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Biological networks are often used to describe the relationships
between relevant entities, in particular genes and proteins, and
are a powerful tool for functional genomics. Many important
biological problems can be investigated by comparing biologi-
cal networks between different conditions, or networks obtained
with different techniques. We show that contrast subgraphs,
a recently introduced technique to identify the most important
structural differences between two networks, provide a versatile
tool for comparing gene and protein networks of diverse origin.
We show in three concrete examples how contrast subgraphs
can provide new insight in functional genomics by extracting
the gene/protein modules whose connectivity is most altered be-
tween two conditions or experimental techniques.
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Introduction
The development of high-throughput methods in the last few
decades has revolutionized biology by allowing the investi-
gation of living systems from a global point of view, thanks
to the various omics technologies [16]. The huge amount of
data thus produced present new analytical challenges for their
interpretation and the extraction of useful and actionable bi-
ological information.
An important approach to such analytical task proceeds
through the generation, from the high-throughput data, of bi-
ological networks expressing various types of relationships
between the biological entities that have been measured (see
[18] for a recent review). In some cases, the results of high-
throughput measurements can be directly interpreted as net-
works, as in the case of protein interaction networks. In other
cases, a network structure is built as an analytical tool to fa-
cilitate the extraction of biological information, as in the case
of coexpression networks in which edges are established be-
tween genes showing correlated expression profiles in tran-
scriptomic or proteomic assays. Many analytical tools devel-
oped in the context of network science can then be applied to
such networks to extract biological information and formu-
late mechanistic hypotheses.
In many cases of biological interest, the most important ques-
tions can be answered not by simply analyzing a single bio-

logical system, but by comparing two such systems to extract
their fundamental differences. For example, when studying a
disease it is necessary to compare the diseased status to the
normal one, or different types of disease to each other. More-
over, different omics techniques can produce complementary
insights into biological systems, and the investigation of such
differences can shed light on the biological features best rep-
resented by each technique. When the system of interest has
been described in terms of a biological network, techniques
for network comparisons become the main tool for these in-
vestigations.

The bulk of the methods for network comparison can be cat-
egorized into two main classes: methods for the structural
comparison of networks and methods for network alignment.
Methods in the former class aim to detect global differences
between networks in terms of the features considered in net-
work science, such as connectivity distribution, clustering
coefficient, assortativity, etc., and do not explicitly identify
the individual nodes responsible for such differences. Meth-
ods for network alignment are mostly used to identify ho-
mologous modules in networks of different origin, and are
thus conceived to find similarities, rather than differences,
between networks.

Recently, Lanciano et al. [19] proposed the extraction of con-
trast subgraphs as a method to identify the most important
structural differences between two networks sharing the same
nodes. In essence, contrast subgraphs are sets of nodes whose
induced subgraphs are densely connected in one network
and sparsely in the other (mathematical definitions and algo-
rithms are found in the Methods). Contrary to most methods
for structural comparison, contrast subgraphs are character-
ized by node identity awareness, i.e. identify the individual
nodes that are responsible for the major differences between
the networks. This limits their application to pairs of net-
works sharing the same nodes, but, on the other hand, allows
rich downstream analyses based on domain-specific knowl-
edge on the nodes. For instance, applications in which con-
trast subgraphs have been employed are social media [33] and
neuroscience [19].

Here we apply contrast subgraphs to several comparisons of
biological networks derived from high-throughput data, and
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we demonstrate how meaningful and novel biological infor-
mation can be extracted from such comparisons. In particu-
lar, with respect to existing methods [2], contrast subgraphs
exhibit two important advantages. First, the same technique
can be used to compare homogeneous networks (that is, ob-
tained from the same high-throughput assay applied to differ-
ent systems, such as co-expression networks obtained from
two different types of cancer) or heterogeneous ones (ob-
tained from different assays, such as protein co-expression
and mRNA co-expression networks). Second, the method
produces a hierarchically organized list of differentially con-
nected modules that can be interpreted as representing sepa-
rate biological processes.

Results
To demonstrate how contrast subgraphs are useful in extract-
ing biological information from the comparison of biologi-
cal networks we discuss three concrete examples, where the
techniques is applied to homogeneous networks (coexpres-
sion networks and protein-protein interaction [PPI] networks
from different biological conditions) or heterogeneous ones
(coexpression networks derived from transcriptomic and pro-
teomic data).

A. Coexpression networks in two subtypes of breast
cancer. Transcriptomic assays have revealed that breast can-
cer is, from the molecular point of view, a highly hetero-
geneous disease. The most commonly used transcriptomic-
based classification of this disease includes five subtypes
(luminal-A, luminal-B, HER-2-enriched, basal-like, and
normal-like), where luminal-A and basal-like are considered,
respectively, the least and most aggressive subtypes [32]. We
used two large repositories of breast cancer gene expression
data, namely the TCGA (https://www.cancer.gov/tcga) [23]
and METABRIC [6], to build coexpression networks sepa-
rately for tumors classified as basal-like and as luminal-A.
We then extracted the contrast subgraphs from the compari-
son of the two subtype-specific networks, separately for each
dataset.
Figure 1 and Figure 2 (A and B) represent the degree distri-
bution for the first contrast subgraphs showing, as expected,
a strong difference between the two subtypes (the genes in
the first contrast subgraphs are listed in Suppl. Table 1).
Analysing these genes’ enrichment for functional categories,
as annotated in the Gene Ontology (GO), we found immune-
related processes to be coherently more coexpressed in the
basal-like subtype, both in the TCGA and in the METABRIC
cohort, while other processes related to tumor microenvi-
ronment, such as extracellular matrix organization, are more
strongly coexpressed in the luminal-A subtype (Figure 1 and
2 (C and D)). This indicates that the tumor microenviron-
ment, and in particular immune cells and fibroblasts, play
a prominent role in differentiating these two molecular sub-
types. The full list of enriched GO categories is provided
in Suppl. Table 2. Importantly, the results obtained with the
two independent breast cancer cohorts show good agreement,
with the top differential subgraphs significantly overlapping

for both the basal-like and the luminal-A subtypes (Fisher test
p < 2.2 ·10−16), supporting the reliability of the method.

B. Protein vs mRNA coexpression in breast cancer.
Coexpression networks are usually built, as we did above,
from the results of transcriptomic assays, since these are less
expensive than proteomic assays and thus available in large
numbers. However, proteins, rather than mRNA molecules,
are the predominant components of the molecular machinery
performing cellular functions. Moreover, although transcrip-
tomics studies commonly assume mRNA levels to be reliable
indicators of corresponding protein levels, transcript and pro-
tein expression do not always correlate [20]. Indeed, synthe-
sis and degradation rates of the two types of molecules can
be substantially different [35]. Additionally, a wide range
of post-transcriptional regulatory mechanisms, among which
translational repression by small noncoding RNAs and local-
ization in P bodies, could account for such discrepancies [36].
Therefore it is reasonable to expect that coexpression net-
works built from protein abundance data could provide in-
formation that is complementary to that provided by mRNA-
based coexpression networks, and possibly more biologically
relevant.
To analyze the differences between mRNA-based and
protein-based coexpression networks we used the proteomic
data available from CPTAC [22], for a subset of the breast
cancer patients included in the TCGA, and built a protein-
based coexpression network, which was then compared us-
ing contrast subgraphs to the coexpression network obtained
from the mRNA data of the same subset of patients.
The subgraphs with the strongest differential coexpression
between the proteomic and transcriptomic data (listed in
Suppl. Table 3) are enriched for immune categories. Of
note, genes more connected at the protein level belong to
categories such as "complement activation" and "regulation
of humoral immune response", while genes with functions
in the adaptive immunity are over-represented among those
with higher transcriptional coexpression (Figure 3, full list in
Suppl. Table 4). Moreover, the subgraph more connected at
the protein level comprises genes with strikingly low corre-
lation in their mRNA and protein expression (Figure 3, C),
indicating that these genes are subject to additional regula-
tory layers, thus supporting their discrepant mRNA and pro-
tein coexpression. This observation is in line with the com-
plement cascade being mostly regulated through proteolytic
activity, and indicates that subgraphs more connected at the
proteome level could better represent functional coupling of
processes regulated at the post-translational level.

C. Protein interaction networks in human cell lines.
The analysis of PPI networks can provide functional infor-
mation complementary to that provided by transcriptomics.
In particular, the comparison of such networks derived from
different cell types or tissues can indicate those interactions
that are specific to a biological context. We thus considered
experimentally determined PPI networks in three human cell
lines (HUVEC, HEK293T, and JURKAT) [17], and extracted
the contrast subgraphs for each of the 6 possible compar-
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Fig. 1. Contrast subgraphs for Metabric. A,B) Degree distributions for both the coexpression networks involved, and quartiles of these distributions. C,D) Dotplots showing
the enrichment of each contrast subgraph for Gene Ontology biological processes. The colour gradient indicates the false discovery rate, while the dot size correlates with
the number of nodes in the intersection between the contrast subgraph and the functional category. Only the top 10 most significant categories are shown.

isons. Each contrast subgraph thus contains proteins with
higher density of interactions in one cell line compared with
the other.
It is important to verify that the contrast subgraphs thus ex-
tracted do not simply contain proteins that are differentially
expressed when comparing the three cell lines. We com-
pared the first contrast subgraphs obtained for each com-
parison with lists of upregulated genes in the same com-
parison derived from the RNA-seq data of the Human Pro-
tein Atlas [34]. While the proteins contained in the first
contrast subgraph in HUVEC and, to a lesser extent, JU-
RKAT cells did indeed significantly overlap the correspond-
ing up-regulated genes, such enrichment was not detected in
HEK293T-specific contrast subgraphs, which we can confi-
dently consider as representing true cell type-specific inter-
action modules.
We thus analyzed in more depth the first contrast subgraphs
obtained from the comparison of the HEK293T PPI network
with those obtained from the other two cell lines. Remark-
ably, the top contrast subgraphs obtained from the two com-
parisons were identical, and contained 143 proteins (Suppl.
Table 5). Gene Ontology enrichment analysis of these pro-
teins revealed 160 enriched biological processes (Suppl. Ta-

ble 6), including many terms related to translation and ribo-
some biogenesis on one hand, and many related to apopto-
sis and the TP53 pathway on the other. Figure 4 shows the
proteins annotated "ribosome biogenesis" and "signal trans-
duction by p53 class mediator" and their interactions in the
HEK293T and HUVEC cell lines. These results suggest that
HEK293T cells are particularly suitable for the investigation
of the deep relationship between TP53 and the ribosome [7].
Indeed these cells have been used in the original experimental
investigation of this relationship [30].
These results show that contrast subgraphs can be used to
identify cell-type specific modules of interacting proteins,
thus facilitating the choice of the cells to be used for experi-
mental assays.

Methods

A. Extraction of contrast subgraphs. Mining contrastive
structures from networks has started recently to gain atten-
tion in the scientific literature. In this work we leverage this
recent literature to provide a first proposal of mining contrast
subgraphs in the biological domain. Given two (potentially
weighted) networks A = (V,eA(V )) and B = (V,eB(V )) de-
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Fig. 2. Contrast subgraphs for TCGA. A,B) Degree distributions for both the coexpression networks involved, and quartiles of these distributions. C,D) Dotplots showing the
enrichment of each contrast subgraph for Gene Ontology biological processes. The colour gradient indicates the false discovery rate, while the dot size correlates with the
number of nodes in the intersection between the contrast subgraph and the functional category. Only the top 10 most significant categories are shown.

(A)

complement activation,
alternative pathway

complement activation,
classical pathway

humoral immune response
mediated by circulating

immunoglobulin

complement activation

humoral immune response

cell−substrate adhesion

response to wounding

supramolecular fiber
organization

actin cytoskeleton
organization

actin filament−based process

0.05 0.10 0.15 0.20
GeneRatio

Count

10

20

30

5.0e−10

1.0e−09

1.5e−09

2.0e−09

p.adjust

(B)

adaptive immune response

regulation of lymphocyte
activation

positive regulation of
immune response

regulation of leukocyte
activation

T cell activation

regulation of cell activation

regulation of immune response

lymphocyte activation

positive regulation of
immune system process

leukocyte activation

0.28 0.32 0.36 0.40
GeneRatio

Count

55

60

65

70

75

5.581485e−49

6.488206e−37

1.297641e−36

1.946462e−36

2.595282e−36
p.adjust

(C)
5.6e−08

1.1e−11

0.019

−0.5

0.0

0.5

1.0

Pro
te

om
e

Tra
ns

cr
ipt

om
e

Oth
er

 g
en

es

subgraph

co
rr

R

Fig. 3. A, B) Dotplots showing the enrichment of each contrast subgraph for functional categories. The colour gradient indicates false discovery rate, while dot size correlates
with the number of nodes in the intersection between the contrast subgraph and the functional category. Only the top 10 most significant categories are shown. C) Violin plot
showing Pearson’s correlation between transcriptomic and proteomic levels for genes in the top differential subgraph most connected at the proteome or at the transcriptome
level, compared with genes not belonging to any of the two subgraphs.
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B Construction of coexpression networks

Fig. 4. Proteins involved in "ribosome biogenesis" (blue), "signal transduction by p53 class mediator" (purple) and in both processes (yellow) together with their interactions
in HEK293T (left) and HUVEC cells (right). The green edges join proteins involved in the two biological processes. The abundance of green edges in the left panel illustrates
that the many interactions between these two processes are specific of the HEK293T cellular context.

fined over the same set of nodes V , we define a contrast sub-
graph as a set of nodes that is densely connected in one of the
networks, and sparse in the other. In order to quantify this
property, different definitions of contrast have been provided
in the literature.
Lanciano et al. [19] define the contrast subgraph as the set of
nodes S ⊆ V that maximizes the function f(S) = eA(S)−
eB(S)−α

(|S|
2

)
, where eA(S) and eB(S) are the number of

edges (or the sum of edges’ weight in case of a weighted
network) in the subgraph induced by S in the networks A
and B, respectively, and α is an input scalar. This definition
aims at identifying a set of nodes, whose induced subgraph is
dense in A and sparse in B. The regularization term α

(|S|
2

)
,

governed by the parameter α, can be used to tune the target
size of S: in fact, all the edges whose weight is smaller than α
giving a negative contribution to the objective function, thus
preventing larger solutions. To maximize this function, the
authors map their problem to an instance of the Generalized
Optimal Quasi Clique problem proposed by Cadena et al. [3].
Their algorithm is based on an Semi-Definite Programming
optimization problem, that makes it practical only for smaller
instances of networks, e.g. brain networks.
A variant formulation for this problem, by Yang et al. [37],
aims at maximizing f(S) = eA(S)−eB(S)

|S| : they show that
their problem is NP-hard and proposed a simple heuris-
tic. It is worth observing that their problem corresponds
to the classic Densest Subgraph Problem (DSP) [12] on a
weighted network, where the weight of an edge is given by
eA(S)−eB(S). DSP is one the most important primitives in
graph mining, that has been studied extensively in literature
for its many potential applications. Given a graph, it aims
at finding the subgraph with maximum average degree, i.e.,
e(S)
|S| . When the graph is unweighted or positively weighted,

DSP can be solved exactly in polynomial time by means of
an inefficient max-flow based algorithm [12]. An efficient
1
2 -approximation of the exact solution, can be obtained by
a greedy “peeling” algorithm that at every iteration removes
the nodes with the current minimum degree, and among all
intermediate subgraphs produced by this process, in the end
it returns the one maximizing the objective function [1, 4].

Unfortunately, when the graph has weights that can be nega-
tive, as in our case, these algorithmic results do not carry on
(indeed, the contrast subgraph problem by Yang et al. [37] is
NP-hard).
Tsourakakis et al. [33] recently analyzed the performance of
the greedy peeling for the Densest Subgraph with Negative
Weights (DSNW) problem. Let deg+(v) be the positive de-
gree of node v, i.e., the sum of the weights of its positive
edges, and deg−(v) its negative degree. They provide the
following lower bound on the solution’s quality: ρ∗

2 −
∆
2 ,

where ρ∗ is the optimum value of the DSP problem, and
∆ = max

v∈V
|deg−(v)|.

In order to improve such result, they propose a variant of the
greedy peeling (Algorithm 1), introducing a parameter C that
governs the importance of deg+(v) in order to avoid the bad
instances for which the greedy peeling could fail. It is suffi-
cient to tune this parameter and run several times Algorithm 1
to obtain a better result without a significant increase in com-
puting time. Given its efficiency and scalability, and the fact
that it has a certified lower bound on the quality of the qual-
ity of the solution provided, in our experiments we employ
Algorithm 1 to mine the contrast subgraphs of coexpression
and PPI networks.
In the literature reviewed above, the contrast subgraph is the
one subgraph maximizing the contrastive objective function.
However, although according to our Algorithm 1 the extrac-
tion is limited to the subgraph that maximizes the contrast
function, a straightforward heuristic to mine the top-k non-
overlapping contrast subgraphs can be easily implemented,
by simply iterating Algorithm 1 for k times, removing from
the graph at each iteration the nodes obtained in output.

B. Construction of coexpression networks. Normalized
(FPKM) breast cancer data from the TCGA project and
corresponding clinical annotations were obtained through
TCGA biolinks [5], and METABRIC gene expression data
and metadata were obtained from www.synapse.org (Synapse
ID: syn1688369) [6]. Probe names were converted in Gene
Symbols and, for gene symbols corresponding to multiple
probes, the most expressed probe across all samples was con-
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Algorithm 1 Heuristic Peeling [33]

Require: G = (V,E),C ∈ (0,+∞)

n← |V |,Hn← V

for i← n to 2 do
v← argmin

v∈G(Hi)
Cdeg+(v)+deg−(v)

Hi−1←Hi \{v}
end for

return argmax
i∈{2,...,n}

f(Hi)

sidered. ENSEMBL IDs were converted into gene symbols
using biomaRt [9]. In TCGA, genes with FPKM < 1 in more
than 50 samples were filtered out, and data were log trans-
formed using an offset of 1. Proteomic CPTAC data were
downloaded from the original publication [22]. Adjacencies
were computed using Spearman’s correlation between gene
or protein expression, then transformed as follows to generate
a signed network (0.5 · (1 + ρ))12, where ρ indicates Spear-
man’s correlation. Functional enrichment was performed us-
ing clusterProfiler [39], considering only categories with an
adjusted p-value less than 0.05.

C. Analysis of PPI constrast subgraphs. PPI networks
obtained in HEK293T, HUVEC, and JURKAT cells were ob-
tained from the Supplementary Material of the original pub-
lication [17]. PPI networks were filtered to include only
proteins described in all cell lines. RNA-seq data for the
same cell lines were obtained form the Human Protein At-
las [34]. As these data do not contain replicates, lists of genes
upregulated in each comparison were obtained by requiring
|logFC|> 1 on the normalized TPM values after logarithmic
transformation with unit pseudocount.

Discussion
Gene networks have proved to be a valuable tool to under-
stand some general principles governing biological systems,
revealing a modular organization of gene interactions [25], at
least partly linked to shared function [10]. Comparing molec-
ular networks across different contexts is nevertheless essen-
tial to explore the biology of dynamic systems, with gene
and protein interactions changing over time or upon pertur-
bations, such as disease or environmental stresses.
Many of the methods that have been developed for the com-
parison of biological network focus on structural properties
and often lack node identity awareness; other methods fo-
cus on network alignment, and aim at finding commonali-
ties, rather than differences, between networks. Here we have
shown that contrast subgraphs can provide a versatile tool to
identify the modules with the strongest difference in connec-
tivity between two networks. The method can be applied to
networks of different biological and technical origin, and its
node identity awareness allows downstream biological anal-

yses providing insight on the biological processes affected
by differential connectivity. It should be noted that for the
specific case of co-expression networks, several comparative
methods that do retain node identity awareness have been de-
veloped (reviewed in [2, 29]). However most of these meth-
ods are specifically targeted to correlation-based networks
and are not immediately applicable to other biological net-
works such as PPI networks.

In this work, we applied contrast subgraphs to three pairs of
biological networks to illustrate their usefulness, especially
when followed by downstream functional enrichment analy-
sis of the differential modules identified.

Breast cancer (BC) is one of the leading causes of mortality
in women worldwide, for which no general efficacious treat-
ment is available due to disease heterogeneity. BC is usually
classified according to gene expression profiling of the tumor
(PAM 50 assay) allowing the classification in five molecu-
lar subtypes correlated with prognosis and response to treat-
ments: luminal-A, luminal-B, basal-like, HER2-positive and
normal-like [24,31]. In particular, basal-like subtype does not
respond to targeted treatments such as hormonal blockage or
Herceptin, and shows poor outcome.

We analyzed the different organization of co-expression net-
works between the aggressive basal-like and the relatively
slowly growing luminal-A subtypes. We find that the top dif-
ferentially connected subgraphs comprise genes enriched for
microenvironment-related functions in two independent co-
horts with associated transcriptome datasets (METABRIC [6]
and TCGA [23]). On one side, the subgraph with stronger
connection in the basal-like subtype is enriched for immune
functions, while, on the other side, the genes more connected
in the luminal-A subtype are enriched for categories such
as “Extracellular Matrix”, indicative of microenvironmental
regulation of structural components of the extracellular mi-
lieu. Indeed, tumor cells are surrounded by a varied ensem-
ble of mutually-interacting cell types, comprising immune
cells, stromal cells, and blood vessels, amongst the most fre-
quent cell types. These cells can either restrain tumor growth
or support cancer cells providing metabolites, growth fac-
tors and reshaping the extracellular matrix. Overall, non-
tumoral cells surrounding the tumor epithelium have been
demonstrated to change their expression profiles [28] and to
impact not only on tumor growth, but also on disease pro-
gression and metastasis, and on drug resistance [27, 38, 40].
In particular, the immune system plays a fundamental role
in cancer progression: at tumor onset, cytotoxic immune
cells recognize and kill tumor cells, driving the evolution
of less immunogenic cancer cells able to evade immune
detection [13]. Paradoxically, immune cells such as anti-
inflammatory M2 macrophages can have pro-tumoral effects
[21] and their distribution and composition changes with tu-
morigenesis [11, 28]. For these reasons, immune cells are
currently being investigated as potential therapeutic targets
[8, 14]. Interestingly, we previously reported that differen-
tially coexpressed networks between normal and tumor tis-
sues are often enriched for immune-related categories [29],
thus confirming that the contrast subgraph method reliably
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retrieves robust and biologically informative sets of genes.

As a second application context, we employed our differen-
tial subgraph retrieval to compare biological networks de-
rived from different kinds of molecular data: transcriptomics
and proteomics. The possibility of comparing networks from
different data types is indeed a strength of our method. We
made use of the large breast cancer TCGA cohort of primary
tumors, which have been profiled both through RNA-seq and
mass spectrometry [22], and defined gene modules whose
connectivity can be revealed only at the proteomic level,
likely due to post-transcriptional regulatory mechanisms in-
fluencing protein translation and degradation. Intriguingly,
the two top differential modules show a significant difference
in their transcript-protein agreement, supporting the hypoth-
esis of intervening post-transcriptional mechanisms being in-
volved in the proteome subgraph regulation. Again, these
top differential subgraphs are enriched for immune-related
categories. Interestingly, adaptive immune system genes are
more connected at the transcriptional level, while innate im-
mune system genes are more connected at the protein level.
This difference could be interpreted as the innate immune
system being poised for a rapid activation in the presence
of a stimulus in the form of a pathogen or of a tumor cell,
hence relying on a fast and coordinated translation of readily
available transcripts. The adaptive immune response, on the
other hand, acts more slowly, requiring days or even weeks
to become established. Therefore, transcription is not a limit-
ing factor in its response, making transcriptionally-regulated
modules easily detectable. Indeed, the proteomic subgraph
is significantly enriched for the complement cascade, which
is extensively regulated through the activity proteolytic en-
zymes ( [26], [15]).

In the third example we showed that the comparison of PPI
networks obtained from different human cell lines can re-
veal how proteins involved in different biological processes
can have context-dependent interaction patterns. Importantly,
such differences were not apparent from differential expres-
sion analysis of the same cell lines. These results suggest,
in particular, that contrast subgraphs can be useful in select-
ing the cellular contexts most suitable for the experimental
analysis of the interaction and mutual dependence of differ-
ent biological processes.

Conclusion

Contrast subgraphs are a promising and versatile method to
identify the most relevant differences between biological net-
works while preserving node-identity awareness, thus allow-
ing the translation of such information into biological in-
sight.
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Supplementary Material
Supplementary material is made available at:

https://zenodo.org/record/6802221

Across the supplementary tables, the differential subgraphs
have been named according to the following scheme:

• METABRIC basal: genes more connected in the basal
than in the luminal A subtype in the METABRIC
dataset

• METABRIC lumA: genes more connected in the lu-
minal A than in the basal subtype in the METABRIC
dataset;

• TCGA basal: genes more connected in the basal than
in the luminal A subtype in the TCGA dataset;

• TCGA lumA: genes more connected in the luminal A
than in the basal subtype in the TCGA dataset;

• Transcriptome: genes more connected at the tran-
script level than at the protein level;

• Proteome: genes more connected at the protein level
than at the transcript level.

Supplementary Tables:

• Supplementary Table 1. Genes in the first differential
subgraphs comparing breast cancer molecular subtypes

• Supplementary Table 2. Gene Ontology categories
significantly enriched in the corresponding differential
subgraph comparing breast cancer molecular subtypes

• Supplementary Table 3. Genes in the first differen-
tial subgraphs comparing transcriptional and protein
co-expression networks.

• Supplementary Table 4. Gene Ontology categories
significantly enriched in the corresponding differen-
tial subgraph comparing transcriptional and protein co-
expression networks.

• Supplementary Table 5. Genes in the first differential
subgraph comparing HEK and Jurkat or HUVEC cell
lines

• Supplementary Table 6. Gene Ontology categories
significantly enriched in the differential subgraph com-
paring HEK and Jurkat or HUVEC cell lines.

Software availability: A software package to compute con-
strast subgraphs is available at

https://github.com/tlancian/bio_cs
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