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ABSTRACT

The generating mechanism for the gyrification of the mammalian cerebral cortex remains a central
open question in neuroscience. Although many models have been proposed over the years, very
few were able to provide empirically testable predictions. In this paper, we assume a model in
which the cortex folds for all species of mammals according to a simple mechanism of effective free
energy minimization of a growing self-avoiding surface subjected to inhomogeneous bulk stresses,
to derive a new set of summary morphological variables that capture the most salient aspects of
cortical shape and size. In terms of these new variables, we seek to understand the variance present
in two morphometric datasets: a human MRI harmonized multi-site dataset comprised by 3324
healthy controls (CTL) from 4 to 96 years old and a collection of different mammalian cortices with
morphological measurements extracted manually. This is done using a standard Principal Component
Analysis (PCA) of the cortical morphometric space. We prove there is a remarkable coincidence
(typically less than 8◦) between the resulting principal components vectors in each datasets and the
directions corresponding to the new variables. This shows that the new, theoretically-derived variables
are a set of natural and independent morphometrics with which to express cortical shape and size.

Keywords: PCA, cortical folding model, cortical folding universal rule.

1 Introduction

Why the cerebral cortex folds in some mammals is a fundamental question in neuroscience that still lacks a broadly
accepted mechanism. It is reasonable to think about the cortical folding as a characteristic fixed by natural selection
because it allows a dramatic increases in cortical size and complexity, while preserving the cranial size, axonal elongation
and metabolic cost [31, 32]. However, the evolutionary argument is not sufficient to unravel the full process that results5

in the surface folding. Empirical evidence points towards an integrative explanation [18], unifying bio-mechanical,
genetic and cellular signaling mechanism.

From a purely bio-mechanical point of view, there is a variety of models proposed to explain the physics of cortical
folding: buckling from a constrained expansion [33, 34], warping due to differential tangential expansion [28] or
emerging from axonal elongation [13]. Despite the qualitative compatibility with the cortical morphology, all these10

theories failed to provide a set of empirical testable predictions to further investigate their validity.

Following the bio-mechanical approach, [22] proposed a folding model hypothesizing that the cortex is a crumpled
elastic surface in thermal equilibrium (like a crumpled paper ball) [15]. The model is based on the physics of
minimization of effective free energy of a growing self-avoiding surface subject to inhomogeneous bulk stresses. It
predicts a power-law relationship between cortical thickness (T), exposed (AE), and total area (AT ) (Equation 1)15

T
1
2AT = kAα

E (1)
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for which the exponent α is a universal constant with a theoretical value of 1.25 and k is a dimensionless parameter
related to the mechanical properties of cortical tissue. The value of k not specified by the model, but is apparently
highly conserved across various mammalian orders. The most immediate consequence of this model is that the usual set
of geometrical variables {T 2, AT , AE} used to describe the cortex should not be independent, but rather correlated in a
highly restrictive way. Representing these variables in the {log T 2, logAT , logAE} space so that products of power20

laws become linear combinations of the log-variables, one can define

K ≡ log k =
1

4
log T 2 + logAT − 5

4
logAE︸ ︷︷ ︸

a(x−x0)+b(y−y0)+c(z−z0) = 0

(2)

In this log-space, Equation (1) can be re-interpreted as an assertion that actual cortices must lie at or near a K =
constant plane, called henceforth the theoretical cortical plane. Thus, as long as it is constrained to a plane perpendicular
to the vector K⃗ = (1/4, 1,−5/4) in log-space, cortical morphology should otherwise be compatible with any set of
values {T 2, AT , AE}. Taking a step further, Equation 1 is a power-law relation between the intrinsic and extrinsic25

values for cortical areas, measured in unites of squared cortical thickness, suggesting that the cortex is self-similar over
some range of length scales, i.e, approximately fractal with fractal dimension fdim = 2α.

The predictions of this simple statistical physics model were experimentally tested in a variety of studies. Firstly,
it was found that for 63 different mammalian species cortical folding scales universally according Equation 1 with
αexp = 1.31 ± 0.01 (when considering a heterogeneous, i.e, multiple acquisition protocols dataset) [22]. This work30

was extended in [40], where it was shown that not only the universal law also holds within a single species MRI dataset
with αexp = 1.25 ± 0.01 compatible with theoretical predictions, but also provided evidence that a deviation from the
universal rule could be used to identify diseases. The discrepancy between the observed α and the theoretical prediction
for the comparative neuroanatomy study needs further investigation to determine if it is due to a systematic effect on
the heterogeneous dataset or more profound information about the model’s limitations. Then, in [23], it was observed35

that the white matter volume and white/gray matter ratio in mammalian species are a consequence of the universal
scaling of cortical folding [42]. The first evidence of the self-similarity of the cortical surface was presented in [41]
with experimental verification of the universal scaling law across lobes of the same cortex. More recently, [37] provided
the first proof by construction of a universal archetypal fractal primate cortical shape, of which all actual cortices are
approximations of a specific range of scales.40

As a consequence, and regardless of the validity of the initial model, it is clear that the set of geometrical variables
{T 2, AT , AE} is indeed highly correlated. In [38], it was explicitly shown that by representing these variables in the
{log T 2, logAT , logAE} space one can define K (Equation 2).

In log space, healthy human cortices lie at or near the theoretical cortical plane, defined by points for which K =
constant, in agreement with the crumpled cortex model. In an attempt to understand the differences between cortices at45

or near the cortical plane, [38] derived a set of orthogonal morphological variables, starting with the nearly invariant K
(K⃗ = (1/4, 1,−5/4)) that is used to define the plane itself. Since k is dimensionless, it is not affected by an isometric
scaling log T 2 → log λT 2, logAT → log λAT and logAE → log λAE , in which λ is a positive real number; thus one
can define both a direction I⃗ = {1, 1, 1} that correspond to this isometric scaling, and a corresponding new variable
I = log T 2 + logAT + logAE that captures all information about cortical size. The third and last vector to both K⃗50

and I⃗ (S⃗ = I⃗ × K⃗), and is associated with the dimensionless variable S = − 9
4 log T

2 + 3
2 logAT + 3

4 logAE

that would captures most of the variation in shape across actual cortices. These new variables are plausibly a natural
way to decompose morphology in terms of its size; and its variant, and invariant shape components. Empirically,
these new variables were shown to better discriminate between typical and atypical structural changes, like aging and
diseases [38].55

The existence of the cortical plane is by itself a significant empirical result for neuroscience. In principle, cortical
morphology could be biologically compatible with any set of values {log T 2, logAT , logAE}. In practice, it has been
shown to be restricted to a plane. From a more instrumental perspective, this result implies that: (i) using the usual
morphological variables without taking into account their correlations would severely distort statistical inference; (ii)
there is clearly a direction in the log-space with the least morphological variation between cortices that is very close to60

the direction defined by the vector K⃗ = (1/4, 1,−5/4), as predicted by the crumpled cortex theory; (iii) diseases
that affect cortical morphology could be characterized by particular deviations from and along the cortical plane in
relation to healthy controls. It is also important to emphasize that although the variables K, S and I were derived from
a specific model, their use to express and analyze morphology over the cortical plane is model-agnostic.

2
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Table 1: The normalized vectors found by PCA and their respective deviation from theoretical expectation for the MRI
humans dataset (single species). The components are ordered by the Explained Variance Ratio (EVR).

Dataset Direction Theoretical PCA θdiff EVR

v̂ n̂1 = (0, 0.781, 0.625) (0.056, 0.704, 0.707) 7.9◦ 0.65
20-40 years û n̂2 = (−1, 0, 0) (−0.996, 0.089,−0.009) 6.9◦ 0.33

ŵ K̂ = (−0.154,−0.617, 0.771) (−0.070,−0.704, 0.707) 7.5◦ 0.02
v̂ n̂1 = (0, 0.781, 0.625) (0.077, 0.703, 0.707) 7.9◦ 0.65

20-60 years û n̂2 = (−1, 0, 0) (−0.994, 0.110,−0.0004) 6.9◦ 0.33
(deaged) ŵ K̂ = (−0.154,−0.617, 0.771) (−0.078,−0.703, 0.707) 7.5◦ 0.02

The objective of this work is to test and systematize the description of cortical morphology, contrasting the old and65

new variables in terms of their statistical interdependence. To test the independence between the new variable set
{K,S, I} we performed a standard Principal Component Analysis (PCA) to obtain the independent components of
variance in the {log T 2, logAT , logAE} space, for two different cases: across multiple species and across healthy
human subjects (obtained from [3, 22]). The principal components (PC) expected for the first case are the independent
set {K,S, I} [41]. For humans, in addition to a nearly invariant K, it is known that the average cortical thickness varies70

very little in comparison to AT and AE , a direct consequence of being the same species. With the extra nearly invariant
direction log T 2, one would expect that the component with the most variance should lie along the n⃗1 = (0, 5/4, 1)

direction. The remaining PC can then be directly found by the cross product n⃗2 = K⃗ × n⃗1 = (−1, 0, 0). The PC
vectors obtained from the data were then directly compared to the theoretical vectors {K⃗, S⃗, I⃗} and a new set of vectors
{K⃗, n⃗1, n⃗2} derived in this work to describe a single species.75

To test the statistical robustness of our results, a simulated dataset was generated according to Equation 1 to address
the sensitivity of the PCA technique to the dataset’s true principal directions. Finally, our results were validated by an
alternative method. Rewriting Equation 1 as

K = log k = β log T + γ logAT − α logAE (3)

one realizes that the model prediction are actually the exponents α = 5/4, β = 1/2 and γ = 1, and that obtaining
the least variance PC corresponds to performing a joint fit of these parameters. So, the same task was performed with a80

standard maximum likelihood approach combining information from both humans and multiple species datasets.

2 Results

2.1 Human MRI multi-site harmonized dataset

Performing the PCA in the human harmonized dataset [1, 3, 9, 19, 25, 30, 40, 41], one obtain the results summarized in
Figure 1. We analyzed separately subjects in the 20-40 yo age range, who presumably have a fully developed cortex85

(in broad terms, after development but before significant aging), and subjects in the age range between 20-60 years,
for whom age effects were mathematically removed (henceforth "de-aged") [3]. Table 1 summarizes the differences
between the principal components and the theoretical expectation. These differences do not change substantially
between the two groups (see Appendix 5).

2.2 Comparative Neuroanatomy90

The original work by Mota & Herculano-Houzel included two primary datasets of mammals, analyzed separately here:
Herculano-Houzel’s own data (referred here as dataset A) [10, 11, 16, 24, 27, 35], and previously published cortical
morphological measurements (dataset B) [2, 5, 12, 20, 26]. Regarding the comparative neuroanatomy dataset, the
PCA result is shown in Figure 2. The deviation between the principal components and the theoretical predictions are
summarized in Table 2.95

The combination of both datasets is discussed in Appendix 5, showing that this PCA method can detect subtle systematic
differences between different datasets and underscores the need to properly harmonize said datasets before performing
joint analyzes.

3
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Figure 1: Cortical plane for the human MRI dataset and the vectors reconstructed by PCA. On the left panel, we
considered only subjects in the age range of 20-40 years. On the right panel, the de-ageing procedure was applied,
allowing the analysis of the full age range in which the model was experimentally validated (20 to 60 years old). The
results of the two approaches are consistent. The arrows in black represent the principal components predicted by the
model. The angular difference between theoretical components and the experimental ones are θdiff < 8◦. The results
are in remarkable agreement with the theoretical predictions.
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Figure 2: Cortical plane considering different mammalian species datasets and the vectors reconstructed by PCA. The
arrows in black represent the principal components predicted by the model, the directions of the natural variables K,
S, and I . To avoid systematic uncertainties from different datasets, we applied the analysis in datasets A (left panel)
and B (right panel) separately. The angular difference between theoretical components and the experimental ones are
θdiff < 7◦. The results are remarkably in agreement with the predictions and consistent between distinct experiments,
suggesting that these variables are indeed a natural mathematical language to describe the cortex, encapsulating
orthogonal information about the morphology.

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2022.07.07.499214doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.07.499214
http://creativecommons.org/licenses/by-nc-nd/4.0/


MANUSCRIPT - MARCH 6, 2023

Table 2: The normalized vectors found by PCA and their respective deviation from theoretical expectation for
comparative neuroanatomy. The components are ordered by the Explained Variance Ratio (EVR).

Dataset Direction Theoretical PCA θdiff EVR

v̂ Î = (0.577, 0.577, 0.577) (0.490, 0.604, 0.628) 6.0◦ 0.80
A û Ŝ = (−0.802, 0.534, 0.267) (−0.863, 0.437, 0.253) 6.7◦ 0.19

ŵ K̂ = (−0.154,−0.617, 0.771) (−0.121,−0.666, 0.736) 4.0◦ 0.01

v̂ Î = (0.577, 0.577, 0.577) (0.499, 0.602, 0.623) 5.4◦ 0.81
B û Ŝ = (−0.802, 0.534, 0.267) (−0.859, 0.439, 0.264) 6.4◦ 0.18

ŵ K̂ = (−0.154,−0.617, 0.771) (−0.114,−0.666, 0.736) 4.1◦ 0.01

4 6 8 10 12 14
mismatch simulated
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Figure 3: Angular difference θdiff between the real principal component K̂ and the one reconstructed by the PCA with
the smallest explained variance. The deviation found is θdiff = (6.2◦ + 2.5◦ − 0.9◦).

2.3 Simulation of the PCA performance

In order to address the power of the PCA to recover the true principal components vectors in the comparative100

neuroanatomy datasets, we ran the same analysis using Nsim = 105 simulated datasets with known least variance PC
direction. Figure 3 shows the distribution of the angle θdiff measuring the difference between the theoretical direction
and the ones reconstructed by the method. We found the deviation between the real K̂ direction simulated and the one
reconstructed by PCA was θdiff = (6.2◦ + 2.5◦ − 0.9◦) comparable to the values found when using real data.

2.4 Fitting the power-law105

An alternative approach to the PCA is the direct determination of the exponents α, β and γ in Equation 3 using a
standard maximum likelihood approach. The analysis starts performing a linear regression of the universal scaling
relation in the particular case of lissencephalic mammals results in Figure 4. The angular coefficient (α−γ)

β gives prior
information on the desired parameters.

5
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Figure 4: figure
Fitting the universal scaling relation in the particular case of lissencephalic mammals. The angular coefficient
(α−γ)

β = (0.57 ± 0.07) provides a constraint on the possible values for the exponents α, β and γ in Equation 3 and
is in agreement with the theoretical predictions α = 5/4, β = 1/2 and γ = 1.

110

One may note that the experimental angular coefficient (0.57 ± 0.07) is compatible with the theoretical predictions
((α− γ)/β = (5/4− 1)/(1/2) = 0.5), providing a constraint on the possible values for the exponents. Using this
constraint, it is possible to fit the data from gyrencefalic species. Here the human MRI dataset was used because it has
significantly more data. Figure 5 shows the log-likelihood as function of the exponents α and β.

115

3 Discussion

There is already some evidence that the cortical surface behaves as an elastic crumpled surface [22]. Within the
framework of this theory, a set of orthogonal morphological variables {K,S, I} was proposed as a more natural way of
expressing a given cortical shape in the {log T 2, logAT , logAE} morphometric space [38]. The result presented here
show that the directions defined by these new variables largely coincide with the principal components of variance for120

comparative neuroanatomy data of several dozen mammalian species from two independent datasets. Specifically, as
expected, the K̂ is very close to being the component with the least variance, reflecting the confining of data points at
or close to the theoretical cortical plane. The new variables are thus shown to be almost uncorrelated with one another
and can be properly regarded as a set of both natural and independent morphometrics, greatly enhancing their potential
analytical usefulness.125

An additional result derived from the comparative neuroanatomy dataset suggested by the analysis, and further discussed
in Appendix 5, is the possible presence of subtle systematic differences between datasets A and B. This underscores the
need to properly harmonize this data before performing joint analyzes and may explain the discrepancy between the
observed αexp = 1.31 ± 0.01 and the theoretical prediction obtained by [22].

6
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Figure 5: figure
Log-likelihood function with the constraint established by lissencephalic data. Instead of a function peaked around
a localized region, it is observed a large range of equivalent peaks. The maximum of the likelihood function with 1
σ confidence region represented in red. Remarkably, the theoretical expectation (black dot) is in agreement with the
values obtained by the regression.

In the human dataset we also observe a remarkable agreement between the directions {K̂, n̂1, n̂2}, obtained by further130

imposing the single species constraint of restricted cortical thickness variation, and the principal components of variance.
Again, the K̂ is very close to being the component with the least variance, reflecting the confining of data points at or
close to the theoretical cortical plane. This result suggests that the apparent correlation between S and I in humans is
due to the fact that the subjects belong to the same species, a constraint not taken into account when deriving these
variables. More than that, in terms of practical application, it means that although the average cortical thickness is nearly135

invariant within a species and could be used as a biomarker for structural changes in the cortex, it is not an optimal
one, as this constraint is evolutionarily contingent. Thus, even for human data, it is valuable to express morphology in
terms of the K, S and I variables, as suggested in [17, 41], as these variable independently capture most of the global
morphological variation in cortex. This approach contrasts with previous studies such as [4, 6, 8], and may in the end
produce more robust biomarkers.140

The degree of agreement between morphological variables and principal components was quantified using a simulated
dataset, generated with principal components given by the exponents in Equation 1 and the same variance as present in
the analyzed dataset. It was found that the deviation between the real K̂ direction simulated and the one reconstructed
by PCA was θdiff = (6.2◦ + 2.5◦ − 0.9◦) (see Figure 3), a value consistent with the one observed in the experimental
data.145

A deeper explanation of the systematic discrepancy observed between the principal components, the theoretically
predicted vectors, and those obtained using the PCA is given by the result of the maximum likelihood approach. The
PCA cannot reconstruct the vectorial components with the required precision, reflecting exactly on the distribution

7
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Table 3: Summary of the subjects used in the human MRI dataset.

Datasets Diagnostic N (F) Age (Age range) [years]

AHEAD [1] CTL 100 (56) 42 ± 19 (24; 76)
AOMIC PIOP01 [30] CTL 208 (120) 22 ± 1.8 (18; 26)
AOMIC PIOP02 [30] CTL 224 (128) 22 ± 1.8 (18; 26)

HCP900r [9] CTL 881 (494) 29 ± 3.6 (22; +36)
IXI-Guy’s CTL 314 (175) 51 ± 16 (20; 86)
IXI-HH CTL 181 (94) 47 ± 17 (20; 82)
IXI-IOP CTL 68 (44) 42 ± 17 (20; 86)
NKI [25] CTL 168 (68) 34 ± 19 (4; 85)

OASIS [19] CTL 312 (196) 45 ± 24 (18; 94)
TOTAL CTL 2456 (1762) 46 ± 23 (4; 96)

shown in Figure 3. The explanation for this impossibility becomes clearer when one realizes that the PCA is a way to
reconstruct all exponents in Equation 1 and 3. As shown in Figure 5, instead of a function peaked around a localized150

region, one obtains a large range of equivalent peaks that, although it is compatible with the theoretical values, fitting
these values with high precision is not possible. However, the fact that the all exponents of the power-law were in
agreement with the observation is an astonishing new positive evidence in favor of the crumpled cortex model.

The model originally proposed by Mota & Herculano-Houzel suggests that the cortical morphology approximates
a real fractal with fractal dimension fdim = 2α. Different aspects of this model were tested and found to be in155

agreement with a series of experimental results. Taken together, these results help determine the regime of validity for
this model, by mapping the cases in which the overall morphology of the cortical surface can be modeled using this
theoretical framework, opening the possibility of biologically interpreting morphological phenomena as cortical folding
patterns or even creating reliable simulations of the cortical structure and geometry. The biological interpretation of the
cortical folding provided by the Mota & Herculano-Houzel model is a profound statement about its origins. Instead of160

being a new adaptive property specific to some clades, cortical gyrification is a consequence of the thermodynamic
equilibrium of the cortical surface, a mechanism that must be universal to all mammals. This universality is reflected
in the scaling of self-similar cortical morphology and its restriction to the cortical plane. Essentially, the difference
between a gyrencefalic and a lissencefalic developmental end-states is simply the rate of increase of AT relative to T 2.
The cellular signaling mechanism and genetics regulate the cortical development processes that will result or not in a165

crumpled surface according to the evolution of each clade and how is the relation between AT and T growing rates.
But ultimately, the final surface will reach thermodynamic equilibrium and will result in a self-similar structure with
fractal dimension fdim = 2α

This work makes an addition to the empirical evidence corroborating the crumpled cortex model, showing that not only
the principal components of cortical morphological variables are in agreement with the theoretical prediction but also it170

suggests that the independent set of morphological variables K, S, and I are indeed a natural mathematical language
to describe the cortex, encapsulating orthogonal information about the morphology. Also, by finding the direction K̂
very close to being the component with the least variance in multiple datasets from different mammals, we observe
the cortical plane as evidence of a conserved physical mechanism leading the cortical folding. Furthermore, this study
shows the possibility of understanding cortical morphology using a unique mathematical description, advocating in175

favor of incorporating compared neuroanatomy insights in studies of human diseases. The variables discussed here to
describe cortical morphology have an immediate practical application when considering disease discrimination and
healthy aging studies. Regarding the global morphometry of the cortex, these variables gives the correct treatment to
inherent correlation given by the cortical plane. Finally, we also provided a remarkable new evidence in favor of the
crumpled cortex model by verifying that each theoretical exponent of the power-law is supported empirically.180

4 Methods and Materials

4.1 Dataset

The morphological data used in this analysis were all previously published. Human participants and their respective
MRI-derived metrics were either published by [40, 41] or from open-access databases, as AHEAD [1] and AOMIC
(PIOP01 and PIOP02) [30] (human subjects are described in Table 3). The total number of human subjects MRI185

included in this work is 2456 healthy controls (CTL) from 4 to 96 years old.

8
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The structural images from AHEAD, AOMIC ID1000, PIOP1, and PIOP2 were processed in FreeSurfer v6.0.0 [7]
without manual intervention at the surfaces [21]. The FreeSurfer localGI pipeline generates the external surface and
calculates each vertex’s local Gyrification Index (localGI) [29]. Values of Cortical Thickness, Total Area, and Exposed
Area were extracted with Cortical Folding Analysis Tool [39] for both hemispheres.190

In order to perform a joint analysis, the morphological variables were harmonized following the prescription given in [3].
The data harmonization procedure is based on the time evolution of the basic morphological variables T , AT , or AE ,
modeled as an exponential decay with the age tage. A joint linear fit was performed in the log-linear scale, maintaining
the same angular coefficient among all different samples but different linear coefficients. The linear coefficients were
then subtracted to harmonize all datasets.195

The time evolution of the morphological variables itself can significantly impact the PCA results and the posterior
interpretation. To avoid this problem, we used two techniques: (i) restrict the analysis to the age range between 20-40
years (adulthood) as it would be the best representation of a stationary fully developed cortex; (ii) take advantage of the
harmonization linear regression, removing the age dependence using each subject age and the angular coefficient fitted,
a procedure called here deageing. The latter allows to perform the analysis to the full age range (20-60 years) in which200

the model was experimentally validated [3]. In Appendix 5, one finds the replication of the analysis for all age ranges
on the dataset (with and without the deageing).

Regarding the mammalian dataset from multiple clades, this work used the extracted morphological variables made
available by the authors at [22]. This dataset also presents heterogeneity in acquisition, compiling Mota & Herculano-
Houzel’s group data (referred here as dataset A) [10,11, 16,24, 27,35] with previously published cortical morphological205

measurements (dataset B) [2, 5, 12, 20, 26]. The details about each acquisition protocol can be found in the original
publications. This variability can also significantly impact the PCA results due to systematic uncertainties from different
experiments. To avoid this problem, we applied the analysis using datasets A and B separately. In Appendix 5, one
finds the replication of the analysis for the datasets combined.

Principal Component Analysis210

Principal Component Analysis (PCA) is a standard procedure in multivariate data analysis, usually used to dimensionality
reduction in a dataset [14]. With a direct analogy to the calculation of a rigid body principal axes of inertia, it creates
a new set of uncorrelated variables, the principal components, solving an eigenvalue/eigenvector problem for the
covariance matrix of a distribution or set of points. In this work, the PCA was performed numerically using Python
SciPy library [36]. Across this article, the vectors v̂ = (v1, v2, v3), û = (u1, u2, u3) and ŵ = (w1, w2, w3)215

represent the normalized principal components ordered by the size of explained variance.

Considering the {log T 2, logAT , logAE} space, the universal scaling law strongly suggests that the vector
K⃗ = (1/2, 1, 5/4) (Equation 2), must be the principal component with the lowest explained variance. It is a near-
invariant quantity obtained by isolating k in Equation 1, thus defining the theoretical cortical plane, and in its initial for-
mulation it was associated with conserved viscoelastic properties of cerebral cortical matter (k ∝ (fS+pCSF)

1/2 [15,22]).220

For humans, for whom in addition to a nearly invariant K one also finds that the average cortical thickness T varies
little [41], one would expect only small variations along the log T 2 direction. Thus, the component with the most
variance should lie along the n⃗1 = (0, 5/4, 1) direction. The remaining PC is directly found by the cross product
n⃗2 = K⃗ × n⃗1 = (−1, 0, 0). The normalized vectors that will be used in comparison with the PCA are denote here as
n̂1 = (0, 0.781, 0.625), n̂2 = (−1, 0, 0), and K̂ = (−0.154,−0.617, 0.771).225

For the comparative neuroanatomy datasets, there is substantial variation in cortical thickness and areas. Following the
interpretation in [38], we predict that the principal components in this case are the normalized directions defined by the
independent morphological variables K, S and I given by Î = (0.577, 0.577, 0.577), Ŝ = (−0.802, 0.534, 0.267),
and K̂ = (−0.154,−0.617, 0.771). If the variables {K,S, I} are actually a natural set of morphological variables,
capturing different and orthogonal aspects of the cortex, their respective vectors should be the principal components in230

the {log T 2, logAT , logAE} space.

4.2 Statistical Significance of the PCA results

To better interpret the results above, we used Monte Carlo simulations as a tool to address the power of the analysis
to recover the true principal components’ vectors and address the statistical significance of the results. The data was
generated over Nsim = 105 iterations using a Monte Carlo method to sample points near the theoretical cortical plane235

defined by Equation 2. The number of points generated and their variance was chosen to match the available data on
the human MRI dataset. In this simulated dataset, we applied the same PCA procedure used to analyze the real data,
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calculating the distribution for the angle θdiff between the real principal component K⃗ and the component in the PCA
with the least explained variance for each simulated dataset.

4.3 Fitting the power-law240

Assuming a relation in the form of Equation 3, the comparison between PCA least variance component and the theoretical
vector is equivalent to perform a joint fit of the exponents α, β and γ and test if the values are compatible with the
theoretical ones, α = 5/4, β = 1/2 and γ = 1. This alternative approach is done using a standard maximum
likelihood approach. Firstly, we start fitting the universal scaling relation in the particular case of lissencephalic
mammals for which the relation scales as log T = γ log k + (α−γ)

β logAE . The angular coefficient (α−γ)
β work as a245

constraint or prior information that can be used fit the data from gyrencefalic species obtaining all parameters.

4.4 Data and code availability

All codes and processed datasets are available at https://github.com/bragamello/metaBIO/tree/main/
Universal_cortical_rule. AHEAD and AOMIC (PIOP01 and PIOP02) data is available at https://zenodo.
org/record/5750619.250
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Appendix A

Table 4: The normalized vectors found by PCA and their respective deviation from theoretical expectation combining
comparative neuroanatomy datasets A and B. The components are ordered by the Explained Variance Ratio (EVR).

Direction Theoretical PCA θdiff EVR

v̂ Î = (0.577, 0.577, 0.577) (0.417, 0.632, 0.653) 10.6.0◦ 0.74
û Ŝ = (−0.802, 0.534, 0.267) (−0.904, 0.364, 0.224) 11.7◦ 0.25
ŵ K̂ = (−0.154,−0.617, 0.771) (−0.096,−0.684, 0.723) 5.8◦ 0.01
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Figure 6: figure
Cortical plane for the human MRI harmonized dataset and the vectors reconstructed by PCA for different age ranges.
The arrows in black represent the principal components predicted by the model. An angular difference of 180◦ on the
vectors reflects the ambiguity of selecting the vector normal to the plane.
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Figure 7: figure
Angular difference between the vectors reconstructed by PCA and the theoretical predictions across healthy aging. The
3σ region was obtained using the simulations. The results are remarkably in agreement with the predictions when
considering ages below 65 years. Above this age, there is a clear change in the directions with the greatest variability.
This deviation from the theoretical predictions correlated with age can be further exploited in future works in order to
build a theoretical model for the morphology of healthy cortical aging.
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Figure 8: figure
Angular difference between the vectors reconstructed by PCA and the theoretical predictions across healthy aging
using the de-aged dataset. The 3σ region was obtained using the simulations. The results are remarkably in agreement
with the predictions when considering ages below 65 years. As expected, without the age dependency, the results are
constant until the deviation from the model after 65 years. Above this age, there is a clear change in the directions with
the greatest variability. This deviation from the theoretical predictions correlated with age will be further exploited in
future works in order to build a theoretical model for the morphology of healthy cortical aging.
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Appendix B

The PCA applied to the combined mammalian dataset, as shown in Figure 9, presents a larger deviation from the
theoretical prediction. The vectors found are summarized in table 4.

There is a statistically significant increase in the angular difference from Ŝ and Î . In comparison with the result presented385

in the main text, in which both datasets had consistent findings when analyzed separately, there is an indication of a
relative unaccounted systematic error between the datasets. This illustrates how this PCA method can be used to detect
subtle systematic differences between different datasets and underscores the need to properly harmonize said datasets
before performing joint analyses. The suggestion of an unaccounted systematic error between datasets A and B should
be further investigated by analyzing the experimental errors of data acquisition, having the potential to elucidate the390

experimental discrepancy between the reported index α = 1.32 and the theoretical 5
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Figure 9: figure
Cortical plane considering different mammalian species datasets and the vectors reconstructed by PCA. The arrows in
black represent the principal components predicted by the model, the directions of the natural variables K, S, and I . In
this analysis, datasets A and B were used together. There is an increase in the angular difference between theoretical
principal components Ŝ and Î and the experimental ones. This result is interpreted as indicative of a relative uncounted
systematic error between the datasets.
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