurate reconstruction of the original
interaction network data using only a collection of roughly 25 dictionary elements and their “representatives”
directly observed in the data. Second, we identify collections of interaction patterns of chromatin elements shared
by related processes on different chromosomes and those unique to certain chromosomes. This is accomplished
through Gene Ontology (GO) enrichment analysis that allows us to associate dictionary element representatives
with functional properties of their corresponding chromatin region and in the process, determine what we call the
“span” and “density” of chromatin interaction patterns.
Availability and Implementation: The code and dataset are available at: https://github.com/
jianhao2016/online_cvxNDL/
Contact: milenkov@illinois.edu

1 Introduction

Eukaryotic genomes represent complex 3D structures that are compartmentalized and dynamically folded and
unfolded within the nucleus. This topological organization of the genome plays an important role in cellular
processes and gene regulation by allowing distal regulatory elements to enhance or suppress the expression of target
genes1, 2, and it has been widely studied using traditional “bulk” sequencing data3, 4.

3D genome mapping technologies are used to record how various genomic loci engage in short- and long-
range interactions. They include traditional Hi-C3, Micro-C5, used for capturing genome-wide unbiased chromatin
topology, ChIA-PET6, 7 and its variants PLAC-seq and HiChIP8, 9, used for extracting chromatin interactions
mediated by a specific protein factor. These methods effectively map the 3D structure of chromatin interactions onto
a 2D contact map of different loci of the chromosome. However, due to the proximity ligation step, the methods can
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detect only pairwise contacts and hence fail to capture potential simultaneous interactions involving two or more
genomic loci. Moreover, these technologies operate on a population of millions of molecules, thereby providing
information about population averages only. To overcome such limitations, recent works have focused on developing
ligation-free single-cell or single-molecule methods such as GAM10, (sc-)SPRITE11, 12, and ChIA-Drop13.

Similar to commercially available scRNA-seq platforms, ChIA-Drop13 adopts a droplet-based barcode-linked
technique to reveal multiway chromatin interactions at a single molecule level. The chromatin complexes are first
encapsulated into gel-bead droplets, each with a unique barcode, and then sequenced and mapped to the reference
genome. ChIA-Drop can simultaneously capture chromatin interactions of multiple loci and reveal the kinetics of
loop formation14. ChIA-Drop data also reveals network patterns within single topologically associated domains
(TADs) as well as some long-distance interactions across TADs (including ∼ 15% of all chromatin complexes), which
cannot easily be inferred from other data13. Single-molecule chromatin interactions can elucidate many cellular
regulation and developmental phenomena. Still, at this point, efficient and biologically interpretable computational
methods for analyzing long-distance multiplexed chromatin interactions at a single-cell or single-molecule level are
lacking. Importantly, no associations between specific distal and proximal interactions topologies and cell functions
are known.

Dictionary learning (DL), a form of (nonnegative) matrix factorization (MF), refers to learning a set of atoms
(dictionary elements) that can approximate a matrix via (sparse) linear combinations of dictionary elements. DL is
used for clustering, denoising and extraction of low-dimensional patterns from complex high-dimensional inputs15–22.
For example, in image processing, dictionaries comprise collections of pixels whose linear combinations can be
used to represent image patches (subimages). Standard DL methods23, 24 have interpretability and scalability issues,
and are mostly used with unstructured data. To address the interpretability issue, convex MF (CMF) was introduced
in25. CMF requires the dictionary elements to be convex combinations of real data points. As an example, in the
CMF setting, a dictionary element cannot be an arbitrary point that lacks a biological meaning or does not have a
well connected topology. Instead, it has to be of the form of a convex combination of a small set of real data points.
To scale the methods, DL and convex DL were adapted to an online setting26, 27. DL for network-structured data was
introduced in28. Network DL (NDL) works with subnetwork samples that are generated via Monte Carlo Markov
Chain (MCMC) subnetwork sampling28–30. The gist of NDL is to identify a small number of network dictionary
elements that best explain network interactions of the whole, global network in an efficient and accurate manner.
Current online NDL algorithms do not provide directly interpretable results for biological networks.

We propose online cvxNDL, which is a new NDL method coupled with an MCMC sampling technique29

that also imposes “convexity constraints” on the sampled subnetworks and uses the notion of “dictionary element
representatives”. The convex constraints force each learned dictionary element to be explainable through convex
combination of a small subset of real data subnetwork adjacency matrices. For example, a dictionary element
could be given as 50% of one observed interaction, and 50% of another. The two subset interactions constitute the
representatives for the dictionary element. Hence, in the context of chromatin interaction networks, representatives
are real data interaction subnetworks, and this allows one to use Gene Ontology (GO) enrichment analysis to
uncover the joint functionality of genomic regions covering the representatives. Since GO terms are ordered
hierarchically in the form of directed acyclic graphs31, with more general terms at the higher level closer to the
root and more specific terms at the lower levels close to the leaves, the hierarchy can be used to select the most
relevant (highest convex weight) representatives. These representatives, corresponding to real interaction patterns,
can subsequently be associated with cellular functions. They may also be used to determine what we term “the
span of interaction” (the largest linear genomic distance between interacting chromatin fragments) and “density of
interaction” (which captures the density of interacting fragments within the span). Both concepts are rigorously
defined in the Supplement Section 5.5.1.

We test our online cvxNDL algorithm on different chromosomes of the ChIA-Drop data of embryonic Drosophila
Melanogaster Schneider 2 (S2) phagocytic cell lines, and provide biological interpretations of the chromatin
interaction dictionary elements underlying certain developmental functions. Our results reveal different representative
interaction patterns on L and R chromosomal arms, as well as different interaction spans and complexities for the
2R,L and 3R,L chromosomes. In addition to providing the first dictionaries of interaction in chromatin structures,
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online cvxNDL can be used in other areas of computational biology where the goal is to find small dictionaries of
subnetwork interactions that describe a complex, global network. DL can also be used for compressing network
data, which will be considered in a future work.

2 Methods
Notation: Sets of consecutive integers are denoted by [l] = {1, . . . , l}. Capital letters are reserved for matrices (bold
font) and random variables (RVs) (regular font). Vectors are denoted by lower-case underlined letters. For a matrix
of dimension d ×n over the reals, A ∈ Rd×n, A[i, :] is used to denote the ith row and A[:, i] the ith column of A. The
entry in row i, column j is denoted by A[i, j]. Similarly, x[l] is used to denote the lth coordinate of a deterministic
vector x ∈ Rd . Furthermore, ∥A∥1 = ∑i, j |A[i, j]| and ∥A∥2

F = ∑i, j A[i, j]2.
A simple network G = ([n],A) is an ordered pair of sets, the node set [n], and the set of edges given via their

adjacency matrix A; here, A[i, j] = A[ j, i] ∈ {0,1}, indicating the presence or absence of an undirected edge between
vertices i, j. In addition, Col(A) stands for the set of columns of A, while cvx(A) stands for the convex hull of
Col(A).

Online DL: We first formulate the online DL problem. Assume that the input data samples are generated by
a hidden random process and organized in matrices (Xt)t∈N ∈ Rd×n indexed by time t. For n = 1, Xt reduces to a
column vector that encodes a d-dimensional signal. Given an (online, sequentially observed) data stream (Xt)t∈N,
the goal is to find a sequence of dictionary matrices (Dt)t∈N,Dt ∈ Rd×K , and codes (ΛΛΛt)t∈N,ΛΛΛt ∈ RK×n, such that
when t → ∞ almost surely we have

∥Xt −DtΛΛΛt∥2
F → min

D,ΛΛΛ
EX∥X−DΛΛΛ∥2

F . (1)

This expected loss in the previous equation can be minimized by iteratively by updating ΛΛΛt and Dt every time a new
data sample Xt is observed. The approximation error of D for a single data sample X and with sparsity-imposing
regularizers is chosen as

l(X,D) = min
ΛΛΛ∈RK×n

∥X−DΛΛΛ∥2
F +λ∥ΛΛΛ∥1. (2)

Furthermore, the empirical ft and surrogate loss f̂t for D are defined as:

ft(D) = (1−wt) ft−1(D)+wt l(Xt ,D), t ≥ 1, (3)

f̂t(D) = (1−wt) f̂t−1(D)+wt(∥Xt −DΛΛΛ∥2
F +λ∥ΛΛΛ∥1), (4)

where wt is a weight that determines the sensitivity of the algorithm to the newly observed data. The online DL
algorithm first updates the code matrix ΛΛΛt by solving Equation (2) with l(Xt ,Dt−1), then updates the dictionary
matrix Dt by minimizing (4) via

Dt = argmin
D∈Rd×r

(
Tr(DAtDT )−2Tr(DBt)

)
, (5)

where At = (1−wt)At−1 +wtΛΛΛtΛΛΛ
T
t and Bt = (1−wt)Bt−1 +wtΛΛΛtXT

t are the aggregated history of the input data
and their codes. For simplicity, we set wt =

1
t .

To add convexity constraint to our dictionaries Dt , we introduce for each dictionary element a representative
set (region) X̂(i)

t ∈ Rd×Ni , i ∈ [K], where Ni is the size of the representative set for dictionary element Dt [:, i]. In a
nutshell, the representative set for a dictionary element is a small subcollection of real data samples observed up
to time t that best explain the dictionary element they are assigned to. The list of representative is updated after
observing a sample the inclusion of which provides a better estimate of the dictionary element compared to the
previous list. Since the representative list is bounded in size, if a new sample is included, an already existing sample
has to be removed (see Figure 1). Formally, the optimization objective is of the form:

min
D∈cvx(X̂),X̂

f̂t(D) = min
D∈cvx(X̂),X̂

(
1− 1

t

)
f̂t−1(D)+

1
t

(
∥Xt −DΛΛΛt∥2

F +λ∥ΛΛΛt∥1
)
. (6)
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Figure 1. Illustration of the update procedure for the representative regions (lists) and dictionary elements. Upon
observing a data sample online, the distance of the sample to each of the current dictionary elements is computed.
Then, the sample is assigned to the representative region of the closest dictionary element. Data points in the
corresponding representative region are updated to include or exclude the new sample according to the improvement
or degradation in the quality of the dictionary element. Note that data points are adjacency matrices of real
subnetworks.

MCMC sampling of subnetworks: For NDL, it is natural to let the columns of Xt be vectorized adjacency
matrices of n subnetworks. Hence it is required to efficiently sample meaningful subnetworks from large networks.
For large networks, global random sampling is computationally demanding and produces mostly disconnected
subnetworks. To address this problem, we proceed as follows. In image DL problems, samples can be generated
directly from the image using adjacent rows and columns. However, such a sampling technique cannot be used for
network data: Selecting nodes at random, along with their one-hop neighbors, may produce subnetworks of vastly
different sizes and does not capture important long-range interactions. Also, it is difficult to determine how to trim
these subnetworks. Sampling a fixed number of nodes uniformly at random from sparse networks and observing the
induced subnetwork produces disconnected subnetworks with high probability. Instead, in this case, we consider
“subnetwork sampling” introduced in28, 29. Namely, we fix a template network F = ([k],AF) of k nodes, sample a
random copy of F from G uniformly at random, and record the induced subnetwork. To achieve this, we use the
MCMC sampling algorithm in28, which seeks subnetworks induced by k nodes in the original input network G , with
the constraint that the subnetwork contains the template topology. Given an input network G = (V,A) and a template
network F = ([k],AF), we define a set of homomorphisms as a vector of the form (with the assumption that 00 = 1):

Hom(F,G ) =

{
x : [k]→ [n]

∣∣∣∣∣ ∏
1≤i, j≤k

A[x[i],x[ j]]AF [i, j] = 1

}
.

For each homomorphism x ∈ Hom(F,G ), denote its induced adjacency matrix by Ax, where Ax[a,b] = A[x[a],x[b]],
1 ≤ a,b ≤ k. An example homomorphism is shown in Figure 2, where the input network G contains n = 9 nodes
and the template network F is a star network that contains k = 4 nodes. One homomorphism in this case is
x[a] = 9,x[b] = 6,x[c] = 4,x[d] = 7, which gives rise to an adjacency matrix Ax as depicted (for details, see the
Supplement Section 5.2 Algorithm 1). Our choice of template network for subsequent analysis is a k-chain, a
directed path from node 1 to k; chains are a simple and natural choice for networks with long average path lengths,
such as chromatin interaction networks. This is the same choice of template as used in standard NDL.

To efficiently generate a sequence of sample adjacency matrices Axt
from G to use matrix samples Xt , the

MCMC sampling algorithm gradually changes the template network based on previous samples. An illustration of
the sampling procedure is shown in Figure 3. In a nutshell, given a homomorphism xt at step t, we first choose a node
v from the neighborhood of xt [1] with probability P1(v) =

A[xt [1],v]
∑c∈V A[xt [1],c]

,v ∈V . Then, we compute the “probability of
acceptance” β , and draw a value u ∈ [0,1] uniformly at random. If u > β , then we accept x(t+1)[1] = v, otherwise
we reject v and set x(t+1)[1] = xt [1]. From x(t+1)[1] we perform a k−1 step random walk to generate x(t+1)[2] to
x(t+1)[k] (for details, see the Supplement Section 5.2 Algorithm 2).

Online convex NDL (online cvxNDL): We start by initializing the dictionary D0 and representative sets
{X̂(i)

0 }, i ∈ [K], for each dictionary element (see the Supplement Section 5.2 Algorithm 3). After initialization, we
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Figure 2. Subnetwork sampling and the notion of a homomorphism. In the adjacency matrix, a black field indicates
1, while a white field indicates 0.

Figure 3. Workflow of the MCMC sampling algorithm, explaining how to generate from the sample at time t, xt , a
sample at time (t +1), x(t+1).
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perform iterative optimization to generate Dt and {X̂(i)
t }, i ∈ [K], to reduce the loss at round t. At each iteration, we

use MCMC sampling to obtain a k-node random subnetwork as sample Xt , and then update the codes α t based on
the dictionary Dt−1 by solving the optimization problem in Equation (2). Then we assign the current sample to a
representative set of the closest dictionary element, say Dt−1[:, j], and then jointly update its representative set X̂( j)

t
and all dictionaries Dt as shown in Figure 1 (see the Supplement Section 5.2 Algorithm 4).

The output of the algorithm is a dictionary matrix DT ∈ Rk2×K , where each column is a flattened vector of
a dictionary element of size k× k, and the representative sets {X̂(i)

T }, i ∈ [K], for each dictionary element. Each
representative set X̂(i)

T ∈ Rk2×Ni contains Ni history-sampled subnetworks from the original network as its columns.
We can can easily convert both the dictionary elements and representatives back to k× k adjacency matrices. Due to
the added convexity constraint, each dictionary element DT [:, j] at the final step T has the interpretable form:

DT [:, j] = ∑
i∈[N j]

w j,iX̂
( j)
T [:, i], s.t. ∑

i∈[N j]

w j,i = 1,w j,i ≥ 0, i ∈ [N j], j ∈ [K]. (7)

The weight w j,i, i ∈ [N j] is the convex coefficient of the ith representative of dictionary element DT [:, j]. Dictionary
elements learned from the data stream can be used to reconstruct the original network by multiplying it with the code
αT obtained from Equation (2). The jth index of αT correspond to the contribution of dictionary element DT−1[:, j]
to the reconstruction. Similarly to29, we can also define the importance score for each dictionary element as:

γ(i) =
At [i, i]2

∑ j∈[K] At [ j, j]2
. (8)

3 Results

We applied our online cvxNDL algorithm on both synthetic dataset and the ChIA-Drop data from Drosophila
Melanogaster S2 cells on a dm3 reference genome (see Figure 5 for an illustration of the ChIA-Drop pipeline). Due
to space limitations, the results pertaining to synthetic data and parts of the real data are deferred to the Supplement
Section 5.3- 5.5.

For analysis, we grouped 500 consecutive bases to form vertices for each chromosome. The ChIA-Drop data
comprises information from chromosomes chr2L, chr2R, chr3L, chr3R, chr4 and chrX. Since chr4 and chrX are
relatively small and most of the functional genes are located in chr2L, chr2R, chr3L, and chr3R, we focused our
experiments on the remaining four chromosomes. To create the network, we converted the multiway interactions (i.e.,
hyperedge measurements) into cliques, following the well-established protocol of clique expansion for generating
networks from hypernetworks32, 33. For all experiments, we set the number of dictionary elements to K = 25, and
used template subnetworks of the form of paths, each including 21 nodes (e.g., 21×500 bases). The initialization
step involves MCMC sampling of 500 subnetworks from the networks obtained as above, so that each dictionary
element has at least 10 representatives. The maximum number of online steps (i.e., samples) is set to 1 million (see
also Figure 4). Note that our algorithm is the first method for online learning of convex (interpretable) network
dictionaries, and the ground truth dictionaries are not known as they are also being studied for the first time.
We therefore compare online cvxNDL with NMF, CMF and online NDL, but only in terms of global network
reconstruction accuracy using the derived dictionaries. More comprehensive results are reported in the Supplement
Section 5.4.

As a consequence of the convexity constraint, every dictionary element has a set of representatives that
corresponds to a real observed subnetwork whose nodes can be mapped back to actual genomic loci. This allows us
to find genes that overlap with at least one node included in some representative. Using these “covering genes”,
we run the GO enrichment analysis from http://geneontology.org under annotation category “Biological
Process” and with the reference list “Drosophila Melanogaster” for each dictionary element. We selected results
with false discovery rate (FDR) < 0.05 as our candidate set for enriched GO terms. Note that there may be some
inherently enriched GO terms for each dictionary element due to the sampling bias, learned from samples coming
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Figure 4. Workflow of online cvxNDL.

from the same chromosome. To remove this bias, we ran another GO enrichment analysis with all genes in each
chromosome and used that results to filter out the undesired background GO terms in each dictionary element.

We also used the hierarchical structure of GO terms34. There, GO terms represent nodes in a directed acyclic
graph while arcs indicates their relationship. A child GO term is considered more specific than and parent GO term.
But since a child node may have multiple parents nodes, we further process our results as follows. For each GO
term, i) we first find all the paths between it and the root node (which is “Biological Process” in our setting), and ii)
we remove all intermediate parent GO terms from its enriched GO terms set. By iteratively repeating this filtering
process for each dictionary element, we arrive at a list of most specific GO terms for each dictionary element. For
more details behind the GO enrichment analysis, see the Supplement Section 5.5.

Discussion: The dictionary elements for Drosophila ChIA-Drop data, chr2L, chr2R, chr3R and chr3L, obtained
via online cvxNDL are shown in Figure 6. A comparison of the dictionaries constructed using online cvxNDL and
other methods for chr2L is shown in Figure 7. We color-coded each representative based on the actual genomic
location of their cover genes; we also used the weights in the convex combination DT [:, j] = ∑i∈[N j] w j,iX̂

( j)
T [:, i] to

color-code each dictionary element as well. Therefore, each dictionary element doe not only provide an interaction
pattern but also captures the genomic locations involved, along with their importance factor. We also report the span
of representatives, defined as the largest distance between genomic fragments (nodes) covered by the representative
in Figure 8. The span captures the distances amongst interacting elements and the reported results are organized by
chromosome. Corresponding results for the densities are reported in the Supplement Section 5.5.2. In comparison,
classical NMF only captures partial structural patterns, and does not allow mapping back the results to actual
genomic regions. It is hence hard to give a biological interpretation of each dictionary element; online cvxNDL
and NDL both use a k-chain as the template. But while the dictionary elements obtained via CMF have large
spreads, those generated by online cvxNDL have smaller yet still significant spreads that are likely to capture
meaningful long-range interactions. Compared to online NDL, online cvxNDL also has a more balanced distribution
of importance scores. For example, in Figure 7(b), dict_0 has score 0.459, while the scores in Figure 7(d) are all
≤ 0.085. Results for other chromosomes are in the Supplement Section 5.4.1.

Reconstruction accuracy: Once a dictionary is constructed, one can use the network reconstruction algorithm
from29 to reconstruct a subnetwork or the whole network by locally approximating subnetworks via dictionary
elements. Accuracy of approximation in this case measures the “expressibility” of the dictionary with respect to
the network. All methods, excluding randomly generated dictionaries used for illustration only, can accurately
reconstruct the input network. Only subtle and nearly insignificant visual differences are observable in off-diagonal
connections representing TADs, which are shown in the Supplement Section 5.4.2. For a more quantitative
assessment, the average precision recall score for all methods are plotted in Table 1, and a zoomed in sample based
reconstruction result is shown in the Supplement Figure 16. As expected, random dictionaries have the lowest scores
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Figure 5. Generation of ChIA-Drop data. Chromatin samples are linked and fragmented (1st row), guided to a
microfluidic device for sequencing (2nd row); reads are mapped to the reference to identify interaction complexes.

across all chromosomes, while all other methods are comparable. Hence, without reducing accuracy, online cvxNDL
scales to large datasets due to its online nature and in addition allows for precise interpretation of the results. More
details are provided in the Supplement Section 5.4.

Table 1. Average Precision Recall for different DL methods on all chromosomes and synthetic datasets, described
in the Supplement Section 5.3- 5.4.

chr2L chr2R chr3L chr3R Synthetic

Online cvxNDL 0.9954 0.9986 0.9830 0.9876 0.9747
Online NDL 0.9955 0.9986 0.9834 0.9880 0.9728
NMF 0.9952 0.9985 0.9829 0.9873 0.9774
CMF 0.9951 0.9985 0.9824 0.9870 0.9731
Random Dict. 0.0007 0.2547 0.5276 0.0796 0.1922

GO enrichment results: For each chromosome, we counted how many GO terms are enriched in each of its
dictionary elements. The results are reported in Table 2, along with the corresponding importance score of each
dictionary element in parenthesis. We labeled the top 5 dictionary element with most enriched GO terms using bold
font. The total number of enriched GO terms for each chromosome found by combining all dictionary elements, as
well as the number of unique GO terms, are reported in the last two rows. From Table 2, one can see that dictionary
elements with 0 enriched GO terms all have small importance scores (mostly below 0.04, and the largest possible
value 0.059). Dictionary elements with higher importance scores all tend to involve a larger number of enriched GO
terms. A detailed collection of tables describing the structure of each dictionary elements and its number of enriched
GO terms can be found in the Supplement Section 5.5.2. We also report on the most frequently enriched GO terms
and least frequently enriched GO terms on each chromosome, and present the corresponding dictionary elements
which were found to be enriched. The most frequent GO terms were associated with regulatory functions, reflecting
the role of RNA Polymerase II. Table 3 illustrates the findings for chr3R, while the results for other chromosomes
are presented in the Supplement Section 5.5.1.
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Table 2. Number of enriched GO terms for each dictionary element, along with the corresponding importance score
(in brackets). The top-5 dictionary elements according to their number of enriched GO terms are labeled in boldface
font for each chromosome. The last two rows show the total number of enriched GO terms and the number of unique
enriched GO terms for each dictionary element, respectively.

chr2R chr2L chr3L chr3R

dict_0 2 (0.077) 4 (0.044) 0 (0.022) 15 (0.046)
dict_1 0 (0.019) 1 (0.041) 3 (0.035) 9 (0.042)
dict_2 20 (0.085) 0 (0.035) 0 (0.049) 13 (0.062)
dict_3 0 (0.030) 12 (0.083) 3 (0.045) 7 (0.041)
dict_4 0 (0.059) 40 (0.085) 3 (0.074) 20 (0.066)
dict_5 15 (0.074) 0 (0.014) 6 (0.074) 2 (0.038)
dict_6 19 (0.044) 0 (0.025) 1 (0.028) 2 (0.029)
dict_7 24 (0.061) 1 (0.037) 1 (0.029) 14 (0.059)
dict_8 31 (0.057) 17 (0.050) 0 (0.020) 25 (0.046)
dict_9 0 (0.017) 0 (0.030) 0 (0.023) 1 (0.049)
dict_10 0 (0.018) 0 (0.014) 2 (0.023) 5 (0.040)
dict_11 2 (0.022) 1 (0.042) 0 (0.027) 0 (0.021)
dict_12 1 (0.029) 2 (0.019) 1 (0.021) 16 (0.085)
dict_13 0 (0.014) 9 (0.082) 16 (0.080) 57 (0.016)
dict_14 6 (0.055) 5 (0.013) 0 (0.009) 6 (0.049)
dict_15 0 (0.038) 23 (0.021) 10 (0.068) 8 (0.016)
dict_16 2 (0.030) 0 (0.018) 14 (0.077) 0 (0.019)
dict_17 0 (0.045) 0 (0.020) 9 (0.051) 0 (0.015)
dict_18 0 (0.030) 8 (0.064) 4 (0.023) 0 (0.014)
dict_19 0 (0.016) 7 (0.068) 0 (0.037) 0 (0.027)
dict_20 0 (0.024) 6 (0.041) 0 (0.025) 124 (0.121)
dict_21 27 (0.070) 0 (0.019) 0 (0.018) 10 (0.041)
dict_22 1 (0.046) 8 (0.019) 4 (0.074) 4 (0.022)
dict_23 0 (0.014) 10 (0.094) 3 (0.029) 0 (0.016)
dict_24 0 (0.025) 2 (0.022) 0 (0.040) 4 (0.017)

Total # of GO terms 150 156 80 342
# of unique GO terms 100 103 67 223

4 Conclusion
We proposed a new online convex network dictionary learning algorithm for analyzing complex chromatin interaction
patterns in ChIA-Drop data. Combining efficient MCMC sampling algorithms with alternative optimization
constrained by convexity conditions, we implemented an online cvxNDL method that offers biological interpretability
not possible by that of standard NDL. We also performed GO enrichment analysis that uses filtering based on a GO
hierarchy. The proposed learning method can produce network dictionaries that i) accurately capture the topological
patterns of short- and long-range interactions in the chromatin input network; ii) accurately reconstruct the original
network using as few as 25 dictionary elements; and iii) have biologically interpretable meaning through their GO
terms associated with each dictionary element.
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Table 3. Top-5 enriched GO terms that occur most frequently and least frequently within the span of dictionary
elements for chr3R. Column ‘#’ indicates the number of dictionary elements that show enrichment for the given
GO term. Also we report up to 3 dictionary elements with largest importance score in the dictionary, along with
the density of interactions in the dictionary element ρ and median distance of all adjacent pairs of nodes in its
representatives dmed.

most frequent GO term # Top 3 dictionaries Least frequent GO term # Dictionary

(GO:0001819) Positive regulation of cy-
tokine production

7

ρ=0.126,0.146,0.157

dmed=12791,12830,11930

(GO:0061448) Connective tissue devel-
opment

1

ρ=0.142

dmed=13455

(GO:0008015) Blood circulation 7

ρ=0.126,0.142,0.138

dmed=12791,13455,13674

(GO:0051282) Regulation of sequester-
ing of calcium ion

1

ρ=0.126

dmed=12791

(GO:0045948) Positive regulation of
translational initiation

5

ρ=0.126,0.138,0.162

dmed=12791,13674,12572

(GO:0043123) Positive regulation of I-
kappaB kinase/NF-kappaB signaling

1

ρ=0.204

dmed=12540

(GO:0042177) Negative regulation of
protein catabolic process

5

ρ=0.126,0.142,0.138

dmed=12791,13455,13674

(GO:0007435) Salivary gland morpho-
genesis

1

ρ=0.204

dmed=12540

(GO:0043065) Positive regulation of
apoptotic process

4

ρ=0.126,0.146,0.179

dmed=12791,12830,11748

(GO:0045738) Negative regulation of
DNA repair

1

ρ=0.183

dmed=12493
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(a) chr2L (b) chr2R

(c) chr3L (d) chr3R

Figure 6. Dictionary elements for Drosophila chromosomes 2L, 2R, 3L and 3R obtained using online cvxNDL.
Each subplot contains 25 dictionary elements for the corresponding chromosome and each block in the subplots
corresponds to one dictionary element. The elements are ordered by their importance score.
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(a) NMF (b) Online NDL

(c) CMF (d) Online cvxNDL

Figure 7. Dictionary elements for Drosophila chromosome chr2L generated by NMF (7a), online NDL (7b),
CMF (7c) and online cvxNDL (7d). NMF and CMF are learned off-line, using a total of 20,000 samples. Note that
these algorithms do not scale and cannot work with larger number of samples such as those used in online cvxNDL.
The color-coding is performed in the same manner as for the accompanying online cvxNDL results. Columns of the
dictionary elements in the second row are color-coded based on the genome locations of the representatives. As the
locations can be determined only via convex methods, the top row for NMF and online NDL is black and white.
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(a) chr2L representatives span (b) chr2R representatives span

(c) chr3L representatives span (d) chr3R representatives span

Figure 8. Span of the representatives. Blue lines correspond to chromatin lengths over which interactions are
observed, while the red dots indicating the genome locations of nodes that appear in the representatives. The sizes of
the red dots are indicative of the weight of the representative in the convex combination.
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5 Supplement

5.1 Motivation
Although dictionary learning (DL), a form of (nonnegative) matrix factorization (MF), has been widely used in the
analysis of biological data, effective, efficient and biologically interpretable computational methods for analyzing
long-distance multiplexed chromatin interactions at a single-cell level are still lacking. This is mainly because
most of the classical DL methods are not designed for network data. Furthermore, these interactions cannot be
easily visualized or predicted via classical clustering approaches. This issue is best illustrated by Figure 9, where
a part of the contact graph contains three hidden clusters, colored red, green, and blue35. When using a linear
chromatin order, the particular structure of the clusters is not observable. By rearranging the rows/columns, the
cluster structure becomes apparent within the adjacency matrix. To mitigate this issue, we propose a novel online

(a) Observed adjacency
matrix.

(b) The underlying cluster
structure.

(c) “Reordered” adjacency matrix.

Figure 9. (a) Adjacency matrix of a three-cluster model, where points are arranged in linear order with dense
interactions existing both at short and long-range. (b) The hidden cluster structure. (c) The reordered adjacency
matrix that reveals all interaction classes.

convex network dictionary learning algorithm (online cvxNDL) and imposes “convexity” constraints on the sampled
subgraph patterns to address both the issue of interpretability and scaling for graph-structured data. The approach
and accompanying algorithmic implementations are described in the next section.

5.2 Algorithmic Details
The algorithms presented in this sections describe the detailed steps of the implementations outlined in the Methods
portion (Section 2) of the main text.

5.2.1 MCMC Sampling of Subnetworks
The MCMC sampling algorithm has the goal to generate (sample) subnetworks induced by k nodes in the original
input network G , with the constraint that the subnetwork contains the template F topology. Note that one set of
homomorphisms is defined as a vector of the form (with the assumption that 00 = 1):

Hom(F,G ) =

{
x : [k]→ [n]

∣∣∣∣∣ ∏
1≤i, j≤k

A[x[i],x[ j]]AF [i, j] = 1

}
.

Algorithm 1 outlined how to use rejection sampling to obtain one homomorphism x (an illustrative example is
presented in Figure 2). In this work, the choice of template network is a k-chain, a directed path from node 1 to k;
chains are a simple and natural choice for networks that inherently contain long paths, such as chromatin interaction
networks (since most measure contacts are due to proximity in the linear chromosome order).
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Algorithm 1 Rejection Sampling of Homomorphisms

1: input: Network G = (V,A), template F = ([k],AF) (under the assumption that that there exists at least one
homomorphism F → G ).

2: while true do
3: Sample x = (x[1],x[2], . . . ,x[k]) ∈V k so that x[i]’s are i.i.d.
4: if ∏i≤i, j≤k A[x[i],x[ j]]AF [i, j] > 0 then
5: break
6: end if
7: end while
8: return A homomorphism x : F → G .

Although one can find different homomorphisms from the input G by repeatedly running Algorithm 1, this
approach is computationally expensive. To efficiently generate a sequence of sample adjacency matrices Axt

from G,
the MCMC sampling algorithm gradually changes the sampled subnetwork based on previous samples as described
in Algorithm 2. An illustrative example is shown in Figure 3. This sampling algorithm was introduced in28, 29.

Algorithm 2 The MCMC Sampling Algorithm

1: input: Network G = (V,A), template F = ([k],AF), and one homomorphism x : F → G .
2: Sample v ∈ Neighbor(x[1]) with probability P1(v) =

A[x[1],v]
∑c∈V A[x[1],c] .

3: Compute the acceptance probability β = min
{

∑c∈V A[c,x[1]]
∑c∈V A[x[1],c] ,1

}
.

4: Sample u uniformly at random from [0,1].
5: if u > β then
6: x′[1] = v
7: else
8: x′[1] = x[1]
9: end if

10: for s = 2,3, . . . ,k do
11: Sample w ∈V with probability Ps(w) =

A[x′[s−1],w]
∑c∈V A[x′[s−1],c] .

12: x′[s] = w
13: end for
14: return New homomorphism x′ : F → G .

5.2.2 Online Convex NDL (online cvxNDL)
Our online cvxNDL algorithm consists of two parts: Initialization and iterative optimization. For initialization
(Algorithm 3), we need to compute an initial choice for the dictionary elements D0 and initialize the representative
regions X̂( j)

0 , ∀ j ∈ [K]. Note that we use i.i.d. sampling of homomorphisms only during the initialization step, and
MCMC sampling afterwards. Upon initialization, we iteratively optimize the dictionary and the representative regions
in the next phase (Algorithm 4). The output of the latter algorithm is the final dictionary DT and the corresponding
representative regions for all dictionary elements X̂( j)

T , ∀ j ∈ [K]. Due to the added convexity constraint, each
dictionary element DT [:, j] at the final step T has the following interpretable form:

DT [:, j] = ∑
i∈[N j]

w j,iX̂
( j)
T [:, i], s.t. ∑

i∈[N j]

w j,i = 1,w j,i ≥ 0, i ∈ [N j], j ∈ [K].

The weight w j,i, i ∈ [N j] is the convex coefficient of the ith representative of dictionary element DT [:, j].
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Algorithm 3 Initialization
1: input: Use rejection sampling in Algorithm 1 to sample i.i.d homomorphisms x1,x2, . . . ,xN .
2: For each homomorphism, define an adjacency matrix such that: Axi

[a,b] = A[xi[a],xi[b]]. Flatten the adjacency
matrices into vectors: x1,x2, . . . ,xN , xi ∈ Rm,m = k2 and collect them in X̂ ∈ Rm×N .

3: Run K-means on X̂ to generate the cluster indicator matrix H ∈ {0,1}N×K and determine the initial cluster sizes
(subsequent representative set sizes) Ni, i ∈ [K].

4: Compute D0 and X̂(i)
0 ∈ Rm×Ni , ∀i ∈ [K], according to:

D0 = X̂ H diag(1/N1, . . . ,1/NK)

and summarize the initial representative sets of the clusters into matrices X̂(i)
0 , i = [K].

5: return D0, {X̂(i)
0 }i∈[K].

5.3 Synthetic Data Analysis
We tested our online cvxNDL method on a network (graph) generated by Stochastic Block Model (SBM)35,
containing 150 nodes with 3 clusters of size 25,50,75. Due to the small size of the synthetic set, we fixed the
number of dictionary elements to K = 6, and used a chain of length 11 as our template. In the initialization step
we sampled (collected) 30 subgraphs of the synthetic data, with each dictionary element represented by at least 3
representatives. The maximum number of iterations of the online method was set to 1,000.

We compared online cvxNDL with various baseline methods, including NMF, CMF and online NDL. The
learned dictionary elements for different methods are shown in Figure 10. The dictionary elements in online NDL
and online cvxNDL are ordered by their importance score defined as γ(i) = At [i,i]2

∑ j∈[K] At [ j, j]2
. Each square block in the

subplots indicates one dictionary element in the form of an adjacency matrix. The color-shade reflects the values in
the adjacency matrix, with black corresponding to 1 (the largest value) and white corresponding to 0 (the smallest
value).

From the results we can see that dictionaries generated using NMF only contains partial interaction structures
and are hard to interpret. The two convex methods, CMF and online cvxNDL, contain the template structure in
all learned dictionary elements, and show stronger off diagonal connectivity, which is expected as the input data
has slightly stronger connections between the first and last cluster than other pairs (See Figure 11a). Online NDL
dictionary elements represent “a middle ground” between NMF and online cvxNDL. Dictionary elements 2, 0 and 4
resemble those generated by NMF, while dictionary elements 1, 5 and 3 are similar to the ones generated by online
cvxNDL, although with weaker connectivity. Also, the importance score distributions of online NDL and online
cvxNDL differ substantial. In online NDL, dictionary element 1 in Figure 10b) represents the dominant component
in representations, whereas in online cxvNDL, the top two dictionary elements (dictionary elements 2 and 5 in 10d)
share similar scores and the dictionary elements in general have a more balanced distribution of importance scores.
From the original adjacency we can see that there are indeed two different connectivity patterns in the network
captured by online cvxNDL.

Reconstruction accuracy: To validate the reliability of our learned dictionaries for representing the global
interactions, we reconstructed the whole graph by aggregating the regenerated subgraphs: x̂i = DT α i from the
same MCMC sampling stream. For each method we selected the top-m edges after aggregation to reconstruct
the original adjacency matrix, where m is the number of edges in the original adjacency matrix. The original and
the reconstructed adjacency matrices are shown in Figure 11. For comparison, we also added the reconstructed
adjacency achieved when using random dictionary elements. From the results we can see that all baseline methods,
as well as online cvxNDL, almost perfectly reconstruct the original network, while, clearly random dictionaries do
not capture any meaningful information. We also report the average precision recall score for each method, both for
synthetic and real datasets as listed in Table 4.
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Algorithm 4 Online cvxNDL

1: input: Network G = (V,A), template F = ([k],AF), a parameter λ ∈ R, max number of iterations T , and
number of dictionary elements K.

2: initialization: Compute D0, {X̂(i)
0 }i∈[K] using Algorithm 3. Set A0 = 0, B0 = 0.

3: for t = 1 to T do
4: MCMC sample a homomorphism xt (Algorithm 2). Find its adjacency matrix Axt

[a,b] = A[xt [a],xt [b]] and
flatten it to xt .

5: Update α t according to:

α t = argmin
α∈Rk

1
2
∥xt −Dt−1α∥2

2 +λ∥α∥1. (9)

6: Set At =
1
t

(
(t −1)At−1 +α tα

T
t
)

and Bt =
1
t

(
(t −1)Bt−1 + xt αT

t
)
.

7: Choose the index of the basis it to be updated according to it = argmax j∈[k] α t [ j]

8: Generate the augmented representative regions
{

Ŷ{l}
t

}
l∈[Nit ]∪{0}

:

Ŷ{0}
t = X̂(it)

t−1{
Ŷ{l}

t

}
l∈[Nit ]

: Ŷ{l}
t [ j] =

{
X̂(it)

t−1[ j], if j ∈ [Ni]\ l
xt , if j = l.

(10)

9: Update {X̂(i)
t }i∈[K] and Dt by executing the following two steps

• Compute l⋆, D̂⋆ by solving the optimization problems:

l⋆, D̂⋆ = argmin
l, D s.t.

D[ j]∈cvx
(

X̂( j)
t−1

)
j ̸=it ,

D[it ]∈cvx
(

Ŷ{l}
t

)
1
2

Tr(DT DAt)−Tr(DT Bt).

• Set

X̂(i)
t =

{
Ŷ{l⋆}

t , if i = it
X̂(i)

t−1, if i ∈ [k]\ it ,

Dt = D̂⋆.

10: end for
11: return DT , X̂(i)

T , ∀i ∈ [K].

Table 4. Average Precision Recall for different DL methods for all chromosome and the SBM synthetic dataset.

chr2L chr2R chr3L chr3R Synthetic

Online cvxNDL 0.9954 0.9986 0.9830 0.9876 0.9747
Online NDL 0.9955 0.9986 0.9834 0.9880 0.9728
NMF 0.9952 0.9985 0.9829 0.9873 0.9774
CMF 0.9951 0.9985 0.9824 0.9870 0.9731
Rand. dictionaries 0.0007 0.2547 0.5276 0.0796 0.1922
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(a) NMF (b) Online NDL

(c) CMF (d) Online cvxNDL

Figure 10. Dictionary elements generated by different MF methods on an SBM synthetic dataset. Numbers in
parenthesis are the importance scores for online NDL and online cvxNDL.
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(a) original adjacency (b) online cvxNDL (c) random dictionaries

(d) NMF (e) CMF (f) online NDL

Figure 11. Original adjacency matrix and reconstructed adjacency matrices based on different DL methods and
using random dictionaries.

21/38

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.07.28.501904doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.28.501904
http://creativecommons.org/licenses/by-nc/4.0/


5.4 Results for Baseline Methods Applied to ChIA-Drop Datasets
5.4.1 Dictionary Comparisons
Next, we describe dictionaries and reconstruction results for baseline methods on ChIA-Drop datasets corresponding
to chromosomes chr2L, chr2R, chr3L, and chr3R. The results for online cvxNDL were reported in the main text.

(a) chr2L (b) chr2R

(c) chr3L (d) chr3R

Figure 12. Dictionaries learned by NMF for chr2L, 2R, 3L and 3R.
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(a) chr2L (b) chr2R

(c) chr3L (d) chr3R

Figure 13. Dictionaries learned by CMF for chr2L, 2R, 3L and 3R.
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(a) chr2L (b) chr2R

(c) chr3L (d) chr3R

Figure 14. Dictionaries learned by online NDL for chr2L, 2R, 3L and 3R.
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5.4.2 Reconstruction of ChIA-Drop Contact Maps

(a) Original adjacency matrix (b) Online cvxNDL (c) Random dictionaries

(d) NMF (e) CMF (f) Online NDL

Figure 15. Comparison of network reconstructions obtained using different baseline methods and random
dictionaries for Drosophila chromosome 2L (ChIA-Drop data). (a): The original adjacency matrix; (b, c, d, e, f):
Reconstructed network adjacency matrices with online cxvNDL, random dictionary elements, NMF, CMF and
online NDL, respectively.
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(a) Reconstruction of sample #15657 (b) Reconstruction of sample #8814

(c) Reconstruction of sample #2019 (d) Reconstruction of sample #9632

Figure 16. Reconstructed adjacency matrices for chr2L obtained using different methods and random dictionaries.
OMF stands for Ordinary (Standard) MF.

The reconstructions for 4 randomly selected subnetwork samples are shown in Figure 16, providing a means to
visually assess the accuracy of reconstructed small-scale interactions.
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(a) Original adjacency matrix (b) Online cvxNDL (c) Random dictionaries

(d) NMF (e) CMF (f) Online NDL

Figure 17. Reconstructed network comparisons based on different baseline methods and random dictionaries,
applied on Drosophila chromosome 2R ChIA-Drop Data. (a): The original adjacency matrix. (b, c, d, e, f):
Reconstructed network adjacency matrices with online cxvNDL, random dictionary elements, NMF, CMF and
online NDL.
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(a) Original adjacency matrix (b) Online cvxNDL (c) Random dictionaries

(d) NMF (e) CMF (f) Online NDL

Figure 18. Reconstructed network comparisons based on different baseline methods and random dictionaries,
applied on Drosophila chromosome 3L ChIA-Drop Data. (a): The original adjacency matrix. (b, c, d, e, f):
Reconstructed network adjacency matrices with online cxvNDL, random dictionary elements, NMF, CMF and
online NDL.
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(a) Original adjacency matrix (b) Online cvxNDL (c) Random dictionaries

(d) NMF (e) CMF (f) Online NDL

Figure 19. Reconstructed network comparisons based on different baseline methods and random dictionaries,
applied on Drosophila chromosome 3R ChIA-Drop Data. (a): The original adjacency matrix. (b, c, d, e, f):
Reconstructed network adjacency with online cxvNDL, random dictionary elements, NMF, CMF and online NDL.
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5.5 Gene Ontology Enrichment Analysis
To associate a biological function with each dictionary element, we performed a gene ontology (GO) enrichment
analysis for each element and the corresponding chromosome. Recall that as a results of the convexity constraint,
every dictionary element has its corresponding set of representatives that capture real observed subgraphs which
can be mapped back to actual genomic locations. Of most interest is the set of genes that covers at least one vertex
in at least one of the representatives, as described in Figure 20. Using the set of representative genes, we run the

Figure 20. GO enrichment analysis workflow. Each dictionary element is associated with a collection of real
subnetwork representatives. These comprise nodes that can be mapped to the genome to identify their locations. A
gene is said to cover the node if the DNA fragment corresponding to the node is fully contained within the gene.

GO enrichment analysis in http://geneontology.org under annotation setting“Biological process” and
reference list “Drosophila Melanogaster,” for each dictionary element. For further analysis, we only selected results
with false discovery rate (FDR) < 0.05 and hence obtained candidate sets of enriched GO terms. Note that there
may be inherently enriched GO terms for each dictionary element due to the sampling bias. To remove this bias,
we ran another GO enrichment analysis with all genes on each chromosome and used that results to filter out the
background GO terms for each dictionary element.

We also used the hierarchical structure of GO terms34, in which all GO terms are nodes in a directed acyclic
graph and edges indicates their relationship. A child GO term is considered more specific than and parent GO term.
Since the GO graph is not a strict hierarchy (a child node may have multiple parent nodes), to further improve the
results, we performed the following processing. For each GO term: i) we first found all the paths between the term
and the root node (which is “Biological process” in our setting), and ii) we removed all intermediate parent GO
terms from its enriched GO terms set. By iteratively repeating this filtering process for each dictionary element, we
arrived at a set of most specific GO terms for each dictionary element.

5.5.1 Dictionary Elements Associated with GO Terms
We investigated the most frequently enriched GO terms as well as the least frequently enriched GO terms for each
chromosome, and identified the corresponding dictionary elements where they were found to be enriched. The results
are shown in Tables 5 to 8. For each dictionary element, we computed its density (complexity) ρ via ρ = 1

k2 ∑i, j Di, j

and the median genome distance between all consecutive pairs of nodes, denoted by dmed. The full set of results for
the densities and median distances for all dictionary elements and all chromosomes is provided in Tables 15 and 16.

Note that the Drosophila S2 cells are embryonic cells, and most GO terms found are related to cellular
reproductive process or developmental process, as expected. From the tables one can also see that different dictionary
elements reflect different biological processes and for the same GO term, the dictionary elements share similar
patterns. For example, in Table 5, we can see that dictionary elements 19 and 12 share very similar structural patterns,
and both of them are enriched in biosynthetic processes of antibacterial peptides. On the other hand, dictionary
elements 13 and 8 have a pattern that differs from that of 19 and 12, and they are enriched in dorsal/ventral lineage
restriction processes. We also found that dictionary elements with GO term peripheral nervous system development,
celluar response to organic substance, and neuroblast fate determination have relatively lower density and smaller
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Table 5. Top-5 enriched and least enriched GO terms, i.e., terms that most frequently occur as representative in
dictionary elements of chr2L. Column ‘#’ indicates the number of dictionary elements that show enrichment of the
GO term. We also report the importance scores along with the density of dictionary element ρ and median distance
of all consecutive pairs of nodes in its representatives dmed.

most frequent GO term # top 3 dictionaries least frequent GO term # dictionary

(GO:2000241) regulation of reproductive
process

5

ρ=0.134,0.142,0.161

dmed=9906,8105,10024

(GO:0007485) imaginal disc-derived
male genitalia development

1

ρ=0.142

dmed=8105

(GO:0046716) muscle cell cellular home-
ostasis

4

ρ=0.141,0.161,0.203

dmed=10928,10024,9979

(GO:0008347) glial cell migration 1

ρ=0.132

dmed=8547

(GO:0007422) peripheral nervous sys-
tem development

3

ρ=0.132,0.158,0.147

dmed=8547,8870,10692

(GO:0002920) regulation of humoral im-
mune response

1

ρ=0.142

dmed=8105

(GO:0071310) cellular response to or-
ganic substance

3

ρ=0.134,0.142,0.158

dmed=9906,8105,8870

(GO:0016075) rRNA catabolic process 1

ρ=0.147

dmed=10692

(GO:0007400) neuroblast fate determina-
tion

3

ρ=0.132,0.142,0.147

dmed=8547,8105,10692

(GO:0008258) head involution 1

ρ=0.147

dmed=10692

median node distances than the top-2 enriched GO terms, regulation of reproductive process and muscle cell cellular
homeostasis. The difference in density and median distance is also reflected by the significantly different dictionary
patterns observed, such as for example dictionary element 12 and dictionary element 5; the former element has a
much higher density and median distance than the latter.

There are also a few shared GO terms that are enriched in both chr2L and chr2R (11 shared terms in total), and
in both chr3L and chr3R (3 shared terms in total). The results are reported in Table 9 and 10. We found that there
are very few shared terms between the two chromosomes, when compared to the roughly one hundred uniquely
enriched GO terms for each chromosome. Most of the shared terms also have “similar” patterns (which can be seen
visually or through a simple computation of the ℓ2 distance between their flattened adjacency matrices) of their
corresponding dictionary elements.
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Table 6. Top-5 enriched and least enriched GO terms, i.e., terms that most frequently occur as representative in
dictionary elements of chr2R. Column ‘#’ indicates the number of dictionary elements that show enrichment of the
GO term. We also report the importance scores along with the density of dictionary element ρ and median distance
of all consecutive pairs of nodes in its representatives dmed.

most frequent GO term # top 3 dictionaries least frequent GO term # dictionary

(GO:0030706) germarium-derived
oocyte differentiation

6

ρ=0.140,0.145,0.146

dmed=8764,7651,7158

(GO:0050803) regulation of synapse
structure or activity

1

ρ=0.140

dmed=8764

(GO:0001700) embryonic development
via the syncytial blastoderm

5

ρ=0.145,0.141,0.136

dmed=7651,8251,7085

(GO:0007498) mesoderm development 1

ρ=0.183

dmed=7143

(GO:0007451) dorsal/ventral lineage re-
striction, imaginal disc

4

ρ=0.140,0.136,0.157

dmed=8764,7085,6738

(GO:0010638) positive regulation of or-
ganelle organization

1

ρ=0.145

dmed=7651

(GO:0006964) positive regulation of
biosynthetic process of antibacterial pep-
tides active against Gram-negative bacte-
ria

3

ρ=0.145,0.156,0.202

dmed=7651,8199,7706

(GO:0043277) apoptotic cell clearance 1

ρ=0.136

dmed=7085

(GO:0045476) nurse cell apoptotic pro-
cess

3

ρ=0.141,0.159,0.136

dmed=8251,7882,7085

(GO:0001707) mesoderm formation 1

ρ=0.183

dmed=7143
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Table 7. Top-5 enriched and least enriched GO terms, i.e., terms that most frequently occur as representative in
dictionary elements of chr3L. Column ‘#’ indicates the number of dictionary elements that show enrichment of the
GO term. We also report the importance scores along with the density of dictionary element ρ and median distance
of all consecutive pairs of nodes in its representatives dmed.

most frequent GO term # top 3 dictionaries least frequent GO term # dictionary

(GO:0009631) cold acclimation 2

ρ=0.148,0.152

dmed=10608,8558

(GO:0035070) salivary gland histolysis 1

ρ=0.143

dmed=8849

(GO:0009408) response to heat 2

ρ=0.147,0.152

dmed=8689,8558

(GO:0046843) dorsal appendage forma-
tion

1

ρ=0.147

dmed=8689

(GO:0007616) long-term memory 2

ρ=0.147,0.126

dmed=8689,9978

(GO:0007097) nuclear migration 1

ρ=0.134

dmed=11012

(GO:0061077) chaperone-mediated pro-
tein folding

2

ρ=0.148,0.152

dmed=10608,8558

(GO:0035071) salivary gland cell au-
tophagic cell death

1

ρ=0.143

dmed=8849

(GO:0008587) imaginal disc-derived
wing margin morphogenesis

2

ρ=0.126,0.152

dmed=9978,8558

(GO:0007528) neuromuscular junction
development

1

ρ=0.147

dmed=8689
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Table 8. Top-5 enriched and least enriched GO terms, i.e., terms that most frequently occur as representative in
dictionary elements of chr3R. Column ‘#’ indicates the number of dictionary elements that show enrichment of the
GO term. We also report the importance scores along with the density of dictionary element ρ and median distance
of all consecutive pairs of nodes in its representatives dmed.

most frequent GO term # top 3 dictionaries least frequent GO term # dictionary

(GO:0001819) positive regulation of cy-
tokine production

7

ρ=0.126,0.146,0.157

dmed=12791,12830,11930

(GO:0061448) connective tissue develop-
ment

1

ρ=0.142

dmed=13455

(GO:0008015) blood circulation 7

ρ=0.126,0.142,0.138

dmed=12791,13455,13674

(GO:0051282) regulation of sequestering
of calcium ion

1

ρ=0.126

dmed=12791

(GO:0045948) positive regulation of
translational initiation

5

ρ=0.126,0.138,0.162

dmed=12791,13674,12572

(GO:0043123) positive regulation of I-
kappaB kinase/NF-kappaB signaling

1

ρ=0.204

dmed=12540

(GO:0042177) negative regulation of pro-
tein catabolic process

5

ρ=0.126,0.142,0.138

dmed=12791,13455,13674

(GO:0007435) salivary gland morpho-
genesis

1

ρ=0.204

dmed=12540

(GO:0043065) positive regulation of
apoptotic process

4

ρ=0.126,0.146,0.179

dmed=12791,12830,11748

(GO:0045738) negative regulation of
DNA repair

1

ρ=0.183

dmed=12493
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Table 9. GO terms shared between chr2L and chr2R.

GO_term chr2L dictionaries chr2R dictionaries

(GO:0016325) oocyte microtubule cytoskeleton organiza-
tion

(GO:1901701) cellular response to oxygen-containing com-
pound

(GO:0007298) border follicle cell migration

(GO:0043410) positive regulation of MAPK cascade

(GO:0016049) cell growth

(GO:0035331) negative regulation of hippo signaling

(GO:0051962) positive regulation of nervous system de-
velopment

(GO:0060322) head development

(GO:0007293) germarium-derived egg chamber formation

(GO:0002164) larval development

(GO:0007420) brain development

Table 10. GO terms shared between chr3L and chr3R.

GO_term chr3L dictionaries chr3R dictionaries

(GO:0070373) negative regulation of ERK1 and ERK2
cascade

(GO:0007140) male meiotic nuclear division

(GO:0046777) protein autophosphorylation
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5.5.2 Additional Results
Here we report more detailed results for each dictionary element, including its number of enriched GO terms
(Tables 11, 12, 13, 14), density (Table 15) and median distance (Table 16).

Table 11. Number of enriched GO terms for each dictionary element identified for chr2L.

# GO terms # GO terms # GO terms # GO terms # GO terms

2 15 0 0 0

0 19 2 2 27

20 24 1 0 1

0 31 0 0 0

0 0 6 0 0

Table 12. Number of enriched GO terms for each dictionary element identified for chr2R.

# GO terms # GO terms # GO terms # GO terms # GO terms

4 0 0 23 6

1 0 1 0 0

0 1 2 0 8

12 17 9 8 10

40 0 5 7 2
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Table 13. Number of enriched GO terms for each dictionary element identified for chr3L.

# GO terms # GO terms # GO terms # GO terms # GO terms

0 6 2 10 0

3 1 0 14 0

0 1 1 9 4

3 0 16 4 3

3 0 0 0 0

Table 14. Number of enriched GO terms for each dictionary element identified for chr3R.

# GO terms # GO terms # GO terms # GO terms # GO terms

15 2 5 8 124

9 2 0 0 10

13 14 16 0 4

7 25 57 0 0

20 1 6 0 4
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Table 15. Density of dictionary elements, reported for all chromosomes.

Dictionary
element chr2L chr2R chr3L chr3R

1 0.146 0.158 0.168 0.161
2 0.188 0.165 0.156 0.157
3 0.134 0.185 0.141 0.140
4 0.220 0.147 0.159 0.179
5 0.145 0.146 0.142 0.139
6 0.132 0.297 0.148 0.173
7 0.162 0.189 0.191 0.184
8 0.158 0.184 0.164 0.147
9 0.148 0.136 0.210 0.183
10 0.177 0.166 0.168 0.157
11 0.220 0.261 0.163 0.161
12 0.168 0.162 0.145 0.157
13 0.204 0.203 0.186 0.142
14 0.225 0.142 0.148 0.205
15 0.142 0.229 0.262 0.163
16 0.173 0.184 0.143 0.205
17 0.189 0.263 0.127 0.224
18 0.161 0.219 0.152 0.251
19 0.182 0.159 0.183 0.242
20 0.187 0.156 0.170 0.193
21 0.231 0.157 0.199 0.126
22 0.143 0.195 0.165 0.150
23 0.162 0.201 0.134 0.175
24 0.223 0.141 0.167 0.212
25 0.167 0.212 0.140 0.208

Table 16. Median distance of pairwise interacting nodes within each dictionary element and for each chromosome.

dictionary
element chr2L chr2R chr3L chr3R

1 10758 6738 7328 14753
2 8523 7688 12934 14760
3 9906 8759 9539 12666
4 8354 7158 12690 11748
5 9847 7651 10412 13674
6 8547 6953 10608 15598
7 10024 9383 11994 13498
8 8870 9226 10399 12830
9 10692 7085 14414 12493
10 11220 6414 9466 11930
11 10455 10711 10130 11421
12 8488 7656 11694 9398
13 9979 7706 14206 13455
14 10591 8251 8689 12540
15 10928 7284 10532 12572
16 10268 7143 8849 13842
17 8545 9681 9978 15184
18 8675 6859 8558 11974
19 9854 7882 8501 18233
20 9314 8199 10532 11592
21 9343 8872 9728 12791
22 8105 6418 10214 13301
23 8870 7418 11012 14239
24 9527 8764 10010 12692
25 11072 9711 13471 11316
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