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16  Abstract

17  Genetic mapping in two-generation crosses requires genotyping, usually performed with SNP
18 markers arrays which provide high-density genetic information. However, genetic analysis on raw
19  genotypes can lead to spurious or unreliable results due to defective SNP assays or wrong genotype
20  interpretation. Here we introduce stuart, an open-source R package which analyzes raw genotyping
21  data to filter SNP markers based on informativeness, Mendelian inheritance pattern and consistency
22  with parental genotypes. Functions of this package provide a curation pipeline and formatting
23 adequate for genetic analysis with the R/qtl package. stuart is available with detailed documentation
24 from https://gitlab.pasteur.fr/mouselab/stuart/.

25 Introduction

26  Genetic mapping of Mendelian or quantitative traits in inbred strains is classically achieved in two-
27  generation crosses such as intercrosses (F2) and backcrosses (N2), in which the inheritance of the
28  trait is compared with the genotypes at multiple genetic markers encompassing the genome map.
29  Variations of a quantitative trait are controlled by one or more quantitative trait loci (QTL). A QTL is
30 defined as a marker at which individuals carrying different genotypes show different average trait
31  values. QTL mapping searches for QTLs by testing association between trait values and genotypes at
32 markers spanning the genome map. The statistical significance of the association is expressed as
33 logarithm of the odds (LOD) score which is calculated for each genotyped marker and, at
34  intermediates positions, for pseudomarkers created by interval mapping, generating a LOD score
35 curve (Broman 2001). The curve peaks at regions potentially associated with the trait. These peaks
36 are called QTLs if they reach predefined statistical thresholds established either from general
37  statistical models (Lander and Kruglyak 1995) or by permutation tests performed on the cross data.
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38 For each permutation, phenotypes are shuffled between individuals to break real associations, and
39 LOD scores are calculated to identify peaks, which are all false positives. The distribution of the peak
40 LOD scores over a large number (>1000) of permutations provides statistical thresholds: if a LOD
41  score of 3.8 or higher is observed in 5% of the permutations, this value will be taken as the p=0.05
42  threshold (Doerge and Churchill 1996). QTL mapping on F2s and N2s can be conducted with R
43 packages such as R/qtl (Broman et al. 2003) and R/qtl2 (Broman et al. 2019).

44

45  With genome sequencing, single nucleotide polymorphisms (SNPs) have become the standard across
46  species for their very high frequency, low cost and high-throughput analysis using various
47  genotyping platforms. In mice, several generations of Mouse Universal Genotyping Arrays (MUGA)
48  have been developed, the most recent being GigaMUGA (143k SNPs (Morgan et al. 2015)) and
49 MiniMUGA (10.8k SNPs (Sigmon et al. 2020)). GigaMUGA provides high-density coverage for the fine
50 characterization of inbred strains or outbred populations such as the Diversity Outbred (Svenson et
51 al. 2012), while the modest number of SNPs in MiniMUGA is largely sufficient to genotype
52 intercrossed or backcrossed individuals. However, SNP reliability is affected by the performance of
53 genotyping platforms and polymorphism between and within inbred strains. Spurious or unreliable
54 mapping outputs can result from defective SNP assays or wrong genotype interpretations.
55  Therefore, raw data obtained from genotyping services must be curated before performing genetic
56  analyses.

57  Several tools exist for quality control of SNP genotyping arrays, including lllumina's GenomeStudio. R
58 packages such as argyle (Morgan 2016) analyze hybridization intensity signals from MUGA arrays.
59 The simple genetic structure of two-generation crosses provides specific and efficient means for
60 identifying spurious genotyping data, such as consistency with parental genotypes and expected
61 Mendelian proportions. The R/qtl package includes functions to build genetic maps and check for
62 genotype consistency (https://rgtl.org/tutorials/geneticmaps.pdf). However, this control is
63 performed once genotypes have been imported and involves multiple steps of manual curation. To
64 provide a more automated process of data curation before genetic analysis, we have developed
65  stuart, an R package which implements a pipeline for automatic filtering and curation of SNP
66  genotyping data from two-generation crosses based on simple rules. This package formats raw SNP
67  allele calls from Illumina files into genotypes ready for importation in R/qtl. Using three intercross
68  datasets, we illustrate the consequences of inconsistent genotypes on the estimated marker map
69 and QTL mapping, and how the curation achieved by each function in stuart leads to trustable
70 results.

71

72 Materials and Methods

73 stuart is a tidyverse (Wickham et al. 2019) based R package requiring R version 3.5.0 or later. Its
74  open source is available on Institut Pasteur’s GitLab: https://gitlab.pasteur.fr/mouselab/stuart/ and
75  can be installed with devtools (Wickham et al. 2021). stuart’s vignette provides detailed descriptions
76  of data import and of each function.

77  stuart imports SNP allele calls from MUGA lllumina platform or other sources using the same file
78  format. The central object of stuart is the marker table which summarizes for each marker the alleles
79 found in the population, the number of individuals of each genotype and the exclusion status
80 resulting from the curation steps. stuart exports curated data to an R/qtl compatible format. The
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81 SNP annotation file used was downloaded from
82 https://raw.githubusercontent.com/kbroman/MUGAarrays/master/UWisc/mini_uwisc_v2.csv.

83  Three datasets were used to test the package. This article presents the results from 176 (CC001/Unc
84 X C57BL/6J-Ifnarl KO) F2 mice (dataset 1). The analysis of two other data sets, 94(C57BL/6J-Ifnar1
85 KO X 129S2/SvPas-Ifnarl KO) F2 mice (dataset 2) and 89 (C57BL/6NCrl X CC021/Unc) F2 mice
86 (dataset 3) is presented as supplementary data. Quantitative traits were studied in the three F2s.
87 Phenotype distributions are presented in Supplementary Figure 1. Genotyping was performed by
88 Neogen (Auchincruive, Scotland) with MiniMUGA on DNA prepared from tail biopsies using standard
89 phenol-chloroform extraction. Genotype call rate was 0.927, 0.931 and 0.948 for dataset 1, dataset 2
90 and dataset 3, respectively. QTL mapping was performed using R/qtl. The following thresholds were
91 used, as commonly accepted (Members of the Complex Trait Consortium 2003): p=0.05 for
92  significant association, p=0.1 and p=0.63 for suggestive association. All figures were designed with
93  ggplot2 (Wickham 2016) or R/qtl.

94

95 Results and discussion

96 Consegquences of inconsistent genotypes

97  SNP data delivered by the lllumina platform are base alleles that need to be translated into
98 genotypes for genetic analysis. From our experience on multiple two-generation crosses, we
99 identified several types of genotype inconsistencies which were responsible for distorted marker
100  maps and spurious QTL mapping results. Recombination fraction (RF), which measures the genetic
101  distance between two markers, is estimated in a cross by analyzing proportion of recombinants
102 between adjacent markers in all individuals. The map of markers calculated from the cross data
103 should be consistent with their known positions. The R/qgtl est.map() and plotMap() functions
104 produce a graphical comparison of the two maps (Figure 1A and Supplementary Figure 2A-B). For
105 each chromosome, the known position of each marker provided in the annotation file (left) is
106  connected with the estimated position (right) based on observed RF. With minimally curated
107  genotypes (exclusion of non-polymorphic markers and markers with over 50% missing genotypes),
108 large RF were found in many instances between closely linked markers, resulting in fan-like patterns.
109 To further describe these distortions, we computed the distribution of the ratio between the
110  calculated and the known genetic distances between adjacent markers (Figure 1B and
111  Supplementary Figure 2C-D; to avoid exaggerated ratios, we considered only markers with a known
112 distance of 1cM or more). This analysis revealed two groups of markers. In dataset 1, for 43%
113 percent of them, the ratio was below 5 and followed a Gaussian distribution with mean = 1.31 and
114  sd = 0.77. The other markers (57%) showed a ratio between 5 and 981.87 (Figure 1B) which
115 necessarily results from incorrect genotypes, as only a few individuals should show recombination
116  between adjacent markers. On chromosome 1, while the known marker positions spanned ~100 cM,
117  the cumulated genetic distance estimated from observed RF was ~40,000cM. As QTL mapping relies
118 on coherent genotypes at a series of markers encompassing a genetic interval, problematic
119  genotypes at a given marker will perturb the analysis and, in some cases, may result in peaks of the
120 LOD score curve in the absence of true association (Cheung et al. 2014). Such false positives increase
121  significance thresholds calculated by data permutation.

122  These two consequences of genotyping inconsistencies are illustrated in Figure 1C and
123 Supplementary Figure 3A-B which were obtained using the R/qtl scanone() function on a
124  quantitative trait from the uncurated F2 datasets. For dataset 1, the p=0.05 significance threshold
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125  was estimated at 19.4 (Figure 1C), while it usually ranges between 3.3 and 4.3 depending on the
126 inheritance model for crosses of this type and size (Lander and Kruglyak 1995). Several peaks were
127  detected although none reached p=0.05 significance. Moreover, their narrow profile was highly
128 unexpected in F2 crosses. Indeed, these peaks involved only one to three markers, and the LOD
129  score curve felt abruptly between these and adjacent markers on both sides (Figure 1D), while
130  genetic linkage between closely linked markers should result in progressive decrease of the LOD
131  score curve on both sides of a peak (Guénet et al. 2015). Among the three datasets, we identified
132  four narrow peaks reaching suggestive significance level (p<0.63): two were located at a marker with
133 non-Mendelian allelic proportions and two were located at one to three pseudomarkers adjacent to
134  a marker with non-Mendelian proportions (Supplementary Figure 3C-D and E-F, respectively). We
135 identified 5 other narrow peaks (LOD score between 6.72 and 10.03) out of which four resulted from
136  the same situations as above and one was located on a pseudomaker and a marker with non-
137 Mendelian proportions.

138 Inconsistent marker maps may also originate from the wrong assignment of markers to their
139  chromosome and position provided to the mapping program. Indeed, R/qtl developer K. Broman
140 identified errors in MUGA arrays annotation files affecting marker positions, probe sequences
141 mapping to several locations and unmappable markers. We recommend using K. Broman's corrected
142 annotation files available on GitHub. The conversion of SNP alleles (A, C, T, G) observed in second-
143 generation individuals (SGls) to genotypes encoded according to the parental alleles may also create
144  genotype errors. Reference SNP alleles established for many mouse strains may be used to infer the
145  SGI genotypes. However, we recommend genotyping individuals of the parental strains used in the
146  cross since they could differ from the reference panel. In our example dataset, the two parental
147  strains used in the cross showed allelic differences with their reference panel counterpart at 200
148 markers.

149

150 Data control and curation performed in stuart

151  Although each of stuart’s functions can be called independently, we present a logical analysis
152  workflow appropriate for two-generation crosses. Table 1 summarizes the data curation and filtering
153 performed by each function, and the number of markers of dataset 1 retained after each step.

154 Data importation

155  Genetic mapping requires both genotype and phenotype data. Required formats and instructions
156  are detailed in the vignette (see example of phenotype data in Supplementary Table S1). Parental
157  strains’ genotyping data can be loaded from the same genotyping results as the SGI, from a previous
158  genotyping file or from a reference file. Annotation data from K. Broman can be imported directly
159  from GitHub. The geno_strains() function formats parental genotypes from a two-allele encoding in
160 Illumina format into a single letter encoding, and merges this data with the annotation table into a
161  table with parental allele and marker positions.

162 Consistency between parents and SGI alleles and genotypes

163 Several generations of MUGA arrays have been developed (Mega, Giga, Mini), each with successive
164  versions differing by multiple SNP markers. If parental and SGI data were produced on different
165  versions, the marker lists must be compared to retain only common SNPs. This is achieved by the
166  mark_match() function.
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167 Converting alleles into genotypes requires that SGI segregate for the two parental alleles, and that
168 each allele is found only in one parent. The aim of the mark_allele() function is to control
169  consistency of allele's origin at multiple levels.

170 First, this function excludes markers with missing data in both parents. If allele data is available for
171  only one parent and this allele is also found in SGlI, the other allele present in SGI will be assigned to
172  the parent with missing allele. However, this imputation is not error-free since we have observed, in
173 rare occasions, markers which alleles were identical in the parental strains but were polymorphic in
174  the SGI (Table 2 for such SNPs in dataset 1). This situation may occur when the parental strains used
175 in the cross have diverged from those of the reference panel, or if one parent is heterozygous. Such
176 markers will be excluded by the mark_allele() function but they could escape detection if allele
177 information was missing in one parent. Adding the parNH=FALSE argument to the mark_allele()
178  function will exclude markers missing one parental allele or for which one parent is heterozygous.
179 However, while preventing rare errors, this option will also exclude a number of truly informative
180 markers.

181  The mark_allele() function also discards markers at which parents and SGI carry different alleles,
182  and, for backcrosses, markers for which some SGI are homozygous for the wrong allele.

183 Non-polymorphic markers

184 Genetic analysis requires polymorphic markers, i.e., for which parents carry different alleles which
185  segregate in the SGI. The mark_poly() function excludes markers for which all genotyped SGI carry
186  the same allele, which saves computation time.

187 Missing genotypes

188  Reliable QTL mapping results depend on markers with medium to high rate of successful genotyping.
189 Figure 2A shows markers distribution based on the proportion of missing genotypes. For over 95% of
190 markers genotyping rate was above 50%. Genotyping failures may result from poor-quality
191  genotyping assay. The mark_na() function excludes such poorly-genotyped markers.

192 Mendelian proportions

193 In two-generation crosses between inbred strains, the proportions of the two or three classes of
194  genotypes are predictable, i.e., for autosomes, 25% of each type of homozygotes and 50% of
195 heterozygotes in an intercross, and 50% of homozygotes and 50% of heterozygotes in a backcross.
196  Comparing the observed proportions with these expectations provides another criterion of filtering.

197  The mark_prop() function filters markers based either on a minimum proportion of each genotype,
198  or on the statistically significant departure from the expected proportions (Chi2 test, with a p-value
199  threshold). Figure 2B shows the exclusions of the autosomal markers depending on the proportion
200  of each genotype. X chromosome genotypic proportions differ from autosomes, therefore, different
201  arguments of mark_prop() function are used to filter X-linked markers for more precise curation.

202  Filtering report and impact on QTL mapping results

203 At every step, the markers filtered out are annotated in a marker table which can be exported for
204  further inspection. The last column of Table 1 shows the number of markers retained after each step
205 in the example dataset 1. Most of the starting markers (7180/11125 = 65%) which were eventually
206 removed by stuart's functions were removed by mark_poly() as non-polymorphic, a ratio expected
207  for crosses between two standard mouse inbred strains (Frazer et al. 2007). mark_allele() rejected
208 750 markers, mark_na() 457 and mark_prop() 484. Across the three datasets, we found 1546
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209 markers with either non-Mendelian proportions or allele inconsistencies between parental strains
210  and SGls. Overall, 619 of them were retained by stuart’s filtering in at least one of the other crosses,
211 ruling out their misassignment to the genetic map. Out of the residual markers, 85 were removed
212  from all datasets for another criterion than absence of polymorphism and were therefore
213  considered as unreliable.

214 At this step, the dataset may still contain markers showing high recombination fractions with
215  adjacent markers either for a reason not tested by the current version of stuart or due to the
216  parameters used in mark_na() and mark_prop() functions. These markers can be identified by
217  calculating the estimated map using R/qtl est.map()and using stuart’s mark_estmap() function which
218  excludes markers presenting high recombination fractions with adjacent markers. Over the 3
219  datasets, 9 markers were removed by mark_estmap(). Five of them were retained in at least one
220  other dataset, indicating the problem was dataset specific. Finally, for dataset 1, 2251 markers
221 passed all steps resulting in an average genetic interval between adjacent markers lower than 2 cM,
222 which is largely sufficient to perform QTL mapping (Darvasi et al. 1993). After curation, phenotype
223 and genotype data are combined and exported in the R/qtl format using the write_rqtl() function.
224  The gtl2convert package (Broman 2021) converts this output into the adequate format required by
225  the more recent R/qtl2 package.

226 Figure 3A and Supplementary Figure 4A-B show the marker maps calculated after data curation with
227  stuart. The known marker map and the estimated genetic map are consistent, with minimal
228  expansions or contractions. Large ratios between the calculated and the known genetic distances
229 between adjacent markers have been eliminated (Figure 3B, Supplementary Figure 4C-D). QTL
230 mapping analysis on curated dataset 1 is shown on Figure 3C (to be compared with Figure 1C; see
231  Supplementary Figure 5 for datasets 2 and 3). LOD thresholds are in the expected range for an F2,
232 and the LOD score curve reveals broader peaks than in Figure 1B, with progressive LOD score
233 decrease on both sides of the peak marker. One significant and three suggestive QTLs were
234  identified on chromosomes 12 (p-value = 0.037, Figure 3D), 5 (p-value = 0.460), 10 (p-value = 0.157)
235  and 15 (p-value = 0.244) which were not visible using non-curated data due to very high LOD score
236 thresholds.

237 Being very simple to use and efficient at curating genotyping errors, stuart will facilitate the use of
238 genotyping arrays for genetic mapping purposes in two-generation crosses, bridging the gap
239 between raw allele data produced by SNP platforms and genetic analysis software. Moreover, its
240  functions can be used independently to analyze inbred strains genotypes. For example, geno_strain()
241  creates a genotype consensus between two or more individuals of the same strain suitable for
242  further inspection, which can be useful when genotyping or regenotyping a strain of interest.
243 Comparing genotyping results of an inbred strain after several generations of breeding with
244 mark_allele() will readily identify variants that have emerged or been selected over time. Likewise,
245 this function will help identifying genetic variants between substrains.

246
247 Web resources

248  The source code of the stuart package and the code used for the figures of this article are publicly
249 available from https://gitlab.pasteur.fr/mouselab/stuart/.

250

251 Data availability statement
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252 Al datasets used as examples in this article are available from
253  https://gitlab.pasteur.fr/mouselab/stuart/. Dataset 1 is included in the package and can be loaded
254  once the package is loaded (see the vignette for details). The two other datasets are available from
255  Gitlab in the “article” directory in separate folders (i.e. “data2” and “data3”). Each folder contains
256  the genotypes of the SGIs in file “geno_dataX.csv”, the phenotypes of the SGIs in file
257 “pheno_dataX.csv”, the parental strains’ genotypes in file “parents_dataX.csv” and the reference
258  genotypes for the parental strains in file “ref_geno_dataX.csv”. Analysis of each cross is in each
259  folder in an R markdown file (“dataX.Rmd”).
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314

315

Table 1 - stuart analysis pipeline and application to dataset 1

Steps Function Excluded markers Number of
markers
retained

1. Import SGI alleles from read.table()/read_tsv() - 11125

MUGA arrays

2. Add data from parental

strain

Genotyped with SGI: make geno_strains() - -

consensus

Imported from another read.table()/read_tsv(), - -

dataset: import and make geno_strains

consensus

Imported from reference read.table()/other - -

readr function
depending on the
format

3. Filter on allele consistency

between parents and SGI

Same set of markers mark_match() Not present in both 11125

between parents and SGlI parents and SGI

Alleles consistent between mark_allele Missing alleles in both 10375

parents and SGI parents

Not polymorphic in
parents but polymorphic
in SGI

Different alleles in
parents and SGl

In backcrosses:
homozygotes for the
wrong allele

Optional: one parent
missing or heterozygous

4. Exclude markers with high  mark_na() >50% of missing 9918

proportion of missing genotypes by default

genotypes

5. Exclude non-polymorphic  mark_poly() Non polymorphic in SGI 2738

markers in SGI

6. Verify mendelian mark_prop() Departure from expected 2254

proportions Mendelian segregation

(proportion of each class
or statistical threshold)
7. Verify recombination est.map() followed by High recombination 2251

fraction between markers

mark_estmap()

fractions with adjacent
markers
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316  Table 2 — Markers of dataset 1 non polymorphic between parental strains but polymorphic in SGI
317

Marker Allele parent 1 Allele parent 2 Allele SGI 1 Allele SGI 2
S6J017555686 C C T C
S6J113080150 G G A G
gJAX00038569 C C T C
mUNC21540855 ¢ C A C
gUNC21555204 T T T c
gUNC21596600 A A A G

318
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319
320  Figure legends
321 Figure 1

322  Analysis of the dataset 1 illustrating the consequences of genotyping errors and inconsistencies on
323 QTL mapping. Non-polymorphic markers and markers with more than 50% missing genotypes were
324  excluded to avoid excessive calculation time. A: comparison of the known marker map (left) and the
325  genetic map estimated from observed RF (right), as calculated by est.map() and represented by
326 plotMap() functions of R/qtl. Lines connect the positions of each marker in the two maps. The
327 estimated map is considerably expanded because of multiple genotype inconsistencies. B:
328  distribution of the ratio between estimated and known distances between adjacent markers.
329 Markers with known and calculated distances below 1cM were removed as they may lead to
330 extremely small or large ratios. The expansion of the estimated map leads to a distribution tail of
331 high ratios. The y-axis is in logarithmic scale. 57% of markers have a ratio above 5 (dashed line). C:
332  output of the scanone function of R/qgtl showing the identification of narrow LOD score peaks.
333 Significance thresholds are shown as plain (p=0.05), dotted (p=0.1) and dashed (p=0.63) lines. D:
334 magnification of the scanone plot restricted to chromosome 13 (peak p2). The LOD score peak is
335 located on one marker (red tick) distant by 1.728 cM and 1.24 cM from the proximal and distal
336 markers, respectively, on the known marker map, but by 1001.582 ¢cM and 1001.506 cM based on
337  calculated RF.

338
339 Figure 2

340  A: Distribution of the markers by their proportion of missing genotype (NA) in dataset 1. The y-axis is
341 in logarithmic scale. 4.63% of markers have >50% missing genotypes. B: Exclusion of markers
342  depending on genotypic proportions in dataset 1. Markers on X and Y chromosomes and
343 mitochondrial DNA are not represented. The two axes represent the proportions of the two types of
344 homozygous individuals in the intercross: AA and BB. Each dot represents a marker. Markers were
345  excluded (red) if the proportion of at least one of the three genotypes (AA, AB and BB) was less than
346  10%, i.e. outside the triangle defined by the three dashed lines (AA=0.1, BB=0.1 and AA+BB=0.9).
347 Blue arrows point at two markers excluded due to a proportion of heterozygotes <10%.

348
349 Figure 3

350 Analysis of dataset 1 after curation of genotyping data by stuart using the mark_match(),
351  mark_allele(), mark_na(), mark_poly(), mark_prop(), and mark_estmap() functions. Refer to Figure 1
352  for comparison with original data. A: the estimated marker map is now consistent with the known
353 marker map. Despite some contraction or expansion of specific intervals, the genome length of the
354  observed marker map for each chromosome is consistent with the known map (ratio between the
355  calculated and the known length of the genome:1.12). B: distribution of the ratio between estimated
356  and known distance between adjacent markers. Markers with known and calculated distances below
357 1cM were removed as they may lead to extremely small or large ratios. Ratios are normally
358  distributed with mean=1.33 and sd=0.81 showing consistency between the known and estimated
359 maps. C: The LOD score curve shows several peaks, one of which is significant at P<0.05 (plain line).
360 Note that the significance thresholds are much lower than in Figure 1C. None of the peaks shown in
361 FigurelC were confirmed after data curation. Conversely, none of the peaks above P=0.63 (dashed
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362 line) found after data curation had been detected in FigurelC. D: magnification of the QTL peak
363 identified on chromosome 12, showing progressive decrease of the LOD score curve over a large
364  genetic interval. The marker with the highest LOD score is identified with a red tick.

365
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366  Supplementary data
367
368  Supplementary Table 1

369 Format of the phenotype data. First column: individual's number. Second column: individual's sex.
370 Following columns: traits and covariates (individual's age, phenotype)

371 Supplementary Figure 1
372 Distribution of the quantitative phenotypes analyzed in the three datasets.
373  Supplementary Figure 2

374  Analysis of datasets 2 and 3 illustrating the expansion of the estimated genetic maps. Non-
375 polymorphic markers and markers with more than 50% missing genotypes were excluded to avoid
376  excessive calculation time. A, B: comparison of the known marker map (left) and the genetic map
377  estimated from observed RF (right), as calculated by est.map() and represented by plotMap()
378  functions of R/qtl in dataset 2 (A) and dataset 3 (B). Lines connect the positions of each marker in
379 the two maps. The estimated map is considerably expanded because of multiple genotype
380 inconsistencies. C, D: distribution of the ratio between estimated and known distance between
381  adjacent markers. Markers with known and calculated distances below 1cM were removed as they
382 may lead to extremely small or large ratios. The expansion of the estimated map leads to a
383 distribution tail of high ratios. The y-axis is in logarithmic scale. 51% of the markers in the dataset 2
384  (C) and 16% of the markers in the dataset 3 (D) have a ratio above 5 (dashed line).

385  Supplementary Figure 3

386  Analysis of datasets 2 and 3 illustrating the identification of narrow LOD-score peaks. A, B: output of
387  the scanone() function of R/qtl in the datasets 2 (A) and 3 (B) showing the identification of two
388 narrow suggestive peaks. C: peak pl from dataset 1 (see Figure 1C) is located on a single marker
389 (mUNCO050096588, red tick) with non-Mendelian proportions. Peak p2 from dataset 1 shows the
390 same pattern. D: genotypes at mUNC050096588. HM1 and HM2: homozygotes; HT: heterozygotes;
391 NA: missing genotypes. E: peak p3 from dataset 2 is located on a pseudomarker adjacent to a
392 marker with non-Mendelian proportions (SNT111392585, red tick). Peak p4 from dataset 3 shows
393 the same pattern. F: genotypes at SNT111392585.

394 Supplementary Figure 4

395  Analysis of the estimated genetic map in datasets 2 (A) and 3 (B) after curation of genotyping data by
396  stuart. Refer to Supplementary Figure 2 for comparison with original data. The estimated marker
397  maps are now consistent with the known marker maps with similar genome length despite local
398  contractions and expansions (the ratio between the calculated and the known length of the genome
399 is 1.00 for dataset 2 and 0.96 for dataset 3). The ratios between estimated and known distance
400 between adjacent markers in dataset 2 (C) and dataset 3 (D) are now normally distributed with a
401 mean=1.27 and a sd=0.77 for dataset 2 and a mean=1.24 and a sd=0.61 for dataset 3. The x-axis is in
402 logarithmic scale.
403

404  Supplementary Figure 5

405  Analysis of the LOD score curve after curation of genotyping data by stuart in datasets 2 (A) and 3
406 (B). Refer to Supplementary Figure 3 for comparison with original data. Significance thresholds are
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407  much lower than before curation. One peak in dataset 2 is significant at P<0.05 (plain line) and none
408  of the peaks observed before data curation (Supplementary Figure 3) were confirmed after curation
409  with stuart. Dotted line: P=0.1. Dashed line: P=0.63.

410
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