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Abstract10

Small molecule treatment and gene knockout or overexpression induce complex changes in11

the molecular states of cells, and the space of possible perturbations is too large to measure12

exhaustively. We present PerturbNet, a deep generative model for predicting the distribution13

of cell states induced by unseen chemical or genetic perturbations. Our key innovation is to use14

high-throughput perturbation response data such as Perturb-Seq to learn a continuous mapping15

between the space of possible perturbations and the space of possible cell states.16

Using Sci-Plex and LINCS datasets, PerturbNet can accurately predict the distribution of17

gene expression changes induced by unseen small molecules given only their chemical structures.18

PerturbNet also accurately predicts gene expression changes induced by shRNA, CRISPRi, or19

CRISPRa perturbations using a perturbation network trained on gene functional annotations.20

Furthermore, self-supervised sequence embeddings allow PerturbNet to predict gene expression21

changes induced by missense mutations. We also use PerturbNet to attribute cell state shifts22

to specific perturbation features, including atoms and functional gene annotations. Finally, we23

leverage PerturbNet to design perturbations that achieve a desired cell state distribution. Per-24

turbNet holds great promise for understanding perturbation responses and ultimately designing25

novel chemical and genetic interventions.26
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Introduction27

Recent experimental developments have enabled high-throughput single-cell molecular measure-28

ment of response to drug treatment. A high-throughput chemical screen experiment usually in-29

volves a large number of cells and multiple treatments, where each cell receives a kind of drug30

treatment and is impacted in a distinct manner [1, 2]. Understanding how drugs influence cel-31

lular responses helps discover treatments with desired effects, potentially benefiting a myriad of32

therapeutic applications.33

Unlike chemical perturbations, whose direct gene targets are generally unknown, genetic pertur-34

bations are designed to directly knock out or activate one or multiple target genes. The activation35

or knockout of these genes will not only influence their own expression, but also impact other genes36

through a complex network of downstream gene regulatory interactions. The Clustered Regu-37

larly Interspaced Short Palindromic Repeats (CRISPR) technology allows precise design of genetic38

mutants through genome editing [3]. More recently, CRISPR has been combined with transcrip-39

tional activators (CRISPRa) or repressors (CRISPRi) tethered to a deactivated version of the Cas940

protein (dCas9) to enable activation or inhibition of target genes. The Perturb-seq technology com-41

bines CRISPR/Cas9 and single-cell RNA-sequencing (scRNA-seq) to measure single-cell responses42

to pooled CRISPR guide RNA libraries [4]. Perturb-seq measures cellular responses at single-cell43

resolution, revealing how cell states are impacted by genetic perturbations, and has been utilized44

for many biomedical applications [5, 6, 7, 8, 9]. However, because Perturb-seq experiments can45

only measure limited numbers of perturbation loci, it is not feasible to directly measure single-cell46

responses for each potential genetic perturbation.47

Recent studies have shown that genetic perturbations can induce shifts in cell state, causing the48

cells to preferentially occupy certain cell states while disfavoring others. For example, [10] observed49

that CRISPR activation (CRISPRa) of distinct pairs of genes in K562 cells induced some cells to50

shift toward erythroid, granulocyte, or megakaryocyte-like states or arrest cell division. Inducing51

missense mutations in KRAS and TP53 caused “a functional gradient of states” in A549 cells[8].52

That is, in a particular tissue under homeostatic conditions, there is a wild-type distribution of53

cellular gene expression states p(X). Treating cells with a perturbation G changes their cell state54

distribution to some new p(X | G). Our goal is to predict these perturbation-specific distributions55
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by developing deep generative models to sample from the cell state distribution for any perturbation.56

Several recent methods have been developed for modeling single-cell perturbation effects. The57

variational autoencoder scGen predicted single-cell data from new combinations of treatment and58

cell type using latent space vector arithmetic [11]. Another method, Dr. VAE, also explored the59

dependency of the latent space on treatments [12]. For genetic perturbations, Norman et al. (2019)60

used Perturb-seq data to identify genetic interactions from paired gene knockouts [10]. Lotfollahi61

et al. (2020) proposed a conditional variational autoencoder (VAE) framework with representa-62

tions under two treatment conditions [13] balanced using a similarity score of their counterfactual63

inference [14]. Burkhardt et al. (2021) identified perturbation effects over the cellular manifold64

using graph signal processing tools [15]. The compositional perturbation autoencoder framework65

[16] generates single-cell data under new combinations of observed perturbations using latent space66

vector arithmetic. Yeo et al. (2021) proposed a generative model using a diffusion process over67

a potential energy landscape to learn the underlying differentiation landscape from time-series68

scRNA-seq data and to predict cellular trajectories under perturbations [17]. Linear models were69

also used to estimate the impact of perturbations on high-dimensional scRNA-seq data [4] or infer70

gene regulatory interactions from perturbations [18].71

The key limitation of existing approaches is that they focus only on predicting new combina-72

tions of treatments and/or cell types, and thus cannot predict the effects of a completely unseen73

perturbation. Additionally, many of the existing approaches treat perturbations as independent74

from cell state, making it impossible to accurately predict the effects of perturbations that specifi-75

cally promote or disfavor certain cell states. To address these limitations, we propose PerturbNet,76

a novel and flexible framework that can sample from the distribution of cell states given only the77

features of a new perturbation. The PerturbNet model connects drug treatment or genetic pertur-78

bation information and cell states using a conditional normalizing flow [19], enabling translation79

between perturbation domain and single-cell domain [20]. The PerturbNet framework is generally80

applicable to any type of high-throughput measurement of drug treatments or genetic perturba-81

tions, such as those of scRNA-seq data. Importantly, PerturbNet makes distributional predictions82

for both observed and unseen treatments.83

We show that PerturbNet can effectively predict the distribution of gene expression profiles in-84

duced by a variety of chemical and genetic perturbations. Using microarray data from the Library85
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of Interconnected Network Signatures (LINCS) and scRNA-seq data from the Sci-Plex dataset,86

PerturbNet predicts the effects of small molecule treatment. Additionally, we show that Perturb-87

Net can predict the effects of CRISPR activation and CRISPR-induced missense mutations from88

Perturb-seq data.89

We further demonstrate that the predictive capability of PerturbNet is useful for two impor-90

tant downstream applications: (1) implicating key perturbation features that influence cell state91

distributions and (2) designing optimal perturbations that achieve desired effects. We interpret our92

predictive model to reveal key components or functions in a chemical or genetic perturbation that93

influence the cell state. We further develop an algorithm to design perturbations that optimally94

translate cells from a starting cell state to the desired cell state.95

Results96

PerturbNet maps perturbation representations to cell states97

PerturbNet consists of three neural networks: a perturbation representation network, a cellular98

representation network, and a network that maps from perturbations to cell states (Fig. 1a).99

The representation networks are first trained separately to encode large numbers of perturbations100

and cell profiles into latent representations. Then the mapping network uses high-throughput101

perturbation response data such as Perturb-seq, in which both perturbation and cell states are102

observed, to learn a continuous mapping between the space of possible perturbations and the space103

of possible cell states. The intuition behind our approach is that perturbations and cells each104

have an underlying structure–that is, they lie in some low-dimensional space–and the effect that a105

perturbation exerts on cell state is given by some unknown function that maps between the two106

spaces (Fig. 1b). The mapping from perturbations to cell states is highly complex and not one-107

to-one; cells may exist in many states after a particular perturbation, and distinct perturbations108

may induce similar cell state distributions. To capture such complex relationships, we implement109

the mapping network with a conditional invertible neural network (cINN), which fits a conditional110

normalizing flow and can approximate arbitrary conditional distributions. Our approach is inspired111

by the idea of network-to-network translation, which has been used to generate images conditioned112

on text descriptions [21].113
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Fig. 1 | PerturbNet maps perturbation representations to cell states. a PerturbNet uses
two neural networks separately trained to encode large numbers of chemical or genetic perturbations
(left) and cell profiles (right) into latent spaces. A conditional invertible neural network (cINN)
learns to map points in perturbation space to cell state space using high-throughput measurements
of perturbation effect. b PerturbNet can then predict the gene expression changes induced by an
unseen perturbation by encoding the perturbation, passing its representation through the cINN,
and decoding the resulting cell states.

After training, PerturbNet can make predictions about the cell states induced by a new per-114

turbation. To do this, a description of the perturbation–such as the chemical structure of a small115

molecule or the identities of the genes knocked out–is first encoded into the perturbation space.116

Then, this location in the perturbation space is fed into the mapping network, whose output gives117

the distribution of locations in the cell state space induced by the perturbation. These latent cell118

representations can subsequently be decoded into high-dimensional gene expression levels to predict119

the perturbation responses of individual genes.120

The PerturbNet framework has several key advantages. First, the perturbation and cell rep-121

resentation networks are fully modular, allowing a variety of architectures to be used depending122
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on the data type. For example, we can use convolutional and recurrent networks for representing123

small molecule structures, multilayer perceptrons for gene expression data, or transformer archi-124

tectures for sequence data. A second and related advantage is that we can “mix and match” the125

same perturbation and cell representation networks in different ways; for example, after training126

a network that effectively represents cellular gene expression states, we can combine this same127

network with a representation network for either small molecules or genetic perturbations without128

having to re-train the cell representation network. An additional advantage is that the representa-129

tion networks can be pre-trained on unpaired perturbation and cell observations, which are usually130

available in much larger quantities than the paired perturbation response data. If a high-quality131

pre-trained model already exists for encoding a particular type of data, we can directly plug it into132

the PerturbNet without any further training. The cINN architecture used for the mapping network133

confers several advantages, including stable and efficient training and a mapping that is invertible134

by construction (see Methods for details). Additionally, the mapping network can model additional135

covariates when available, such as dose or cell type, by training the mapping function using both136

the perturbation representation and the covariates (see Supplementary section A.1).137

PerturbNet predicts response to unseen small molecule treatments138

We first investigated whether PerturbNet can predict response to unseen drug treatments. As dis-139

cussed above, the PerturbNet framework is fully modular, allowing arbitrary network architectures140

for the representation networks. Thus, we adopted neural network architectures appropriate to the141

types of data in this prediction task. Because the pharmacological properties of a small molecule are142

largely determined by its chemical structure, we used a perturbation representation network that143

can encode molecular structures into low-dimensional vectors. We chose to start from molecules144

in simplified molecular-input line-entry system (SMILES) format, which describes molecular struc-145

tures as character strings. We used a previously published architecture (Fig. 2a). We pre-trained146

the ChemicalVAE on the ZINC dataset [22], which contains 250,000 molecules.147

We then trained cell representation networks on two large expression datasets: the Library of148

Interconnected Network Cell Signatures (LINCS) [23] and sci-Plex [2]. The LINCS dataset consists149

of 689,831 microarray measurements from 170 different cell lines treated with 20,065 compounds.150

The sci-Plex dataset contains 648,857 scRNA-seq profiles from three cell lines treated with 188151
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Fig. 2 | PerturbNet predicts response to small molecule treatment. a Diagram of the
chemical variational autoencoder (ChemicalVAE) architecture for encoding small molecules repre-
sented as SMILES strings. The network was trained on the ZINC dataset, consisting of approxi-
mately 250,000 drug-like molecules. b-c Visualization of PerturbNet predictions for two distinct
perturbations from sci-Plex b and LINCS-Drug c datasets. The UMAP coordinates are computed
from the latent spaces of the perturbation network (left) and cell state network (right). The map-
ping function learned by the cINN is indicated with lines connecting the perturbation and cell state
representations. The predicted cell state distributions are also indicated with contour lines. d
Scatter plots of R squared and FID metrics for PerturbNet (y-axis) and random baseline (x-axis)
for the 30 unseen drug treatments of the sci-Plex dataset. Each point is one held-out drug. The
p-values for one-sided Wilcoxon rank-sum tests are shown above each plot. e Scatter plots of R
squared and FID metrics for the 158 observed drug treatments of the sci-Plex dataset. Each point
is one observed drug. f Scatter plots of R squared and FID metrics of PerturbNet for the 2000
unseen drug treatments of the LINCS dataset. g Scatter plots of R squared and FID metrics for
the 18,065 observed drug treatments of the LINCS dataset.
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compounds. We used different types of representation networks for these two types of data: a152

variational autoencoder (VAE) with Gaussian likelihood for the normalized microarray data and a153

VAE with negative binomial likelihood for scRNA-seq count data. We used fully-connected layers154

(multilayer perceptron architectures) for both VAEs. We then trained a cINN for both the LINCS155

and sci-Plex datasets to translate from the ChemicalVAE latent space to the cell state space. Note156

that, due to the modular nature of PerturbNet, we were able to use the same ChemicalVAE for157

both datasets without retraining it.158

To visualize the PerturbNet predictions, we plotted UMAP coordinates of the perturbation and159

cell state spaces. Then we plotted the mapping between the spaces by drawing lines to connect160

each perturbation with the cell states induced by it and summarizing the cell state distribution161

using a contour plot. Note that the perturbation representations are probabilistic, so that multiple162

nearby points on the UMAP plot indicate the distribution of latent representations for each per-163

turbation. These visualizations qualitatively confirm the ability of PerturbNet to model complex164

perturbation effects, including very different cell state distributions induced by perturbations with165

distinct representations (Fig. 2b).166

To quantitatively evaluate the performance of PerturbNet in predicting effects of unseen small167

molecule treatments, we held out a subset of the treatments during training. After training, we168

compared the true and predicted gene expression values for these treatments. We also compared169

our predictions with a baseline model, in which we randomly sampled cells from the treatments170

seen during training. Comparison with this baseline is important, because perturbations with very171

small or no effect can be in principle be accurately predicted simply by guessing the mean of all172

cells.173

We employed the R squared and Fréchet inception distance (FID) metrics to evaluate prediction174

performance of single-cell responses. The R-squared indicates the slope of the best-fit line between175

the true and predicted gene expression values for a particular perturbation, and is a measure of how176

well the mean of the distribution is estimated. The FID is the Wasserstein-2 distance between the177

true and predicted gene expression distributions, and summarizes the concordance of the expression178

distributions as a whole. Higher R-squared and lower FID values are better. See Methods for more179

details.180

Overall, PerturbNet predicts the cell states induced by small molecule treatment significantly181
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more accurately than the baseline model (Fig. 2d-g). PerturbNet outperforms the random model182

at predicting the effects of unseen perturbations (Fig. 2d), achieving significantly better R squared183

across the 30 held-out perturbations (p < 2× 10−16, one-sided Wilcoxon rank-sum test). Perturb-184

Net also significantly outperforms the random model at predicting the 158 observed perturbations185

in terms of both R squared and FID (Fig. 2e). For the LINCS dataset (Fig. 2f-g), PerturbNet186

outperforms the random model at predicting the effects of 2000 unseen and 18,065 observed per-187

turbations, achieving significantly better R squared (p < 2× 10−16, one-sided Wilcoxon rank-sum188

test) and FID metrics (p < 2 × 10−16, one-sided Wilcoxon rank-sum test). The R squared values189

achieved by PerturbNet are generally higher for the LINCS dataset than the sci-Plex dataset, per-190

haps because of the significantly larger number of small molecules available for training the cINN191

(18,065 for LINCS vs. 158 for sci-Plex).192

We found that, when covariates are provided, incorporating these can improve PerturbNet per-193

formance (Supplementary Section A.1 and Fig. 1). We further explored whether incorporating194

cellular response data into the perturbation representation network could improve prediction per-195

formance (see Supplementary section A.2). To do this, we used the measured gene expression196

profiles for each perturbation to “fine-tune” the representation network. We calculated the dis-197

tances between cell state distributions observed for all pairs of perturbations in the training data.198

Then, we converted these distances to a similarity graph and added a graph regularization term to199

the VAE loss function. Intuitively, this updated loss function encourages the perturbation repre-200

sentations to simultaneously reconstruct the perturbation from the latent space and preserve the201

similarity relationship among the perturbations’ cell profiles. Training the cINN with the fine-202

tuned representation network gave a small but statistically significant improvement in PerturbNet203

performance for the LINCS-Drug dataset (Supplementary Fig. 3). Interestingly, the KNN model204

did not show significant improvement when using the fine-tuned latent space.205

PerturbNet predicts response to unseen genetic perturbations206

We next extended the PerturbNet framework to genetic perturbations by constructing an au-207

toencoder for the target genes in combinatorial genetic perturbations. Genome editing with208

CRISPR/Cas9 directly modifies the DNA sequence, leading to changes in the protein-coding se-209

quence or non-coding regulatory sequence. In contrast, genetic perturbations using CRISPR acti-210
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Fig. 3 | PerturbNet predicts response to genetic perturbation. a Diagram of the Geno-
typeVAE architecture. Perturbations are represented in terms of their gene ontology annotations.
The network is trained on all one- and two-gene combinations (approximately 177 million). b, d,
f Visualization of PerturbNet predictions for two distinct perturbations from GI (b), LINCS-Gene
(d), and GSPS (f) datasets. c, e, g Scatter plots of R squared and FID metrics for PerturbNet
and random baseline for unseen and observed genetic perturbations from the GI (c), LINCS-Gene
(e), and GSPS (g) datasets. The p-values for one-sided Wilcoxon rank-sum tests are shown above
each plot.
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vation (CRISPRa) or CRISPR interference (CRISPRi) do not change the original DNA sequence,211

but rather change gene expression [10]. These types of perturbations can be described by the212

identities of their target genes [4]. To encode such genetic perturbations, we developed a new au-213

toencoder that we call GenotypeVAE (Figure 3a). Our key insight is that the numerous functional214

annotations of each gene (organized into a hierarchy in the gene ontology) provide features for215

learning a low-dimensional representation of both individual genes and groups of genes. The gene216

ontology consortium has annotated 18,832 human genes with a total of 15,988 terms (after filtering217

to remove terms with very low frequency). Using these annotations, we can describe each target218

gene g as a one-hot vector of length 15,988, where a value of 1 in the vector element corresponding219

to a particular term indicates that the gene has that annotation. If we have a genetic perturbation220

with multiple target genes, we can simply take the union of the GO annotations from all of the221

perturbed genes.222

We trained a variational autoencoder with fully-connected layers to reconstruct these binary223

annotation vectors from a latent representation. Our approach is inspired by a previous study that224

used neural networks to embed genes into a latent space using their gene ontology annotations [24].225

We trained GenotypeVAE using one-hot representations of many possible genetic perturbations.226

Considering all single- and double-gene combinations of the 18,832 human genes with GO term227

annotations, there are approximately 177 million possible training data points (Fig. 3a).228

We evaluated our approach on several large-scale genetic perturbation datasets (Fig. 3b-g).229

We used data from a CRISPRa screen in K562 cells with 230 perturbations (GI) [10], the LINCS230

dataset with 4,109 shRNA perturbations (LINCS-Gene) [23], and the genome-scale Perturb-seq231

dataset with 9499 CRISPRa perturbations (GSPS) [25]. Both GI and GSPS consist of integer232

count scRNA-seq measurements, while LINCS-Gene consists of real-valued microarray data. We233

therefore obtained cell state representations by training a VAE with negative binomial likelihood234

[26] on the GI and GSPS datasets, and a VAE with Gaussian likelihood on the LINCS-Gene dataset.235

Visualizing the perturbation representations, cell representations, and mapping functions shows236

that the PerturbNet can model the distinct cell state distributions induced by different perturba-237

tions (Fig. 3b, d, f). For example, two perturbations in the GI dataset (KLF1/ctrl, SLC4A1/ctrl) in238

the GI dataset (Fig. 3b) and the two knockdowns (ERG, ERBB3) in the LINCS-Gene dataset (Fig.239

3d) have very different perturbation representations and cell state distributions. The perturbation240
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representations of the pair of (RPL3, PINK1) in the GSPS data show distinctive distributions (Fig.241

3f), while the difference between their cellular representations is less obvious, possibly due in part242

to batch effects [25].243

We predicted single-cell responses to each genetic perturbation using the baseline models and244

PerturbNet for the three datasets. Fig. 3c show the performance of predicted cell samples evaluated245

with R squared and FID metrics of PerturbNet over random on the GI data. PerturbNet signifi-246

cantly outperforms the random model for the 180 observed perturbations, and is also significantly247

better than random for unseen perturbations in R squared.248

Fig. 3e shows the prediction performance of PerturbNet compared to the random baseline for249

the LINCS-Gene data. PerturbNet has significantly lower FID than the random model for both250

unseen and observed perturbations, and also has higher R squared for the observed perturbations.251

The random model shows very high R squared values (around 0.75) for the LINCS-Gene data,252

possibly because most genetic perturbations in the LINCS-Gene dataset have small perturbation253

effects.254

We evaluated the predictive models on the GSPS data [25], with a large number of target255

genes and a substantial proportion of perturbations with very few cells. We filtered out the genetic256

perturbations with fewer than or equal to 100 cells before evaluating the baseline models. Fig. 3g257

shows the performance of the models on the 802 unseen and 6859 observed genetic perturbations258

with more than 100 cells. PerturbNet has significantly higher R squared than random for both259

unseen and observed perturbations. However, it does not show better FID than random, possibly260

due to complex batch effects, as noted by the authors [25].261

We also compared the performance between KNN and PerturbNet for the GI, LINCS-Gene and262

GSPS datasets (Supplementary Fig. 4). PerturbNet shows better predictions than KNN for the263

observed perturbations of the three datasets. PerturbNet also gives significantly better R squared264

and FID for unseen perturbations of the LINCS-Gene data, and better FID for unseen perturbations265

of the GI and GSPS data.266

We also fine-tuned GenotypeVAE using the LINCS-Gene data following similar steps as de-267

scribed for the ChemicalVAE fine-tuning above (see Supplementary section A.2). Fine-tuning268

GenotypeVAE again results in a small but statistically significant improvement in the performance269

of PerturbNet (Fig. 4). As with the ChemicalVAE, the fine-tuning algorithm improves only the270
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PerturbNet, but does not significantly improve the performance of the KNN model.271

PerturbNet predicts response to coding sequence mutation272

In addition to CRISPRi and CRISPRa, which do not change the DNA sequence within a cell,273

Perturb-seq can also be combined with CRISPR genome editing. For example, Ursu et al. recently274

used a multiplex CRISPR screen to introduce many different coding sequence mutations into the275

TP53 and KRAS genes of A549 cells [8]. This study found that the genome edits caused “a276

functional gradient of states” with continuously varying gene expression profiles. Unlike CRISPRa277

or CRISPRi perturbations, which can be represented in terms of the identities of the target genes,278

genome editing perturbations are best represented as the distinct amino acid sequences of either279

the wild-type or edited genes.280

To extend PerturbNet for predicting single-cell gene expression responses to coding sequence281

variants, we developed a strategy for embedding amino acid sequences. We chose to use the pre-282

trained evolutionary scale modeling (ESM) network [27] to obtain latent representations of the283

unique protein sequences produced by genome editing (Fig. 4a-b). ESM is a previously published284

network that was pre-trained on about 250 million protein sequences from the UniParc database285

[27]. Unlike the chemicalVAE and the GenotypeVAE used above, the ESM encodings are deter-286

ministic for a given input sequence; thus, to avoid overfitting when training the cINN on ESM287

representations, we added a small amount of Gaussian noise sampled from N (0, 0.001I).288

We then trained PerturbNet on the Ursu dataset, which measured the effects of many distinct289

mutations in the TP53 and KRAS genes [8]. We preprocessed the detected CRISPR guide RNA290

sequences to obtain a single, complete protein sequence label for each individual cell. This gave a291

total of 1,338 unique protein coding sequences observed in the Perturb-Seq data; the vast majority292

of these unique combinations occur only in one or a handful of cells. We trained a variational293

autoencoder with negative binomial likelihood on the whole Ursu dataset to obtain latent represen-294

tations of cell state. Then we trained a cINN to map from protein sequence representation space295

to cell state space, holding out 130 perturbations. Visualizing the perturbation representations,296

cellular representations, and mapping function shows that PerturbNet can model the distinct cell297

state distributions induced by different sequence mutations (Fig. 4c).298

Evaluating PerturbNet predictions on the observed and held-out perturbations shows that the299
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Fig. 4 | PerturbNet predicts response to coding sequence mutation. a Diagram of the
approach for training representation network for coding sequence mutations. Each perturbation is
an amino acid sequence edited by CRISPR. We used a model pre-trained on the UniParc database,
containing 250M sequences. b Architecture of the evolutionary scale modeling (ESM) transformer
used to embed protein sequences. c Visualization of PerturbNet predictions for two distinct per-
turbations from the Ursu dataset. The UMAP coordinates are computed from the latent spaces of
the perturbation network (left) and cell state network (right). The mapping function learned by
the cINN is indicated with lines connecting the perturbation and cell state representations. The
predicted cell state distributions are also indicated with contour lines. d, e Scatter plots of R
squared and FID metrics for PerturbNet and random baseline for unseen and observed genetic per-
turbations from the Ursu dataset. The p-values for one-sided Wilcoxon rank-sum tests are shown
above each plot.
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model performs significantly better than the random baseline in terms of both R squared and FID300

metrics (Fig. 4d-e). Note that we filtered the variants to those with more than 400 cells when301

performing this comparison, because most of the unique protein sequences occur in only one or a302

few cells. PerturbNet also shows better predictions than KNN for the observed perturbations, and303

has better FID than KNN for the unseen perturbations (Supplementary Fig. 5d).304

Attributing Perturbation Effects to Specific Perturbation Features305

Having established that PerturbNet can successfully predict the effects of unseen perturbations,306

we reasoned that the model could give insights into which specific perturbation features are most307

predictive of cell state distribution shifts. For example, it would be desirable to know which atoms308

in a drug or which gene functions most strongly influence the model predictions. Such insights309

can give hints about mechanisms and help build confidence that the model is learning meaningful310

relationships between perturbations and cell states.311

We employ the method of integrated gradients [28] to determine, for each feature of a pertur-312

bation, whether the presence of the feature increases or decreases the probability of cells being in313

a particular state. To do this, we divide the space of observed cell states into discrete cell types314

through unsupervised clustering. Then we train neural networks to classify cell states (including315

predicted cell states output by the mapping network) into these discrete types (Fig. 5a). For316

ease of interpretation, we train a binary classifier for each cell type, to classify the cells as either317

belonging to that type (1) or not (0). We then use the method of integrated gradients to calculate318

an attribution score for each feature of an input perturbation. This score tells whether each feature319

increases or decreases the probability of generating cells of a particular type.320

As an example, we performed integrated gradient attribution on the LINCS-Drug and LINCS-321

Gene datasets. We performed k-means clustering separately on the latent values of VAEs trained on322

the LINCS-Drug and LINCS-Gene datasets. In both cases, we divided the cell states for observed323

cells into k = 20 clusters (Figure 5a-b). We then trained neural networks to classify cell latent324

values into these 20 clusters. For each cluster, we could then calculate an attribution score for325

each input feature of a perturbation. A positive attribution score indicates that a feature increases326

the probability of generating cells in that particular cluster, whereas a negative score indicates a327

decreased probability of generating cells in that cluster.328
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Fig. 5 | Attributing cell state shifts to specific features of perturbations. a Diagram
of approach for attributing perturbation outcomes to specific perturbation features. We attach a
binary classifier after the cINN to classify cells into discrete types. By comparing the classification
results of an input perturbation and a baseline (random perturbations), we can determine which
perturbation features increase classification probability. b UMAP plots of LINCS-Drug and LINCS-
Gene colored by cluster label. c UMAP plots of LINCS-Drug with selected clusters and the selected
drug colored by attribution scores for each atom. d UMAP plots of LINCS-Gene with selected
clusters and the GO terms for the selected genetic perturbation. The GO terms are arranged using
multidimensional scaling and colored by attribution score.
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We visualized the attribution scores for small molecule perturbations by coloring each atom in329

the molecular structure (Fig. 5c). Results are shown for a representative drug and four different330

clusters of cell states from the LINCS-Drug dataset. Each cluster has a different attribution pattern;331

for example, the three-ring structure in the lower-right of the molecule has a positive attribution332

for clusters 4 and 20 but a negative attribution for cluster 11. Examples of attributions for an333

additional 12 molecules are shown in Supplementary Fig. 6.334

Similarly, we visualized the attribution scores for genetic perturbations (Fig. 5c). For the335

genetic perturbations, each feature is a gene ontology annotation term. We arrange the terms with336

top attribution using 2D multidimensional scaling on the GO terms and separately plot the GO337

terms related to function, process, and component. Cluster 9 attributions implicate cellular stress338

response and several terms related to protein-ligand binding. Cluster 17 attributions implicate339

functions related to DNA repair and kinase activity. Examples of attributions for additional clusters340

are shown in Supplementary Figs. 7-8.341

Designing Perturbations to Achieve Target Cell State Distributions342

The ability of PerturbNet to predict out-of-distribution cellular responses can, in principle, be343

used to design perturbations that achieve a desired outcome. For instance, a search for small344

molecules that shift cells away from a pathological state could assist with drug discovery. Similarly,345

predicting genetic perturbations that shift cells toward a target cell state could help improve somatic346

cell reprogramming protocols. Both applications rely on the notion of counterfactual prediction:347

predicting what a particular cell would look like if treated with a different perturbation than the348

one observed.349

Fig. 6a gives a high-level summary of the procedure to design perturbations using PerturbNet.350

We can encode observed cells into the cell state space using the encoder of the cell representation351

network. Then, using the mapping network in reverse, we can search over the perturbation latent352

space until we find the perturbation whose cell state distribution most closely matches the target.353

In more detail, the mapping network of PerturbNet allows counterfactual prediction because354

the mapping function is invertible. Starting from a particular cell state c1 and perturbation p1,355

the cINN can calculate the residual variable v that uniquely identifies this combination of state356

and perturbation. If we then give v and a different perturbation p2 as input to the cINN mapping357
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Fig. 6 | Leveraging PerturbNet to design perturbations with desired outcomes. a
Diagram of perturbation design strategy. A target cell state distribution is defined by encoding
observed cells into the cell state space. The cINN is used in reverse, then optimization is performed
in the perturbation space until a perturbation matching the desired distribution is identified. b
Diagram of the relationship among starting cell state distribution, the counterfactual cell state
induced by perturbing the starting cell state, and the target cell state. c-e Perturbation design
results for sci-Plex using continuous latent space. c Example loss curve showing convergence of
W2 distance during optimization. d Histogram of W2 distance between target cell state and
counterfactual (fitted) cell state when using all observed drugs for example perturbation design
task. Distances for true drug (target) and fitted drug are indicated as dotted lines. e Scatter plot
of counterfactual (fitted) vs. target W2 distance percentile (calculated using all observed drugs)
for all 158 tested perturbation design tasks (translations). Ideally the fitted percentile should be no
larger than the target percentile. f-h Same plots as c-e, but for LINCS-Drug. i-l Perturbation design
results for sci-Plex using latent space locations from observed drugs only. i Molecular structures
for target and fitted drugs for an example perturbation design task. j Histogram of W2 distances
as in d, but with fitted perturbation determined from the discrete set of observed perturbations.
k Histogram of KNN indices across perturbation design tasks. A smaller KNN index means that
the fitted perturbation was closer to the true perturbation. The true drug was identified 82.5%
of the time. l Histogram of W2 distance percentiles across perturbation design tasks. A smaller
value means that the fitted perturbation was closer to the true perturbation. The true drug was
identified 82.5% of the time. m-p Same as i-l but for sci-Plex with covariate adjustment. q-t Same
as i-l but for LINCS-Drug.
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network, the output cell state c2 corresponds to the counterfactual state of c1 under the different358

perturbation p2.359

We can use this counterfactual prediction capability to identify perturbations that achieve a360

desired shift in cell state distribution. More formally, consider a starting cell state distribution361

with latent space values τ1(Z), and a target cell state distribution with latent space values τ2(Z).362

We want to find a perturbation that changes the cells in the starting cell state to the target cell363

state. From PerturbNet trained with single-cell perturbation responses, we can obtain the encoded364

representations for m cells in the starting cell state with the latent values {z1, . . . ,zm} ∼ τ1(Z).365

Each starting cell is originally treated with a perturbation. For simplicity, we assume that these366

cells are treated with the same perturbation p1. The target cell state can be represented by the367

latent values of n cells {zm+1, . . . ,zm+n} ∼ τ2(Z). Our goal is to find an alternative perturbation368

p∗ that will cause starting cells to shift as close to τ2(Z) as possible.369

To find such a perturbation, we first define a measure of the dissimilarity of two cell state370

distributions. We use Wasserstein-2 (W2) distance, also known as Fréchet distance, to quantify the371

dissimilarity between the cell state distributions of τ2(Z) and τ∗(Z). This is a widely used metric372

for comparing distributions and has even been applied several times in the context of comparing373

scRNA-seq distributions [29, 30, 31].374

The problem of designing a perturbation is then to find the perturbation representation that375

minimizes the squared W2 distance between counterfactual and target distributions. Because the376

perturbation representation space is continuous, we can perform stochastic gradient descent to377

efficiently find the latent space location that minimizes this objective function. Alternatively, if we378

have a finite, discrete set of candidate perturbations, we can minimize the objective function by379

exhaustive evaluation–that is, by simply predicting the cell state distribution for every perturbation380

in the candidate set.381

We evaluated our perturbation design strategy using the LINCS-Drug and Sci-Plex datasets.382

To do this, we selected a target set of observed cells, treated with a particular perturbation p2, then383

picked another set of starting cells treated with a different perturbation p1 and tried to design a384

perturbation p∗ to shift the starting cells to the target cell state (Fig. 6c-h). When optimizing over385

the continuous latent space of small molecules, the W2 distance converged rapidly for both datasets386

(see example loss curves in Fig. 6c,f). To assess how well the cell state distribution induced by the387
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designed perturbations p∗ matched the target distribution, we calculated the W2 distances between388

the target distribution and the distribution induced by p∗, as well as every other perturbation in the389

training dataset. We then calculated the percentile of the W2 distance from p∗ within the overall390

distribution of W2 distances from observed perturbations. In most cases, the distribution induced391

by p∗ more closely matched the target distribution than most perturbations in the initial dataset,392

indicating that the optimization procedure is able to effectively identify a latent representation with393

the desired property (Fig. 6d,e,g,h).394

To further evaluate the designed perturbations, we optimized the W2 distance over the discrete395

space of perturbations for which ground truth cell responses are available (Fig. 6i-t). Constraining396

the search space in this way allows direct assessment of the true cell responses and molecular struc-397

tures for the designed perturbations. In particular, if the perturbation design approach is working,398

we expect the candidate perturbations p∗ to be similar in structure to the perturbation p2 that was399

actually applied to the target cells. For the Sci-Plex (either with and without covariate adjustment)400

and LINCS-Drug datasets, the optimization procedure produced candidate perturbations p∗ whose401

molecular structures were much closer to the perturbation p2 than expected by chance. In many402

cases, the designed p∗ was exactly the same as p2 (83% for sci-Plex unadjusted, 29% for sci-Plex403

adjusted, 5% for LINCS-Drug). Even when p∗ was different from p2, the molecular structures were404

often quite similar. For example, although the designed perturbation in Fig. 6i is not identical to405

the actual perturbation with which the target cells were treated, the two molecules have quite sim-406

ilar structures, with just hydroxyl group and double-bonded oxygen in opposite orientations. Fig407

6m shows another example, with two six-atom rings separated by a double bonded oxygen attached408

to a five-atom ring in both structures. Similarly, the target molecule in Fig. 6q features a six-atom409

ring adjacent to a double-bonded oxygen atom and an amine group. The chemical structure of p∗ is410

more similar to p2 than expected by chance (Fig. 6k,o,s). In addition, the true cell profiles induced411

by the candidate perturbations p∗ were much closer to the target distribution than expected by412

chance, as measured by W2 distance (Fig. 6l,p,t). In summary, these evaluations suggest that the413

PerturbNet can be used to design perturbations to approximate a desired cell state distribution.414
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Discussion415

Our results open a number of exciting future directions. One possible direction is to broaden416

to additional types of perturbations and responses. For example, one could try to predict the417

trajectories of single-cell responses after a sequence of perturbations [32]. The PerturbNet might be418

improved to sequentially model new cellular representation on the new perturbation representation419

and the previous cellular representation.420

Future work could also employ other state-of-the-art methods for chemical and genetic perturba-421

tions to obtain better perturbation representations. We can also consider training these frameworks422

on larger chemical databases such as PubChem [33] or larger GO annotation sets by incorporating423

genetic perturbations with more than two target genes as well. From our experiments, we find424

that the prediction performance of PerturbNet on cellular responses to unseen perturbations is425

likely to be impacted by the number of observed perturbations for training the cINN. To improve426

the cINN translations for single-cell data with a small number of observed perturbations, one may427

consider transfer learning [34] to utilize a cINN model trained on a dataset with a large number428

of perturbations such as LINCS-Drug and LINCS-Gene. In addition, we could incorporate more429

sophisticated generative models like MichiGAN [35] into the PerturbNet framework. For example,430

adding an extra training stage to replace the cell state VAE with a conditional generative adversar-431

ial network (GAN) could further improve generation performance. We hope that PerturbNet and432

related approaches can help shape the design of high-throughput perturbation experiments, better433

leverage these datasets, and ultimately help identify new chemical and genetic therapies.434
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[12] Rampášek, L., Hidru, D., Smirnov, P., Haibe-Kains, B. & Goldenberg, A. Dr. vae: improving459

drug response prediction via modeling of drug perturbation effects. Bioinformatics 35, 3743–460

3751 (2019).461

[13] Lotfollahi, M., Naghipourfar, M., Theis, F. J. & Wolf, F. A. Conditional out-of-distribution462

generation for unpaired data using transfer vae. Bioinformatics 36, i610–i617 (2020).463

[14] Johansson, F., Shalit, U. & Sontag, D. Learning representations for counterfactual inference.464

In International conference on machine learning, 3020–3029 (PMLR, 2016).465

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.20.500854doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500854
http://creativecommons.org/licenses/by-nc-nd/4.0/


[15] Burkhardt, D. B. et al. Quantifying the effect of experimental perturbations at single-cell466

resolution. Nature biotechnology 39, 619–629 (2021).467

[16] Lotfollahi, M. et al. Compositional perturbation autoencoder for single-cell response modeling.468

bioRxiv (2021).469

[17] Yeo, G. H. T., Saksena, S. D. & Gifford, D. K. Generative modeling of single-cell time series470

with prescient enables prediction of cell trajectories with interventions. Nature communications471

12, 1–12 (2021).472

[18] Kamimoto, K., Hoffmann, C. M. & Morris, S. A. Celloracle: Dissecting cell identity via473

network inference and in silico gene perturbation. bioRxiv (2020).474

[19] Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S. & Lakshminarayanan, B. Nor-475

malizing flows for probabilistic modeling and inference. Journal of Machine Learning Research476

22, 1–64 (2021).477
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Methods587

Datasets with chemical perturbations588

We have the ZINC data to train the ChemicalVAE model. We utilize the sci-Plex and LINCS-Drug589

data with cellular responses to chemical perturbations.590

Table 1: High-Throughput Gene Expression Datasets with Chemical Perturbations.

Dataset sci-Plex LINCS-Drug

Source scRNA-seq Microarrays
Cell Lines A549, K562, MCF7 ∼100
Number of Measurements 648,857 689,831
Number of Genes 5087 978
Number of Perturbations 188 20,065

ZINC We obtained the ZINC database with 250,000 compounds [22] from the ChemicalVAE591

model (https://github.com/aspuru-guzik-group/chemical_vae/tree/main/models/zinc). We592

transformed the compounds to canonical SMILES following the ChemicalVAE tutorial (https://593

github.com/aspuru-guzik-group/chemical_vae/blob/main/examples/intro_to_chemvae.ipynb)594

via the RDKit package [36]. We also utilized the chemical elements’ library from this tutorial to595

define the one-hot matrices of drug treatments, where we constrained the maximum length of596

canonical SMILES strings to be 120.597

sci-Plex We processed the whole sci-Plex data [2] using SCANPY [37] with a total of 648,857598

cells and 5087 genes. There were 634,110 cells perturbed by 188 drug treatments in total, with599

14,627 cells with no SMILES string and 120 unperturbed cells. We randomly selected 30 drug600

treatments as unseen perturbations and the other 158 drug treatments as observed perturbations.601

LINCS-Drug We obtained the LINCS dataset [23] from GEO accession ID GSE92742. The602

LINCS data had been processed with 1,319,138 cells and 978 landmark genes, containing the LINCS-603

Drug subset with 689,831 cells treated by 20,329 drug treatments denoted with their SMILES,604

20,065 drug treatments of which had lengths smaller than 120. We randomly selected 2000 drug605

treatments as unseen perturbations and the other 18,065 drug treatments as observed perturbations.606

We transformed the SMILES strings of drug treatments of the sci-Plex and LINCS-Drug data607

to their one-hot matrices according to the chemical elements’ library.608
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Datasets with gene knockdowns and coding sequence mutations609

We have the GO annotation data to train the GenotypeVAE model. We utilize the GI, LINCS-Gene610

and GSPS data with cellular responses to gene knockdowns. We use the Ursu data with cellular611

responses to coding sequence mutations.

Table 2: High-throughput gene expression datasets with gene knockdowns and coding sequence
mutations.

Dataset GI LINCS-Gene GSPS Ursu et al.

Source scRNA-seq Microarrays scRNA-seq scRNA-seq
Cell Lines K562 ∼100 K562 A549
Number of Measurements 109,738 442,684 1,989,373 164,931
Number of Genes 2279 978 2000 1629
Number of Perturbations 230 4109 9499 1338
Perturbation Identity Gene Gene Gene Sequence

612

GO annotations We obtained the GO annotation dataset for human proteins from the GO613

Consortium at http://geneontology.org/docs/guide-go-evidence-codes. We removed the614

annotations of three sources without sufficient information: inferred from electronic annotation615

(IEA), no biological data available (ND) and non-traceable author statement (NAS). The filtered616

dataset had 15,988 possible annotations for 18,832 genes.617

GI We obtained the GI data on GEO accession ID GSE133344 [10]. Each cell was perturbed618

with 0, 1 or 2 target genes. We processed the GI data using SCANPY [37] with 109,738 cells and619

2279 genes. The processed GI data contained 236 unique genetic perturbations for 105 target genes620

and 11,726 cells were unperturbed. There were 230 out of 236 genetic perturbations that could be621

mapped to the GO annotation dataset. We randomly selected 50 genetic perturbations as unseen622

and the other 180 perturbations as observed.623

LINCS-Gene We obtained the LINCS dataset [23] from GEO accession ID GSE92742. The624

LINCS data had been processed with 1,319,138 cells and 978 landmark genes. The LINCS-Gene625

subset of the LINCS data contained 442,684 cells treated by 4371 genetic perturbations with single626

target genes. A total of 4109 out of 4371 genetic perturbations could be mapped to the GO627

annotation dataset, and we randomly selected 400 genetic perturbations as unseen perturbations628

and the other 3709 as observed perturbations.629

GSPS We used SCANPY to preprocess the GSPS data [25] and to select the top 2000 highly-630
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variable genes with respect to the batches of ‘gemgroups’. The GSPS dataset contained 1,989,373631

cells treated by 9867 genetic perturbations with single target genes. There were 9499 genetic632

perturbations that can be mapped to the GO annotation library. We randomly selected 1000633

genetic perturbations as unseen perturbations and the other 8499 as observed perturbations. There634

were 802 unseen and 6859 observed perturbations, each with more than 100 cells.635

Ursu et al. We obtained the Ursu data from GEO accession ID GSE161824, and filtered the raw636

data according to the processed datasets and concatenated the two datasets with KRAS variants and637

TP53 variants, using their common genes. We preprocessed the concatenated data using SCANPY,638

containing 164,931 cells and 1629 genes. We also collected the variants from the modifications on639

the original KRAS and TP53 protein sequences. We obtained 596 KRAS sequences and 742 TP53640

protein sequences, and randomly selected 60 KRAS and 70 TP53 variants as unseen perturbations.641

There were 16 unseen and 145 observed variants with more than 400 cells.642

ChemicalVAE643

The commonly used one-hot encoding approach can transform drug treatment labels to a vector644

of 1’s and 0’s, but it needs pre-specifying the total number of possible drug treatments and cannot645

encode new treatments after the specification. Therefore, we consider flexible representations Y646

for drug treatments to predict drug treatment effects on single-cell data for unseen perturbations.647

A drug treatment contains abundant information more than just a label such as ‘S1096’. Its648

pharmacological properties are usually determined by its chemical structure. We thus aim to649

encode drugs’ chemical structures to dense representations. We consider drug treatments’ sim-650

plified molecular-input line-entry system (SMILES) strings, which distinctively represent chemical651

structures and treatment information. Although SMILES strings can be encoded to numerical652

representations through molecular Morgan fingerprints [38] or through language models [39, 40],653

the representations from these methods are deterministic, meaning that the representations remain654

the same in replicated encoding implementations. Given that a chemical screen experiment usually655

contains a limited number of distinct drug treatments, the use of stochastic representations of the656

drug treatments prevents possible model overfitting.657

To improve the learning capacity, especially for representations of unseen treatments, we con-658

sider using a chemical variational autoencoder (ChemicalVAE) to generate the stochastic sampled659
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representation Y of each drug’s SMILES string [41, 42]. In essence, the ChemicalVAE first trans-660

forms and standardizes SMILES strings to their canonical forms and tokenizes each canonical661

SMILES to be encoded as a one-hot matrix. For a canonical SMILES string, the ith row of its662

one-hot matrix corresponds to its ith place, and has the jth column being 1 and all other columns663

being 0’s, if its ith place has the jth character in the collected chemical elements’ library. The one-664

hot matrices of SMILES strings are then fitted into ChemicalVAE which provides representations665

Y for SMILES strings of drug treatments g.666

We followed the ChemicalVAE model utilized in Gómez-Bombarelli et al. (2018) [43] and667

adapted it to PyTorch implementations. The ChemicalVAE model takes each input of size of668

120 by 35, and has three one-dimensional convolution layers with the triplet of number of input669

channels, number of output channels and kernel size being (120, 9, 9), (9, 9, 9) and (9, 10, 11),670

respectively. There are a Tanh activation function and a batch normalization layer following each671

convolution layer. After these transformations, the input is then flattened to a fully-connected672

(FC) hidden layer with 196 neurons, and is subsequently activated by a Tanh function, followed673

by a dropout regularization with a dropout probability of 0.08 and a batch normalization layer.674

Then two hidden layers both with 196 neurons generate means and standard deviations of the675

latent variable. The decoder of the ChemicalVAE model has a FC hidden layer with 196 neurons,676

followed by a Tanh activation, a dropout regularization with a dropout probability of 0.08 and a677

batch normalization layer. Then the elements of the input are repeated 120 times to be put in a678

GRU layer with three hidden layers of 488 hidden neurons, followed by a Tanh activation. The679

input is then transformed to a two-dimensional tensor to be put in a FC layer with 35 neurons and680

a softmax activation function. Then each input is reshaped to be the output tensor of 120 by 35.681

We implemented the ChemicalVAE training on the ZINC data with different learning rates. We682

finally had an optimal training with a batch size of 128 and a learning rate of 10−4 for 100 epochs.683

GenotypeVAE684

For gene knockdowns, most of the existing methods one-hot-encode the target genes across a set685

of genes [4] or all genes on a coding sequence [44]. However, this strategy cannot generalize to686

perturbations with an unseen target gene.687

To encode genetic perturbations, we propose a more parsimonious framework and refer to it as
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GenotypeVAE. Our key insight is that the numerous functional annotations of each gene (organized

into a hierarchy in the gene ontology) provide features for learning a low-dimensional representation

of individual genes and groups of genes. Using gene ontology (GO) terms, we can represent each

target gene g as a one-hot vectorBg, where 1’s in the vector element correspond to a particular term

indicating that the gene has the annotation. Our approach is inspired by Chicco et al. (2014) [24].

If we have a genetic perturbation with multiple target genes {g1, . . . , gk}, we use annotation-wise

union operations to generate a one-hot annotation vector for the genetic perturbation as follows:

Bg1,...,gk = ∪k
j=1Bgj .

Then, we can train GenotypeVAE using one-hot representations of many possible genetic pertur-688

bations. We use the GO Consortium gene ontology annotation dataset of human genes. This689

resource annotates 18,832 genes with 15,988 annotation terms (after removing some annotations690

with insufficient information). We take the 15,988-dimensional annotation vector as the input to691

the GenotypeVAE encoder consisting of two hidden layers with 512 and 256 neurons, following692

output layers for means and standard deviations, both with 10 neurons. The GenotypeVAE de-693

coder also has two hidden layers with 256 and 512 neurons, along with an output layer of 15,988694

neurons activated by the sigmoid activation function. We also have a batch normalization layer,695

Leaky Rectified Linear Unit (ReLU) activation and a dropout layer with a dropout probability of696

0.2 following each hidden layer of GenotypeVAE.697

We adjusted different learning rates, batch size and epochs. We finally trained GenotypeVAE698

on the annotation vectors of single and double target genes from the GO annotation dataset with699

batch size of 128 for 300 epochs at a learning rate of 10−4.700

ESM701

A coding variant can be uniquely represented by the protein sequence resulting from the nucleotide702

alterations induced by CRISPR/Cas9 editing. Similar to chemical perturbations, coding variants703

can also be summarized as sequences of strings. A key difference is that each character of a protein704

sequence is a naturally occurring character sequence, whereas a chemical structure is actually a705

three-dimensional structure (even if it is sometimes represented as a string).706
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We therefore consider a state-of-the-art language model for protein sequences. Rather than707

designing our own model and training it from scratch, we employ the previously published Evolu-708

tionary Scale Modeling (ESM) [27] architecture. ESM is a self-supervised transformer model [45]709

and was previously shown to achieve better representations and prediction performance on protein710

sequences compared to other language models such as long short-term memory (LSTM) networks.711

As with other transformer models [46], the ESM model was pre-trained on large protein sequence712

datasets [47]. We adopt a pre-trained ESM model specialized for prediction of single variant effects713

[48], because this application is most similar to our scenario.714

However, the representation obtained from ESM is deterministic for a given protein sequence.

The fixed protein representations limit the amount of training data available for PerturbNet, espe-

cially when there is a small number of protein sequences. We therefore add low-variance noise ϵ to

the ESM representation YESM from ESM. The final perturbation representation is thus computed

as

Y = YESM + ϵ,

where ϵ ∼ N (0,σ2I). We choose the variance σ2 to be a positive constant small enough that it715

does not significantly alter the relative distances between proteins in the ESM latent space.716

KNN model717

From the perturbation representations, Y , of drug treatments, we can learn the relationship of sev-718

eral drug treatments in their latent space. We assume that drug treatments with close latent values719

tend to also have similar single-cell responses. Thus, the distributions of perturbation responses720

p(X | G = g1) and p(X | G = g2) are similar if g1 and g2 have close representations of y1 and y2.721

We then propose our baseline model using the k-nearest neighbors (KNN) algorithm to predict722

single-cell data under drug treatments in Algorithm 1. From ChemicalVAE, we can obtain the723

representation Y for a set of treatments G, each of which has measured single-cell samples. Then724

for a drug treatment g /∈ G with representation y, we can find its k nearest neighbors {g(1), . . . , g(k)}725

from G based on Y . We then sample single-cell samples treated with the k nearest treatments in726

proportion to their exponentiated negative distances to the treatment of interest in the latent space727

of Y . The sampled single-cell data can be regarded as a baseline prediction for the single-cell data728

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.20.500854doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500854
http://creativecommons.org/licenses/by-nc-nd/4.0/


with the treatment of interest.729

Algorithm 1: Baseline KNN Model

Input: Drug treatment of interest g and its representation y. A set of drug treatments

G = {g1, . . . , gm} with their representations {y1, . . . ,ym} as well as single-cell sample sets

{X1, . . . ,Xm}.

1. Train KNN algorithm (k = 5) on {y1, . . . ,ym}.

2. Obtain y’s k neighbors {y(1), . . . ,y(k)} and their pairwise distances (d(1), . . . , d(k))
T

from the trained KNN algorithm.

3. Sample a number of cells X ′ through stratified sampling with replacement from

{X(1), . . . ,X(k)}. Each set X(i) has a proportion of exp{−d(i)}/
∑k

j=1 exp{−d(j)}.

Result: predicted single cells X ′ under perturbation g.

730

Baseline random model731

The key assumption of the baseline KNN model is that the perturbation representation is in-732

formative to infer single-cell data. To test the informativeness assumption on the perturbation733

representation, we propose a naive baseline random model in Algorithm 2 that randomly samples734

single-cell samples under treatments other than the target treatment. If the perturbation repre-735

sentation is uninformative to inferring cell state or cellular response, the random model is likely to736

have a similar performance to the KNN model.737

Algorithm 2: Baseline Random Model

Input: Drug treatment of interest g. A set of single-cell samples {X−g} receiving drug

treatments other than g.

1. Sample a number of cells X ′ with replacement from X−g.

Result: predicted single cells X ′ under perturbation g.

738

Prediction metrics739

We utilize metrics of R squared and FID score to evaluate the prediction metrics of different models.740

R squared We follow the R Squared metric utilized in several frameworks to predict single-cell741

responses to perturbations [11, 13, 16]. We first obtain the normalized data of predicted and real742

single-cell responses to a perturbation for the sci-Plex data. We conduct similar processing steps743

to SCANPY [37]. We first normalize the total number of counts of each cell to be 104, take log-744
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transformation, and scale the values. We directly use LINCS samples as they have already been745

normalized. We compute the mean gene expression values of normalized data of both predicted746

and real cells to a drug treatment. We then fit a simple linear regression model on the real mean747

gene expression values over the predicted mean gene expression values. The R squared of the fitted748

linear regression is then reported to quantify the accuracy of predicted cells.749

FID score We define an FID score metric similar to the FID metric utilized in image data [49].

We train a single-cell VAE model on the whole single-cell dataset using either negative binomial or

Gaussian likelihood depending on the data type. We obtain the cell latent values of the predicted

and real cells to a perturbation. We then apply the Fréchet distance to the latent values of predicted

and real cells with the Gaussian assumption

FID = ∥µReal − µPredicted∥22 + trace{ΣReal +ΣPredicted − 2(ΣRealΣPredicted)
1/2},

where µReal,µPredicted are means of predicted and real latent values, and ΣReal,ΣPredicted are co-750

variance matrices of predicted and real latent values.751

Conditional invertible neural network (cINN)752

We consider employing complex normalizing flows of invertible neural networks to understand the

relationship between perturbation representation and cellular responses. An affine coupling block

[50] enables the input U = (UT
1 ,UT

2 )T to be transformed to output W = (W T
1 ,W T

2 )T with:

W1 = U1 ⊙ exp{scale1(U2)}+ trans1(U2)

and

W2 = U2 ⊙ exp{scale2(W1)}+ trans2(W1),

where scale1(·), scale2(·), trans1(·), trans2(·) are arbitrary scale and transformation neural networks,

and ⊙ is the Hadamard product or element-wise product. The inverse of the coupling blocking can

be represented by

U2 = {W2 − trans2(W1)} ⊘ exp{scale2(W1)}
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and

U1 = {W2 − trans1(U2)} ⊘ exp{scale1(U2)},

where ⊘ is the element-wise division. The affine coupling block allows bijective transformations be-753

tween U and W with strictly upper or lower triangular Jacobian matrices. A conditional coupling754

block is further adapted to concatenate a conditioning variable with inputs in scale and trans-755

formation networks. A conditional coupling block preserves the invertibility of the block and the756

simplicity of the Jacobian determinant.757

A conditional invertible neural network (cINN) [51, 21] is a type of conditional normalizing

flow with conditional coupling blocks and activation normalization (actnorm) layers [52], with both

forward and inverse translations. Denote representations from two domains asY ∈ DY and Z ∈ DZ.

A cINN modeling Z over Y gives forward translation

Z = f(V | Y )

and inverse translation

V = f−1(Z | Y ),

where V ∼ N (0, I). The cINN effectively models p(Z | Y ), the probabilistic dependency of Z

over Y with a residual variable V . As a cINN seeks to extract the shared information from Y and

add residual information V to generate Z, the objective function to train a cINN is the Kullback-

Leibler (KL) divergence between the residual’s posterior q(V | Y ) and its prior p(V ). The objective

function can further be derived to

Ep(Y ) [DKL{q(V | Y )||p(V )}] = Ep(Z,Y )

[
− log p{f−1(V | Y )} −

∣∣detJf−1(Z | Y )
∣∣]

−H(Z | Y ),

(1)

where detJf−1 is the determinant of the Jacobian matrix of f−1 and H is a constant entropy. The758

optimal f that minimizes the objective function in Equation (1) gives q(V | Y ) = p(V ). In addition,759

the objective is an upper bound of the mutual information I(V ,Y ). Therefore, a well-trained cINN760

effectively achieves independence between V and Y . cINN has the same parameters for forward761

and inverse translations, reducing the number of model parameters while still preserving network762
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details in both translation directions, and has been utilized to translate domain representations of763

images and texts [21].764

We trained the cINN translations following Rombach et al. (2020) [21], where a cINN consists of765

20 invertible neural network blocks and an embedding module. Each block has an alternating affine766

coupling layer, an actnorm layer and a fixed permutation layer. The embedding module consists of767

FC hidden layers and Leaky ReLU activation functions to embed the conditioning variable into a768

10-dimensional variable. We fixed the batch size of 128, the learning rate of 4.5× 10−6 and varied769

different numbers of epochs for training cINN. We found the cINN training generally stabilized770

after 50 epochs across different datasets.771

Fine-tuning ChemicalVAE and GenotypeVAE772

As both KNN and PerturbNet methods predict cell state based on perturbation representation,773

it might enhance the prediction performance for cell state from perturbation to use perturbation774

representation that learns cellular representation information.775

We propose an algorithm to fine-tune ChemicalVAE and GenotypeVAE, by adding their evi-776

dence lower bound (ELBO) loss with an extra term for a certain cellular property quantity [43]. In777

this study, we compute the Wasserstein-2 (W2) distance between cellular representations of each778

pair of perturbations and penalize the trace of Y ’s second moment weighted by the Laplacian779

matrix L of the adjacency matrix defined from pairwise distances [53]. Denote y and L as the780

perturbation representations and the Laplacian matrix of the perturbations. The regularization781

term is defined as trace(yTLy), similar to a term commonly arising in spectral graph theory. By782

penalizing the proposed quantity, we expect perturbations with similar cell states to have closer783

perturbation representations from ChemicalVAE or GenotypeVAE. To implement the fine-tuning784

algorithm, we alternate the VAEs’ training with a batch of chemical SMILES strings from a large785

chemical database or a batch of target genes from the GO annotation dataset with the ELBO loss786

and another batch of pairs of perturbations and cellular representations from a single-cell chemical787

or genetic screen dataset with the penalized ELBO loss. We tune a hyperparameter λ on the extra788

term to adjust the fine-tuning performance. We summarize the ChemicalVAE and GenotypeVAE789

fine-tuning in Algorithm 3.790

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.20.500854doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500854
http://creativecommons.org/licenses/by-nc-nd/4.0/


Algorithm 3: ChemicalVAE and GenotypeVAE fine-tuning

Input: Set of perturbations Gs. Single-cell samples with perturbations

{(x1, g1), . . . , (xn, gn)}. The perturbations’ cell-state Laplacian matrix L. Two Adam

optimizers [54] Adam1, Adam2.

1. Initialize VAEs’ parameters (ϕ,θ).

2. While (ϕ,θ) has not converged:

1). Sample a batch {(x(i), g(i))}mi=1 from the single-cell samples.

2). Obtain representations y = (y(0), . . . ,y(m))
T for {g(i)}mi=1.

3). Obtain the Laplacian matrix Lg for {g(i)}mi=1.

4). Compute gradient gλ
ϕ,θ = ▽ϕ,θ{-ELBO(ϕ,θ) + λtrace(yTLgy)}

5). Update parameters using gλ
ϕ,θ via Adam1.

6). Sample a batch {g(i)}mi=1 from Gs

7). Compute gradient gϕ,θ = ▽ϕ,θ{-ELBO(ϕ,θ)}

8). Update parameters using gϕ,θ via Adam2.

Result: fine-tuned ChemicalVAE or GenotypeVAE with parameters (ϕ,θ).

791

Optimal perturbation design with continuous and discrete optimizations792

Consider a starting cell state with latent space values τ1(Z), and a target cell state with latent793

space values τ2(Z). We want to find a perturbation that changes the cells in the starting cell794

state to the target cell state. From PerturbNet trained with single-cell perturbation responses, we795

can obtain the encoded representations for m cells in the starting cell state with the latent values796

{z1, . . . ,zm} ∼ τ1(Z). Each starting cell is originally treated with a perturbation. For simplicity,797

we assume that these cells are treated with the same perturbation g1. The target cell state can798

be represented by the latent values of n cells {zm+1, . . . ,zm+n} ∼ τ2(Z). The optimal translation799

task thus aims to find an alternative perturbation g∗ for the starting cells to change their cell state800

to be close to τ2(Z).801

As PerturbNet translates perturbation representation Y and residual representation V to cel-802

lular representation Z, we can predict the counterfactual cell state under a new perturbation for803

each cell with two translation procedures. Denote cINN forward translation as f(·), B1 as the804

perturbation matrix of the starting perturbation g1 and the perturbation encoder as h(·). First,805
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we obtain residual values {v1, . . . ,vm} with the inverse translation function vi = f−1(zi | yi) with806

perturbation representation yi = h(B1). The translation function then gives each cell’s counter-807

factual cellular representation zi,∗ = f(vi | y∗) under an alternative perturbation’s representation808

value y∗. We therefore seek the translated counterfactual cell state {z1,∗, . . . ,zm,∗} ∼ τ∗(Z) to809

have a similar distribution to {zm+1, . . . ,zm+n} ∼ τ2(Z).810

We devise a method to design a perturbation representation y∗ that shifts the cells in the

starting cell state to approximate the target cell state. To quantify the difference between the

cell state distributions, we use Wasserstein distance, which has been widely used to quantify cell

populations’ distance [29, 30, 31]. We use Wasserstein-2 (W2) distance [55], which is also known

as Fréchet distance, to quantify the dissimilarity between the cell state distributions of τ2(Z) and

τ∗(Z). The W2 distance is defined as

d{τ2(Z), τ∗(Z)} =

{
inf

γ∈Π(τ2,τ∗)
E(Z2,Z∗)∼γ ∥Z2 −Z∗∥2

}1/2

,

where Π(τ2, τ∗) is the set of all joint distributions γ(Z2,Z∗) whose marginal distributions are τ2(Z)811

and τ∗(Z), respectively.812

Evaluating the W2 distance is extremely difficult for general distributions. To simplify the

calculations of the W2 distance, we assume that latent spaces follow multivariate Gaussian distri-

butions [56, 49], which is also commonly assumed in calculating Fréchet inception distance (FID)

in image data [49]. Assuming that the latent space τi(Z) has a multivariate Gaussian distribution

N (µi,Σi) for i ∈ {2, ∗}, the squared W2 distance has a closed form:

d2{τ2(Z), τ∗(Z)} = ∥µ2 − µ∗∥22 + trace{Σ2 +Σ∗ − 2(Σ2Σ∗)
1/2}. (2)

Therefore, we can evaluate the squared W2 distance between the translated counterfactual cell

state and the target cell state as d2[{zm+j}nj=1, {zi,∗}mi=1]. The problem of designing a desired

perturbation is then to find the optimal y∗
opt that minimizes the squared W2 distance:

y∗
opt = argmin

y∗
d2

[
{zm+j}nj=1, {zi,∗}mi=1

]
.

We can further infer the optimal perturbation from representation y∗
opt. Figure 6a summarizes the813
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procedure to design the optimal perturbation using PerturbNet.814

Based on the objective above, we propose what we refer to as “continuous optimal translation.”

We first initialize a value for y∗
opt from the standard multivariate Gaussian distribution and then we

perform stochastic gradient descent with momentum [54] to minimize the squared W2 loss over y∗
opt.

One important implementation detail concerns the calculation of the W2 distance. The distance

formula includes the term (Σ2Σ∗)
1/2, which is difficult to calculate and can become ill-conditioned

or approximately singular. We thus rewrite the term as

C2,∗ = Σ
1/2
2

(
Σ

1/2
2 Σ∗Σ

1/2
2

)1/2
Σ

−1/2
2 ,

which allows us to replace the difficult term with C2
2,∗ as C2

2,∗ = Σ2Σ∗.815

We use the Adam optimizer to perform stochastic gradient descent with momentum. For the816

matrix square root terms in C2,∗, Σ
1/2
2 keeps a fixed value during training, and Σ

1/2
2 Σ∗Σ

1/2
2 is much817

more likely than the original term Σ2Σ∗ to be symmetric positive semi-definite and have a square818

root matrix. After the continuous optimization, we obtain an optimal perturbation representation819

y∗
opt that represents a potential perturbation that achieves the desired shift in cell state distribution.820

The continuous optimal translation model can give an optimal perturbation representation y∗
opt821

that translates the starting cells to have a similar cell state to τ2(Z). If the real cells in the822

target cell state {zm+1, . . . ,zm+n} ∼ τ2(Z) are treated by a perturbation g2, we can compare it823

with the fitted optimal perturbation representation y∗
opt to evaluate if the optimal perturbation824

representation can achieve the desired cell state shift like the perturbation g2.825

However, the chemical or genetic perturbation from the optimal perturbation representation826

of a continuous optimal translation is not immediately clear, as an inference model needs to be827

processed on the perturbation representation. Although it is possible to employ the perturbation828

generative model to generate chemical or genetic perturbations, doing so brings a host of additional829

challenges related to molecular structure optimization [43], which is not the focus of this study.830

To design the optimal perturbation to achieve the desired cell state shift, we propose another

perturbation design strategy that uses discrete optimization. Rather than optimizing the squared

W2 loss in the continuous space, the discrete optimal translation searches through a constrained

set G of perturbations, and calculates the squared W2 distance d2[{zm+j}nj=1, {zi,∗}mi=1] for each

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.20.500854doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500854
http://creativecommons.org/licenses/by-nc-nd/4.0/


perturbation g ∈ G with y∗ = h(Bg). Then the optimal perturbation is selected as the one giving

the smallest distance so that

g∗opt = argmin
g∈G

d2[{zm+j}nj=1, {zi,∗}mi=1].

This discrete optimal translation strategy gives both the optimal perturbation representation y∗
opt831

to achieve the desired translation, and also the optimal perturbation g∗opt. If the cells in the target832

latent space are treated by a perturbation, we can evaluate if the optimal perturbation g∗opt matches833

the one for the target latent space.834

Integrated gradients835

As we connect perturbation and cell state in PerturbNet, we can interpret how a perturbation836

changes the cell state distribution by predicting cellular representations using PerturbNet. We can837

further interpret the effects of features and components of the perturbation with the state-of-the-art838

XAI methods. Denote F (·) as a function taking input feature vector T = (T1, . . . , Tn)
T ∈ Rn to839

generate output in [0, 1]. Then its attribution is a vector A = (a1, . . . , an)
T and each value ai is840

the contribution of Ti to the prediction of F (T ).841

Previous attempts to interpret neural network models have focused on gradients [57, 58] and

back-propagation [59, 60]. We use the method of integrated gradients [28], which has been applied

to interpret deep learning models across a range of domains, including computational chemistry

[61]. The attribution score of the integrated gradients method for the ith dimension of input T is

defined as

ai = (Ti − T0,i)

∫ 1

α=0

∂F{T0 + α(T − T0)}
∂Ti

dα,

where T0 = (T0,0, . . . , T0,n)
T is a baseline input.842

A prediction neural network model on cellular representation can be formulated from PerturbNet843

as Z = f(V | Y ) and Y = h(B). The input T can be formulated as (V T ,Y T )T or (V T ,BT )T .844

In addition, a classification neural network model on Z provides a classification score within [0, 1].845

We can then find input features that increase the probability of generating cells in a particular cell846

state.847
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A Supplementary information848

A.1 Covariate adjustment gives better predictions for PerturbNet849

Because the sci-Plex dataset has two covariates (cell type and dose), we adjusted these covariates in850

modeling cINN translations of PerturbNet. We converted cell type and dose to one-hot encodings851

and concatenated them to the perturbation representation Y as a joint condition representation.852

Then we trained cINN with the joint representation of perturbation and covariates as conditions853

for translations between residual representation and cellular representation. We then predicted854

single-cell responses to a perturbation with the specific values of covariates.855

We evaluated the prediction performance of PerturbNet adjusted for covariates on the unseen856

and observed perturbations with cell covariates’ values, and compared its performance with that857

of the previous PerturbNet trained without the cell state covariates. As can be seen in Supple-858

mentary Fig. 1a, the PerturbNet adjusted for cell state covariates significantly outperforms the859

PerturbNet without covariate adjustment for observed perturbations in both R squared and FID.860

The PerturbNet adjusted for covariates improves R squared for the unseen perturbations. The cell861

state covariates are correlated with perturbation assignment and also influence cellular responses,862

making them possess confounding effects in modeling perturbation responses. Therefore, adjusting863

for covariates in cINN modeling of the PerturbNet helps debias their confounding effects and more864

accurately quantify perturbation effects.865

We compared the performance of PerturbNet adjusted for covariates with the baseline mod-866

els. As the PerturbNet adjusted for covariates takes additional covariate information other than867

perturbation, we performed a stratified prediction in each cell type by dose stratum to also ad-868

just covariate information for the baseline models. Each perturbation has 12 strata with three869

cell types and four doses. We proceeded with the sampling procedures of the baseline KNN and870

random models within each cell type by dose stratum, and made PerturbNet predictions with the871

corresponding covariates’ values in the stratum. Supplementary Fig. 1b-e show that PerturbNet872

consistently outperforms the random model for observed perturbations, while KNN is unable to873

beat the random model for either unseen or observed perturbations. As the stratified evaluations874

constrain cellular variability and sample size, which possibly narrows down the prediction perfor-875

mances of the KNN and random models, we also compared PerturbNet adjusted for covariates and876
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KNN in stratified predictions (Supplementary Fig. 1f-g). As with their unstratified comparisons,877

the PerturbNet has a better performance for observed perturbations but does not defeat KNN for878

unseen perturbations.879

A.2 Fine-tuned ChemicalVAE and GenotypeVAE improve the performance of880

PerturbNet881

We performed ChemicalVAE and GenotypeVAE fine-tuning to improve the performance of Perturb-882

Net. To construct a cell-state Laplacian matrix L, we computed the Wasserstein-2 (W2) distance883

between cellular latent values of each pair of perturbations. As the number of perturbation pairs884

is extremely large in LINCS-Drug or LINCS-Gene, we first fitted a KNN algorithm on the per-885

turbation representations of a dataset and selected the 30 nearest neighbors for each perturbation886

to compute their pairwise cellular latent distances. As the resulting pairwise cell latent distance887

matrix for all the perturbations was not symmetric, we took the average of the matrix and its trans-888

pose. We then calculated the exponential of their opposite values and row-normalized the matrix889

to obtain the adjacency matrix with each entry as a transition probability. We then obtained the890

Laplacian matrix from the adjacency matrix.891

We utilized the Laplacian sub-matrix for the observed chemical perturbations of LINCS-Drug to892

fine-tune ChemicalVAE, and also that for the observed genetic perturbations of LINCS-Gene to fine-893

tune GenotypeVAE. We considered values of λ in (0.1, 1, 5, 10, 100, 1000, 10,000) to implement894

the ChemicalVAE and GenotypeVAE fine-tuning algorithm. After we fine-tuned ChemicalVAE895

and GenotypeVAE, we evaluated the KNN model on their perturbation representations. We also896

constructed the cINN model of the PerturbNet between the perturbation representations of the897

fined-tuned models and cellular representations using cells with the observed perturbations. We898

evaluated the prediction performance of the fine-tuned KNN and PerturbNet models on the 2000899

unseen perturbations of the LINCS-Drug data (Supplementary Fig. 4a). Both R squared and900

FID of PerturbNet have small to medium fluctuations across increasing λ values, while those of901

KNN do not obviously change with varying λ values. Several λ values give slight increases of902

median R squared or decreases of median FID for PerturbNet over the non-fine-tuned one, such as903

λ = 0.1, 1, 5, 10, 100.904

We compared the fine-tuned KNN and PerturbNet with λ = 1 to their non-fine-tuned coun-905
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terparts for the unseen perturbations of LINCS-Drug (Supplementary Fig. 6b). The fine-tuned906

PerturbNet has significant improvements in both R squared and FID, while fine-tuning Chemical-907

VAE does not significantly enhance KNN. A possible explanation is that the cINN of PerturbNet908

further enforces the prediction capacity from fine-tuned perturbation representation to cell state.909

Supplementary Fig. 6c-d show the R squared and FID of KNN and PerturbNet trained with910

fine-tuned GenotypeVAE (λ = 0.1, 1, 5, 10, 100, 1000, 10000). By comparing the evaluation met-911

rics obtained from fine-tuned KNN and PerturbNet with different λ values, we determined that912

λ = 1 was the optimal hyperparameter. Supplementary Figure 6e-f shows the scatter plots of R913

squared and FID of KNN and PerturbNet with fine-tuned GenotypeVAE of λ = 1 over those with914

non-fine-tuned GenotypeVAE. Fine-tuning GenotypeVAE significantly improves the performance915

of PerturbNet, especially for observed perturbations. Somewhat surprisingly, the fine-tuning al-916

gorithm improves only the PerturbNet, but does not significantly improve the performance of the917

KNN model.918

A.3 Supplementary figures and tables919
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Supplementary Fig. 1 | Metrics for PerturbNet with covariate adjustment on sci-Plex
dataset. (a) Overall comparison between adjusted (y-axis) and unadjusted models. (b)-(g)
Stratified comparisons among adjusted PerturbNet, KNN, and random model colored by various
covariates.

45

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.20.500854doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500854
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Fig. 2 | Metrics for KNN method on drug perturbation datasets. (a)
Unseen and observed sci-Plex perturbations. (b) Unseen and observed LINCS-Drug perturbations.
(c) Unseen and observed sci-Plex perturbations. (d) Unseen and observed LINCS-Drug perturba-
tions.
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Supplementary Fig. 3 | Metrics using fine-tuned perturbation representation networks
on LINCS-Drug and LINCS-Gene datasets. (a) Box plots of R squared and FID metrics
for KNN and PerturbNet on LINCS-Drug (unseen perturbations) after fine-tuning. Lambda is
the tuning parameter that balances the ELBO and the graph regularization term. (b) Metrics
for LINCS-Drug after fine-tuning (λ = 1). (c) Box plots of metrics for LINCS-Gene unseen
perturbations after fine-tuning with variable λ. (d) Box plots of metrics for LINCS-Gene observed
perturbations after fine-tuning with variable λ. (e)-(f) Metrics for LINCS-Gene unseen (e) and
observed (f) perturbations after fine-tuning (λ = 1).
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Supplementary Fig. 4 | Metrics for KNN method on genetic perturbation datasets.
(a) Unseen and observed GI perturbations. (b) Unseen and observed LINCS-Gene perturbations.
(c) Unseen and observed GSPS perturbations. (d) Unseen and observed GI perturbations. (e)
Unseen and observed LINCS-Gene perturbations. (f) Unseen and observed GSPS perturbations.
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Supplementary Fig. 5 | Metrics for KNN method on Ursu dataset. (a) KNN vs. random.
(b) PerturbNet vs. KNN.
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Supplementary Fig. 6 | Additional attribution examples from LINCS-Drug dataset.
Each column is a different cluster and each row is a different drug.
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Supplementary Fig. 7 | Additional attribution examples from LINCS-Gene dataset.
(a)-(b) UMAP plots of LINCS-Gene colored gray and by cluster. (c) UMAP plots indicating
cluster 9 and cluster 17. (d) The attribution procedure can give scores for all GO terms, including
terms that do not annotate the perturbation of interest. These bar plots show the terms with top
10 attributions, colored by whether they annotate the selected perturbation (ERG). The frequency
of the term across all genes is indicated above the bar. Left plot is for cluster 9, right is for cluster
17.
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Supplementary Fig. 8 | Additional attribution examples from LINCS-Gene dataset.
(a) UMAP plots indicating cluster 1 and cluster 5. (b) Bar plots showing the terms with top 10
attributions, colored by whether they annotate the selected perturbation (ERG). The frequency of
the term across all genes is indicated above the bar. Left plot is for cluster 1, right is for cluster 5.
(c) Plots of GO terms with top attributions for clusters 1 and 5.

52

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.20.500854doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500854
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Supplementary information
	Covariate adjustment gives better predictions for PerturbNet
	Fine-tuned ChemicalVAE and GenotypeVAE improve the performance of PerturbNet
	Supplementary figures and tables


