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Single-molecule localization microscopy (SMLM) applications are often hampered by the fixed9

frame rate at which data acquisition is performed. Here, we present an alternative new approach10

of acquiring and processing SMLM data based on an event-based (or neuromorphic vision) sen-11

sor. This type of sensor reacts to light intensity changes rather than integrating the number of12

photons during each frame exposure time. This makes them particularly suited to SMLM, where13

the ability to surpass the diffraction-limited resolution is provided by blinking events. Each pixel14

works independently and returns a signal only when an intensity change is detected; intensity15

changes are returned as a list with pixel positions and timestamps rather than frames with a fixed16

frame rate. Since the output is a sparse list containing only useful data (for example a molecule17

turning on or off), the temporal resolution is significantly faster than typical speeds of EMCCD18

and sCMOS cameras. Here we demonstrate the feasibility of SMLM super-resolution imaging19

with this type of event-based sensors which, in addition, are more affordable than EMCCD or20

sCMOS cameras. We characterize the localization precision and show that it is equivalent to that21

of frame-based scientific cameras, including on fluorescently labelled biological samples. Fur-22

thermore, taking advantage of the unique properties of the sensor, we use event-based SMLM to23

perform very dense single-molecule acquisitions, where frame-based cameras experience signifi-24

cant limitations. All the data processing codes are made available.25

Introduction26

The advent of single-molecule localization microscopy (SMLM) fifteen years ago brought an im-27

provement in image resolution in fluorescence microscopy by a factor of 10 [1, 2, 3] and has become28

an invaluable tool for cell biology as it can resolve cellular structures with nanometer resolution.29

Since then, significant advancements have been possible through the development of new optical30

techniques, e.g. achieving sub-nanometric localization [4, 5], ingenious labeling methods [6, 7, 8] or31

the synthesis of brighter dyes compatible with live-cell imaging [9, 10], not to mention numerous32

application-specific or more general data treatment methods [11, 12, 13]. These advances address33

some of the remaining challenges in SMLM, including but not limited to imaging thick samples and34

tissues, reducing phototoxicity and photobleaching for live-cell imaging, but also obtaining quanti-35

tative information on the distribution, size, shape, spatial organisation and stoichiometry of macro-36

molecular complexes in order to steer biological interpretation. For a recent review of the field of37

SMLM, refer to [14, 15]38

39

While retrieving the positions of single molecules is pivotal in applications as varied as 3D imag-40

ing of immunolabelled samples [16, 17, 18, 19], spatial analysis of protein clusters [20, 21] or protein41
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dynamics in the cell [22], single-molecule microscopy is also used in a much broader range of ap-42

plications exploiting other information carried by the point-spread function (PSF). A non exhaustive43

list of them includes accessing the spectrum of the dyes for multicolor imaging [23, 24], retrieving44

the emitter’s orientation via polarization measurements [25], or even probing the local environment45

of the molecules through modifications of the fluorescence intensity [26, 27], or the fluorescent state46

lifetime [28, 29, 30, 31].47

48

Regardless of their use, single-molecule experiments are routinely limited by the acquisition speed49

to a certain extent. On the one hand, SMLM experiments routinely require more than 20000 frames,50

which represents tens of minutes of acquisition with exposure times in the 10 ms–50 ms range. On51

the other hand, the chosen exposure time sets a hard limit on the temporal scale at which fast dy-52

namic processes are observable. While the importance of temporal resolution is obvious in live cells,53

where it determines the range of dynamic processes that can be studied, it cannot be overlooked in54

experiments with fixed samples—(d)STORM buffers suffer from oxidation with time, long experi-55

ments require proper 3D stability of the sample etc. More generally, improving the acquisition rate56

allows more efficient data collection, which can be important to better describe biological phenomena57

and improve statistical significance. In some cases, it can even be used to develop automated high58

throughput data collection setups and analysis workflows [32, 33].59

60

Improving the data recording rate, however, is no small task, as frame-based scientific cameras (EM-61

CCD and sCMOS) work at a fixed frame rate chosen before the acquisition. Even assuming that the62

camera is able to work at the desired speed without any significant dead time between frames or63

unreasonable cropping of the camera chip, this imposes a compromise between the temporal band-64

width and the quality of the signal (shorter exposure leads to higher relative noise). Besides, it also65

raises serious issues whenever the spatial distribution of proteins in the sample is heterogeneous, or66

when different targets in the experiment obey dynamic processes at different time scales. This can67

be the case in Single Particle Tracking (SPT) studies if the protein of interest undergoes large varia-68

tions of diffusivity in time and/or space over the course of the acquisition, or in the case of structural69

imaging of fixed samples, when the use of an excitation with a Gaussian profile causes the center and70

the edges of the region of interest to blink at different rates. In any case, the frame rate typically has71

to be adapted to the fastest processes or the highest densities, which leads to a detrimental increase72

of noise.73

74

On the other hand, event-based sensors (also sometimes called neuromorphic or dynamic vision sen-75

sors) use a very different principle than frame-based cameras. An event-based sensor is an array of76

pixels that each function independently of the others, and are sensitive to intensity changes rather77

than to an average irradiance over a fixed exposure time. Although each pixel has a response time78

(in the range of a few µs to a few hundreds of µs), it does not work at a fixed frame rate. Instead, it79

returns a signal called ’event’ after it detects a change of irradiance. Therefore, only meaningful data80

is recorded (as long as a pixel does not detect a change, it does not return any output signal), which81

potentially allows a vast increase of data collection rate compared to scientific cameras, as the maxi-82

mum data transfer rate is almost never a limiting factor in event-based sensors. As a comparison, the83

fraction of camera-recorded data effectively used for localization purposes varies from around 5 to84

10 % in the case of a (direct) Stochastic Optical Reconstruction Microscopy ((d)STORM) experiment85

with very dense Point Spread Functions (PSFs) in each frame, to less than 0.1 % in sparse SPT exper-86

iments, taking into account that the localization program calculates the position from a small Region87

Of Interest (ROI) around the center of the PSF and discards the rest of the data. Event-based sensors88

are relatively new on the market but typically target industrial applications rather than bioimaging.89

They typically have pixel numbers of the order of a million, and a pixel size of the order of 10 µm,90

making them quite straightforward to include in a typical fluorescence microscopy setup. Finally91

they are generally more affordable than sCMOS and EMCCD cameras.92

93

Here, we propose an implementation of single-molecule localization experiments with an event-94
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based sensor, which, to the best of our knowledge, has never been reported before. Incidentally, we95

are not aware of any reported use of event-based sensors in fluorescence microscopy or in cell biology.96

We will describe the principle of event-based sensing in more detail and the data processing steps.97

We then characterize the response of the sensor to a fluorescent signal and assess the localization pre-98

cision. We furthermore demonstrate the detection of organic dyes for single-molecule fluorescence99

imaging and use it to produce a super-resolution image of a fixed immunolabelled sample. Finally,100

we use the unique features of event-based sensing to improve localization performance in the case101

where the density of molecules is high and PSF overlaps cause frame-based algorithms to fail.102

Principle, optical setup and data display103

An event-based sensors is a rectangular or square array of pixels that are sensitive to optical intensity104

variations only. For a technological review about event-based sensing, readers may refer to [34]. Since105

each pixel works independently of the rest of the array, the principle of the sensor can be described106

through the response of one pixel. At each time t, the light intensity I(t) (i.e. number of photons in-107

coming on the pixel per unit time) is linearly converted into an electronic response. The pixel stores108

a reference level Iref(t), which is then used to detect meaningful variations of the intensity relative to109

this reference level. Two thresholds B+ and B− are used to set the sensitivity and can be modified.110

They are used respectively to detect an increase and decrease in intensity. While B+ and B− can be111

set to different values (all pixels use the same values of B+ and B−, which are set as input parame-112

ters but can be modified during the acquisition if required), we always use equal values (called B) in113

this work and therefore symmetric positive and negative detections. According to the specifications114

given by the manufacturer, the intensity variation detection is logarithmic rather than linear. There-115

fore, a signal is triggered as soon as log(I(t)/Iref(t)) > B+ (positive event) or log(I(t)/Iref(t)) < B−116

(negative event). The principle of the response of a pixel is illustrated in Fig. 1a, and we show in117

Fig. 1b how varying the values of the sensitivity B changes the output signal. From a quantitative118

point of view, these thresholds can be as low as 30 % of the reference level. Whenever an event is119

triggered, the sensor returns a signal containing the x and y pixel coordinates, the polarity (positive120

or negative) and the time of the trigger. These coordinates are added to the output file. After the121

event is triggered, the value of the reference level is replaced with the value of the intensity at the122

time of the trigger. As a consequence, a large variation of the signal will cause the pixel to return123

several events in a quick succession, which readily provides a certain quantitativity in the detection.124

125

When compared to scientific cameras (whether EMCCD or sCMOS), the event-based sensor behaves126

differently on several points. First, it detects only intensity changes (in our case, a molecule turning127

on or off, or the motion of a moving emitter). As long as the intensity stays close to the reference128

level within the tolerance threshold, the pixel does not respond. This offers very promising per-129

spectives when it comes to implementing live data processing and image reconstruction, or even130

high-throughput automated experiments, where the volume of data is sometimes so high that the131

raw data has to be discarded. Another difference between scientific cameras and event-based sen-132

sors is the dynamic range, which is vastly superior for the event-based sensor, making it almost133

impossible to saturate the sensor with fluorescence signals, which can become problematic when us-134

ing bright fiducial markers. In other words, large contrasts (which can be limiting especially in the135

case of EMCCD cameras where saturation can occur for moderate signals) are rarely a problem with136

event-based sensors. However, the most significant difference between the two types of detectors is137

probably the fact that the event-based sensor does not use a fixed frame rate and thus does not return138

a limited number of frames. This implies that the temporal resolution of the acquisition is not limited139

by user-defined parameters. While the temporal bandwidth is not infinite (each pixel has a certain140

response time in the range of a few µs to a few hundreds of µs [35]), the time resolution is usually141

determined in the processing stage by the time base used for the data treatment. This feature is very142

interesting for SMLM imaging since it allows to process the same dataset with different time bases143

to investigate biological processes at different time scales. The differences between the responses of144

a scientific camera and an event-based sensor are summarized in Fig. 1c. A further difference is the145
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quantitativity of the signal: scientific cameras are more adapted for quantitative intensity measure-146

ments provided the exposure time is properly matched to the biological or photochemical processes147

of interest. Nevertheless, as we will further investigate in this paper, the event-based sensor still148

provides some quantitative information which lies in the number of events generated by an intensity149

transition—a dim or a bright molecule produce different numbers of events when they turn on or off.150

This is further controllable by tuning the sensitivity threshold B, as illustrated in Fig. 1b.151

152

We used such an event-based sensor in an optical setup designed for SMLM experiments presented153

in Fig. 1d. It is essentially a standard wide-field microscope with a high numerical aperture collec-154

tion. The detection path is built to offer some modularity by distributing the fluorescence light in155

either one or both of the sensors, the EMCCD and the event-based sensor—this will be useful later156

in the characterization and comparison of their relative performance. With regards to data display157

and processing, several approaches are conceptually possible, and we propose two complementary158

displays. A purely frame-based approach is proposed in Fig. 1e. Frames are generated by binning all159

the events in a certain time interval ∆t in a pixelized canvas, respecting also the sign of events (each160

positive event is counted as +1 and each negative as -1). This visualization method emphasizes the161

spatial distribution of events at the expense of some time resolution. In Fig. 1e, we represent data162

acquired on 200 nm fluorescent beads deposited on a coverslip and excited with a square pulsed ex-163

citation with a duty cycle of 50 % at 10 Hz and a frame reconstruction at ∆t = 10 ms. The rising and164

falling edges of I(t) are clearly visible, as well as the near absence of output signal when the inten-165

sity is constant, whether the source is emitting or not. Note the sharp signal at frames 10 ms–20 ms166

and 60 ms–70 ms, when the excitation turns on and off respectively. On the contrary, no signal is167

returned between 30 ms and 60 ms, when the bead is emitting light with a constant power. Finally,168

one can note on frames 20 ms–30 ms and 70 ms–80 ms that the signal is not returned instantly—more169

specifically, the dimmer pixels at the edge of the PSF respond more slowly which explains the visible170

rings (we attribute this to the time necessary to sample the photons into an intensity measurement).171

Fig. 1e furthermore highlights the quantitative aspect of the detection—the bead at the bottom left is172

less bright and thus generates fewer events. This frame-based display has the advantages of clarity,173

as it is very similar to the familiar frames acquired by scientific cameras, and spatial information174

conservation (the PSFs can be seen to be spread on several pixels like on camera frames). Although175

the time bin can easily be varied in post-processing to change the time scale, we find that for certain176

applications, it is poorly suited to accurately investigate the time response of the imaging system177

and/or of the biological sample studied. From a conceptual point of view, representing essentially178

sparse data with a dense matrix is also somewhat unadapted. Therefore, we propose in Fig. 1f an179

complementary data display based on temporal profiles (i.e. time traces of the number of detected180

events) over all the pixels of a PSF, which we find adequately highlights the nature of the signal181

returned by the event-based sensor. Although this representation also relies on time binning, it is182

typically done with much lower values of ∆t, which is more suited for the study of the time response183

of single molecules. This comes at the cost of a certain loss of spatial information, as all the pixels184

in a PSF are summed together. Fig. 1f incidentally reveals two unexpected features—first, there is a185

slight imbalance between the numbers of total positive and negative events in one cycle, and second186

the negative events seem on average slower than the positive events. We do not have an explana-187

tion for this effect, but we assume it can easily be addressed by tuning the electronics coupled to the188

event-based sensor. For the sake of simplicity and easy implementation for this work, we decided to189

use the sensor out-of-the box, without further modifications.190

191

Although the temporal bandwidth is not defined by the acquisition parameters, the processing algo-192

rithms have to be carefully designed to account for the time scales that match the desired biological193

application. We highlight this in Fig. 1g by displaying the signal returned by 40 nm fluorescent194

beads deposited on a coverslip illuminated with a continuous excitation during the translation of195

the sample using the piezo stage. A small time bin (∆t = 1 ms) efficiently samples the dynamic to196

reveal two opposed lobes—a positive leading edge and a negative trailing edge. This comes at the197

cost of a relatively modest number of events. On the contrary, increasing the time bin to ∆t = 10 ms198
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provides a large number of events for a better statistical set, which is spoiled by a dramatic motion199

blur as well as a loss of resolution. Obviously, the value of the time bin has to be matched to the200

phenomenon under investigation, but no knowledge or assumption is required prior to the acqui-201

sition (contrary to scientific camera-based approaches), as the selection of ∆t is done as part of the202

processing workflow. This could even be used to perform a multi-timescale processing (either using203

a single multiscale workflow or running several single-scale algorithms with different time bases) on204

the same dataset to extract both slow and fast processes. It is interesting to notice that the use of an205

event-based sensor readily provides an efficient way to manage the molecule density by performing206

a spatio-temporal resampling, as we will highlight more in detail in the section Event-based high207

density imaging.208

Single molecule localization209

We then set out to use the event-based detection microscope to detect and localize single molecules,210

focusing on blinking fluorophores such as in (d)STORM or PALM microscopy. Our processing ap-211

proach to single-molecule localization is partly frame-based. Events from the raw output list are212

binned into frames with a given ∆t (typically between 10 ms and 50 ms), which are used for PSF213

detection. This step is done on the positive events only (i.e. when the molecule turns on) using a214

wavelet decomposition algorithm described in [11]. Then, each molecule is localized using a subset215

of events corresponding to a spatial ROI of ±4 pixels (i.e. a total area of 9x9 pixels = 600 nm) around216

the center of the PSF, and a temporal ROI of [T0 − δTstart, T0 + δTend] around the timestamp of the217

frame T0, with the (negative) lower boundary δTstart around 20 ms to 60 ms, and the upper boundary218

δTend around 80 ms to 200 ms (δTend has to be sufficient to cover the full ON time of the molecule). In219

this subset of events, the x and y positions are determined by calculating the center of mass of all the220

events. Moreover, complementary information can also be extracted, such as the number of positive221

and negative events N+ and N−, the time when the molecule turns on t+ (taken as the mean of the222

times of the positive events) and the time when it turns off (mean of the times of the negative events)223

and the ON time, defined as tON = t− − t+. Finally, the drift is corrected using a direct cross corre-224

lation algorithm (in other words, the reference is the sample image itself rather than fiducial markers).225

226

As a first step, we aimed at assessing the localization precision. To this end, we used a regime where227

both a classical scientific camera and an event-based sensor return a signal that can be used for lo-228

calization precision measurement. We deposited fluorescent beads on a coverslip in PBS, and we229

illuminated them with a square-modulated laser at 10 Hz. A 30:70 (EMCCD:event-based sensor)230

beamsplitter was used in the detection path. The exposure time of the EMCCD was set to 100 ms231

(i.e. one period exactly), thus yielding a constant signal on which the localization precision could be232

measured from many frames. The sensitivity of the event-based sensor was set to different arbitrary233

values, and the output signal was binned in 100 ms frames on which both positive and negative234

events were summed regardless of their sign. Localization precision was also assessed from the re-235

peated measurement of the center of the PSF. Center of mass calculation was used in both cases.236

The principle of this measurement is summarized in Fig. 2a and the precision results are displayed237

in Fig. 2b, along with the Cramér-Rao Lower Bound (CRLB) values for the experimental conditions238

used with the EMCCD camera. Note that the beads detected on the EMCCD exhibit lower number239

of photons per cycle on average due to the use of a 30:70 beamsliptter in the detection path. Overall,240

the event-based sensor precision was found to be on par with the EMCCD center of mass calculation,241

or slightly better. In particular, precisions below 10 nm are found in the typical levels of signals of242

SMLM fluorophores, and sub-5 nm precision is obtained with approximately 5000 photons, which is243

the level of signal emitted by many far red organic dyes such as Alexa Fluor (AF) 647. Precision tends244

to improve slightly with finer sensitivity values. Interestingly, experimental precision was found to245

be slightly better than the EMCCD CRLB, which we attribute to a very low level of background-246

induced events and read noise when working with an event-based sensor.247

248

We furthermore characterized the linearity of the response, which is an important aspect for the quan-249
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titativity of the output data. We used the same acquisition and processing as described in Fig. 2a, and250

we displayed the number of output events per period as a function of the number of incoming pho-251

tons per period in Fig. 2c. As expected, the number of events recorded for a given input signal252

increases as the sensitivity gets finer (i.e. from low to high sensitivity). Interestingly, the relationship253

between the output and the input was found to be largely linear for all sensitivity levels investigated,254

and over a large range of input signal values (unlike the specifications given by the manufacturer).255

Only the data points above 20000 photons per period seem to deviate from the linear regime, but256

a signal at that level exceeds the typical conditions of SMLM acquisitions. We hypothesize that the257

output becomes more strongly logarithmic at higher levels of input signal, as this particular sensor258

has been originally designed to work at ambient light levels.259

260

To further illustrate the capability of such a sensor for SMLM, we reconstructed and displayed the261

PSF obtained over one period in Fig. 2d for an input signal of 10000 photons and an integrated output262

signal of 1000 events approximately (with a high sensitivity). The PSF displays a very usual shape263

(as could be expected due to the linearity of the response with the input optical signal characterized264

previously), and a profile plots yields a width around w=190 nm (standard deviation), slightly above265

EMCCD values (w=170 nm, data not displayed).266

267

After the characterization of the system with fluorescent beads, we set out to use the event-based sen-268

sor to detect single molecules, focusing on organic dyes typically used for dSTORM. We deposited269

AF647 dyes on a coverslip, immersed them in dSTORM buffer and illuminated them with typical270

dSTORM laser power density (see Methods section) to induce blinking. Acquisitions were per-271

formed with the event-based sensor, and frames reconstructed at ∆t=10 ms are displayed in Fig. 2e.272

The blinking can be efficiently monitored—molecules exhibit a typical positive rising edge, followed273

by a few tens of ms without any signal, and finally a negative falling edge at the same position as the274

rising edge (similar to the output of beads with a square modulation displayed in Fig. 1e). Much like275

on beads, all the events in a localization regardless of their sign can be summed to reconstruct a PSF,276

as shown in Fig. 2f. Again, the PSF displays a very similar aspect to camera-based PSFs.277

278

We also investigated the temporal behaviour of the fluorophore blinking, which is readily returned279

by the sensor output. This is displayed as positive and negative profiles in Fig. 2g. While some dyes280

have a very clear profile with well-defined rising and falling edges (the falling edge still displaying281

the trail mentioned previously) and few events in between, others display a very erratic behaviour,282

with a succession of multiple rising and falling edges, and seemingly intermediate levels of gray. This283

is consistent with the blinking regime observed on an sCMOS camera under the same illumination284

conditions and with an exposure time of 10 ms (data not displayed). Organic dyes under oxygen re-285

duction buffers are known to have more complex photophysical behaviour than fluorescent proteins286

used for PALM or dyes used for DNA-PAINT, where the emission of the labels is closer to a clean287

square signal. We point out that, interestingly, event-based SMLM could provide an efficient way to288

both characterize these temporal emission fluctuations and image the dyes without any performance289

or information loss.290

Event-based SMLM bioimaging291

As organic dyes could be efficiently detected with our event-based single-molecule localization292

method, we then moved on to imaging fixed biological samples labelled with AF647. We prepared293

COS-7 cells and labelled the α-tubulin with AF647 (see Methods section). A dSTORM imaging buffer294

was used and the sample was illuminated with a laser beam at typical dSTORM power density (see295

Methods). Using a 50:50 beamsplitter in the detection path, we performed a simultaneous EMCCD296

and event-based acquisition.297

298

2D SMLM images obtained with the event-based and the EMCCD sensors were found to be very sim-299

6

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 24, 2022. ; https://doi.org/10.1101/2022.07.22.501162doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.22.501162
http://creativecommons.org/licenses/by-nd/4.0/


ilar at the scale of the whole field of view of 21x21 µm2 (Fig. 3a), with the event-based localization300

image even yielding slightly more homogeneous localization densities over the field of view, espe-301

cially in dense regions. At the nanometer length scale (Fig. 3b), the event-based detection performed302

on par or even outperformed the EMCCD, allowing to resolve the hollow core of the microtubules303

(see the cyan arrows and the corresponding profiles in Fig. 3c). Note that taking into account the304

diameter of the microtubules (30 nm) and the size of the antibody labelling (10 nm on each side),305

tha apparent diameter is expected to be around 50 nm (see [8, 18] for more information). While both306

the event-based center of mass detection and the EMCCD Gaussian fitting reveal the apparent hol-307

lowness of the microtubules, a simple center of mass calculation with the EMCCD fails to do so. We308

furthermore performed resolution assessments using the now well established Fourier Ring Corre-309

lation (FRC) method [36] throught the NanoJ-SQUIRREL Fiji plugin [37] (see Methods section). The310

results presented in Supplementary Fig. 1 show an event-based resolution of 36 nm with a center of311

mass calculation and 30 nm with Gaussian fitting, very close to the reliable Gaussian fitting EMCCD312

resolution (28 nm), and significantly better than a simple center of mass calculation on the EMCCD313

data (50 nm). All the resolution measurements are summarized in Supplementary Table. 1. While314

using a dual-view detection setup is useful to monitor the acquisition in real time and to compare315

the final results, it is not necessary and it reduces the number of collected photons. To exploit the316

full potential of the event-based sensor, we performed an acquisition using a mirror in place of the317

beamsplitter cube, whose result is displayed in Fig. 3d. There again, the event-based SMLM ensures318

consistent localization performance over the whole ROI, and yields excellent precision that allows to319

resolve the microtubules apparent hollow core even more clearly, as shown on the profiles in Fig. 3e.320

321

Our results so far clearly demonstrate the feasibility of SMLM bioimaging with an event-based vision322

sensor, which is able to perform on par with a conventional and more costly EMCCD camera due to323

its virtually non existent reading noise. Moreover, while very useful for classical SMLM imaging,324

our event-based method gives us access to supplementary information other than the position of de-325

tected molecules. To illustrate this, we used event-based sensing to extract photophysical properties326

of the fluorophores, namely the ON time (as defined in the section Principle, optical setup and data327

display as well as in Fig. 2g) and the total number of events counted in each localization—which328

increases approximately linearly with the total number of photons emitted by the molecule, as men-329

tioned previously.330

331

Fig. 3f displays super-resolved maps of the ON time and number of events detected for each molecule.332

The Gaussian shape of the illumination profile is clearly visible, and, as expected, both follow an in-333

verse evolution—high ON times corresponds to molecules that are excited with low power, and334

therefore emit low numbers of photons (hence low numbers of events). A more quantitative assess-335

ment of this is provided in Fig. 3g, where both histograms are displayed in two different regions. In336

this acquisition, the ON time and the number of events only reveal the Gaussian shape of the illu-337

mination beam, but these quantities are often used in the literature to highlight chemical affinities338

or near-field optical effects at the molecular scale. One can cite for example the use of engineered339

DNA-PAINT strands and labels to perform high-specificity multi-species demixing (using the bind-340

ing time and frequency, as well as the intensities collected in three different color channels) [38]. Ex-341

amples of the use of the ON time and intensities in single-molecule nanophotonics include probing342

the changes in photophysical properties that fluorescent molecules undergo near a plasmonic gold343

surface or in a nanometric volume where the excitation field is vastly enhanced [39, 26]. One inter-344

esting use of event-based SMLM could be demixing of simultaneous multicolor blinking sequences,345

assigning each molecule a color based on its ON time or photophysical behaviour without the need346

for adapting the acquisition to resolve such variations. Such a demixing could be done either using347

user-defined criteria or through a deep learning algorithm.348

349
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Event-based high density imaging350

In order to exploit the unique capabilities of event-based sensors for single-molecule imaging, we use351

it in a regime where the density of PSFs is very high and their overlap significantly compromises the352

localization performance of frame-based acquisitions. The density of the PSFs in each frame results353

from the combination of several factors, in particular the density of the protein of interest, the density354

of the fluorescent labels and the blinking behaviour of the molecules. This can happen in particular355

in dSTORM experiments, where the density of molecules is usually difficult to control. Still, this is a356

more general problem, even when working with PALM or DNA-PAINT labels that allow more flex-357

ible control of the density of active PSFs. Indeed, independently of the labelling strategy, the most358

common approach when using frame-based cameras is to adapt the density of active fluorophores to359

the most dense structures in the field of view to have sparse PSFs in those regions. This, however,360

implies that the acquisition duration has to be increased to properly sample the less dense structures.361

However, in some cases such as acquisitions in living samples, this may not even possible, result-362

ing in under-sampled structures. Very few techniques are available to tackle such situations. While363

SOFI [40, 41] yields consistent performance over a large range of molecule densities, it is not intrin-364

sically a single-molecule approach, therefore it is not very well suited for quantitative applications365

such as molecule counting measurements. Other single-molecule approaches to process dense PSFs366

may require cumbersome procedures of deconvolution [42] or deep learning agorithms [43].367

368

We propose to take advantage of the spatio-temporal resampling capabilities of the event-based sen-369

sors to perform high density imaging. From a conceptual point of view, one can consider the case370

where the blinking dynamic is low but the density of molecules sufficiently high to induce significant371

overlap—for example in a PALM experiment where the excitation power is low but the photoactiva-372

tion rate high. In such situations where regular frame-based acquisitions would fail no matter what373

frame rate is chosen, the event-based sensor, on the contrary, would be able to detect (and localize)374

a molecule that becomes fluorescent or photobleaches among many others that maintain a constant375

level of emission. The same reasoning stands for dSTORM experiments where the switching rate376

is too low (when the excitation power is not sufficient for example) or simply where the density of377

labels is too high (such as at the beginning of the pumping phase, which is often discarded, leading378

to a loss of time and data).379

380

To illustrate this principle, we performed acquisitions where a very dense layer of 488-nm-excitable381

fluorescent beads is deposited on a coverslip, alongide a few, sparse 647-nm-excitable fluorescent382

beads. We used a multiband filter to excite and collect both wavelength channels, and we excited383

with a continuous 488 nm laser and a square-modulated 638 nm laser at 10 Hz. The 488 nm beads384

thus mimic dense static background with overlapping PSFs, and the 647 nm beads imitate the effect385

of a few molecules turning on or off on that background. Again, we used a 50:50 beamsplitter cube in386

the detection path to compare the performance of both imaging modalities. The results presented in387

Fig. 4a yield EMCCD frames where most 647 nm beads cannot be localized with usual approaches. In388

contrast, the event-based reconstructed frames contain almost no trace of the static background, and389

reveal very clearly the modulated beads even in the cases where they are not visible to the naked eye390

in the EMCCD frame. Note in particular that, while beads 1 and 2 are clearly visible on the EMCCD391

image, beads 3 and 4 would be more challenging to localize due to the overlapping neighbouring392

PSFs. Finally, beads 5 and 6 are almost impossible to localize with standard processing algorithms.393

All of them are clearly visible and localizable on the event-based image.394

395

Having validated the principle with such a first simple experiments, we moved on to real blink-396

ing acquisitions on biological samples. We therefore imaged a fixed COS-7 cell labelled with anti-397

α-tubulin primary and AF647-conjugated secondary antibody as in the section Event-based high398

density imaging and in Fig. 3, which we excited with a relatively high power density in a standard399

dSTORM buffer. However, instead of waiting for the end of the pumping phase, when the molecule400

density starts to become sparse, we started the acquisition at the same time as the excitation. Further-401

more, we chose a region where the microtubules are closely interwoven and the PSF density is thus402
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high. Using again a 50:50 beamsplitter cube, we compared the performance of an EMCCD-based403

and the event-based SMLM methods over the course of a short 250 s acquisition (during which the404

density of PSFs remains high).405

406

The event-based processing code was adapted to resample the data on shorter time scales. More407

specifically, frames were generated from either the positive events only with a time bin of ∆t=10 ms,408

and the localization was subsequently performed on the corresponding positive-only events within409

a short time range [T0 − 30 ms, T0 + 30 ms] centered around the frame timestamp. By running the410

processing on such a fine time scale, we expect to extract only the moment when a molecule turns on411

while its neighbours maintain a roughly constant level of emission. Then, a similar processing was412

performed to extract the moment when the molecules turn off. Even though this loses track of the413

link between the rising edge and the falling edge for each molecule and thus prevents the extraction414

of the ON time, it does retain the quantitative aspect of the measurement (each rising edge generates415

one positive localization, and each falling edge generates one negative localization), so molecules416

could still be counted. On the other hand, the EMCCD acquisition was carried out with a 30 ms417

exposure time and processed with a standard algorithm. It should be noted here that the exposure418

time is below the typical ON times of the dyes, which implies that the density of PSFs per frame is419

not very sensitive to the exposure time, and is on the contrary mostly determined by the density of420

the target protein, the density of labelling as well as the global fraction of active dyes (in other words421

the pumping rate and elapsed pumping time).422

423

Supplementary Fig. 2 shows both an ROI of an EMCCD frame, where the PSFs are found to be dense424

enough to overlap, and an event-based generated frame of the positive only events in a ∆t=10 ms time425

bin. On that frame (used only for the PSF detection), the density of molecules seems vastly reduced426

compared to the EMCCD frame, which means that although many neighbouring molecules are in an427

ON state, the variations of the signal are sparse enough to be spotted individually. The last frame428

shows all the positive events in the [T0 − 30 ms, T0 + 30 ms] range around the frame, revealing levels429

of signal and noise a priori sufficient to allow localization.430

431

Running the localization workflow on the whole 250 s long event-based dataset produced a strikingly432

well-sampled 2D SMLM image (Fig. 4b). As expected, the image exhibits a very uniform resolution,433

with little loss of sampling density or resolution either in dense areas or at the edges of the field of434

view. A more detailed view is presented in Fig. 4c, which reveals overall very satisfactory resolution435

performance. While the resolution is not as good as in the optimal case presented in Fig. 3d (the ap-436

parent hollow core of the microtubules is not visible here), it is very satisfactory given the suboptimal437

acquisition conditions—50 % of the photons only, 4 minutes of acquisitions compared to usual times438

around 20–30 minutes in dSTORM experiments, high density of PSFs and each localization contain-439

ing only the positive or only the negative events (leading to an immediate
√

2 loss in resolution).440

441

Overall, we consider that given these challenging imaging and processing conditions, the event-442

based SMLM performs very well both with center of mass calculation (Fig. 4c left) and Gaussian443

fitting (super-resolved image not displayed), as the tubulin filaments are well resolved and do not444

exhibit significant undersampling. This is even more striking when the results are compared to those445

obtained over the same area with a standard processing from the EMCCD acquisitions. Fig. 4c shows446

an undersampled 2D SMLM image with a Gaussian fitting EMCCD-based processing that does not447

allow to properly distinguish a certain number of tubulin filaments, especially in dense areas. A448

more basic center of mass algorithm run from the EMCCD frames yielded even more catastrophic449

results, with resolutions hardly better than the diffraction limit in dense areas. A quantitative assess-450

ment of the image resolution using FRC is provided in Supplementary Table. 1 and in Fig. 4d. The451

resolution was found to be 64 nm for event-based SMLM (both for center of mass calculation and452

Gaussian fitting), compared with 92 nm and 136 nm for EMCCD-based SMLM with Gaussian fitting453

and center of mass calculation, respectively. The resolution maps presented in Fig. 4d highlight not454

only the better overall performance of event-based SMLM, but also the reliability of the resolution,455
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which is much more uniform than with EMCCD acquisitions.456

457

These results provide a convincing proof of principle of how the spatio-temporal resampling prop-458

erties inherent in event-based SMLM can be used to improve localization performance compared to459

classic scientific cameras without resorting to complex processing workflows. The performance could460

be further enhanced by refining the processing pipeline. In particular, we believe that it would be461

possible to assess the local (in space and in time) density of molecules to adapt the processing condi-462

tions. For example, the time base and the PSF localization area could be relatively large in areas with463

low density to allow detection of both the rising edge and the falling edge, while denser areas could464

be processed with the high density algorithm, associated with a fine time base and dissociation of the465

positive and negative events. We expect such a more subtle type of algorithm to improve both the466

processing time and the localization performance, and potentially the quantitativity at the same time.467

This is conceptually reminiscent of previous works such as [44], where the size of the spatial range468

available for PSF shaping is adapted in real time according to the density of molecules (which varies469

in time during the acquisition), or [33], where the acquisition speed is adapted in real time so that it470

allows, recording of data at a sufficient rate while saving storage and processing power. Neverthe-471

less, a fundamental advantage of event-based SMLM is that the sensor records data as fast as it can,472

which means that no prior knowledge about the acquisition behaviour is needed, and that workflow473

refinements are inherently processing-based. Another advantage is that, while the exposure time of474

cameras can be varied in time, all the chip is constrained with the same exposure time—by contrast,475

all event-based processing parameters can be varied along spatial dimensions as well.476

477

Discussion478

With this work, we have demonstrated, for the first time to our knowledge, the use of novel neuro-479

morphic vision sensors for SMLM super-resolution fluorescence imaging. Besides its more affordable480

price than conventional EMCCD or sCMOS scientific cameras, the unique characteristics of event-481

based sensors make them perfectly suited for detecting sparse events in space and time, incidentally482

the working principle of SMLM. With our event-based SMLM approach, we have obtained dSTORM483

super-resolution images of the α-tubulin cytoskeleton network of COS-7 cells labeled with AF647484

with a spatial resolution on par with the state-of-the-art approach using an EMCCD camera. We485

have also seen that the event-based sensor provides access to quantitative information like the ON486

time and the number of events of the detected single fluorophores. Importantly, event-based SMLM487

opens new avenues for single-molecule applications where classical frame-based cameras are unable488

to perform, like we have shown in the case of high-density acquisitions with overlapping PSFs.489

490

The range of applications of event-based sensing is a priori very broad since it is very well suited491

to the extraction of the dynamics of biological processes. In the context of fluorescence microscopy,492

it could be especially useful to monitor processes that exhibit a wide range of dynamic scales. An493

extreme example would be that of a system that would not evolve for several hours before suddenly494

exhibiting dynamics in the millisecond range—such a system would be extremely challenging to495

monitor with frame-based approaches due to the necessity to use an exposure time short enough to496

sample the motion while keeping realistic data volume and processing times. While that example497

may seem purely theoretical, certain phenomena exhibit an extreme range of dynamic scales. One498

can cite colloidal glass transition, which is associated to time scales ranging over more than ten or-499

ders of magnitude, with large spatial variations of dynamics [45, 46].500

501

In the framework of SMLM, we found event-based detection to be extremely useful in some cases. A502

simple implementation of event-based SMLM readily unlocked resolutions and densities on par with503

state-of-the-art scientific camera-based approaches. If one considers that the key to super-resolution504

is the control and acquisition of some on/off behaviour of the fluorescent labels, which is a common505

view in the community [47], then it appears that event-based sensors are particularly well suited for506
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the purpose of blinking-based imaging of continuous structures since it essentially detects only the507

on and off transitions while discarding all the rest of the signal and the associated noise in the pro-508

cess. In the same situation, frame-based approaches usually run extra steps aiming at removing static509

signal or at extracting dynamic components such as median temporal filtering or blink linking over510

several frames to identify the same position detected in several consecutive frames and to merge it511

into one localization to improve the quantitativity and maximize the number of photons (in contrast,512

event-based SMLM ideally uses exactly one rising and one falling edge per blinking cycle), which513

may add complexity and noise or errors. Furthermore, these steps usually fail under challenging514

imaging conditions such as when the density of PSFs is high. On the contrary, we demonstrated that515

event-based SMLM is largely unaffected under these conditions, which we attribute to both its ability516

to extract the useful information only, as well as the possibility to easily perform efficient temporal517

resampling at the processing step to reduce the spatio-temporal density of signal to manageable lev-518

els.519

520

We expect that event-based SMLM could benefit from several improvements, both from the point521

of view of the optical design and that of the processing software. Clever strategies could be imple-522

mented to adapt the spatio-temporal analysis (i.e. the area of the PSF analysis and the processing time523

base) to the local density (in space and time) of the output signal, which is essentially a sparse matrix.524

This would probably lead to an increase in calculation speed and localization performance. Other525

more specific improvements could be made, like using better suited PSF models for the position cal-526

culation such as cubic spline [48] or deep learning-generated bases of experimental PSFs [49, 50, 43].527

A noise model for the event-based sensing that would provide an estimation of the CRLB would be528

a very useful addition to this.529

530

Given the high density imaging capabilities shown in Fig. 4, we also hypothesize that event-based531

SMLM could be used for quantitative applications in dSTORM since the pumping phase needs not be532

discarded, and the molecules blinking during that phase can be effectively counted. In other studies533

where the quantitative aspect is not as important as the acquisition speed (such as for live imaging or534

for high content screening), it could also benefit dSTORM and PALM experiments by allowing faster535

acquisitions—well sampled dSTORM images of dense structures can be obtained in a few minutes536

only as demonstrated previously, and PALM experiments could be carried out using higher photoac-537

tivation powers without compromising the PSF sparsity criterion. For this purpose, the use of an538

image quality assessment method such as [37] could provide useful information about the minimum539

acquisition time to obtain the desired image quality.540

541

Another very different set of applications where event-based SMLM may excel could be modulated542

excitation techniques, where a controlled time-modulated illumination is applied and the fluores-543

cence signal is demodulated to extract a parameter of interest. This can be the excitation wavelength544

in simultaneous multicolor experiments [51], the lateral position [52, 53], the axial position [5, 54]545

or the orientation of the dipole associated with the molecule [55] (non exhaustive list). In all these546

cases, however, the temporal aspect is crucial to the performance. While some approaches apply547

very low exposure times at the cost of low signal and high sensitivity to intensity fluctuations, others548

use pre-demodulated detection paths in combination with fast electrical switching between the chan-549

nels, which brings experimental complexity and reduces the effective field of view. We hypothesize550

that given their speed event-based sensors should be able to record the temporal modulated output551

without inducing much noise or reducing the signal level by splitting the useful photons. Therefore,552

event-based sensing could readily capture the dynamics of the response, which could then be effec-553

tively analyzed without the need for temporal sampling.554

555
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Figure 1: Principle of the event-based detection. a Description of the working principle of a pixel in
an event-based sensor. A given optical intensity signal I(t) is assumed, the sensitivity threshold B is
set to an arbitrary value. The reference value is also displayed, as well as the response from the pixel.
b Influence of the sensitivity on the output signal for the same I(t) as in a, but B is lower (i.e. the
detection is more sensitive). As a result of the sensitivity change, the the number of events generated
for the same signal is higher. c Comparison of the responses produced by a scientific camera and an
event-based sensor. The top row shows a theoretical I(t) profile emitted by a fluorescent molecule
turning on and then off, the middle row is the signal acquired by an ideal camera working at a
30 ms exposure time (the corresponding frames are displayed above the graph), and the bottom row
displays the signal returned by an event-based sensor with arbitrary sensitivity.
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Figure 1: d Optical setup used for the single-molecule experiments. A laser produces a Gaussian
excitation beam. The detection path comprises two detectors: and EMCCD camera and an event-
based sensor. We use switchable deflectors to alternate between the two detection paths: we use
either a 50:50 beamsplitter, a 30(EMCCD):70(event-based) beamsplitter, a mirror or nothing. More
details are available in the Methods section. e Frames generated from the events acquired in an
experiment where 200 nm fluorescent beads on a coverslip are excited with a square pulsed excitation
with a period of 100 ms. The frames are generated with a time bin of ∆t = 10 ms. The color codes
the number of events in each pixel, with respect to the polarity of the events detected (positive or
negative). The time limits are written for each frame. f Event time profile extracted from a single
bead from (e) with a ∆t = 2 ms time bin. The number of events represented corresponds to the sum
of all the pixels over the PSF. g Frames generated at different time bins from an acquisition of 40 nm
fluorescent beads deposited on a coverslip while the stage is translated from the bottom left to the
top right to simulate molecule motion. From the same event list, frames are generated at ∆t = 10 ms
(left) and ∆t = 1 ms (right). Scale bars: 0.5 µm (c), 5 µm (e), 5 µm (g).
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Figure 2: Single molecule localization and characterization of the performance. a Schematic of the
experiment used to measure the localization precision. Fluorescent beads deposited on a coverslip
are illuminated with a square modulated laser, therefore I(t) has a square modulated profile. The
EMCCD exposure time is set to exactly one period, so the signal is constant over all the frames
(with the exception of the photon noise). The event-based sensor detects the rising and falling edges,
and all the events in one period are pooled to compute the center of mass position. b Localization
precision results displayed as a function of the number of photons incoming on each of the detectors
(EMCCD or event-based sensor) per period (calculated from the number of photons detected on the
EMCCD taking into account the 30:70 ratio). The results for the event-based sensor are displayed
for different levels of sensitivity (i.e. different values of B). The CRLB curve corresponding to the
EMCCD detection is also shown. c Linearity of the response, shown for different levels of sensitivity.
The total number of events detected per period is displayed as a function of the number of photons
incoming on the event-based sensor per period. Note the quasi-linearity of the response in this signal
range. d PSF reconstructed by summing the events (regardless of their sign) detected over one period
of 100 ms (top) for the same bead. An x profile along the green dashed line is plotted at the bottom.
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Figure 2: e Frames reconstructed with ∆t = 10 ms from a sample of AF647 deposited on a glass
coverslip excited with a continuous laser in a dSTORM buffer to induce blinking. Note that this data
display reveals very different blinking behaviours from one molecule to the other—the molecule
indicated with a yellow arrow undergoes multiple blinking events in a quick succession while that
indicated by a magenta arrow exhibits a much simpler behaviour with essentially one rising edge
and one falling edge. f PSF reconstructed from all the events in one AF647 blinking event. The data
is taken from the same acquisition as in e, and the events are summed regardless of their sign. g
Two time profiles plotted for different AF647 molecules in the same acquisition as e. The one on
the left shows a simple blinking profile, which allows the calculation of the ON time, defined as the
difference of the mean time of the negative events (moment when the molecule turns off) and the the
mean time of the positive events (moment when the molecule turns on). The profile on the right, on
the contrary, displays a complex behaviour with multiple blinking events. Scale bars: 500 nm (d),
2 µm (e), 250 nm (f).
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Figure 3: Imaging of fixed COS-7 cells labelled with AF647 against α-tubulin (see the Methods sec-
tion for more information). a Simultaneous 2D SMLM image (the density of molecules is color-coded)
obtained with the event-based sensor and the EMCCD camera using a 50:50 beamsplitter in the de-
tection path. b Zoom on the region of a indicated with a green square. We compare the resolution
obtained with the event-based sensor (localization performed by center of mass calculation or Gaus-
sian fitting) and with the EMCCD camera (localization performed by Gaussian fitting; center of mass
was calculated but is not displayed). c Molecule density profiles plotted perpendicular to the micro-
tubules 1 and 2 in b. d 2D event-based SMLM image obtained with 100 % of the photons incoming
on the event-based sensor. A zoom on the region indicated with a green square is also shown. e
Molecule density profiles plotted perpendicular to the microtubules 3 and 4 in d. f Maps of the num-
ber of events per localization and of the ON time (color-coded values) for a different acquisition. g
Corresponding histograms displayed for the two regions indicated with cyan and magenta squares.
Scale bars: 5 µm (a, d left, f), 1 µm (b, d right).
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Figure 4: High density imaging. a Images of dense 488 nm fluorescent beads illuminated with contin-
uous 488 nm excitation and sparse 647 nm beads excited with square modulated 638 nm excitation,
using a multiband beamsplitter to collect both wavelength channels, and with a 50:50 beamsplit-
ter between the two sensors. Left: Integrated signal (i.e. sum of all the frames) obtained with the
EMCCD camera; right: integrated signal (i.e. sum of all the events) obtained with the event-based
sensor. Some of the 647 nm beads are indicated with red arrows. b Event-based SMLM image (the
density of localizations is color-coded) obtained from the same 250 s long acquisition. c Zoom on
the area indicated with a green rectangle in b, for the same 250 s long acquisition with simultaneous
event-based sensor and EMCCD detections. The SMLM images are shown for different localization
conditions: from the event-based sensor data with center of mass calculation (left), from the EMCCD
data with Gaussian fitting (center), and center of mass calculation (right). Note the different scales of
the colorbars.
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Figure 4: d FRC resolution maps calculated on the area displayed in b for the different localization
methods tested. Scale bars: 5 µm (a, b, d), 1 µm (c).
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Methods567

Optical setup. A schematic of the optical setup used is presented in Fig. 1d. We used a custom-568

built microscope with a RM21 body and a MANNZ micro- and nano-positioner. The illumination569

and fluorescence collection was done with a Nikon 100x 1.49NA APO TIRF SR oil immersion. The570

excitation was performed thanks to a 638 nm laser (LBX-638-180, 180 mW, Oxxius) and a 488 nm571

laser (LBX-488-100, 100 mW, Oxxius) with a 405 nm laser for pumping (LBX-405-50, 50 mW, Oxxius).572

A full multiband filter set (LF405/488/561/635-A-000, Semrock) was used. The excitation consisted573

of a standard vertical Gaussian beam without any scanning, speckle removal or optical sectioning.574

The fluorescence was sent in the detection module and recorded on the EMCCD camera (iXon Ultra575

897, Andor) and/or on the event-based sensor (EVK V2 Gen4.1, Prophesee). Both sensors had their576

focal planes approximately matched (below 200 nm difference). We used afocal doublets to adjust577

the pixel sizes to 107 nm (EMCCD) and 65 nm (event-based sensor) in the object plane. Depending578

on the acquisition, we placed different elements in the detection path thanks to a flip platform—579

either a 50:50 non-polarizing beamsplitter (Thorlabs), or a a 30(EMCCD):70(event-based sensor) non-580

polarizing beamsplitter (Thorlabs), or a plane mirror (Thorlabs) to deflect all the signal on the event-581

based sensor, or nothing to collect all the fluorescence on the EMCCD camera.582

Fluorescent beads sample preparation (Fig. 1g and Fig. 2b–d). The sample was prepared by diluting583

dark red (660/680) 40 nm fluorescent beads (F10720, Thermo Fisher) with a dilution factor of 10−7 in584

phosphate buffered saline (PBS) and allowing them to deposit on a coverslip.585

The sample used for Fig. 1e–f was prepared by diluting dark red (660/680) 200 nm fluorescent beads586

(F8807, Thermo Fisher) with a dilution factor of 10−3 in PBS and allowing them to deposit on a587

coverslip.588

The sample used for Fig. 4a was prepared by diluting dark red (660/680) 40 nm fluorescent beads589

(F10720, Thermo Fisher) with a dilution factor of 8 × 10−8 and yellow-green (505/515) 40 nm fluo-590

rescent beads (F10720, Thermo Fisher) with a dilution factor of 8× 10−6 in PBS and allowing them to591

deposit on a coverslip.592

Alexa Fluor 647 on a coverslip sample preparation (Fig. 2e–g). The sample was prepared by de-593

positing 1.5 µl of the initial solution of AF647 goat anti-mouse antibody (A21237, Thermo Fisher),594

allowing 5 minutes for the molecules to deposit before rinsing with H2O and adding dSTORM buffer.595

The buffer was composed of 100 mg/ml glucose, 3.86 mg/ml MEA, 0.5 mg/ml glucose oxidase and596

1.18 µl/ml catalase in PBS. The sample was illuminated with a 638 nm continuous excitation at an597

irradiance of 5 kW/cm2.598

Biological samples preparation. African green monkey kidney cells (COS-7) were cultured at 37°C599

and 5 % CO2 in DMEM medium containing glutamax (Gibco No. 31966-047), 10 % fetal bovine600

serum (FBS, Gibco No. A3840401) and 50 U/ml penicillin and 50 µl/ml streptomycin (Gibco No.601

15140-148). For experiments, cells were plated on 25 mm diameter glass coverslips (type 1.5) placed602

in six well plates containing culture medium with 2 % FBS at low density, and fixed on the following603

day in 0.1 M sodium phosphate buffer (PB), pH 7.4, containing 4 % paraformaldehyde (PFA), 0.2 %604

glutaraldehyde, 1 % sucrose, at 37°C for 10 minutes, followed by three rinses in PBS. Cells were605

permeabilized with PBS containing 0.1 % Triton X-100 for 10 minutes and rinsed three times with606

PBS prior to immunolabelling.607

For the labelling, the cells were incubated for 1 hour at 37°C with 1:300 mouse anti-α-tubulin antibody608

(Sigma Aldrich, T6199) in PBS + 1 % BSA. This was followed by three washing steps in PBS + 1 % BSA,609

incubation for 45 minutes at 37°C with 1:300 goat anti-mouse AF647 antibody (Life Technologies,610

A21237) diluted in PBS 1 % BSA and three more washes in PBS. Finally, the cells were post-fixed with611

3.6 % formaldehyde for 15 min in PBS. The cells were washed in PBS three times and then reduced612

for 10 minutes with 50 mM NH4Cl (Sigma Aldrich, 254134), followed by three additional washes in613

PBS.614

Localization precision and response linearity measurement (Fig. 2b–c). Acquisitions were per-615

formed on fluorescent beads deposited on a coverslip using a square modulated 638 nm excitation616
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with a frequency of 10 Hz, a duty cycle of 0.5 and a minimum laser output of 0 mW. Using a 30:70617

(camera:event-based sensor) non-polarizing beamsplitter, acquisitions were captured simultaneously618

on the camera (100 ms exposure) and on the event-based sensor with various sensitivity values.619

Event-based frames were generated by summing all the events in ∆t =100 ms time bins regardless620

of their sign. The positions were calculated using a center of mass calculation on both the event-621

based reconstructed and the camera-acquired frames. Positions were drift-corrected using a direct622

cross-correlation algorithm. A simple clustering algorithm was used to determine the localization623

precision from the calculated positions as well as the average number of photons/events for each624

bead. A total of 1000 frames were included in the statistics. Finally, a colocalization algorithm was625

used to match the camera-based and the event-based bead positions in order to compare the perfor-626

mances of both methods. The average number of photons per cycle on the camera was calculated for627

each bead from the camera localization results, and this number was subsequently used to calculate628

the average number of photons per cycle on the event-based sensor for each bead by applying a ratio629

corresponding to the beamsplitter ratio (experimentally measured to be 1:2.38).630

Standard density biological experiments (Fig. 3). EMCCD acquisitions were done with a 30 ms631

exposure time and a gain of 100, and event-based was done with thresholds corresponding to the632

level of sensitivity called ’high’ in the characterization. The detection path used either a 50:50 non-633

polarizing beamsplitter cube or a mirror to send all the photons on the event-based sensor. Both634

sensors were not synchronized but dual-view acquisitions were started and stopped simultaneously.635

We used a dSTORM buffer composed of 100 mg/ml glucose, 3.86 mg/ml MEA, 0.5 mg/ml glucose636

oxidase and 1.18 µl/ml catalase in PBS and a 638 nm continuous excitation with an irradiance of637

5 kW/cm2. After a pumping phase of a few minutes, the acquisitions were started and stopped after638

25 minutes. A low power continuous 405 nm excitation was also added during the second half of the639

acquisition to increase the density of detections.640

EMCCD frames were processed using a wavelet algorithm to detect the PSFs and each PSF was641

localized on a ±4 pixels area centered around the maximum. Positions were estimated using either642

Gaussian fitting or center of mass calculation. Drift was corrected using a direct cross-correlation643

algorithm using the sample itself as a reference (no fiducial markers were used).644

Event-based data were processed as follows. Positive events were binned in ∆t=20 ms frames, on645

which PSFs were detected using a wavelet algorithm. This yielded the rough reference space and646

time positions x0, y0 and T0 for each PSF. Molecules were then localized from a subset of all the647

events (both positive and negative) corresponding to an area of ±4 pixels around (x0,y0) and to times648

in the interval [T0 − 60 ms, T0 + 120 ms]. The position of the center was estimated using a center of649

mass calculation. Other data were extracted—the total number of events N in the subset, the time of650

the rising edge t+ (taken as the mean time of the positive events) and the time of the falling edge t−651

(taken as the mean time of the negative events). These were used to calculate the ON time of each652

molecule tON = t− − t+. Positions were drift corrected using the same direct cross-correlation as for653

the frame-based data.654

High density biological experiments (Fig. 4b–d). EMCCD acquisitions were done with a 30 ms655

exposure time and a gain of 100, and event-based were done with thresholds corresponding to the656

level of sensitivity called ’high’ in the characterization. The detection path used either a 50:50 non-657

polarizing beamsplitter cube or a mirror to send all the photons on the event-based sensor. Both658

sensors were not synchronized but dual-view acquisitions were started and stopped simultaneously.659

We used a dSTORM buffer composed of 100 mg/ml glucose, 3.86 mg/ml MEA, 0.5 mg/ml glu-660

cose oxidase and 1.18 µl/ml catalase in PBS and a 638 nm continuous excitation with an irradiance661

of 5 kW/cm2. No pumping phase was allowed, so the acquisitions were started immediately and662

stopped after 250 seconds. A low power continuous 405 nm excitation was also used during the663

entire acquisition to increase the detection density.664

EMCCD frames were processed using a wavelet algorithm to detect the PSFs and each PSF was665

localized on a ±3 pixels area centered around the maximum. Positions were estimated using either666

Gaussian fitting or center of mass calculation. Drift was corrected using a direct cross-correlation667

algorithm using the sample itself as a reference (no fiducial markers were used).668
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Event-based data were processed as follows. The dataset was split in two subsets containing the669

positive and negative events respectively. Positive events were binned in ∆t=10 ms frames, on which670

PSFs were detected using a wavelet algorithm. This yielded the rough reference space and time671

positions x0, y0 and T0 for each PSF. Molecules were then localized from a subset of all the events672

(both positive and negative) corresponding to an area of ±3 pixels around (x0,y0) and to times in673

the interval [T0 − 30 ms, T0 + 30 ms]. The position of the center was estimated using a center of674

mass calculation. The total number of events N in the subset corresponding to the molecule was also675

extracted. The same processing was run on the negative events subset with the same parameters. Due676

to the separate processing of the positive and negative events, the ON times could not be extracted677

since we did not use a dedicated program to link the rising and falling edges. Positions were drift678

corrected using the same direct cross-correlation as for the frame-based data.679

FRC resolution calculation All FRC resolution measurements were done using the Fiji plugin NanoJ-680

SQUIRREL [37]. Localization lists were randomly split in two statistically independent sets and681

super-resolution images were generated with a pixel size of 5 nm. FRC maps were calculated with a682

number of blocks per axis of 30 (for full images) or 10 (for zooms on small sub-regions). We noticed683

little variation of the results with the calculation parameters.684

Cramér-Rao Lower Bound calculation (Fig. 2b). CRLB values were estimated for the EMCCD cam-685

era using equation 4 from [56]. The values of the parameters were measured experimentally.686

Localization and data treatment software. The localization and data treatment software is described687

in the Localization precision and response linearity measurement, Standard density biological688

experiments and High density biological experiments Methods sections. It should be noted that no689

filtering was used in the event-based processing.690

All the processing and rendering was performed using a home-written Python code. The function691

used to read the event files was borrowed from the Metavision SDK open samples.692

Code availability. Processing codes are made available on Github at the following address:693

https://github.com/Clement-Cabriel/Evb-SMLM.git694

The repository contains the codes for reading files and converting them into frame stacks, and the695

single-molecule localization code will be added soon. More codes will be added in the future.696

Datasets are available on the same repository to test the codes.697

Data availability. More datasets are available from the corresponding authors upon reasonable re-698

quest.699
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Supplementary Figure 1: FRC resolution measurements on the acquisitions presented in Fig. 3.859

Supplementary Figure 2: Frames extracted from the acquisition presented in Fig. 4.860

Supplementary Table 1: FRC resolution measurements on all the biological samples presented.861
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Supplementary Figure 1: FRC resolution measurements on fixed COS-7 cells labelled with AF647
against α-tubulin obtained with the event-based sensor and the EMCCD camera using a 50:50 beam-
splitter in the detection path (corresponding to the data displayed in Fig. 3).
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Supplementary Figure 2: Frames extracted from an acquisition on fixed COS-7 cells labelled with
AF647 against α-tubulin acquired with a 50:50 beamsplitter over 250 seconds in a dense regime where
the PSF exhibit noticeable overlap (presented in Fig. 4). a Single 30 ms exposure frame taken from the
EMCCD. b Single frame (corresponding to a slightly different instant in the acquisition as a) gener-
ated from all the positive events detected in ∆t = 10 ms (this frame is used only for the PSF detection).
c Frame generated from all the positive events used for the localization of the PSFs detected in the
∆t = 10 ms frame, i.e. in a time window of [−30 ms, 30 ms] around the mean time of each molecule.
Note the difference of event number compared to b. Scale bars: 1 µm.
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Acquisition conditions
Corresponding
figure

Sensor and localization
method

Average
resolution
(nm)

Standard density,
full field,
50:50 beamsplitter

Fig. 3a

Event-based, center of mass 36
Event-based, Gaussian fitting 30

EMCCD, center of mass 50
EMCCD, Gaussian fitting 28

Standard density,
zoom,
50:50 beamsplitter

Fig. 3b

Event-based, center of mass 34
Event-based, Gaussian fitting 28

EMCCD, center of mass 27
EMCCD, Gaussian fitting 44

Standard density,
full field,
100 % on the
event-based sensor

Fig. 3d left

Event-based, center of mass 28
Event-based, Gaussian fitting 24

Standard density,
zoom,
100 % on the
event-based sensor

Fig. 3d right

Event-based, center of mass 28
Event-based, Gaussian fitting 23

High density,
full field,
50:50 beamsplitter

Fig. 4d

Event-based, center of mass 64
Event-based, Gaussian fitting 64

EMCCD, center of mass 136
EMCCD, Gaussian fitting 92

Standard density,
zoom,
50:50 beamsplitter

Fig. 4c

Event-based, center of mass 57
Event-based, Gaussian fitting 55

EMCCD, center of mass 114
EMCCD, Gaussian fitting 84

Supplementary Table 1: FRC resolution measurements on fixed COS-7 cells labelled with AF647
against α-tubulin under various acquisition conditions.
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