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Abstract

Single molecule Förster resonance energy transfer (smFRET) plays a crucial role
in revealing biomolecular dynamics over a wide range of timescales. Currently avail-
able tools that analyze smFRET data, however, remain limited in their scope as they
are unable to simultaneously estimate: 1) the number of system states visited by a
biomolecular complex; 2) the associated kinetic rates; and 3) uncertainties over the
estimated parameters, while including features such as crosstalk, instrument response
function (IRF) and background in the model. In this paper, we adapt the Bayesian
nonparametrics (BNP) framework presented in the first paper to analyze dynamics
from single photon smFRET traces generated under continuous illumination. Using
this method, we learn the lifetimes/escape rates and the number of system states given
a trace of photons. We benchmark our method by analyzing a range of synthetic and
experimental data. Particularly, we apply our method to simultaneously learn the the
number of system states and the corresponding dynamics for intrinsically disordered
proteins (IDPs) using two-color FRET under varying chemical conditions. Moreover,
using synthetic data, we show that our method can deduce the number of system states
even when dynamics occur at timescales of interphoton intervals.

1 Terminology Convention

To be consistent throughout our three part manuscript, we precisely define some terms as
follows:

1. a biomolecular complex labeled with a FRET dye pair is always referred to as a system,

2. the spatial configurations through which a system transitions are termed system states,

3. FRET dyes undergo quantum mechanical transitions between photophysical states,

4. a system-FRET combination is always referred to as a composite, and

5. a composite undergoes transitions among its superstates.

2 Introduction

Single molecule Förster Resonance Energy Transfer (smFRET) experiments are widely used
[1] to study molecular dynamics across timescales on both stationary [2, 3] and freely dif-
fusing molecules [4]. These timescales include faster events, below the micro- to millisecond
timescales, including some domain rotations, configurational dynamics of disordered pro-
teins, protein folding and protein-protein interactions, all the way to slower events, such as
present misfolding and refolding events, occurring on minute and even hour long timescales
[5].

In a typical experiment we consider herein, a continuous wave (CW) laser illuminates
a sample with a beam of constant intensity and power over a period of time. CW sources
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are common as they both are typically cheaper and technically simpler to implement in
an experimental setup than their pulsed counterparts [6]. However, as compared to pulsed
sources, a disadvantage lies in the increased photon flux through the sample which can
accelerate photodamage [7].

While pulsed illumination can significantly reduce sample photobleaching and phototox-
icity [8], in practice it is restricted to analyzing one (time-stamped) photon per interpulse
period. This in turn limits the data acquisition rate and sets a bound on the temporal res-
olution of the dynamics we may deduce from pulsed single photon arrival. In principle, we
may generalize the likelihood to consider not just the first photon arising after each pulse
but, rather, all photons recorded following each pulse. While this is in principle possible, it
is seldom done due to added computational cost.

By contrast, continuous illumination avoids this problem, by allowing a larger number of
photons to be detected in the time that would normally be considered an interpulse period
in pulsed illumination [9]. The cost then comes at the loss of direct knowledge of excited
state lifetime which can, with difficulty and high uncertainty, then be decoded from photon-
antibunching statistics if required [10].

It is common practice to analyze photon arrival data under continuous illumination by
binning the data and subsequently using hidden Markov models (HMMs) [11–14]. It re-
mains conceptually preferred, though more computationally costly, to use photon-by-photon
methods [9, 10, 15–19]. Indeed, photon-by-photon methods can be used to learn both photo-
physical and system transition rates directly from the detected photon colors and interphoton
arrival times. Additionally, this has the benefit of avoiding averaging dynamics that may
occur when binning data [12].

Currently available methods to analyze smFRET data in a photon-by-photon manner
[9, 15] rely on the foundational works of Gopich and Szabo [9, 10, 20], where the likelihood
is taken as the product of as many generator matrix exponentials as there are photons in a
FRET trace. Such a generator matrix constitutes transition rates encoding the kinetics of
the system-FRET composite [21].

When analyzing smFRET data, of particular interest is the dimensionality of this gener-
ator matrix which is determined by the number of system states. In all existing analyses, the
dimensionality is fixed by hand a priori and the transition rates are then learned as point
estimates using maximum likelihood methods.

Yet point estimates can be biased. In fact, limited data, lack of temporal resolution to
estimate very fast kinetics, and noise all contribute to bias [22] in addition to a likelihood
being flat or multimodal [23, 24]. This motivates why we wish to operate in a Bayesian
setting to learn distributions over the number of system states and transition rates, while
incorporating unavoidable noise sources such as detector electronics and background.

For this reason, we developed a complete Bayesian nonparametric (BNP) framework in
the first paper of the current series [21]. This framework incorporates many key complexi-
ties of a typical smFRET experimental setup, including background emissions, fluorophore
photophysics (blinking, photobleaching, and direct acceptor excitation), instrument response
function (IRF), detector dead time, and crosstalk.

Here, we delve deeper into this framework for the case of continuous illumination by
exploring its utility in cases where the number of system states is unknown.

We first test the robustness of our nonparametric method and its software implementa-
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tion BNP-FRET [25] by analyzing synthetically generated data for dynamics varying from
very slow to as fast as the interphoton arrival times. Then apply our method to experi-
mental smFRET data capturing interactions between intrinsically disordered protein (IDP)
fragments [26, 27] relevant to signaling and regulation of cellular activities. IDPs are of
particular interest to nonparametric analyses as IDP lack of order and stability results in a
broader spectrum of dominant FRET pair distances sensitive to their chemical environment.

In particular, we study interactions between the nuclear-coactivator binding domain
(NCBD) of a CBP/p300 transcription coactivator and the activation domain of SRC -3
(ACTR) under varying chemical conditions affecting their coupled folding and binding reac-
tion rates [26, 27]. We use a single FRET pair under continuous illumination to observe the
possible physical configurations (system states) of the NCBD-ACTR complex. Further, we
report new bound/transient system states for the NCBD P20A mutation in buffer (crowder
absent), not observed using previous point estimation techniques [27].

3 Forward Model and Inference Strategy

For the sake of completeness, we begin with relevant aspects of the methods presented in
the first companion paper [21], including the likelihood needed in Bayesian inference, and
our parametric and nonparametric Markov Chain Monte Carlo (MCMC) samplers.

An smFRET experiment involves at least two single photon detectors collecting informa-
tion on stochastic arrival times. We denote these arrival times with

{Tstart, T1, T2, T3, . . . , TK , Tend},

in detection channels
{c1, c2, c3, . . . , cK},

for a total number of K photons. In this representation above, Tstart and Tend are the
experiment’s start and end times, respectively.

Using this stochastic dataset, we would like to infer parameters governing a system’s
kinetics, that is, the number of system states Mσ and the associated transition rates λσi→σj ,

as well as Mψ photophysical transition rates λ
(i)
ψl→ψm corresponding to each system state σi.

Here, σi ∈ {σ1, . . . , σMσ} and ψl ∈ {ψ1, . . . , ψMψ
} are the system states and photophysical

states, respectively. These rates populate a generator matrix G of dimension Mφ = Mψ×Mσ

now representing transitions among composite superstates, φi ≡ (σj, ψk) where i = (k −
1)Mψ + j (see the first companion manuscript for details [21] on the structure of such a
matrix). This matrix governs the evolution of the system-FRET composite via the master
equation

dρ(t)

dt
= ρ(t)G, (1)

as described in Sec. 2.2 of the first companion manuscript [21].
In estimation of these parameters, we must account for all the sources of uncertainty

present in the experiment, such as shot noise and detector electronics. Therefore, we nat-
urally work within the Bayesian paradigm where the parameters are learned by sampling
from a probability distribution termed the posterior over these parameters. This posterior is
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proportional to the product of the likelihood, which is the probability of the collected data
given the physical model, and prior distributions over the parameters as follows:

p(G|w) ∝ L(w|G)p(G), (2)

where w constitutes the set of all observations, including photon arrival times and detection
channels.

To construct the posterior, we begin with the likelihood

L(w|G) ∝ ρstart Πnon
1 Grad

1 Πnon
2 Grad

2 . . . Πnon
K−1G

rad
K−1 Πnon

K Grad
K Πnon

end ρ
T
norm, (3)

derived in Sec. 2.2 in the first manuscript. Here, Πnon
k and Grad

k are the non-radiative and
radiative propagators, respectively. Furthermore, ρstart is computed by solving the master
equation assuming the system was at equilibrium immediately preceding the time at which
the experiment began. That is, we solve

ρstartG = 0.

Next, assuming that the transition rates are independent of each other, we can write the
associated prior as

p(G) =
∏
i,j

p(λφi→φj),

where we choose Gamma prior distributions over individual rates, that is,

p(λφi→φj) = Gamma

(
λφi→φj ;α,

λref
α

)
,

to guarantee positive values. Here, φi represents one of the Mφ superstates of the system-
FRET composite collecting both the system and photophysical states as described in Sec. 2.2.
Furthermore, α and λref are the parameters of the Gamma prior.

In what follows, we first assume that the number of system states are known and will
describe an inverse strategy that uses the posterior above to only learn the transition rates.
Next, we generalize our model to a nonparametric case accommodating more practical situa-
tions with unknown number of system states. We do so by assuming an infinite dimensional
system state space and making the existence of each system state itself a random variable.

3.1 Inference Procedure: Parametric Sampler

Now, with the posterior defined, here we prescribe a sampling scheme to learn distributions
over all the parameters of interest, namely, transitions rates of G and the number of states.
However, our posterior in Eq. 2 does not assume a form amenable to analytical calculations.
Therefore, we employ Markov Chain Monte Carlo (MCMC) techniques to draw numerical
samples.

Particularly convenient here is the Gibbs algorithm that sequentially and separately
generate samples for individual transition rates in each MCMC iteration. This requires us
to first write the posterior in Eq. 2 using the chain rule as follows:

p(G|w) = p(λφi→φj |G\λφi→φj ,w)p(G\λφi→φj |w), (4)
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where the backslash after G indicates exclusion of the following rate parameter. Furthermore,
the first term on the right hand side is the conditional posterior for the individual rate
λφi→φj . The second term in the product is a constant in the corresponding Gibbs step as it
is independent of λφi→φj . Similarly, the priors p(G\λφi→φj) for the rest of the rate parameters
on the right hand side of Eq. 2 are also considered constant. Equating the right hand sides
of Eqs. 2 & 4 then allows us to write the following conditional posterior for λφi→φj as

p(λφi→φj |G\λφi→φj ,w) ∝ L(w|G) Gamma

(
λφi→φj ;α,

λref
α

)
. (5)

Since the conditional posterior above does not take a closed form that allows direct
sampling, we use the Metropolis-Hastings (MH) step [28–34], where new samples are drawn
from a proposal distribution q and accepted with the probability

α(λ∗φi→φj , λφi→φj) = min

{
1,
p(λ∗φi→φj |w,G\λφi→φj) q(λφi→φj |λ

∗
φi→φj)

p(λφi→φj |w,G\λφi→φj) q(λ∗φi→φj |λφi→φj)

}
, (6)

where the asterisk represents the proposed rate values from the proposal distribution q.
Now, to generate an MCMC chain of samples, we first initialize the chains for all the

transition rates λφi→φj , by randomly draw values from their corresponding prior distributions.
We then one-by-one go through each transition rate in each new MCMC iteration and draw
new samples from the corresponding conditional posterior using the MH step.

In the MH step, a convenient choice for the proposal is a Normal distribution leading to a
simpler formula for acceptance probability in Eq. 6. This is due to its symmetry resulting in
q(λφi→φj |λ∗φi→φj) = q(λ∗φi→φj |λφi→φj). However, a normal proposal distribution would allow
forbidden negative transition rates, leading to automatic rejection in the MH step and thus
inefficient sampling. Therefore, it is more convenient to propose new samples using a Normal
distribution in the logarithmic space to allow exploration along the full real line as follows:

log(λ∗φi→φj/κ)
∣∣ log(λφi→φj/κ), σ2 ∼ Normal

(
log(λφi→φj/κ), σ2

)
,

where κ = 1 is an auxiliary parameter in the same units as λφi→φj introduced to obtain a
dimensionless quantity within the logarithm.

The transformation above requires introduction of Jacobian factors in the acceptance
probability as follows:

α(λ∗φi→φj , λφi→φj) = min

{
1,
p(λ∗φi→φj |w,G\λφi→φj)
p(λφi→φj |w,G\λφi→φj)

(∂ log(λφi→φj/κ)/∂λφi→φj)

(∂ log(λφi→φj/κ)/∂λφi→φj)
∗

}
.

where the derivatives represent the Jacobian and the proposal distributions are canceled by
virtue of using a Normal distribution.

The acceptance probability above depends on the difference of the current and proposed
values for a given transition rate. This difference is determined by the covariance of the
Normal proposal distribution σ2 which needs to be tuned for each rate individually to achieve
an optimum performance of the BNP-FRET sampler, or equivalently approximately one-
third acceptance rate for the proposals [35].
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In our case where the smFRET traces analyzed contain about 105, we found it prudent
to make the sampler alternate between two sets of variances, {σ2

ex = 10−5, σ2
FRET = 0.01,

σ2
sys = 0.1} and {σ2

ex = 10−5, σ2
FRET = 0.5, σ2

sys = 5.0}, for the excitation rates, FRET rates,
and system transition rates. This ensure that sampler is quickly able to explore values at
different orders of magnitude.

Intuitively, these covariance values in the proposal distributions above represent the rela-
tive widths of the conditional posteriors for these parameters (in log-space). Since a posterior
width depends on the amount of data used, an increase or decrease in the number of pho-
tons used for analysis will require a corresponding decrease or increase in the covariances,
respectively.

3.2 Inference Procedure: Nonparametric BNP-FRET Sampler

In realistic situations, the dimensionality of the system state space is usually unknown as
molecules under study may exhibit complex and unexpected behaviors across conditions and
timescales. Consequently, the dimensionality Mφ of the generator matrix G is also unknown,
and must be determined by adopting a BNP framework.

In such a framework, we assume an infinite set of system states and place a binary
weight, termed load, on each system state such that if it is warranted by the data, the
value of the load is realized to one. Put differently, we must place a Bernoulli prior on
each candidate state (of which there are formally an infinite number) [36–38]. In practice,
we learn distributions over Bernoulli random variables bi that activate/deactivate different
portions of the full generator matrix as (see Sec. 3.2.1 of the first companion manuscript)

G =



∗ b21λψ1→ψ2 b21λψ1→ψ3 b1b2λσ1→σ2 0 0 . . .

b21λψ2→ψ1 ∗ b21λ
(1)
ψ2→ψ3

0 b1b2λσ1→σ2 0 . . .

b21λψ3→ψ1 b21λψ3→ψ2 ∗ 0 0 b1b2λσ1→σ2 . . .
b1b2λσ2→σ1 0 0 ∗ b22λψ1→ψ2 b22λψ1→ψ3 . . .

0 b1b2λσ2→σ1 0 b22λψ2→ψ1 ∗ b22λ
(3)
ψ2→ψ3

. . .

0 0 b1b2λσ2→σ1 b22λψ3→ψ1 b22λψ3→ψ2 ∗ . . .
...

...
...

...
...

...
. . .


,

where active loads are set to 1, while inactive loads are set to 0. Furthermore, ∗ represents
negative row-sums. Finally, the number of active loads provides an estimate of the number
of system states warranted by a given dataset.

As we have introduced new variables we wish to learn, we upgrade the posterior of Eq. 2
to incorporate the full set of loads, b = {b1, b2, . . . , b∞}, as follows:

p(b,G|w) ∝ L(w|b,G) p(b)p(G),

where we assume that all the parameters of interest are independent of each other.
As in the parametric sampler presented in the previous subsection, we generate samples

from the nonparametric posterior above using Gibbs algorithm. That is, we first initialize
the MCMC chains for loads and rates by drawing random samples from their priors. Next,
to construct the chains, we iteratively draw samples from the posterior in two steps: 1)
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sequentially sample all the rates using the MH procedure; then 2) loads by direct sampling,
from their corresponding conditional posteriors. Since step (1) is similar to the parametric
case, we only focus on the second step in what follows.

To generates samples for load bi, the corresponding conditional posterior is given by [37]

p(bi|b\bi,G,w) ∝ L(w|b,G) Bernoulli

(
bi;

1

1 + Mmax
σ −1
γ

)
,

where the backslash after b indicates exclusion of the following load. We may set the hyper-
parameters Mmax

σ , the maximum allowed number of system states used in computations, and
γ, the expected number of system states based on simple visual inspection of the smFRET
traces.

Now, the conditional posterior in the equation above is discrete and describes the prob-
ability for the load to be either active or inactive, that is, it is itself a Bernoulli distribution
as follows:

p(bi|b\bi,G,w) = Bernoulli(bi; qi),

where

qi =
L(w|bi = 1,b\bi,G,ρstart)

L(w|bi = 1,b\bi,G) + L(w|bi = 0,b\bi,G)
.

The simple form of this posterior is amenable to direct sampling. In the end, the chain of
generated samples can be used for subsequent statistical analysis.

4 Results

In this section, we first demonstrate the robustness of our BNP-FRET sampler by investigat-
ing the effects of excitation rate on the distributions for the transitions rates and the number
of system states. Once we have illustrated the BNP-FRET sampler’s performance on syn-
thetic data, we apply it to estimate the number of system states along with the associated
escape rates from publicly available experimental data for a complex involving ACTR-NCBD
instrinsically disorder proteins. We compare our results with reported literature values.

4.1 Resolution of Timescales Given Excitation Rate: Nonpara-
metrics

To demonstrate the performance of our BNP-FRET sampler over a range of timescales
given an excitation rate, we follow the same approach as presented in the first companion
manuscript (see Sec. 4.1). That is, we generate four synthetic smFRET traces containing
K = 2 million photons each for a biomolecular complex with three system states, {σ1, σ2, σ3}.
To synthesize these datasets, we fix the excitation rate to be λex = 10 ms−1 and FRET
efficiencies εFRET to be 0.09, 0.5, and 0.9 for the three system states, respectively, motivated
by experiments in [27].

The remaining parameters are the system transition rates λσi→σj , which are varied across
datasets to test our BNP-FRET sampler over a wide spectrum of timescales ranging from

8

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.20.500888doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500888
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1: MCMC chains generated by the BNP-FRET sampler for the number
of system states. The synthetic smFRET datasets used to generate these chains assume
uniform excitation rate of 10 ms−1 and FRET efficiencies of 0.09, 0.5, and 0.9 for the three
system states. However, molecular dynamics become faster by a factor of 10 as we move
from panel (a) to (d). In the slowest case, we use escape rates of 0.01, 0.02, and 0.03 ms−1

for the three system states, while in the fastest case dynamics are as fast as the excitation
rate itself. Our method converges to the correct number of system states for each dataset.

a thousand times longer than the average interphoton arrival time (1/λex) to as short as
the average interphoton arrival time itself representing an extreme case. We do not probe
dynamics any faster because the excitation rate does not provide enough temporal resolution
for resolving system transitions in this regime, as demonstrated in the first manuscript (see
Sec. 4.1).

We start the analysis by applying our BNP-FRET sampler to learn the number of system
states for the case with slowest escape rates, i.e. the sum of all the transition rates out of a
given system state. These escape rates are λesc = 0.01, 0.02, and 0.03ms−1. We show that
our BNP-FRET sampler can correctly learn the number of system states; see Fig. 1(a).

Next, we one-by-one analyze datasets generated using escape rates that are 10 times
faster in each subsequent dataset. Our nonparametric smFRET algorithm deduces the cor-
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rect number of system states in all case; see Fig. 1(b)-(c). Specifically, we show that even
for escape rate as fast as the excitation rate, our algorithm infers the true number of sys-
tem states; see Fig. 1(d). However, the estimates for escape rates in that case have large
uncertainties due to lack of temporal resolution (see panel (d) of Fig. 2).

Figure 2: Learned bivariate posterior for the escape rates λesc and FRET efficien-
cies εFRET from synthetic data also used in Fig. 1. Going from panels (a) to (d), we
speed up the dynamics (escape rates) by a factor of 10 each time leading to a gradual loss
of temporal resolution needed to identify system transitions. Eventually, as seen in panel
(d), the excitation rate does not provide enough temporal resolution to resolve system tran-
sitions occurring at the timescales of interphoton arrival times, resulting in large errors in
the parameter estimates. The ground truth is shown with the red dots. We have smoothed
the posterior distributions here using KDE technique available in Julia plots package.
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4.2 Analysis of Experimental Data: NCBD-ACTR Interactions

Here, we apply our BNP-FRET sampler to two experimental datasets that were originally
collected to study interactions between partner IDPs, NCBD and ACTR, under different
environmental conditions [26, 27]. Precise knowledge of binding and unbinding reactions of
such proteins is of fundamental importance toward understanding how they regulate expres-
sion of their target genes and other protein-protein reactions.

Methods that have been used in the past [26, 27] to analyze smFRET traces from exper-
iments observing NCBD-ACTR interplay assume a fixed number of system states to obtain
maximum likelihood estimates for transition rates. In addition, these methods bin photons
to reduce computational expense. However, given the inherently unstructured and flexible
nature of IDPs, fixing the dimensionality of the model a priori can be limiting and, as we will
see, may bias analysis. Therefore, our nonparametric method, which puts no constraints on
the number of system states while incorporating all the major sources of noise, is naturally
suited for studying IDPs.

In the following subsections, we first analyze data for a system where an immobilized
ACTR labeled with a Cy3B donor dye interacts with an NCBD labeled with a CF680R
acceptor dye in the presence of ethylene glycol (EG), 36% by volume, to more closely mimic
cellular viscosity [26]. Here, the binding of NCBD to ACTR is monitored in smFRET
experiments using a confocal microscope setup. Next, we analyze data for a system with
relatively faster dynamics, where an immobilized ACTR interacts with a freely-diffusing
mutated NCBD (P20A) in a buffer without EG under a similar experimental setup [27].

To acquire these two experimental FRET datasets containing about 200000 photons each,
laser powers of 0.5 µW and 0.3 µW were used, respectively, leading to excitation rates varying
from 3000 to 11000 s−1 in the confocal region.

Moreover, we are provided a route correction matrix (RCM) by the authors of [26, 27]
to account for spectral crosstalk, and detection efficiencies of donor and acceptor channels.
We defined such an RCM in the first companion paper [21] and specify it here as

RCM′ =
RCM

RCM1,1

=

[
1 −φ21

φ22

−φ12
φ22

φ11
φ22

]
=

[
1.0 −0.22
0.0 1.02

]
,

where channels 1 & 2 are, respectively, designed to receive acceptor and donor photons, and
φij denotes probability of photons intended for channel i to enter channel j. Since all the
probabilities φij appear as ratios in RCM′, we can normalize it further such that all of
the emitted donor photons are detected in one of the two channels. This also amounts to
setting an effective excitation rate in a manner that none of the emitted donor photons go
undetected. Simple algebraic manipulations then give the following values for the effective
crosstalk factors φ′ij as

φ′11 = 0.84, φ′12 = 0.0, φ′21 = 0.18, and φ′22 = 0.82.

As such, these values imply that approximately 18% of the emitted donor photons are de-
tected in the acceptor channel due to crosstalk. Furthermore, only 84% of emitted accep-
tor photons are detected in the acceptor channel, and acceptor photons do not suffer any
crosstalk.
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Now with all the experimental details at hand, we proceed to analyze the experimental
data using our BNP-FRET sampler.

Figure 3: Results for NCBD-ACTR interactions in the presence of ethylene glycol
(EG). In panel (a), we show a histogram for the number of system states produced by the
BNP-FRET sampler. The sampler spends a majority of its time in a model with two system
states with a small possibility ascribed to more states. In the posterior distribution for the
escape rates and FRET efficiencies in panel (b), two distinct FRET efficiencies are evident
with values of about 0.0 (unbound) and 0.7 (bound), and corresponding escape rates of about
2.9 and 4.1 s−1.

4.2.1 Immobilized ACTR in 36% EG

Binding of NCBD to ACTR leads to the formation of a stable and ordered complex in the
presence of EG. In addition, when two fluorescent dyes labeling the IDPs come in close
proximity, we expect FRET interactions. Therefore, bound and unbound system states of
the NCBD-ACTR complex correspond to high and low FRET efficiency signals, respectively.

For the analysis of the collected smFRET data from such a complex, we must take into
account all sources of noise. We have already discussed the noise due to detector effects such
as crosstalk at the beginning of this section. We must also incorporate the precalibrated
background rates for the donor and acceptor channels given as 0.283 s−1 and 0.467 s−1,
respectively [26].

With all such corrections applied, our BNP-FRET sampler now predicts two system
states (see Fig. 3). The system state with the lowest FRET efficiency of 0.0 corresponds to
the unbound NCBD. The remaining system state with a higher FRET efficiency of about
0.7 coincides with the bound configuration of the NCBD-ACTR complex. These results are
in agreement with the results reported in supplementary table S1 of [26].

Furthermore, the reported transition rates learned using maximum likelihood analysis
applied to a hidden Markov Model (HMM) with two system states for the case with 36%
EG concentration (0.401 g/ml) are reported as kon = 2.7± 0.2 s−1 and koff = 3.3± 0.3 s−1
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[26]. The escape rates associated with these transition rates lie within the bounds of the
posterior distribution obtained using our method (see Fig. 3(b)).

4.2.2 Immobilized ACTR in Buffer

As before, we expect binding of the ACTR-NCBD complex to lead to high FRET efficiency
signals. However, in the absence of EG, the viscosity of the solution is lowered [26], leading
to faster system transitions representing a unique analysis challenge.

Figure 4: Results for NCBD-ACTR interactions in buffer without EG. In panel
(a), we show a histogram produced by the BNP-FRET sampler for the number of system
states. The most sampled model contains five system states. In the posterior distribution
for the escape rates and FRET efficiencies in panel (b), five distinct FRET efficiencies are
evident with values of 0.0, 0.03, 0.28, 0.72, and 0.92 with corresponding escape rates of about
4.6, 4.8, 11.0, 24.0, and 9.8 s−1. The first two system states with almost vanishing FRET
efficiencies clearly represent the same unbound configuration with the small splitting most
likely a result of various sources of noise present in the dataset.

As before, after correcting for background rates of 0.312 s−1 and 1.561 s−1 for the donor
and acceptor channels, respectively, our BNP-FRET sampler now predicts five system states
(see Fig. 4(a)&(b)) with FRET efficiencies of 0.0, 0.03, 0.28, 0.72, and 0.92 approximately.
Here, the first two system states with vanishingly small estimated FRET efficiencies, namely
0.0 and 0.03, most likely represent the same configuration where NCBD is diffusing freely
away from the immobilized ACTR, leading to no FRET interactions. Various sources of noise
in the dataset may have resulted in this splitting of the unbound system state. Furthermore,
the system state with the FRET efficiency and escape rate of 0.72 and 24.0 s−1 coincides
with the previously predicted bound configurations [27].

However, the two newly observed system states with FRET efficiencies of 0.28 and 0.92
with corresponding escape rates of 11.0 s−1 and 9.8 s−1 are bound configurations that were not
previously detected [27]. To assure ourselves that these states are not artefactually added by
our computational algorithm (overfitting), we performed additional analysis using synthetic
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Figure 5: Robustness test using synthetic data to confirm no overfitting. The
synthetic data is generated under the same conditions (excitation rate, crosstalk, background,
and photon budget) as the experiment and using previously reported transitions rates [27].
In panel (a), we show histogram produced by the BNP-FRET sampler for the number of
system states. The most sampled model contains two system states with a small possibility
ascribed to higher dimensional models. In the posterior distribution for the escape rates and
FRET efficiencies in panel (b), two distinct FRET efficiencies are evident with values of 0.0,
0.8 with corresponding escape rates of about 4.5 and 18.0 s−1. The absence of additional
system states confirms that the additional system states encountered in the experimental
results are not introduced as artefacts of the computational algorithm.

data generated under the same conditions (excitation rate, crosstalk, and background) as
the experiment. That is, we simulate two system states with the previously reported escape
rates [27]) of 4.3 s−1 and 23.0 s−1 with corresponding FRET efficiencies of 0.0 and 0.8, and
the same photon budget of 200000 photons. The results for the analysis of this synthetic
dataset in Fig. 5(a)&(b) show no additional system states introduced by our method under
this parameter regime suggesting the robustness of our findings for the experimental data.

The observation of new system states of an NCBD-ACTR complex in the absence of EG
suggests that effects of EG on the dynamics of IDPs are not straightforward to predict. More
concretely, reduction in EG concentration leads to reduced solution viscosity and perhaps the
ability to visit more transient states in a shorter period of time while under observation [39,
40]. That is, the system is more ergodic. Furthermore, IDPs interact in a complex manner
with high possibility for residual secondary structures [41], which may explain the possibility
of observing transient states in NCBD-ACTR complexes in lower viscosity environments
otherwise undetectable to existing methods of analysis thus far. This is by contrast, to our
agreement with other methods for slower dynamics in more viscous environments.
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5 Discussion

FRET techniques have been an essential tool in life sciences to investigate molecular in-
teractions on nanometer scales. For instance, FRET has been utilized to directly detect
SARS-COV2 virus [42, 43]. Yet, the quantitative interpretation of smFRET data suffers
from several issues including difficulties in estimating the number of system states, dealing
with fast transition rates and providing uncertainties over estimations particularly uncer-
tainties over the number of system states [44, 45].

In this paper, we implemented the general nonparametric smFRET data analysis frame-
work presented in [21] to address the issues associated with smFRET data analysis acquired
under continuous illumination. The developed framework is capable of learning posterior
distributions over the number of system states as well as the corresponding dynamics rang-
ing from slow to as fast as photon emission rates. Our method does so by propagating
uncertainty from all the existing sources of noise such as instrument and background.

We benchmarked our method starting from synthetic data with three system states with
a range of different timescales. We challenged our method by simulating data with dynamics
as fast as the interphoton arrival times and were able to correctly deduce the number of
system states even under such extreme conditions. We further assessed our method using
experimental data acquired observing NCBD interacting with ACTR under different ethylene
glycol (EG) concentrations that may govern the timescales at which the binding/unbinding
reactions occur. From the previous point estimate analyses [26, 27], two system states
are expected, respectively, for 0 and 36% EG concentrations. However, our nonparametric
method predicts additional two system states in the absence of EG (fast dynamics). This
observation can be directly tied to the inherently unstable nature of the two IDPs under
investigations [39].

A careful treatment of how experimental noise propagates into uncertainties over the
number of system states and rates does come with associated computational cost. Other
methods have managed to mitigate these costs by making approximations including: 1)
assuming molecular dynamics much slower compared to the fluorophore excitation and re-
laxation rates [9, 10]; 2) assuming dyes’ fast photophysics is completely irrelevant to the
system transition rate and that FRET efficiency sufficiently identifies transitions between
system states [10]; 3) ignoring detector effects such as IRF and relegating other noise sources,
such as background, to post-processing steps [9]; and 4) binning data [38]. In the general case
without such approximations, however, the primary computation–the likelihood–remains ex-
pensive due to the required evaluation of many matrix exponentials. Rather, we must adopt
other strategies to reduce computational time, such as computing likelihoods for several data
traces in parallel, and minimization of the required photon budget via spatial and temporal
variation of excitation rate.

The method described in this paper was developed for cases with discrete system state
spaces. However, it can be extended for continuous system state spaces by modifying the
likelihood in Eq. 3. Furthermore, our method can be modified to deal with extremely short
lifetimes by incorporating the IRF into the likelihood model. Moreover, our framework is
flexible to be adopted for different illumination modalities such as alternating laser excitation
(ALEX) [46] to directly excited both donor and acceptor dyes. This would facilitate the
accurate estimation of the crosstalk factors as well as detection efficiencies and quantum
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yield of the dyes.
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