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Abstract

Most genome-wide association studies (GWAS) of major depression (MD) have been conducted in

samples of European ancestry. Here we report a multi-ancestry GWAS of MD, adding data from 21

studies with 88,316 MD cases and 902,757 controls to previously reported data from individuals of

European ancestry. This includes samples of African (36% of effective sample size), East Asian (26%)

and South Asian (6%) ancestry and Hispanic/Latinx participants (32%). The multi-ancestry GWAS

identified 190 significantly associated loci, 53 of them novel. For previously reported loci from GWAS

in European ancestry the power-adjusted transferability ratio was 0.6 in the Hispanic/Latinx group

and 0.3 in each of the other groups. Fine-mapping benefited from additional sample diversity: the

number of credible sets with ≤5 variants increased from 3 to 12. A transcriptome-wide association

study identified 354 significantly associated genes, 205 of them novel. Mendelian Randomisation

showed a bidirectional relationship with BMI exclusively in samples of European ancestry. This first

multi-ancestry GWAS of MD demonstrates the importance of large diverse samples for the

identification of target genes and putative mechanisms.
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Background

Major depression (MD) is one of the most pressing global health challenges1. It affects an estimated

300 million people, 4.4% of the world’s population2. Depression has been linked to a wide range of

adverse health outcomes, including cardiovascular disease, asthma, cancer, poor maternal and child

health, substance abuse and suicide, and it also affects family relationships and work performance3–5.

Molecular genetic research has shown promise of uncovering biological mechanisms underlying the

development of MD6,7. However, previous genome-wide association studies (GWAS) revealed that

the genetic architecture of MD is highly polygenic, characterised by variants that individually confer

small risk increases8. This creates challenges for identification of variants that reproducibly provide

genome-wide levels of association. The heterogeneity of MD symptoms may be mirrored by

aetiological heterogeneity and that has been highlighted as a likely reason for the small genetic

effects9. Therefore, previous genetic research explored the impact of different outcome

definitions6,10, sex11–13 and trauma exposure14–16 on heterogeneity. However, the role of ancestry and

ethnicity in the genetics of MD has not yet been systematically evaluated.

  Previous GWAS of MD were mostly conducted in individuals of European ancestry6,17–19. The largest

MD GWAS to date, combined data from several studies, including the Million Veteran Program

(MVP), the Psychiatric Genomics Consortium Major Depressive Disorder group (PGC-MDD), the UK

Biobank, FinnGen and 23andMe, resulting in a total of 1,154,267 participants of European ancestry

(340,591 cases) and identifying 223 independent significant single nucleotide variants (SNVs) at 178

genomic loci linked to MD19. The study also included data from 59,600 African Americans (25,843

cases) from the MVP cohort. In their bi-ancestral meta-analysis, the number of significant SNVs

increased to 233. Other MD GWASs were conducted in African American and Hispanic/Latinx

participants with limited sample sizes and did not find variants with statistically significant

associations with MD20,21.

With 10,640 female Chinese participants, the CONVERGE study is the largest MD GWAS conducted

outside “Western” countries to date7. The study identified two genome-wide significant associations

linked to mitochondrial biology and reported a genetic correlation of 0.33 with MD in European

ancestry samples22. In line with this, our recent work demonstrated that some of the previously

identified loci from GWAS conducted in samples of European ancestry are not transferable to

samples of East Asian ancestry23. The analyses also revealed differences in genetic associations by

geographic region (East Asian versus European/American countries) for ancestry-matched

participants. These findings suggest that there can be heterogeneity in genetic risk factors for MD by

ancestry as well as cultural context.

This heterogeneity could impact on findings of genetic studies when evaluating causal effects of risk

factors for MD. In particular, previous studies in samples of European ancestry reported genetic

correlations and causal relationships between MD and cardiometabolic outcomes6,17,19,24. Notably,

our previous study indicated a contradicting direction for associations between MD and BMI in East

Asian individuals (negative genetic correlation) and European ancestry individuals (positive genetic

correlation)23. Thus, investigating causal relationships in diverse ancestry groups and in different

9

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 21, 2022. ; https://doi.org/10.1101/2022.07.20.500802doi: bioRxiv preprint 

https://paperpile.com/c/h3bpnA/oJmJ
https://paperpile.com/c/h3bpnA/kVra
https://paperpile.com/c/h3bpnA/B13A+opcO+cW73
https://paperpile.com/c/h3bpnA/b6PqR+jpmBQ
https://paperpile.com/c/h3bpnA/LlsC2
https://paperpile.com/c/h3bpnA/kDb0j
https://paperpile.com/c/h3bpnA/UJ71P+b6PqR
https://paperpile.com/c/h3bpnA/XWpj+DbVL+2GIf
https://paperpile.com/c/h3bpnA/7kPp+Dy65+Ywma
https://paperpile.com/c/h3bpnA/b4SF+b6PqR+fRZf+JXiZ
https://paperpile.com/c/h3bpnA/JXiZ
https://paperpile.com/c/h3bpnA/Snk7+s5j4
https://paperpile.com/c/h3bpnA/jpmBQ
https://paperpile.com/c/h3bpnA/OWMg
https://paperpile.com/c/h3bpnA/mYTH
https://paperpile.com/c/h3bpnA/b6PqR+b4SF+JXiZ+qGn9
https://paperpile.com/c/h3bpnA/mYTH
https://doi.org/10.1101/2022.07.20.500802
http://creativecommons.org/licenses/by-nd/4.0/


disease subtypes is important to ensure generalisability and to distinguish between biological and

societal mechanisms underlying the relationship between a risk factor and the disease.

Increasing diversity in genetic research is also important to ensure equitable health benefits25. In the

United States of America, differences in presentation of MD across ethnic groups can impact on the

likelihood of diagnosis26. Genetics optimised for European ancestry participants would primarily

benefit that group of patients and could therefore further widen the disparities in diagnosis and

treatment between groups.

We used data from samples with diverse ancestry and carried out genome-wide association

meta-analyses, followed by fine-mapping and prioritisation of target genes. We assessed

transferability of genetic loci across ancestry groups. Finally, we explored bi-directional causal links

between MD and cardiometabolic traits.

Results

GWAS in African, East Asian, South Asian, and Hispanic/Latinx samples

We first conducted GWAS meta-analyses stratified by ancestry/ethnic group. Individuals were

assigned to ancestry groups (African, South Asian, East Asian, European) using principal components

analyses based on genetic relatedness matrices. We acknowledge the arbitrary nature of these

groupings and the imprecision of this approach. However, creating such groups enabled us to look for

associations that are specific to certain groups and to assess the transferability of previously

identified loci. Assignment to the Hispanic/Latinx group was based on self-report or on recruitment

in a Latin American country. The studies included in the meta-analyses used a range of measures to

define MD: structured clinical interviews, medical healthcare records, symptoms questionnaires, and

self-completed surveys.

The analyses included 36,818 MD cases and 161,679 controls of African ancestry (λ1000=1.001,

Linkage disequilibrium score regression (LDSC) intercept = 1.034), 21,980 cases and 360,956 controls

of East Asian ancestry (λ1000=1.002, LDSC intercept = 1.026), 4,505 cases and 27,176 controls of South

Asian ancestry (λ1000=1.002, LDSC intercept = 1.014) as well as 25,013 cases and 352,946 controls in

the Hispanic/Latinx group (λ1000=1.002, LDSC intercept = 1.051) (Supplementary Figures 2-5). To

account for the minor inflation found in the Hispanic/Latinx samples, test statistics for this analysis

were corrected based on the LDSC intercept.

In the Hispanic/Latinx group, the G-allele of rs78349146 at 2q24.2 was associated with increased risk

of MD (effect allele frequency (EAF) = 0.04, beta = 0.15, standard error (SE) = 0.03, P value =

9.32×10-9) (Supplementary Figures 1, 3). The variant is located downstream of the gene LINC01806

(long intergenic non-protein coding RNA 1806). Testing multi-ancestry brain expression quantitative

trait loci (eQTLs)27, we observed significant colocalisation for DPP4, RBMS1, and TANK. We tested
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ancestry specific eQTLs from blood, and observed RBMS1 (H3:PP (Hispanic/Latinx) = 99.12%). For the

protein quantitative trait loci (pQTLs) from blood, we either did not find the genes or were not

enough to test for colocalisation (Supplementary Table 1).

No variants were associated at genome-wide significance in the GWAS in samples of African, East and

South Asian ancestry (Supplementary Figures 2,4,5). One locus was suggestively associated in the

African ancestry GWAS (Supplementary Figures 1-2). The lead variant, rs6902879 (effect allele: A,

EAF = 0.16, beta = -0.08, SE = 0.01, P value=5.3×10-8) at 6q16 is located upstream of the

melanin-concentrating hormone receptor 2 gene (MCHR2 and associated with increased expression

of MCHR2 in cortex based on Genotype-Tissue Expression (GTEx v8) (P = 6.0×10-6). Testing the

multi-ancestry brain eQTLs27, we observed significant colocalisation for GRIK2 and ASCC3 with

significant ancestry differences for ASCC3 (H3:PP (European ancestry) = 99.97%). MCHR2 was not

present in the RNA data.

Although the lead variants at 2q24.2 and at 6q16 did not display strong evidence of association in a

large published GWAS in participants of European ancestry18 (P>0.01), in each case there was an

uncorrelated variant within 500Kb of the lead variants associated at P <10-6.

Transferability of MD associations across ancestry groups

Previous GWAS in samples of European ancestry have identified 196 loci associated with MD17–19. We

assessed whether these genetic associations are shared across different ancestry groups. Individual

loci may be underpowered to demonstrate an association, therefore, we followed an approach we

recently developed28 and first estimated the number of loci we expect to see an association for when

accounting for sample size (N), linkage disequilibrium (LD), and minor allele frequency (MAF). This

estimate varied widely between ancestry groups, e.g. we expected to detect significant associations

for 65% of MD loci in the GWAS with samples of African ancestry but only for 15% of MD loci in

samples of South Asian ancestry (Figure 1, Supplementary Table 2). We report the power-adjusted

transferability (PAT) ratio, i.e. the observed number divided by the expected number of loci.

Transferability was low, with PAT ratios of 0.27 in African ancestry samples, and 0.29 in both East

Asian and South Asian ancestry samples. In the Hispanic/Latinx group, the PAT ratio was 0.63, notably

higher than in the other groups. We also assessed the transferability of 102 loci identified in the

PGC-MDD GWAS17 in an independent study in samples of European ancestry, the Australian Genetics

of Depression Study (AGDS)18. The PAT ratio was 1.48, considerably higher than the cross-ancestry

PAT estimates.

Multi-ancestry meta-analysis

We carried out a multi-ancestry meta-analysis using data from studies conducted in participants of

African, East Asian and South Asian ancestry and Hispanic/Latinx samples (Supplementary material)

and combined them with previously published data for 258,364 cases and 571,252 controls of

European ancestry17,18, yielding a total sample size of 345,389 cases and 1,469,702 controls. These
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analyses provided results for 22,941,580 SNVs after quality control. There was no evidence of

residual population stratification (λ1000=1.001, LDSC intercept = 1.019). We identified 190

independent genome-wide significant SNVs mapping to 169 loci that were separated from each

other by at least 500kb (Supplementary Table 3). 53 of SNVs represent novel associations (r2 <0.1

and located > ±250kb from previously reported variants).

Multi-ancestry fine-mapping

We used a multi-ancestry Bayesian fine-mapping method29 to derive 99% credible sets for 155 loci

that were associated at genome-wide significance and did not show evidence of multiple

independent signals. For comparison, we also implemented single ancestry fine-mapping of the

same loci based on GWAS conducted in participants of European ancestry, including the PGC-MDD

and the AGDS17,18.

The multi-ancestry fine-mapping increased fine-mapping resolution substantially as compared with

fine-mapping solely based on the data from European ancestry participants. The median size of the

99% credible sets was reduced from 65.5 to 30 variants. Among the 145 loci for which we conducted

fine-mapping on both sample sets, 113 (77.9%) loci had a smaller 99% credible set from the

multi-ancestry fine-mapping, whilst 4 loci (0 from the European fine-mapping) were resolved to

single putatively causal SNVs and 32 loci were resolved to no more than 10 putatively causal SNVs

each (Figure 2).

For several regions, we successfully fine-mapped the credible sets down to one variant

(Supplementary Table 4). rs12699323 annotated as an intron variant and linked to the expression of

gene Transmembrane Protein 106B (TMEM106B). rs1806152 is a splice region variant, associated

with the expression of the nearby gene PAX6 Upstream Antisense RNA (PAUPAR) on chromosome 11.

Finally, rs9564313, annotated as an intron variant, has been linked to expression of gene PCDH9

(Protocadherin-9); a gene that has also been highlighted as having an important function in our

TWAS and MAGMA results30,31.

Transcriptome-wide association study and gene prioritisation

To better understand the biological mechanisms of our GWAS findings, we performed several in silico

analyses to functionally annotate and prioritise the most likely causal genes. We carried out a

transcriptome-wide association study (TWAS) for expression in tissues relevant to MD32. We

combined the TWAS results with Functional Mapping and Annotation (FUMA), conventional and

HiC-MAGMA, to prioritise target genes. We also carried out ancestry-specific eQTL and pQTL

colocalisation analyses (Supplementary Table 5).

The TWAS identified 354 significant associations (P < 1.37×10-6) with MD, 205 of which had not been

previously reported (Figure 3, Supplementary Table 6). The two most significant gene associations
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with MD were RPL31P12 (GTEx Brain Cerebellum, Z = -10.68, P = 1.27×10-26) and NEGR1 (GTEx Brain

Caudate Basal Ganglia, Z = 10.677, P = 1.30×10-26). Both results are consistent with findings of a

previous, large TWAS on MD in samples of European ancestry 32.

Amongst the 205 novel gene associations with MD, genes PCDH8P1 (GTEx Brain Anterior cingulate

cortex BA24, Z = -8.3679, P = 5.86×10-17), RERE-AS1 (GTEx Thyroid, Z = -8.26, P = 1.48×10-16) and

SMIM15P2 (GTEx Brain Cerebellar Hemisphere, Z = 8.2281, P = 1.90×10-16) were the most significant

novel TWAS results, associated with MD. NDUFAF3 was another novel gene association with MD

(GTEx Brain Nucleus Accumbens Basal Ganglia, Z-score = -5.0785, P = 3.80×10-7, Best GWAS ID =

rs7617480, Best GWAS P = 0.00001). These results are also confirmed by HiC-MAGMA. The protein

NDUFAF3 encodes is targeted by Metformin, the first-line drug for the treatment of type-2 diabetes.

43 genes displayed evidence of association across all the four gene prioritisation methods

mentioned, and were classified as high confidence genes (Table 1, Supplementary Tables 7-10).

These included genes repeatedly highlighted in previous studies due to their strong evidence of

association and biological relevance: NEGR1, DRD2, CELF4, LRFN5, TMEM161B, and TMEM106B. 25

of the high confidence genes encode targets of existing drugs, such as Simvastatin (RHOA).

Mendelian Randomisation

We assessed bi-directional causal relationships between MD and cardiometabolic traits using

ancestry-specific two-sample Mendelian Randomisation analyses. Our results indicated a positive,

bi-directional relationship between MD and BMI (MD->BMI: β = 0.092, 95% CI = 0.024-0.161,

P = 8.12×10-3, BMI->MD: β = 0.138, 95% CI = 0.097-0.180, P = 6.88×10-11) (Figure 4, Supplementary

Table 11). This bi-directional relationship was exclusively observed in samples of European ancestry

(P > 0.1 in all other groups). MD was also causal for other indicators of unfavourable metabolic

profiles in samples of European ancestry: triglycerides (TG, positive effect; β  = 0.116, 95% CI =

0.070-0.162, P = 7.93×10-7), HDL (negative effect; β  = -0.058, 95% CI = -0.111- -0.006, P = 0.029), and

LDL cholesterol (positive effect; β = 0.054, 95% CI = 0.012-0.096, P = 0.011). The effects remained

significant after removing the variants contributing to the possible heterogeneity bias observed

through the MR-PRESSO global test (Supplementary Table 11B). In samples of East Asian ancestry,

on the other hand, we found a negative causal association between TG and MD (β = -0.127, 95% CI =

-0.223- -0.032, P = 9.22×10-3). Moreover, MD showed a positive causal association with systolic blood

pressure (SBP) (β = 0.034, 95% CI = 0.009-0.059, P = 7.66×10-3). In samples of African ancestry, SBP

had a positive causal association with MD (β = 0.080, 95% CI = 0.026-0.133, P = 3.43×10-3).

Discussion
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We present the first large-scale GWAS of MD in an ancestrally diverse sample, including data from

almost 1 million participants of African, East Asian and South Asian ancestry and Hispanic/Latinx

samples. The largest previous report included 26,000 cases of African ancestry19. No large study so

far has considered multiple ancestry groups simultaneously.

By aggregating data in ancestry-specific meta-analyses, we identified two novel loci. The association

at 6q16 in the GWAS in samples of African ancestry requires further confirmation in future studies.

However, the link with MD is biologically plausible. The lead variant was significantly associated with

the expression of MCHR2 specifically in brain cortex tissue. Melanin-concentrating hormone (MCH) is

a neuropeptide that is expressed in the central and peripheral nervous systems. It acts as a

neurotransmitter or neuromodulator in a broad array of neuronal functions directed toward the

regulation of goal-directed behaviour, such as food intake, and general arousal33. MCH acts on two

receptors, MCHR1 and MCHR2. Variants at MCHR1 have been reported to be associated with bipolar

disorder by a previous GWAS34. Moreover, the ASCC3 gene was observed as colocalised for both

European and African ancestry-associated depression. It is involved in NF-kappa and AP1

transactivation35 and was reported in one of the largest TWASs of depression19 prioritised for

cerebellum tissue. ASCC3 is thought to play a role for the circadian clock36 and has previously been

associated with depression and anxiety comorbidity37.

The diversity in combination with large sample size enabled a comparison of the causal genetic

architecture across ancestry groups. We assessed to what extent the 206 previously identified loci

from large European ancestry discovery GWAS were transferable to other ancestry groups.

Differences in allele frequencies, linkage disequilibrium between ancestry groups, and variable

sample sizes impacted our power to observe associations for each group. We recently developed

power-adjusted transferability ratios, an approach to account for all these factors by comparing

observed transferable loci to what is expected for a study of a given ancestry and sample size28. The

PAT ratios were about 30% for African, South Asian, and East Asian ancestry, remarkably similar and

consistently low. We previously computed PAT ratios for several other traits and found variation

between traits, but the estimates for MD were at the bottom23,28. With a PAT ratio of 64%, the

transferability of MD loci discovered in European ancestry samples was much higher for the

Hispanic/Latinx group. This finding may reflect that the Hispanic/Latinx group contained many

participants with a high proportion of European ancestry38,39.

To better understand mechanisms underlying individual differences in vulnerability to development

of MD, we need to bridge the gap from locus discovery to the identification of target genes. Our

study achieved significant progress in this respect. Fine-mapping benefitted from the additional

diverse samples, with median credible sets reduced from 65.6 to 35 in size and with 32 loci resolved

to ≤10 putatively causal SNVs (11 loci from the European ancestry fine-mapping).

In the TWAS, expression of 354 genes was significantly associated with MD. Out of these, 205 gene

associations were novel, and 89 were overlapping with results of the largest previously published MD

TWAS19, which used S-MultiXcan for their analyses. Furthermore, 80 features were overlapping with

hits from another, previously published, large MD TWAS with largely overlapping samples of

European ancestry32, including NEGR1, TRMT61A, BAG, TMEM106B, CKB, ESR2. A number of these

TWAS features (including NEGR1, ESR2 and TMEM106B) were previously also fine-mapped (using
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FOCUS, a TWAS fine-mapping tool) and were highlighted as causal or putatively causal in previous

post-TWAS analyses, strengthening the role of TWAS as an important tool to better understand the

relationship between gene expression and MD.

Through TWAS and three other tools that incorporate the growing body of knowledge about

functional annotations of the genome, we classified 43 genes as “high-confidence”. The definition

admittedly remains arbitrary until the field establishes clear guidelines. Nevertheless, the high

confidence list represents an evidence-based starting point for further follow-up. It provides

confirmation for several genes that have repeatedly been highlighted as being near a GWAS

associated variant and having high biological plausibility6,17–19,32: NEGR1, DRD2, CELF4, LRFN5,

TMEM161B, and TMEM106B.

Furthermore, genes cadherin-9 (CDH9), and protocadherins (PCDHA1, PCDHA2, PCDHA3) were

classified as high-confidence. Cadherins are transmembrane proteins, mediating adhesion between

cells and tissues in organisms40. In previous studies, cadherins have been linked with MD and with

other disorders involving the brain, including late-onset Alzheimer’s disease (which often manifests

as neuropsychiatric symptoms coupled with depression and anxiety)41. Howard and colleagues

reported a putative association between cadherin-13 and depression17 and the involvement of the

gene in ADHD, a neurodevelopmental disorder. Furthermore, two other studies investigating MD and

other major mood disorders reported gene protocadherin-17 (protocadherins are the largest

sub-family of cadherin-related molecules) as a novel susceptibility gene42. Finally, a study on MD by

Xiao and colleagues also suggested protocadherins (PCDH9) as a putative, novel risk gene for MD,

showing that PCDH9 expression levels in the brain were reduced in MD patients compared to

controls43. These previous findings are consistent with the results of our study, strengthening the

evidence for the involvement of cadherins and protocadherins in the aetiology of MD.

Genes newly implicated in MD development in our study highlight novel pathways, pinpoint potential

new drug targets, and suggest opportunities for drug repurposing. Gene NDUFAF3 encodes

mitochondrial complex I assembly protein which is the main target of the drug metformin44, the

first-line drug for treatment of type 2 diabetes. Research in model organisms has provided a tentative

link to a reduction in depression and anxiety45. Furthermore, a recent study, using more than 360,000

samples from the UK Biobank found associations between NDUFAF3 and mood instability, suggesting

that energy dysregulation may play an important role in the physiology of mood instability46.

Previous Mendelian Randomization (MR) studies conducted in populations of European ancestry

suggested a causal relationship of higher BMI increasing the odds of depression47–49. To our

knowledge, evidence of a reverse causal association (i.e., MD increases the odds of higher BMI) had

not been previously reported6. We also observed that the genetic liability to MD was associated with

higher triglyceride levels, lower HDL cholesterol and higher LDL cholesterol in subjects of European

ancestry, which were not significant in the only previous MR study of smaller statistical power50. In

other ancestry groups, no significant relationship between BMI and MD was observed. Moreover, our

MR analyses showed an effect of reduced triglycerides on increasing odds of MD in participants of

East Asian ancestry. Therefore, we provide further evidence for an opposite direction of effect for the

relationship between MD and metabolic traits in European and East Asian ancestry groups23. Instead

of generalising findings about depression risk factors across populations, further studies are needed
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to understand how genetic and environmental factors contribute to the complex relationships across

diverse ancestry groups.

Our study has limitations. Whilst it provides an improved window into the diversity of MD genetics,

sample size varied greatly by ancestry group. The smallest group were individuals of South Asian

ancestry. To characterise MD in these populations, future studies prioritising primary data collection

in these populations are needed. To contribute to this, we are currently recruiting MD patients and

controls from Pakistan into the DIVERGE study51,52. However, a concerted global effort to increase

diversity in genetics will be necessary to fully address the issue25. This also applies to the lack of other

omics data and other functional databases to support downstream analyses for ancestrally diverse

GWAS, such as large resources for transcriptomics or proteomics in relevant tissues53,54. This may

have impacted on our TWAS results because the RNA sequencing data was predominantly from

participants of European ancestry.

In this study, we assigned individuals into ancestry groups. Whilst this enabled important insights,

e.g. about transferability of MD loci, such categorical assignments are imprecise and some

participants with admixed ancestry may still get excluded. In future research, we aim to implement

different analytic strategies that are fully inclusive.

Most of the individuals included in our study live in the United States or in the United Kingdom.

Many identify with minority ethnic groups and this could impact on their risk factors and disease

manifestations, making this a key research priority. Yet, it remains important to increase global

diversity and study MD genetics across environments.

This study utilised data from several existing cohorts and bioresources to achieve large sample sizes.

This necessitated using different outcome definitions, covering self-administered symptoms

questionnaires, electronic healthcare records, as well as structured clinical interviews. The potential

advantages and disadvantages of these approaches have been extensively discussed in previous

studies6,10. It may be possible that differences in outcome definitions impacted on the low levels of

transferability of existing genetic findings to different ancestry groups. However, it is unlikely to fully

explain them. In a previous study based on strictly defined clinical major depressive disorder in

China, the multi-ancestry genetic correlation with MD in the PGC-MDD was only 0.3322, suggesting

that other factors related to ancestry or environment may impact on transferability. Moreover, in our

analyses the PAT ratio was low for samples of East Asian, South Asian and African ancestry, but

considerably higher for the Hispanic/Latinx group. Nevertheless, these were largely population-based

studies where MD was defined  based on short self-reported questionnaires.

In conclusion, in this first large-scale multi-ancestry GWAS of MD, we found a notable proportion of

loci that are specific to certain ancestry groups. We identified novel, biologically plausible

associations that were missed in European ancestry analyses and demonstrated that large diverse

samples can be important for the identification of target genes and putative mechanisms. These

findings suggest that for MD, a heterogeneous condition with highly complex aetiology, increasing

ancestral as well as global diversity in genetic studies may be particularly important to ensure

discovery of core genes and to inform about transferability of findings across ancestry groups.
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Methods

Participating studies
We included data from 21 studies with ancestrally diverse participants. Details including study

design, genotyping and imputation methods and quality control for these studies had been described

by previous publications (Study Descriptions). All participants have provided informed consent. All

studies obtained ethical approvals from local ethics review boards.

For each study, a principal component analysis was carried out based on the genetic similarity of

individuals. Individuals who clustered around a reference group with confirmed ancestry were

assigned to that specific group and included in the association analysis. Except for the

Hispanic/Latinx group which was based on self-reported ethnicity, individuals with admixture

between the pre-defined ancestry reference groups were excluded.

We also included previously published studies of MD using data from ancestrally European

participants, including PGC-MDD (N cases = 246,363, N controls = 561,190)17 and the AGDS (N cases =

12,123, N controls = 12,684)18 to conduct a multi-ancestry meta-analysis of MD). The total sample

size of the multi-ancestry meta-analysis was 1,820,927 (N cases = 342,883; Neffhalf = 485,107). 70.1%

of participants (effective sample size) were of European ancestry and 8.2% East Asian, 11.8% African

and 1.5% South Asian ancestry and 7.9% Hispanic/Latinx.

Study level genetic association analyses
We had access to individual level data for Army-STARRS, UKB, WHI, and IHS, GERA, JHS, Drakenstein

Child Health Study, and the DNHS study. Data access was granted via our collaborators, the UK

Biobank under application ID 51119 and dbGaP under project ID 18933. A range of measures were

used to define depression, including structured clinical interviews, medical care records, symptom

questionnaires and self-reported surveys (Supplementary Table 12). SNV-level associations with

depression were assessed through logistic regressions using PLINK. The additive per-allele model was

employed. Age, sex, principal components and other relevant study-level covariates were included as

covariates. Where available, genotypes on chromosome X were coded 0 or 2 in male participants and

0, 1 and 2 in female participants. Summary statistics were received from our collaborators for all

other studies. Additive-effect logistic regressions were conducted by the 23andMe Inc, Taiwan-MDD

study, MVP, BBJ, Rabinowitz, MAMHS, PrOMIS and BioVU. Age, sex, principal components and other

relevant study-level covariates were included as covariates.

Mixed-effect models were used in the association analysis for CKB, BioME, Genes & Health with

SAIGE (version 0.36.1)55. The CONVERGE study initially conducted mixed-effect model GWA tests with

bolt-LMM, followed by PLINK logistic regressions to retrieve logORs. For the CONVERGE study, the

logORs and standard errors from PLINK were used in our meta-analysis. The HCHS/SOL implemented

mixed-effect model GWA tests to adjust for population structure and relatedness with depression as

binary outcome20 and was run using GENESIS56. The summary statistics from GENESIS were converted

into logOR and SE before meta-analysis. First, the score and its variance were transformed into beta

and se by beta = score/variance and se = sqrt(variance)/variance. Afterwards, beta and se were
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converted into approximate logOR and se using beta = beta/(pi*(1-pi)) and se = se/(pi*(1-pi)), where

pi is the proportion of cases in analysis57.

We restricted the downstream analysis to variants with imputation accuracy info score of 0.7 or

higher and effective allele count (2*maf*(1-maf)*N*R2) of 50 or higher. For study of small sample

size, we instead required a minor allele frequency of no less than 0.05. The alleles for indels were

re-coded as “I” for the longer allele and “D” for the shorter one. Indels of different patterns at the

same position were removed.

Meta-analyses

We first implemented inverse-variance weighted fixed-effect meta-analyses for GWAS from each

ancestry/ethnic group (i.e., African ancestry, East Asian ancestry, South Asian ancestry and

Hispanic/Latinx) using METAL58. The genomic inflation factor λ was calculated for each study and

meta-analysis. Given the dependence of this estimate on sample size, we also calculated λ1000
59 as

λ1000 = 1 + (λ - 1) * (1 / Ncase + 1 / Ncontrol) * 500 60. The LDSC intercept was also calculated with an

ancestry matched LD reference panel from the PAN UKB reference panel61 for each meta-analysis62.

For meta-analyses with residual inflation (λ > 1.1), test statistics for variants were adjusted by LDSC

intercept. Following the meta-analyses by METAL, variants present in less than 2 studies were filtered

out.

In order to facilitate multi-ancestry analyses, a multiple ancestry LD reference panel was constructed

by randomly drawing 10k participants from the UK Biobank. The proportions of individuals from each

of the four major ancestries (European, African, East Asian and South Asian) in the multiple ancestry

LD reference panel was matched to the proportions of ancestries in our multi-ancestry MD GWAS on

the effective sample size scale. Hispanic/Latinx descent participants were omitted from the multiple

ancestry LD reference due to their complex structure and low representation in the UK Biobank data.

As a result, there were 7,658 participants of European (76.58%), 1,285 of African (12.85%), 891 of

East Asian (8.91%) and 166 of South Asian (1.66%) ancestry in the multi-ancestry LD reference panel.

We combined data from 71 cohorts with diverse ancestry using an inverse-variance weighted

fixed-effects meta-analysis in METAL58. λ and λ1000 were calculated, which were 1.687 and 1.001,

respectively. The LDSC intercept was also calculated with the multi-ancestry LD reference panel,

which was 1.019 (SE = 0.011). We adjusted the test statistics from the multi-ancestry meta-analysis

using the LDSC intercept of 1.019. Only variants present in at least two studies were retained for

further analysis, yielding a total of 22,941,580 variants. We also calculated the number of cases and

the total number of samples for each variant based on the crude sample size and availability of each

study.

We used a significance threshold of 5x10-8. To identify independent association signals, the GCTA

forward selection and backward elimination process (command ‘cojo-slt’) were applied using the

summary statistics from the multi-ancestry meta-analysis, with the aforementioned multi ancestry

LD reference panel63,64. It is possible that the algorithm identifies false positive secondary signals if

the LD in the reference set does not match the actual LD in the GWAS data well. Therefore, for each

independent signal defined by the GCTA algorithm, locus zoom plots were generated for the 250kb
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upstream and downstream region. We then inspected each of these plots manually and removed any

secondary signals from our list where there was unclear LD separation, i.e. some of the variants close

to the secondary hit were in LD with the lead variant.

Loci were defined by the flanking genomic interval mapping 250kb upstream and downstream of

each lead SNV. Where lead SNVs were separated by less than 500kb, the corresponding loci were

aggregated as a single locus with multiple independent signals. The lead SNV for each locus was then

selected as the SNV with minimum association P value.

Fine-mapping
We fine-mapped all loci with statistically significant associations from the multi-ancestry GWAS using

a statistical fine-mapping method for multi-ancestry samples29. In short, this method is an extension

of a Bayesian fine-mapping approach29,65 that utilises estimates of the heterogeneity across ancestry

groups such that variants with different effect estimates across populations have a smaller prior

probability to be the causal variant.

For each lead variant, we first extracted all nearby variants with r2 > 0.1 as determined by the

multi-ancestry LD reference. The multi-ancestry prior for each variant to be causal was calculated

from a fixed effects meta-analysis combining the summary statistics from ancestry-specific

meta-analysis for each of the five major ancestry groups. I2 statistics were calculated to estimate the

heterogeneity of the effect estimates across ancestry groups. The posterior probability for a variant

to be included in the credible set was proportional to its chi-square test statistic and the prior. The

99% credible set for each lead variant was determined by ranking all SNVs (within r2 > 0.1 of the lead

variant) according to their posterior probabilities and then including ranked SNVs until their

cumulative posterior probabilities reached or exceeded 0.99.

As a comparison, we also conducted a Bayesian fine-mapping analysis based on the summary

statistics of the European-ancestry meta-analysis. The same list of independent lead SNVs from the

multi-ancestry meta-analysis were used for this fine-mapping in the European ancestry data. All

nearby SNVs with r2 > 0.1 as determined by the 1000 Genomes European LD reference panel were

included in the fine-mapping. The posterior probability was calculated in a similar way, but without

the multi-ancestry prior. Similar to the multi-ancestry fine-mapping, all SNVs were ranked and 99% of

the credible sets were derived accordingly.

Since our fine-mapping was based on meta-analysis summary statistics, heterogeneity of individual

studies (e.g., due to differences in genotyping array) can influence the fine-mapping calibration and

recall. We used a novel summary statistics-based QC method proposed by Kanai and colleagues

(SLALOM) to dissect outliers in association statistics for each fine-mapped locus66. This method

calculates test statistics (DENTIST-S) from Z-scores of test variants and the lead variant (the variant of

the lowest P value in each locus), and the LD r between test variants and the lead variant in the

locus67. Among the 155 fine-mapped loci in our study, there were 134 loci with the largest variant

posterior inclusion probability of greater than 0.1. For these 134 loci, r values were calculated for all

variants within the 1MB region of the lead variant for each locus based on our multi-ancestry LD

reference from the UK Biobank data. In line with the criteria used by Kanai and colleagues, variants
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with DENTIST-S P value smaller than 1×10-4 and r2 with the lead variant greater than 0.6 were defined

as outliers. Fine-mapped loci were classified as robust if there were no outlying variants.

Colocalisation analysis

We performed colocalization between genetic associations with MD and gene expression in brain

and blood tissues from samples of European and African ancestry and Hispanic/Latinx participants

using coloc R package68. To select genes for testing, we mapped SNVs within a 3MB window at 2q24.2

and 6q16.2 using Variant Effect Predictor30, resulting in eight and four genes, respectively. Loci with

posterior probability >90% either for, both traits are associated and share two different but linked

variants (H3 hypothesis), or a single causal variant (H4 hypothesis) were considered as colocalized.

The European and African ancestry summary statistics for MD were tested against multi-ancestry

brain eQTLs from European and African American samples27. For Hispanic/Latinx ancestry, we tested

gene and protein expression of blood tissue from Multi-Ethnic Study of Atherosclerosis and

Trans-omics for Precision Medicine69. For African ancestry, we tested gene expression of blood from

GENOA study70 and proteome expression of blood71. For European ancestry, we tested gene

expression of blood from eQTLgen72, and proteome expression from blood71.

Assessment of transferability of established loci

We assessed whether published MD-associated loci display evidence of association in the East Asian,

South Asian, African ancestry and Hispanic/Latinx samples. Pooling the independent genome-wide

significant SNVs from two large GWAS of MD in samples of European ancestry yielded 195 loci17–19.

The ancestrally diverse groups included in this study had smaller numbers of participants than the

European ancestry discovery studies. Also, a given variant may be less frequent in another ancestry

group. Therefore, individual lead variants may not display evidence of association because of lack of

power. Moreover, in the discovery study the lead variant is either the causal variant or is strongly

correlated with it. However, differences in LD mean that the lead variant may not be correlated in

another ancestry group and may therefore not display evidence of association. Our assessment of

transferability was therefore based on power-adjusted transferability (PAT) ratios that aggregate

information across loci and account for all three factors, sample size, MAF and differences in LD28.

First, credible sets for each locus were generated. They consisted of lead variant plus all correlated

SNVs (r2 >= 0.8) within a 50kb window of the lead variant (based on ancestry matched LD reference

panels from the 1000 Genomes data) and with P value < 100 × Plead. A signal was defined as being

‘transferable’ to another ancestry group if at least one variant from the credible set was associated at

two-sided P < 10^(log(0.05,base=10)-Pf × (N-1)) with MD and consistent direction of effect between

the discovery and test study. N is the number of SNVs in the credible set for each locus, and Pf is a

penalization factor we derived from empirical estimations. The effective number of independent

SNVs was often higher in other ancestry groups due to differences in LD, leading to higher multiple

testing burden and higher likelihood of identifying SNVs with a low p-value, by chance alone. This

inflates the test statistics and was adjusted for by the penalization factor (Pf). In order to derive the Pf

for each ancestry group, we used the summary statistics from a previous GWAS on breast cancer73, in

which phenotypes were believed to be uncorrelated with MD. A total of 441 breast cancer significant
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SNVs were taken from their paper and linear regressions were conducted for the P values of these

SNVs in each of our ancestrally diverse summary statistics for MD on the number of SNVs in credible

sets. The coefficient estimates (slope from regressions) were treated as Pf for each ancestry. As a

result, Pf were 0.008341, 0.007378, 0.006847 and 0.003147 for samples of African, East Asian, South

Asian ancestry and Hispanic/Latinx, respectively.

In the next step, the statistical power to detect an association of a given locus was calculated

assuming an additive effect at a type I error rate of 0.05, with effect estimates from the discovery

study, and allele frequency and sample size from each of the target data sets from diverse

ancestry/ethnic groups. The power estimates were summed up across published loci to give an

estimate of the total number of loci expected to be significantly associated. This is the expected

number if all loci are transferable and accounts for the statistical power for replication. We calculated

the PAT ratio by dividing the observed number of loci by the expected number. In addition, loci were

defined as ‘non-transferable‘ if they had sufficient power for identifying an association but did not

display evidence of association, ie., if they contained at least one variant in the credible set with >

80% power, while none of the variants in the credible set had P < 0.05 and no variant within 50kb of

locus had P < 1×10-3 in the target data set.

For comparison, we also conducted a transferability assessment for a European ancestry look-up

study. The 102 significant loci reported by Howard and colleagues17 were evaluated for their

transferability in the AGDS study using the aforementioned method.

Gene Annotation

The summary statistic from the multi-ancestry meta-analysis was first annotated with FUMA74. Both

positional mapping and eQTL mapping results were extracted from FUMA. The 1000 Genomes

Europeans were employed as the LD reference panel for FUMA gene annotation. Data sets for brain

tissue available in FUMA were employed for eQTL gene annotation.

Gene-based association analyses were implemented using Multi-marker Analysis of GenoMic

Annotation (MAGMA, v1.08)75 and Hi-C coupled MAGMA (H-MAGMA)76. The aforementioned

multiple ancestry LD reference panel from the UK Biobank was used as the LD reference panel.

H-MAGMA assigns non-coding SNVs to their cognate genes based on long range interactions in

disease-relevant tissues measured by Hi-C 76. We used the adult brain Hi-C annotation file.

Transcriptome-wide association analysis and drug mapping

To perform a transcriptome-wide association study (TWAS), the FUSION software was used77.

SNP-weights were downloaded from the FUSION website78 and were derived from multiple external

studies, including:

1) SNP-weights from all available brain tissues, adrenal gland, pituitary gland, thyroid gland and

whole blood32 from GTEx v8, (based on significantly heritable genes and “All Samples” in GTEx v8,

which also includes African American and Asian individuals79.
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2) SNP-weights from the CommonMind Consortium (CMC), which includes samples from the brain

dorsolateral prefrontal cortex.

3) and SNP-weights from the Young Finns study (YFS) and

4) Netherlands Twin Register (NTR) which provides SNP-weights from blood tissues (whole blood and

peripheral blood, respectively).

We used the multi-ancestry LD reference panel described above. Variants present in the 1000

Genomes European population reference panel were retained. A separate TWAS was also performed

using a LD reference panel based on the 1000 Genomes Project’s samples of European ancestry, as a

sensitivity analysis.

The transcriptome-wide significance threshold for the TWAS associations in this study was

P<1.37x10-6. This threshold has previously been derived using a permutation-based procedure, which

estimates a significance threshold based on the number of features tested32.

Results were compared with previous TWASs in MD, including the two largest MD TWASs to

date6,80,81,32,19. These studies generally used smaller sets of SNP-weights (except the study by

Dall’Aglio and colleagues, which used similar SNP-weights as the current study, but with SNP-weights

derived from the previous GTEx release, v7). A TWAS z-score plot was generated using a

TWAS-plotter function82.

To assess the relevance of novel genes to drug discovery, genes were searched in three large drug

databases: in Genecards.org, DrugBank and ChEMBL83,84,85. In Table 1, a selection of drugs (the ones

reported in multiple publications) likely targeting our high confidence prioritised gene sets are shown

for each gene.

Mendelian Randomisation

We performed a bi-directional two-sample MR analysis using the TwoSampleMR R package86 to test

possible causal effects between MD and six cardiometabolic traits. For individuals of European

ancestry, the UK Biobank was used to select instruments for BMI, fasting glucose (FG), high-density

lipoprotein (HDL), low-density lipoprotein (LDL), systolic blood pressure (SBP), and triglycerides (TG).

SBP summary data were obtained from the UK Biobank for individuals of African and South Asian

ancestry and Hispanic/Latinx participants. For samples of African, East Asian and South Asian

ancestry and the Hispanic/Latinx group, a meta-analysis was performed using METAL58 with inverse

variance weighting using the UK Biobank and the following consortia: GIANT87 for BMI, MAGIC88 for

FG, GLGC89 for HDL, LDL, and TG, and BBJ89,90 for SBP in samples of East Asian ancestry. To avoid

sample overlap, the datasets used to define instrumental variables for the cardiometabolic traits

were excluded from the MD genome-wide association statistics used for the MR analyses conducted

with respect to each ancestry group.

Genome-wide significance (P = 5x10-8) was used as the threshold to select instrumental variables for

the exposures. However, if less than 10 variants were available, a suggestive threshold (P = 5x10-6)

was used to select instrumental variables (Supplementary Table 11). We used five different MR
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methods: inverse variance weighted (IVW), MR-Egger, weighted median, simple mode, and weighted

mode86. The IVW estimates were reported as the main results due to their higher statistical power91

while the other tests were used to assess the consistency of the estimates across different methods.

MR-Egger regression intercept and MR heterogeneity tests were conducted as additional sensitivity

analyses. In case of significant heterogeneity, the MR-PRESSO (Pleiotropy RESidual Sum and Outlier)

global test was used to remove genetic variants based on their contribution to heterogeneity92).
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Tables

Table 1. Genes associated with major depression, including 12 genes significantly associated in the

TWAS and Hi-C MAGMA, i.e., not in physical proximity to a GWAS hit, and 43 genes significantly

associated across all four methods (TWAS, FUMA, MAGMA, Hi-C MAGMA).

Genea Drugb FUMAc MAGMAj
d Hi-C

MAGMAd

TWAS P Novele Credib
le setf

Genes associated in TWAS and Hi-C MAGMA

NDUFAF3 Metformin, NADH No 1.00 0.004 3.80×10-7 Yes 9

PBRM1 Alprazolam Durvalumab Everolimus No 0.10 0.017 3.20×10-7 Yes -

TBCA - No 0.16 0.042 1.29×10-6 Yes -

BTN2A3P - No 1.00 0.000 2.33×10-8 Yes -

ZNF204P - No 1.00 0.014 2.13×10-15 No -

HLA-B Thalidomide Ticlopidine Phenobarbital
Carbamazepine Clozapine, Lamotrigine

No 0.46 0.000 1.13×10-7 No -

RABGAP1 - No 1.00 0.001 1.91×10-8 Yes -

GOLGA1 - No 1.00 0.020 1.56×10-7 Yes -

FRAT2 - No 0.78 0.017 9.39×10-7 Yes -

ENSG0000027
8376

- No 0.06 0.004 6.55×10-7 - 62

TRHDE-AS1 - No 0.14 0.048 6.92×10-7 Yes -

INSYN1-AS1 - No 0.25 0.014 5.53×10-8 Yes 25

Genes associated across all four methods

RERE - Yes 0.000 0.000 7.35×10-16 No 45

NEGR1 - Yes 0.000 0.000 1.30×10-26 No -

ZNF638 Cytidine Yes 0.003 0.004 5.64×10-7 No 61

RFTN2 Lipopolysaccharide Yes 0.003 0.000 1.52×10-7 No 204

ZNF445 - Yes 0.000 0.001 1.52×10-10 No 138

ZNF197 - Yes 0.000 0.000 4.61×10-10 No 138

CCDC71 - Yes 0.000 0.039 3.12×10-12 Yes 9

ENSG0000022
5399

- Yes 0.010 0.003 1.07×10-8 - 9

RHOA Simvastatin Pravastatin Atorvastatin
Magnesium CCG-1423

Yes 0.031 0.019 1.45×10-7 No 9

CDH9 Calcium Yes 0.003 0.002 2.17×10-8 No 95

TMEM161B Crofelemer Yes 0.000 0.000 5.26×10-9 No -

PFDN1 - Yes 0.025 0.000 5.60×10-8 Yes 67

SLC4A9 Sodium bicarbo-te Yes 0.029 0.002 2.25×10-12 No 67

HARS1 Adenosine phosphate, Pyrophosphate,
Phosphate, Histidine

Yes 0.024 0.017 5.29×10-8 Yes 141

HARS2 Adenosine phosphate Pyrophosphate.
Phosphate  Histidine

Yes 0.019 0.044 2.32×10-8 No 141

ZMAT2 - Yes 0.014 0.005 1.11×10-9 No 141

PCDHA1 Calcium Yes 0.015 0.005 1.15×10-8 No 141

PCDHA2 Calcium Yes 0.031 0.010 1.55×10-8 No 141

PCDHA3 Calcium Yes 0.043 0.004 1.06×10-8 No 141

TMEM106B Crofelemer Yes 0.000 0.000 4.87×10-15 No 1

ZDHHC21 Coenzyme A, Palmityl-CoA Yes 0.002 0.036 5.13×10-7 No 42

SORCS3 - Yes 0.000 0.000 1.98×10-10 No 16

MYBPC3 - Yes 0.004 0.012 9.23×10-10 No 48

SLC39A13 Zinc chloride  Zinc sulfate Yes 0.007 0.003 9.14E×10-7 Yes 48

CTNND1 - Yes 0.002 0.010 1.84E×10-7 No 60

ANKK1 Methadone, Naltrexone, Fostamatinib Yes 0.011 0.000 1.41×10-11 No -

DRD2 Cabergoline, Ropinirole, Sulpiride Yes 0.000 0.000 3.95×10-8 No -

MLEC - Yes 0.013 0.000 8.90×10-7 Yes -

SPPL3 - Yes 0.000 0.000 1.89×10-12 No -
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LRFN5 - Yes 0.000 0.000 5.79×10-15 No 10

AREL1 - Yes 0.007 0.000 7.24×10-12 No 143

DLST Lipoic acid Succinyl-CoA, Coenzyme A,
Dihydrolipoamide
(S)--Succinyldihydrolipoamide

Yes 0.000 0.001 1.51×10-9 No 143

MARK3 Fostamatinib, Alsterpaullone Yes 0.000 0.000 3.50×10-9 No 11

KLC1 Fluorouracil Irinotecan  leucovorin Yes 0.000 0.000 1.26×10-12 No 11

XRCC3 Fluorouracil Irinotecan  leucovorin Yes 0.004 0.000 3.49×10-10 No 11

ZFYVE21 Inositol 1,3-Bisphosphate Yes 0.000 0.000 2.83×10-13 Yes 11

CELF4 Iloperidone Yes 0.000 0.000 9.66×10-9 No 8

RAB27B Guanosine-5'-Diphosphate Yes 0.000 0.042 5.61×10-10 No -

EMILIN3 - Yes 0.039 0.001 6.66×10-8 No 64

CHD6 Phosphate, ATP, ADP Yes 0.001 0.001 1.76×10-10 No 64

EP300 Acetyl-CoA, TGF-beta, Garcinol cyclic amp,
Curcumin, Mocetinostat

Yes 0.000 0.000 1.71×10-9 No 16

RANGAP1 - Yes 0.000 0.003 6.73×10-9 No 16

ZC3H7B - Yes 0.001 0.000 1.37×10-9 No 16
aEnsembl IDs were shown for genes without symbol names. bDrugs targeting the prioritised genes or genes of the same
family from GeneCards, DrugBank and ChEmbl. cGene mapped by FUMA positional mapping or eQTL mapping. dBonferroni
adjusted P value for MAGMA or Hi-C MAGMA (P < 0.05 implies statistical significance). eNovel report as compared with
previous MAGMA and TWAS on MD. fNumber of variants in the 99% credible set for the mapped locus from multi ancestry
fine mapping.
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Figures

Figure 1. Transferability of previously reported loci from European ancestry discovery GWAS of

major depression to other ancestry groups. Panel (A) shows the numbers of previously identified

loci from European ancestry studies which were transferable to each of the other ancestry/ethnic

groups: African, Hispanic/Latinx, South Asian and East Asian (in black) and their intersections (in

cyan). Panel (B) shows Power Adjusted Transferability ratios, calculated from the observed number of

transferable loci divided by the expected number of transferable loci, taking effect estimates from

previous European ancestry studies, and allele frequency and sample size information from our

African, Hispanic/Latinx, South Asian and East Asian ancestry cohorts.

33

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 21, 2022. ; https://doi.org/10.1101/2022.07.20.500802doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500802
http://creativecommons.org/licenses/by-nd/4.0/


Figure 2. Resolution of the locus fine-mapping based on the multi-ancestry and the European

ancestry GWAS, showing the size of the credible sets for 155 significant loci. A) box plot showing the

median and interquartile range of credible set sizes. B) stacked bar charts showing the number of loci

within size categories.
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Figure 3. The relationship between gene expression and major depression based on a

multi-ancestry, multi-tissue transcriptome-wide association study (TWAS). Manhattan-style z-score

plot of the TWAS, showing all tested genes as single dots across all autosomes. Significant gene

associations are shown as red dots (354 significant genes, 205 of them novel) and the 50 most

significant gene names are highlighted on both sides of the plot. Novel genes are shown in black,

while genes previously associated with MD are shown in grey. The red lines indicate the

transcriptome-wide significance threshold (P< 1.37x10-6). Genes on the top part of the graph have

a positive direction of effect (direct effect), while the genes on the bottom part of the plot have a

negative direction of effect (inverse effect).

NT - Novel Transcript
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Figure 4. Bi-directional Mendelian Randomization analyses between major depression and

cardiometabolic outcomes. The associations are shown with a beta and a 95% confidence interval.

Significant associations are marked with a red asterisk. The number of SNPs refers to the number of

variants used as instrumental variables in each analysis. Results not shown for diastolic blood

pressure for which there were no significant associations.

Abbreviations: AFR: African, EAS: East Asian, EUR: European, HIS: Hispanic/Latinx, SAS: South Asian,

BMI: body mass index, MD: major depression, TG: triglycerides, SBP: systolic blood pressure, HDL:

high-density lipoprotein, LDL: low-density lipoprotein, CI: confidence interval, N SNPs: number of

single nucleotide polymorphisms.
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