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Abstract  

Crosslinking and immunoprecipitation (CLIP) is used to determine the transcriptome-wide binding sites 

of RNA-binding proteins (RBPs). Here we present RCRUNCH, an end-to-end solution to CLIP data 

analysis that enables the reproducible identification of binding sites as well as the inference of RBP 

sequence specificity. RCRUNCH can analyze not only reads that map uniquely to the genome, but also 

those that map to multiple genome locations or across splice boundaries. Furthermore, RCRUNCH can 

consider various types of background in the estimation of read enrichment. By applying RCRUNCH to 

the eCLIP data from the ENCODE project, we have constructed a comprehensive and homogeneous 

resource of in vivo-bound RBP sequence motifs. RCRUNCH automates the reproducible analysis of 

CLIP data, enabling studies of post-transcriptional control of gene expression. RCRUNCH is available 

at: https://github.com/zavolanlab/RCRUNCH. 
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Background 

Throughout their life cycle, from transcription to maturation, function and decay, RNAs associate with 

RNA-binding proteins (RBPs) to form ribonucleoprotein complexes (RNPs) or higher-order RNA 

granules (e.g paraspeckles, Cajal bodies) [1]. RBPs are abundant in prokaryotes as well as eukaryotes, 

and methods such as RNA interactome capture (RIC) [2] revealed that over a thousand human and 

mouse proteins have RNA-binding activity. An RBP is typically composed of multiple RNA-binding 

domains (RBDs) coming from a limited repertoire [3], and binds to a specific sequence motif and/or 

secondary structure element. The functional diversity of RBPs rests on the number and arrangement 

of RBDs that they contain [4], though methods like RIC have uncovered proteins that have RNA-binding 

activity, despite lacking a known RBD.  

As RBPs participate in all steps of RNA metabolism, it is not surprising that they have been implicated 

in many diseases [5]. However, the critical targets in a particular context are often unknown. The method 

of choice for mapping the binding sites of an RBP in vivo and transcriptome-wide is crosslinking and 

immunoprecipitation (CLIP). Introduced in the early 2000s [6], CLIP has a number of variants, all 

exploiting the photoreactivity of nucleic acids and proteins. Briefly, ultraviolet light is used to crosslink 

RBPs to RNAs, the regions of the RNAs that are not protected by RBPs are enzymatically digested, the 

RBP of interest is purified along with the crosslinked RNAs, and finally the purified RNA fragments are 

reverse-transcribed and sequenced. One of the main differences between CLIP variants is in the nature 

of the cDNAs that end up being sequenced. These can either be the result of aborted reverse 

transcription at the crosslinked site [7] - where a bulky adduct remains after protein digestion -, or the 

result of reverse transcription through the site of crosslink, which often results in characteristic mutations 

in the cDNAs [8,9]. Although the general expectation is that extensive purification leads to a relatively 

pure population of target sites for a given protein, inspection of the genome coverage by sequenced 

reads indicates substantial non-specific background. Various approaches have been proposed for 

background correction, but a systematic benchmarking of these approaches is still lacking (discussed 

in [10]).  

CLIP is analogous to chromatin immunoprecipitation (ChIP), a technique that has been used for many 

years to determine binding sites of DNA-binding factors. To distinguish protein-specific interactions from 
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various types of background, ChIP includes control samples consisting either of the chromatin input or 

the material resulting from non-specific binding of antibodies to chromatin. Many computational 

methods have been developed to identify 'peaks' from such data sets [11]. A previous study of peak 

finding methods developed for ChIP data has underscored the importance of the model describing the 

obtained data [12]. 

In contrast to ChIP, background samples are not always generated in CLIP experiments, as it is less 

clear what an appropriate background should be. While at the DNA level, genes are generally 

represented in two copies per cell, the relative abundance of different RNAs in the cell varies over many 

orders of magnitude. Thus, abundant RNAs are likely to contaminate CLIP samples, leading to false 

positive sites, while binding sites in low-abundance RNAs may be completely missed. An approach to 

deal with this issue is to take advantage of crosslinking-induced mutations, identifying regions where 

such mutations have a higher than expected frequency [8,9,13,14]. This is not unproblematic, because 

mutations are introduced stochastically and the mutation-containing reads could also come from 

fragments crosslinked to proteins other than the one of interest in the experiment [15]. Another approach 

is to correct for the abundance of the RNAs based on RNA-seq data. This is also not ideal, first because 

differences in sample preparation may lead to RNA-seq data not containing all the potential targets of 

the RBP, and second because the RNA-seq read coverage profile is not uniform, which will influence 

the quantification of the local background, and consequently the identification of CLIP sites. Finally, in 

the eCLIP variant of CLIP, the background coverage of transcripts by reads is inferred from a parallel 

sample that is prepared from the band corresponding roughly to the size of the protein of interest, 

obtained by omitting the immunoprecipitation step of sample preparation. This approach has the caveat 

that the size of the targeted protein varies from experiment to experiment, and so will the proteins that 

are contained in the isolated band. This makes it unclear whether the results obtained for different RBPs 

are of comparable accuracy. 

As mentioned above, most RBPs bind their targets in a sequence-dependent manner, and sometimes 

in the context of specific structure elements [1,16]. For many RBPs, binding motifs have been inferred 

with both low and high-throughput approaches, and at least in some of these cases, there is good 

agreement between the RBP-binding motifs inferred from in vitro [17,18] and in vivo data [14,19]. 
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However, in the most comprehensive database to date, ATtRACT [20], there typically are many motifs 

for an RBP, of widely variable information content and sometimes unrelated. A comprehensive 

database of RBP binding motifs determined from a consistent in vivo dataset, similar to those available 

for transcription factors [21,22], is still lacking.  

A number of methods have been proposed for the identification of RBP binding peaks from CLIP data. 

Benchmarking of various subsets of these methods has revealed a few good performers, such as 

clipper, the tool developed for the analysis of above-mentioned eCLIP data, omniCLIP and pureCLIP, 

two recently published tools that use complex models to take advantage not only of the CLIP read 

coverage, but also of crosslinking-induced mutations [13,19,23,24]. However, none of these tools 

provides an easy and robust end-to-end solution to the identification of binding sites and sequence 

motifs from CLIP data, and it has remained unclear how their accuracies compare. 

To fill these gaps, we have developed RCRUNCH, a method that further aims to treat appropriately not 

only reads that map uniquely and contiguously to the genome, but also reads that map across splice 

junctions in mature mRNAs, as well as multi-mapping reads. The de novo motif discovery component 

of RCRUNCH, based on the well-established Motevo tool [25], allows an immediate assessment of the 

quality of the results, including for the comparison of its genome/transcriptome or unique/multi-mapper 

based approaches. Using data for proteins with well-characterized sequence specificity, we 

demonstrate that RCRUNCH enables the reproducible extraction of binding sites, with higher 

enrichment in the expected motifs compared to the other tools. Application of RCRUNCH to the 

extensive eCLIP datasets generated in the ENCODE project [19], covering 149 RBPs, led to the 

construction of a comprehensive resource of in vivo binding sites and binding motifs of RBPs. 

RCRUNCH is available as an entirely automated tool from [26]. 

Results 

Automated CLIP data analysis with RCRUNCH 

RCRUNCH is a workflow (Fig. 1a) for the automated and reproducible analysis of CLIP data, from reads 

to binding sites and motifs. It is written in the Snakemake language [27], observing the FAIR (findable, 
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accessible, interoperable and reusable) principles [28]. The peak-calling module at the core of the 

workflow builds on the CRUNCH model [12] that was extensively validated on ChIP data. Along with 

the genome sequence and annotation files, the input to RCRUNCH consists of CLIP (foreground) 

sequencing reads, obtained from immunoprecipitation of a specific RBP, and background reads, which 

in most of the analyses reported here come from a size-matched control sample as in eCLIP. 

RCRUNCH’s default analysis mode uses reads that map uniquely to the genome, but multi-mappers 

and/or reads that map across splice junctions of mature mRNAs can also be included. For the latter 

case, RCRUNCH constructs a representative transcriptome composed of the isoform of each gene that 

has the highest abundance in the foreground sample. In a first step of its peak finding module, 

RCRUNCH identifies broad genomic regions whose coverage by reads is significantly higher in the 

foreground compared to the background sample (Fig. 1b, see Methods). A Gaussian mixture model is 

then applied to each of these regions to identify individual peaks and compute associated read 

enrichment scores (Fig. 1c). Peaks sorted by the significance of their read enrichment are then used in 

various analyses, including for the identification of enriched sequence motifs. The workflow provides 

extensive outputs such as the coordinates of the peaks, their enrichment scores and associated 

significance measure, enrichment values of known and de novo identified sequence motifs represented 

as positional weight matrices (PWM).  
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Figure 1. Schematic representation of RCRUNCH. a. Overview of the workflow. b. Scatterplot of the 

proportion of reads (log2) in individual genomic regions in a foreground (CLIP) sample generated for 

the PUM2 protein (replicate 2 of dataset ENCSR661ICQ from the ENCODE project, see Methods) and 

a corresponding background sample (size-matched input control, SMI). Each dot corresponds to a 300 

nucleotides-long genomic region. Marked in color are regions that are enriched in reads in the 

foreground relative to the background sample (FDR < 0.1, see color legend). Three genomic regions 

(zoom-ins in panel c) with various enrichment scores are marked with stars. c. Coverage of three 

overlapping genomic regions (highlighted in panel b and indicated at the top of the panel) by CLIP reads 

(light gray) and by background reads (dark gray) from the SMI sample. The yellow line represents the 

envelope of the SMI read coverage profile. The significant peaks identified in the genomic region 

spanned by the three windows are shown in red. The blue line shows the number of CLIP read starts 

(5’ end of mate 2 reads) in the genomic region. Read starts indicate crosslinked nucleotides, where the 

reverse transcriptase falls off during sample preparation.  
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Comparative evaluation of CLIP peak finding methods 

By automating the analysis of CLIP data from reads to binding sites and motifs, RCRUNCH facilitates 

studies that rely on such data to a much larger extent than it was possible so far. To demonstrate its 

performance, we compared RCRUNCH with a few recently published and more broadly used tools for 

CLIP site identification. These were: clipper, the method used in the ENCODE project that generated 

the eCLIP data [19], already shown to supersede a few other methods [23], PURE-CLIP [24] and 

omniCLIP [13]. The latter two can use both the CLIP read density as well as the type and frequency of 

mutations in cDNAs to identify binding sites. As peak calling is not fully automated in clipper, for this 

tool we used the peaks provided by the ENCODE consortium [29,30]. The other tools were provided 

with genome-mapped reads obtained with the pre-processing module of RCRUNCH. As done in 

previous studies [13,24], in the comparative evaluation we used proteins for which the binding patterns 

and motifs have been extensively studied and are thus well understood [13,19,24]. These are hnRNPC, 

a splicing regulator that binds (U)5 sequences [31], PTBP1, another splicing regulator with a CU-rich 

binding motif [32], PUM2, a post-transcriptional regulator binding to UGUANAUA sequence elements 

[33,34] and RBFOX2, a splicing regulator known to recognize the sequence (U)GCAUG(U) [29]. For 

each of these proteins we applied RCRUNCH to the corresponding eCLIP samples in ENCODE, 

typically 2 replicates in each of two cell lines, and extracted the 1000 highest scoring sites from each 

sample (Supplementary Tables 1a, 1b). 

The reproducibility of results obtained from replicate experiments is an important indicator of a method’s 

accuracy [10]. To estimate the agreement between sets of peaks, obtained from either replicate 

experiments or by different methods applied to the same dataset, we used the Jaccard similarity index 

(see Methods). The agreement of the top peaks inferred from two replicate experiments for the same 

RBP in a given cell line (Fig. 2a) was ~20-40%, in the range reported for CLIP samples before [8]. 

RCRUNCH consistently provided values at the top of this range: for 5 of the 7 datasets RCRUNCH 

gave the highest agreement, and in the 2 cases when it did not, it was still a close second performer 

(Fig. 2b). We also asked how large is the overlap between the peaks reported by different methods. 

Although this was generally lower than the overlap of peaks identified by one method from replicate 

experiments, RCRUNCH had the overall highest agreement with the other methods (Fig. 2c). Finally, 
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as the computational cost incurred by a tool is also an important factor in its adoption, we recorded the 

clock time for the peak calling step of all methods on the benchmarking data sets. For RCRUNCH the 

clock time was up to 3 hours (Fig. 2d), while PURE-CLIP needed up to 6 hours and omniCLIP up to 9 

hours for an individual dataset/RBP.  

Thus, RCRUNCH outperforms currently used methods both in terms of peak reproducibility between 

replicate experiments and in terms of running time. Moreover, RCRUNCH has, on average, the highest 

agreement with other peak finding methods, indicating that it capitalizes on some of the same 

information, while diminishing some of the biases of these other methods.  
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Figure 2. Comparison of CLIP peak calling methods. a. Barplot showing the Jaccard similarity index 

of the peaks identified by each computational method (shown in the legend) from replicate experiments. 

For all RBPs, except PUM2, data were available from two distinct cell lines, HepG2 and K562. b. 

Replicate agreement, calculated based on the data in panel a, as a percent of the maximum obtained 

by any method on each individual dataset. c. Heatmap showing the Jaccard similarity index of the peaks 

identified by two distinct methods for a given protein in a given cell line (in percentages, averaged over 

two replicate experiments). The methods are shown in order in the x-axis and the same order is used 

in each block (corresponding to one protein and cell line) on the y-axis. The average similarity of a 

method with any other method on all datasets is shown at the bottom. d. Barplot showing the running 

times of peak calling steps for RCRUNCH, omniCLIP, and PureCLIP. Error bars show the standard 

deviations from the 2 replicate runs. 

To further evaluate the quality of the detected peaks, we determined their enrichment in the motif known 

to be bound by the RBP targeted in each CLIP experiment. We extracted the literature-supported motifs 

for each RBP from the ATtRACT database [20] and calculated their enrichment in the 1000 top peaks 

(Supplementary Table 1) predicted by each method relative to random genomic regions, unlikely to be 

bound by the RBP (see Methods). As shown in Fig. 3a, the known motifs were indeed enriched in the 

peaks relative to background sequences, up to ~5-fold, as observed before [19,35]. RCRUNCH peaks 

showed enrichment values at the high end of the achieved range (Fig. 3a) for all proteins/samples 

except hnRNPC. To verify that the peaks were indeed most enriched in the motifs known to be bound 

by the RBP (as opposed to any other), we further applied the Phylogibbs algorithm [36], to discover de 

novo the motif that is most overrepresented in the top peaks. Some of the de novo motifs were indeed 

similar to the expected ones, but they tended to be less polarized and more enriched (Fig. 3b-d). 

Strikingly, while Phylogibbs identified de novo motifs that were very strongly enriched in the hnRNPC 

peaks, these motifs did not have any resemblance to the expected (U)5 motif corresponding to this 

protein. To determine whether “truncated” reads, resulting from the reverse transcriptase falling off at 

the crosslinked nucleotide, allow a more accurate identification of RBP-binding motifs than the peaks 

in read coverage, we implemented the “RCRUNCH crosslink” variant, in which RBP binding sites are 

extracted from around the most crosslinked position within each peak (position where most reads start), 

in contrast to the “RCRUNCH peak center” discussed so far, in which sites are extracted relative to 
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coverage peak centers. RCRUNCH crosslink clearly recovered the hnRNPC-specific (U)5 motif (Fig. 

4d) and further improved the identification of the RBFOX2-specific UGCAUG motif, while the recovery 

of the PUM2 and PTBP1-specific motifs was unaffected. 

These results demonstrate that the peaks predicted by different methods are enriched to fairly similar 

extents in the expected motifs, though RCRUNCH has the most reliable high enrichments. Furthermore, 

the de novo motifs identified by RCRUNCH are more enriched in the peaks than the known motifs, even 

when they appear quite similar. For some proteins, specifically hnRNPC and RBFOX2, the read starts 

enable a more precise identification of RBP-specific binding motifs, while for others, like PTBP1 and 

PUM2, the coverage peak centers are equally informative.  

 

Figure 3. Enrichment of known and de novo sequence motifs in the CLIP peaks of individual 

RBPs. a. Enrichment scores computed by comparing the frequency of known motifs among the top 

CLIP peaks identified by the indicated method with the frequency in background regions (random 
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subsets of regions that were least enriched in CLIP reads, see Methods). Each peak finder is shown in 

a different color. The enrichments of the de novo motifs are indicated by stars, red for RCRUNCH peak 

center and blue for RCRUNCH crosslink. b. The known RBP-specific motifs from ATtRACT [20] that 

were used in the analysis. c. Most significantly enriched de novo motif predicted by Phylogibbs [36] in 

the “RCRUNCH peak center” sites from each sample. d. Most significantly enriched de novo motif 

predicted by Phylogibbs in the “RCRUNCH crosslink” sites from each sample.  

RCRUNCH helps elucidate how RBPs interact with and crosslink to RNAs 

To better understand why the sites extracted from around coverage peak centers contain the RBP-

binding motif for some proteins but not for others, we carried out the following analysis. Within each of 

the 1000 most significant peaks based on the enrichment in reads we identified both the location of the 

highest-scoring match to the RBP-specific motif and the crosslink position, where most reads started 

(Supplementary Table 1). Then, we anchored the peaks on the center of the motif match (position 0), 

and constructed the histograms of distances between the crosslinks and motifs, and between coverage 

peak centers and motifs. As already suggested by the observations from the previous section, the 

relationship between these two histograms is highly dependent on the studied RBP (Fig. 4a-d). For 

PUM2, RBFOX2, and hnRNPC, crosslink positions strongly co-localize with the RBP-binding motif, 

while for PTBP1 this is not the case. In contrast, the peak centers show weak co-localization with the 

binding motif of PUM2 and PTBP1, but occur clearly downstream of the binding motifs for RBFOX2 and 

hnRNPC.  
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Figure 4. Configuration of binding and crosslinking differ across RBPs. a-d. Histograms of 

distances between the cognate motifs of RBPs and the centers of the read coverage peaks (RCRUNCH 

peak center, in red) or between the motifs and the most frequent read start position in a given peak 

(RCRUNCH crosslink, in blue). The top 1000 peaks (in the order of their z-score) from one of the 

available samples for PUM2 (a), PTBP1 (b), RBFOX2 (c) and hnRNPC (d) were extracted. The cognate 

motif with the highest posterior probability given the RBP’s PWM was determined and the peak was 

retained only when the posterior was at least 0.3. e. For hnRNPC we carried out the same analysis 

relative to the Alu-related motif. f. Example of two hnRNPC binding peaks located on Alu antisense 

elements. The library-size-normalized read coverage in the eCLIP sample is shown in gray, while the 

coverage in the background SMI sample is shown in dark gray with a yellow outline. The fitted Gaussian 

peaks predicted by RCRUNCH are shown in red, while the distribution of reads starts in this region is 

depicted with the blue line. The most frequent read start within a coverage peak is chosen by 

RCRUNCH crosslink as the crosslink position and the corresponding nucleotide is indicated here by 

the blue arrow. The red arrow links the peak center to the corresponding nucleotide within the Alu 

antisense element. g. Results of CLIP experiment simulations, showing the read coverage profile (full 
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red line), corresponding Gaussian fit (dashed red line), and frequency of crosslinks (blue) with respect 

to the RBP-specific motif (black, centered on position 0), for low (0.1, left) and high (0.9, right) probability 

of reverse transcriptase readthrough. 

In the case of hnRNPC, highly enriched motifs were recovered around peak centers as well, and these 

motifs were very different from the expected (U)5 (Fig. 3c). A literature search revealed that these motifs 

correspond to the Alu antisense element (AAE) [37], consistent with reported function of hnRNPC in 

suppressing the exonization of these repetitive elements [7]. Computing the peak center - motif and 

crosslink - motif histograms relative to the AAE showed that hnRNPC binding sites containing AAEs 

have a very specific configuration, crosslinking occurring upstream of the AAE, within the U-rich motif, 

leading to CLIP read starts in this region, while the peak in read coverage is on the AAE (Fig. 4e,f). To 

better understand how these patterns relate to the specific interaction of an RBP with RNAs, we carried 

out a simulation of an RBP binding to its cognate motif, crosslinking to the RNA and protecting an 

extended region of the target from digestion. As the efficiency of crosslinking depends on the identity 

of both the nucleotides and the amino acids that participate in the RNA-RBP interaction [38], we 

simulated three scenarios, corresponding to the nucleotide with the highest efficiency of crosslinking 

being located upstream, within or downstream of the RBP-specific binding motif. For each of these 

cases we simulated scenarios where the probability of reverse transcriptase reading through the 

crosslinked nucleotide is very low, intermediate or very high (Fig. S1). We found that when the 

readthrough probability is low, the crosslink is a better indicator of the binding motif than the peak center 

(Fig. 4g). In contrast, when the readthrough probability is moderate to high, the crosslink position and 

the coverage peak center are located at comparable distances from the RBP-binding motif, so that 

either could be used to identify the RBP binding site (Fig. 4g). Thus, the motif-crosslink and motif-peak 

center distance relationships that we observed for the selected proteins indicate that the probability that 

the reverse transcriptase reads through the RBP-RNA crosslink is much lower in the case of RBFOX2 

and hnRNPC compared PUM2 and PTBP1, leading to a more precise identification of the binding motif 

when binding sites are centered on the crosslink position.  

These results suggest that model-driven analyses of CLIP data, taking into account the architecture of 

protein-RNA interactions, could further improve the identification of binding sites and the interpretation 
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of the observed binding patterns. Furthermore, the variant RCRUNCH workflows provide a flexible 

platform to explore the architecture of RBP-RNA interaction sites. 

RCRUNCH variants enable detection of specific classes of RBP targets 

Tools for CLIP data analysis focus almost exclusively on reads that map uniquely to the genome, 

leaving out multi-mapping reads or reads that map across splice junctions, which are more challenging 

to map and quantify correctly. To provide users with the opportunity to investigate RBPs that specifically 

bind to repetitive elements or mature mRNAs, we have implemented and evaluated a few variations of 

the RCRUNCH workflow. Specifically, we have implemented the option of identifying binding sites that 

are located in the immediate vicinity of exon-exon junctions in mature mRNAs, as well as the option of 

using reads that map to multiple genomic locations (multi-mappers). In the first situation, some reads 

end up mapping to the genome in a split manner, partly to the 5’ exon and partly to the 3’ exon. This in 

turn can lead to multiple distant peaks, with the RBP-binding motif being present at only one or perhaps 

neither of these peaks. Finally, the question of an appropriate “background” for estimating the 

enrichment of reads in CLIP samples is still open [10]. Aside from the size-matched control used here, 

the relative abundance of mRNAs (estimated based on RNA-seq data) is sometimes taken into account 

[39]. By providing an appropriate file with sequenced reads, RCRUNCH allows an easy incorporation 

of different types of background. Here we used the mRNA-seq data generated for the specific cell lines 

included in the ENCODE project. We benchmarked the performance of RCRUNCH variants on the 

proteins chosen at the beginning of our study. In all cases we extracted sites anchored at the crosslink 

position within each peak and compared the “standard” RCRUNCH crosslink with individual variants 

across a few different measures. These measures were: the number of significant sites (at FDR = 0.1) 

identified in a sample (Fig. 5a-c), the enrichment of the known motif in the top 1000 sites identified in 

each sample (Fig. 5d-f), and the similarity of the known motif of the RBP to the de novo motif identified 

from the top 1000 peaks of a given sample (Fig. 5g-i). While for the RCRUNCH transcriptomic and 

multi-mapper approaches the results were very comparable with those of the standard RCRUNCH, the 

choice of RNA-seq as background results in a strong decrease in performance. Including multi-mappers 

or splice junction reads led to the recovery of somewhat fewer sites, but the quality of the peaks, 

measured in terms of their enrichment in motifs, was not affected.  
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These results demonstrate that RCRUNCH is a flexible and performant method for CLIP data analysis. 

The choice of background is important, and in the case of eCLIP, the size-matched control samples 

provide a more appropriate background for estimating read enrichment in binding sites than the mRNA-

samples. 

 

Figure 5. Performance evaluation of RCRUNCH variants. “RCRUNCH standard” refers to peaks 

identified based on reads that map uniquely to the genome, and binding sites that are always centered 

on the most frequent crosslink position in each peak. Rows correspond to variants of the RCRUNCH 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2022. ; https://doi.org/10.1101/2022.07.06.498949doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.498949
http://creativecommons.org/licenses/by-nc/4.0/


 

 

16 

workflow, while columns show different metrics used to compare each of the variants with the “standard” 

RCRUNCH: a-c. Number of significant peaks in a sample (at FDR < 0.1); d-f. Enrichment of the known 

motif of the RBP that was assayed in a particular sample; g-i. Similarity of the motif identified de novo 

from the top peaks of a given sample and the known motif for the respective RBP. In the case of the 

RNA-seq background variant, some samples did not yield any significant peaks (FDR = 0.1). These 

samples are therefore not represented in the plots.  

A compendium of RBP binding motifs inferred from eCLIP data 

Although various analyses of the ENCODE eCLIP datasets have been carried out, a 

consolidated compendium of binding motifs inferred for individual proteins from these data is 

not available. To fill this gap, we have applied RCRUNCH (both peak center and crosslink 

variants) to all available eCLIP samples, determined peaks that are enriched in reads relative 

to the SMI background, inferred the most significantly enriched sequence motifs and finally, 

for each RBP, identified the motif with the highest average enrichment across all samples 

corresponding to the RBP (Supplementary Table 2). The distribution of the number of binding 

sites per RBP, as shown in Fig. 6a, indicates that two thirds of the samples yielded more than 

100 binding sites, with few samples (for the HNRNPL, AGGF1, DDX3, TARDBP proteins) 

yielding thousands of sites. As may have been expected, a known binding motif in ATtRACT 

is indicative of the protein having a high number of binding sites (Fig. 6a). We next calculated 

the average Jaccard similarity index of peaks identified from pairs of samples, either 

corresponding to the same protein, or to different proteins (Fig. 6b-c and Suppl. Fig 2). We 

also carried out an analysis of the motifs enriched in individual samples (Suppl. Fig. 4), 

ultimately identifying the motif that best explains the entire data obtained for a given protein 

(highest sum of log-likelihood ratios across all samples, Fig. 6c-d). Of 149 proteins, 86 yielded 

an enriched motif in our analysis, and 26 of these already had a specific motif in the ATtRACT 

database. 21 of the proteins for which we could not identify an enriched motif in this study 

were covered by the ATtRACT database (Fig. 6b). The heatmap of peak overlaps shows good 
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consistency among different experiments involving the same protein (Fig. 6c, diagonal), and 

also highlights interesting cases of proteins that bind to similar regions, in many cases 

because the proteins take part in the same multi-molecular complex. For example, we found 

high overlaps between the sites of splicing factors U2AF1 and U2AF2 [40,41] , of the DXH30 

and FASTKD2 proteins involved in the ribosomes biogenesis in the mitochondria (Suppl. Fig. 

2) [42], of the DGCR8 and DROSHA components of the miRNA biogenesis complex [43] and 

a few others (Fig. 6c). These results lend further support to the notion that our method recovers 

expected signals in the eCLIP data. Additional per sample analyses are shown in Suppl. Fig. 

2. In brief, we identified enriched motifs in 90% of the samples, similar between the RCRUNCH 

crosslink and RCRUNCH peak center approaches (Suppl. Fig. 4c), but in many cases the 

enrichments were small. As we have seen for the benchmarked proteins, the enrichment of 

the de novo identified motif was higher than the enrichment of the known motif for the studied 

protein (Suppl. Fig. 4b). We further calculated the similarity (see Methods) between the known 

and de novo motifs, the latter obtained either from RCRUNCH crosslink or RCRUNCH peak 

center-predicted binding sites. We found that around 80% of the samples yielded motifs with 

at least 0.4 similarity to the known motif, which is a much higher proportion than when 

comparing random pairs of motifs. The similarity was slightly higher when sites were identified 

by RCRUNCH crosslink (Suppl. Fig. 4d). Given the large number of motifs identified for RBPs 

that are not represented in ATtRACT, we asked whether these motifs are reproduced between 

replicate samples of an RBP. Indeed, the similarity of motifs obtained from replicate samples 

was similar for proteins with and without a known motif, and it correlated with the number of 

sites inferred from the samples (Suppl. Fig. 4e).  

These data indicate that the motifs identified from RCRUNCH-extracted CLIP peaks are 

reliable, conform with prior knowledge, and explain the binding data better than the motifs that 

are currently available in databases. Altogether, the compendium that we have constructed 

(Supplementary Table 2), provides sequence specificity data for 86 RBPs, thus being, to our 
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knowledge, the most extensive collection of in vivo, reproducibly-identified, consensus RBP 

binding motifs. 

 

Figure 6. RCRUNCH results for all ENCODE eCLIP data currently available. a. Cumulative 

distribution of the number of significant binding sites detected per experiment (FDR threshold=0.1, in 

black). Cumulative distributions are also shown separately for samples corresponding to proteins with 

a known binding motif (gray) and to proteins for which no known motif is available in ATtRACT, but one 

was found by RCRUNCH (blue). b. Venn diagram summarizing the motif inference in the identified 

peaks. We distinguished four categories of proteins: for which (1) no motif is known and also no enriched 

motif was identified in this study (grey), (2) a de novo motif was found for a protein for which no motif is 

given in ATtRACT (blue) (3) a de novo motif was found for a protein with a known motif in ATtRACT 

(coral) and (4) a motif is known, but none was identified de novo. c. Heatmap of mean peak agreement 

across RBPs (only the RBPs. The agreement is calculated as the Jaccard index of the nucleotides in 

the peaks, where the intersection of two sets of peaks is the number of nts covered in both sets, while 

the union is the number of nts covered in at least one of the two sets. The color range is capped at a 

similarity of 0.4 to make the clusters more easily distinguishable. The top peaks are taken according to 
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the FDR threshold (0.1), extending by 20 nts upstream and downstream from the crosslink site. Since 

there are more than 1 replicates per RBP, the mean of these agreement calculations is used here. The 

colors on the left indicate the relative frequency of each nucleotide type averaged over all positions of 

the PWM. d. Polar projection of the enrichment of de novo motifs inferred for individual RBPs from all 

peaks with FDR >0.1 extracted from the ENCODE samples. Only RBPs for which an enriched motif 

(motif enrichment higher than 1) are included. The color of the bars indicate whether the respective 

RBP already has a known motif in ATtRACT (coral) or not (blue). 

Discussion 

Within over a decade of development and application, CLIP has provided a wealth of insight into the 

RNA-binding protein-dependent regulation of cellular processes such as RNA maturation, turnover, 

localization, and translation. The large collection of RBP-centric high-throughput datasets that has been 

generated as part of the ENCODE project [44] is broadly used to unravel the functions of RBPs, many 

of which were only recently found to bind RNAs. As other types of high-throughput data, CLIP also 

requires dedicated computational analysis methods. In this context, RCRUNCH makes the following 

main contributions.  

First, it is the first completely automated solution to CLIP data analysis, from reads to binding sites and 

sequence motifs, with accuracy and running times that compare favorably to those of the most broadly 

used tools to date. Key to this performance are the enrichment-based prioritization of genomic regions 

likely to contain RBP binding sites, and the model for evaluating this enrichment in individual sites.  

Second, to accommodate the variability of target types across RBPs, RCRUNCH goes beyond the 

typical approach of using uniquely genome-mapped reads, allowing the inclusion of multi-mappers 

and/or of reads that map across splice junctions. Both of these situations make it difficult to determine 

the locus of origin of the reads and may lead to a decreased accuracy of binding site inference. 

Nevertheless, for RBPs that specifically bind repeat elements, or in the vicinity of splice junctions, taking 

into account such reads and appropriately defining the peaks in read coverage is a must. The variant 

RCRUNCH workflows fulfill this need. RCRUNCH multi-mapper considers reads that map to a 

maximum number of genomic locations (specified by the user), distributing the reads equally among 
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the loci with maximum alignment score. Compared to the run that only allowed uniquely mapped reads, 

this approach yields binding sites with similar enrichments in the expected sequence motifs of the 

benchmarked proteins, including those with repetitive binding motifs like PTBP1. More sophisticated 

models, e.g. applying an expectation/maximization approach to read-to-locus assignment, have been 

proposed before [45], but they come at the cost of increased running times, and have not been broadly 

adopted. The RCRUNCH transcriptome variant was designed to address another special case, namely 

that of RBPs that bind predominantly mature mRNAs. Many RBPs are located in the cytoplasm where 

they orchestrate RNA traffic and localization [35]. As internal exons of human transcripts are relatively 

short, ~147 nucleotides [46], it is likely that CLIP reads for RBPs that bind to these exons will cover 

exon-exon junctions [47]. Recent generation alignment programs such as STAR [48] can carry out 

spliced alignment. However, reads that span splice junctions will give rise to multiple peaks, in the 5’ 

and the 3’ exons that flank the splice junction. This will affect the accuracy of binding site and motif 

identification. A way to circumvent the issue is to map the reads to transcripts instead of genome 

sequences. This is not without drawbacks. First, given that it is not generally known a priori whether the 

RBP of interest binds mature RNAs or other classes of transcripts, a hybrid strategy will need to be 

adopted, to allow the identification of binding sites in introns as well as in mature mRNAs. Second, 

given the large number of possible isoforms per gene, accurate assignment of reads to isoforms and 

peak identification in multiple isoforms are not trivial. In RCRUNCH transcriptome we have implemented 

a general hybrid strategy to capture binding sites across all types of types of transcripts, including pre-

mRNAs and mature mRNAs, without incurring large computational costs. Namely, taking advantage of 

the observation that individual cell types express predominantly one isoform from a given gene [49], we 

first determine which of the known isoforms of each gene has the highest expression level in the CLIP 

sample. We then use these isoforms as pseudo-chromosomes, assigning reads to the best-scoring loci, 

but with priority given to the spliced isoforms over genomic loci. This approach gave good results for 

the benchmarked proteins, including PUM2, which is known to bind to mature mRNAs [50], but overall, 

the number of sites that spanned splice junctions was small for the benchmarked proteins. On the other 

hand, for splicing factors we identified many sites in the vicinity of splice sites, as expected, indicating 

that these data can be studied further to determine to what extent these splicing factors remain 

associated with the mature RNAs (Fig. S5). Nevertheless, our exploration of ways to handle reads that 
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originate in various categories of targets was by no means exhaustive and this could be a direction for 

further development of the workflow. 

Third, our analysis of the ENCODE eCLIP data yielded enriched sequence motifs for 86 RBPs. These 

were selected using a uniform procedure, based on the maximum enrichment across all samples 

available for a given RBP, in contrast to resources such as ATtRACT, which contain multiple, 

heterogeneous RBP-specific sequence motifs obtained with a wide range of techniques. While the 

eCLIP datasets were the focus of various previous studies (e.g. [14,19,35]), a compendium of 

reproducible binding motifs inferred from these data sets is not available. Moreover, although RBPs 

typically bind to a defined sequence (or sometimes structure) motif, the binding specificity of RBPs 

inferred from eCLIP data has been described in terms of collections of short motifs [14,35], for reasons 

that remain unclear. The main aim of the work presented here was to provide a uniform procedure for 

inferring RBP sequence specificity from binding data, and a resource of RBP-specific motifs similar to 

those available for transcription factors (e.g. [51]). For RBPs that have been extensively studied, the 

motifs that we identified de novo from the CLIP peaks conform with prior knowledge, though they differ 

in quantitative detail. Moreover, the de novo motifs have higher enrichment in the peaks compared to 

the known motifs, which may indicate context-specific contributions to the binding affinity. Overall, we 

identified enriched sequence motifs for 86 proteins, 60 of which are not represented in the ATtRACT 

database. In some cases, the most enriched motif in a given sample was not the one known to be 

bound by the corresponding protein, as observed before [35]. Repetitive motifs (G/G&C/C-rich) were 

occasionally found to be enriched in various samples, and this enrichment was also reproduced in 

replicate samples for the same protein. This raises the question of whether these motifs represent some 

sort of non-specific background in CLIP samples [24]. However, we did not find a larger overlap among 

the binding sites containing such motifs relative to binding sites of randomly chosen pairs of proteins 

(Fig. 6c). In fact, overlaying the pairwise overlap data with data on protein complex composition 

revealed compelling cases of high overlap for proteins of the same complex such as the spliceosome, 

the pre-rRNA processing complex, a paraspeckle-related complex and others (Suppl. Fig. 2). Thus, our 

analysis does not support the concept that general non-specific background in eCLIP leads to similar 

motifs for unrelated RBPs, though it will be interesting to investigate further the functional significance 

of the identified motifs. 
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Finally, our analysis of the motif-crosslink and motif-peak center distances revealed distinct RBP-

dependent patterns. Most striking was the peak in coverage observed over the AAEs in the hnRNPC 

eCLIP. HnRNPC binds (U)5 elements [7], while the read starts, indicative of crosslink positions, were 

located in a U-rich region upstream of the AAE. Our simulation of a CLIP experiment suggests that the 

hnRNPC data is quite unusual relative to data for other RBPs. HnRNPC has a large number of binding 

sites in Alu antisense elements that have a conserved consensus extending much beyond the U-rich 

element. Motif finding methods will identify this consensus as extremely enriched, more so than the 

much shorter (U)5 motif. The strong colocalization of the most frequent crosslink position within a peak 

and the RBP-specific motif supports the notion that the RT has a high propensity to stop extending the 

cDNA when it encounters the RNA-RBP crosslink [52]. However, our analysis also suggests that the 

readthough probability varies substantially between RBPs, being very low for hnRNPC, and relatively 

high for other proteins like PTBP1 and PUM2. This highlights the importance of a flexible but principled 

approach to binding site and motif identification, using a general measure of performance such as the 

motif enrichment score, as done here. This is because the configuration of RBP-RNA interactions varies 

across RBPs, influencing the nature of the reads that are captured in the CLIP experiment. Although 

beyond the scope of our present work, exploration of the ENCODE data set with a simulation-driven 

approach may yield further insight into the interactions of individual RBPs with their binding sites. 

Conclusions 

Our study provides a general, end-to-end solution for CLIP data analysis, starting from sequenced reads 

and ending in binding sites and RBP-specific sequence motifs. The tool compares favorably with the 

most broadly used tools to date, and further extends the type of reads that can be analyzed, to multi-

mapping and split-mapping reads. By applying RCRUNCH to the entire ENCODE set of samples 

available to date, we provide a compendium of reproducibly enriched sequenced motifs for 86 RBPs, 

of which only 26 are represented in extensive databases available today, such as ATtRACT. Finally, 

our simulations suggest that the architecture of RBP-RNA interactions imposes strong variation in the 

probability of identifying the precise position of crosslinking from CLIP data. 
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Methods  

Inputs to RCRUNCH 

RCRUNCH performs its analysis on at least one paired-end, stranded CLIP sample, and a 

corresponding background sample (which could be size-matched control (SMI) from eCLIP experiments 

or RNA-seq) both provided in fastq format. All necessary parameters for the run such as sample file 

names, adapters, fragment size, presence of UMIs etc. should be provided in a config file, a template 

of which can be found in the repository along with a test case. The tool also requires the genome 

sequence fasta file and Ensembl [53] gtf annotation of the corresponding organism, also given in the 

config file. RCRUNCH can additionally perform some optional analyses, one being the filtering out of 

sequences that correspond to specific non-coding RNA biotypes and the other being the enrichment 

analysis for known sequence motifs. If these options are chosen, paths to corresponding files should 

be provided in the config file, according to the instructions in the README file accompanying the 

software. 

Read preprocessing 

Adapter removal 

3’ and 5’ adapters for read1 and/or read2 specified in the config file are trimmed with Cutadapt [54].  

Alignment of reads to reference genome 

The alignment of reads to the reference genome is done with STAR [48], disabling the soft-clipping 

option. Some of the options to STAR differ from the standard value, to allow the alignment of short 

reads with only few mismatches (outFilterScoreMinOverLread 0.2, --outFilterMatchNminOverLread 0.2, 

outFilterMismatchNoverLmax 0.1). Multi-mapper reads (that map equally well - same number of errors 

- to multiple regions in the genome) can be included in the analysis by setting the ‘multimappers’ field 

in the config file to the desired number of equivalent mappings to consider for a read. In this case, reads 

that map to at most ‘multimappers’ locations in the genome are counted towards each of these locations 

with a weight of 1/’multimappers’. 

Removal of reads from abundant non-coding RNAs 
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Reads derived from some non-coding RNAs (e.g ribosomal (rRNAs), transfer (tRNAs) and small nuclear 

RNAs (snRNAs)) are abundant in many CLIP samples and thus believed to be largely contaminants 

[19]. Frequently, these abundant RNAs are also encoded in highly repetitive genomic loci. For these 

reasons RCRUNCH allows the option of selective removal of reads mapping to ncRNAs, based on the 

annotation from RNAcentral [55]. For this, the user will need to provide a gff3-formatted file for the 

appropriate species, which can be downloaded from RNAcentral. Specific biotypes of ncRNAs can be 

selectively removed by filling out the ‘ncRNA_biotypes’ option in the config. The names of reads that 

overlap in the genome with any of the selected ncRNAs specified by the user, are saved in a list. This 

is then used as input in the FilterSamReads function of the Picard software [56] to remove the reads 

from the alignment file that passed to downstream analysis. 

Removal of PCR duplicates 

PCR amplification is a well-established source of error in the estimation of transcript counts [57]. 

However, different CLIP protocols differ in whether and how they deal with this issue. Accordingly, 

RCRUNCH offers multiple options. The default is to not carry out any PCR duplicate removal, which 

can be specified by choosing ‘standard’ as the value for the ‘dup_type’ fields in the config file. 

Alternatively, RCRUNCH can take advantage of Unique Molecular Identifiers (UMIs), which are 

introduced by ligation of a DNA adapter containing a random oligonucleotide (the UMI or randomer) to 

the cDNA fragments, as done in eCLIP [19]. As the UMI is preserved during PCR amplification, it can 

be used to identify reads that are copies of the same initial fragment. To remove PCR duplicates we 

use UMI-tools [58], which assumes that the UMI sequences are suffices of the read names. However, 

data from the ENCODE project has the UMIs as prefixes to the read names. Thus, we use a specific 

rule to make this transformation, which is controlled by the field ‘format’ in the config file, and can be 

either ‘encode’ or ‘standard’. If standard is chosen, no reformatting occurs and it is up to the user to 

make sure the format of the fastq files they provide is compatible with UMI-tools processing. Finally, if 

the sample preparation did not include the addition of UMIs, RCRUNCH can still attempt this removal 

via the deduplication function of STAR [48] via filling out the ‘dup_type’ option with ‘duplicates’. If no 

duplicate removal is desired then the ‘dup_type’ can take the option ‘with_duplicates’. 

Additional preprocessing steps for the ‘RCRUNCH transcriptome’ approach 
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If the user chooses the transcriptomic mode of RCRUNCH (‘method_types’ as ‘TR’ in the config), a few 

additional steps are needed to identify reads that map across splice junctions. First, reads are aligned 

to the genome (as described above), and the alignments are used to remove PCR duplicates and 

possibly ncRNAs. The remaining read alignments for the foreground sample are used by the Salmon 

software [48,56,59] to select the most expressed transcript isoform for each gene and construct a 

dataset-specific transcriptome. The reads that were selected in the first step are aligned to the 

transcriptome, after which the genome and transcriptome alignment files are jointly analyzed to identify 

the highest scoring alignment (AS score in the bamfiles) for each read. If the AS score for the 

transcriptome alignment is greater than the AS score of the genome alignment -3, the alignment to the 

transcriptome is selected. We chose this criterion rather than requiring the transcriptome alignment 

score to be strictly better than the genome alignment score to conservatively assign the reads 

preferentially to the transcriptome. Peaks are then detected either on the genome or the transcriptome, 

treating individual transcripts as we treat chromosomes. This approach allows us to detect and properly 

quantify RBP binding sites in the vicinity or even spanning splice junctions.  

The RCRUNCH model for the detection of RBP binding regions 

Genome/transcriptome-wide identification of peaks corresponding to individual binding sites for an RBP 

is time-consuming. For this reason RCRUNCH implements a two-step process, as previously done for 

analyzing chromatin immunoprecipitation data [12]. That is, broader genomic regions that are enriched 

in reads in the foreground (CLIP) sample compared to the background are first identified, and then 

individual peaks are fitted to the CLIP read coverage profiles within the selected windows. More 

specifically, we tabulate the number of fragments that map to sliding windows of a specific size (e.g 300 

nucleotides) both in the foreground (CLIP) and the background (e.g. SMI) sample. For windows that 

are not enriched in binding, fluctuations in the number of reads across replicate samples have been 

found to be well-described by the convolution of a log-normal distribution due to multiplicative noise in 

the sample preparation and Poisson sampling noise [12]. The frequency of reads in windows with no 

RBP binding should in principle be the same between the foreground and the background sample. 

However, as in the foreground sample reads are expected to come largely from bound regions, the 

unbound regions will be somewhat depleted of reads. Including a correction term µ to account for this 

depletion, the probability of the data for an unbound region can be modeled as 
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𝑃!(𝑛	|	𝑁,𝑚,𝑀, 𝜎,µ) 	= 	
1

-2𝜋(2𝜎2 	+ 	1/𝑛	 + 	1/𝑚	)
𝑒𝑥𝑝4−

((𝑙𝑜𝑔(	𝑛/𝑁	) 	− 	𝑙𝑜𝑔(	𝑚/𝑀	) 	− 	µ)2

2(2𝜎2 + 	1/𝑛	 + 	1/𝑚	) 9, 

where 𝑛 is the number of reads in a given window (of a total of 𝑁 reads) in the foreground sample, 𝑚 is 

the number of reads (of a total of 𝑀) in the background sample, 2𝜎2 is the variance due to multiplicative 

noise in the two samples, and 1/𝑛 and 1/𝑚 are the variances due to the Poisson noise. For the 

probability of read counts due to binding, we assume a uniform distribution over the range 

corresponding to the maximum and minimum difference in read frequency between foreground and 

background samples across all windows: 

𝑃"(𝑛	|	𝑁,𝑚,𝑀) =
1

#!"#$#!$%
, where 𝛿 = 𝑛/𝑁−𝑚/𝑀. 

Finally, the probability of observing the 𝑛 reads is given by a mixture model, of the window representing 

a background region (with probability 𝜌) or a region of RBP binding (with probability 1− 𝜌): 

𝑃(𝑛|𝑁,𝑚,𝑀, 𝜎,µ, 𝜌) 	= 	𝜌𝑃!(𝑛	|	𝑁,𝑚,𝑀, 𝜎,µ) 	+	(1	 − 	𝜌)𝑃"(𝑛	|	𝑁,𝑚,𝑀), 

We fit the parameters 	𝜌, 𝜎,µ	 by expectation-maximization (Detailed method described in [12], 

Supplemental material, section 1.9). Regions that are found to be enriched in the foreground sample 

(based on an FDR threshold and a corresponding z-score threshold) are analyzed individually with a 

second mixture model, to fit peaks corresponding to the individual binding events. The z-scores of these 

peaks are recalculated and those that still have a high enough z-score are kept as significant 

(Supplementary, RCRUNCH model). The regions that are considered for the peak fitting might also 

have slightly lower z-scores. This aims to be more inclusive and reduce false negatives (cases where 

the region has significant peaks close to high background regions). 

De novo motif identification and enrichment calculation 

For each peak we extract the region covering 25 nucleotides (nts) upstream and 25 nts downstream of 

the peak center in the case of the RCRUNCH peak center approach (option ‘peak_center’ in the config). 

For RCRUNCH crosslink we extract the same type of window, centered not on the peak center but 

rather on the position where most read starts within the peak are located. To avoid double-counting of 

motifs, we merge overlapping peaks, obtaining thus a set of non-redundant peaks. To estimate the 

enrichment of known and de novo motifs we used the MotEvo software [25] as described in [12]. 
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Namely, a subset of the peaks is used to train a prior probability of non-specific binding, and the motif 

enrichment is then estimated from the test set, using this prior. We carried out this procedure 5 times 

(parameter ‘runs’, can be modified by the user), to both estimate the mean enrichment for known motifs 

from the ATtRACT database [20], and to identify de novo motifs (represented as positional weight 

matrices, PWMs) of various sizes (provided by the user, default values: 6, 10, 14) that are enriched in 

the foreground peaks relative to unbound sequences using PhyloGibbs [60]. As unbound sequences 

we use those genomic regions obtained in the CLIP experiment that had the lowest z-scores, meaning 

that they were depleted in CLIP reads. We sampled 20 background sequences of equal size (50nts) for 

each foreground peak. For each motif length, we extracted the top two motifs in the order of cross-

validated enrichment and trimmed off positions from the boundaries of the motif until the information 

score became at least 0.5. For both the known motifs, as well as the de novo motifs we report the motif 

and corresponding enrichment for each of the 5 runs, as the motif can vary to some extent from run to 

run. The de novo motifs from all these runs are then collected together in an extra step and along with 

the known motifs, the enrichment over all the significant peaks is estimated (in this step there cannot 

be any prior estimate).  

Benchmarking peak finder tools 

We compared RCRUNCH with the recently developed and broadly used tools clipper [19], PURE-CLIP 

[24] and omniCLIP [13]. To reliably and reproducibly perform this analysis we created a separate 

snakemake workflow. For PURE-CLIP and omniCLIP, docker images [61] were either created or used 

from existing repositories. As we could not implement clipper in the same type of workflow as the other 

tools, we relied on the bed files of clipper-predicted binding sites from each sample provided by 

ENCODE. To benchmark the tools we used eCLIP data generated for some RBPs whose binding motifs 

are well-known: hnRNPC [62,63], IGF2BP3 [62,64], PTBP1 [65,66], PUM2 ([67]) and RBFOX2 

[66,68,69]. For PURE-CLIP and omniCLIP the eCLIP data had to be pre-processed separately, as the 

tools use alignments as input. To facilitate the comparison across methods, we used the pre-processed 

data from RCRUNCH. The execution of RCRUNCH was done using some specific options as explained 

in the RCRUNCH workflow description. Firstly, only unique mappers were aligned to the genome. PCR 

deduplication was performed, using the UMIs that eCLIP experiments contain. We did not remove any 

reads mapping to ncRNAs, and we used the RCRUNCH genomic approach. Each of the different peak 
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calling methods was applied, and the top 1000 peaks were extracted for the motif analysis, irrespective 

of FDR threshold. The motif analyses are included as a post-processing part of RCRUNCH. For 

RCRUNCH, both the ‘crosslink’ and ‘peak center’ positions were used as anchors for extending by 25 

nts on either side and obtaining the sequences for the motif analysis. For the other methods, we used 

the method-predicted crosslink positions as anchors for extracting similar regions of 50 nts in length. 

For all methods overlapping peaks were merged to ensure non-redundancy in the sequence set. To 

ensure comparability, we used the same set of sequences with lowest z-scores as background for motif 

enrichment estimation in the peaks predicted by all samples.  

Calculation of peak agreement between replicate samples and between methods 

To calculate the peak agreement between methods and across replicates we used the jaccard distance 

metric, defined as: 

𝐴(𝑛𝑡𝑠1, 𝑛𝑡𝑠2) 	= 	
	&'()1 ∩ '()2&

'()1	+	'()2	$	&'()1∩ 	'()2&
, where 𝑛𝑡𝑠1and 𝑛𝑡𝑠2 are the total number of nucleotides 

contained in the top number of peaks chosen for sample 1 and sample 2, respectively.  

Calculation of motif similarity 

We defined the motif similarity M of two sequence motifs 𝑚1 and 𝑚2, 𝑀(𝑚1, 𝑚2) =
2,(.1,.2)

,(.1,.1)+,(.2,.2)
, 

where 𝑆(𝑚1, 𝑚2) = 𝑚𝑎𝑥1[𝐼(𝑚1, 𝑚2, 𝑑)] and 𝐼(𝑚1, 𝑚2, 𝑑) = 𝛴2𝑚1(𝑖)	𝑚2(𝑖 − 𝑑) is the inner product of the 

motifs with the second motif being at offset 𝑑 compared to the first motif [12]. This measure allows for 

the comparison of motifs of different lengths, and takes values between 0 (when the base frequency 

vectors are orthogonal) and 1 (when the two motifs are identical).  

RCRUNCH analysis of ENCODE eCLIP data 

We applied the RCRUNCH workflow to all of the ENCODE eCLIP datasets, consisting of 220 distinct 

eCLIP experiments with 143 different RBPs in two cell lines (K562, HepG2). As for the benchmarks, we 

used reads mapping uniquely to the genome, performed read deduplication based on the UMIs, and 

did not exclude reads mapping to ncRNAs. To identify the RBP-specific binding motifs, we used the top 

peaks for each RBP, based on FDR threshold < 0.1. Agreement across replicates and motif agreement 

with existing knowledge were the main metrics of performance evaluation.  
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RCRUNCH variants 

To evaluate the RCRUNCH variants, we used the same samples that were used for benchmarking the 

computational methods. The pre-processing and post-processing steps (motif analysis) were the same 

as those implemented in the benchmark analysis, but the selection of reads, regions and peaks differed. 

Specifically, in the RCRUNCH transcriptome approach we first construct a reference transcriptome 

composed of the most abundant isoform of each gene in the CLIP data, and use these transcripts as 

‘pseudo-chromosomes’ in the mapping process. We then map reads in an unspliced manner to both 

this reference transcriptome and to the genome and retain the mappings with the highest score. In 

cases when the alignments to transcriptome and genome are very close in score (transcriptome - 

genome scores >= -3 points), we give precedence to the transcriptome mappings and ignore the 

genomic ones. We then apply the standard RCRUNCH (see section: The RCRUNCH model for the 

detection of RBP binding regions). In RCRUNCH multi-mappers we consider not only reads that map 

uniquely to the genome, but also those that have up to 50 of equally good mappings (see section: 

Alignment of reads to reference genome). For RCRUNCH RNA-seq background we simply used RNA-

seq samples that are provided by ENCODE for the cell lines (K562, HepG2) used for CLIP. These were 

treated the same as the SMI sample.  
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AAE: Alu antisense element 

AS: alignment score 

cDNA: complementary DNA  

ChIP: chromatin immunoprecipitation 

CLIP: crosslinking and immunoprecipitation (CLIP) 

DNA: deoxyribonucleic acid 
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FDR: False discovery rate 

mRNA: messenger RNA 
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RBDs: RNA-binding domains 

RBPs: RNA-binding proteins 

RIC: RNA-interactome capture 

RNA: ribonucleic acid 

RNA-seq: RNA sequencing 

RNPs: ribonucleoprotein complexes 

UMI: unique molecular identifier  

rRNA: ribosomal RNA 

tRNA: transfer RNA 

snRNA: small nuclear RNA 

SMI: size-matched input 
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Supplementary data 

 
 
Figure S1. Simulation of a CLIP experiment. Upper schema: an RBP binding to its cognate motif, 

(black box), crosslinking to the RNA at the site indicated by the blue arrow, and protecting an extended 

region of the target (shown in gray) from digestion. From right to left, the relative position of the crosslink 

is changed relative to the motif position. The different columns correspond, as the schema shows, to 

different positions of the crosslink relative to the motif position. Each row corresponds to different 

probabilities of readthrough, varying from lower to higher from top to bottom. 
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Figure S2. Agreements of peaks identified between individual ENCODE samples. The agreement 

is calculated as the Jaccard distance of the nucleotides in the peaks, where the intersection of two sets 

of peaks is the number of nts covered in both sets, while the union is the number of nts covered in at 

least one of the two sets. The color range is capped at a similarity of 0.4 to make the clusters more 

easily distinguishable. The top peaks are taken according to the FDR threshold (0.1), extending by 20 

nts upstream and downstream from the crosslink site. Only samples with more than 100 peaks are 

included in this plot. The membership of RBPs in complexes is taken into account (based on CORUM 

[70]), by multiplying the value of the agreement by 1 if two proteins are known to participate in the same 

complex, and -1 otherwise. Resulting negative values are shown in blue, while positive values are 

shown in red. That is, shown in red are peak agreements of samples that either correspond to the same 
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protein, or to proteins known to interact with each other in complexes. On the right, a few clusters of 

samples containing proteins that are known to take part in complexes are highlighted.  

 

Figure S3. Similarity of de novo predicted motifs of different RBPs. Clustermap of de novo motif 

similarity of all RBPs covered in the ENCODE dataset. Similarity is calculated as described in the 

methods section (Calculation of motif similarity), taking for each RBP the motif that best explains all of 

the samples corresponding to that RBP. On the left, a representation of the nucleotide composition of 
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the motif is shown, each column corresponding to one nucleotide, while the color indicates the relative 

frequency of that nucleotide averaged over all positions of the PWM. The RBP names are colored 

according to whether they have a motif (red) or not (blue) in ATtRACT. 

Figure S4. RCRUNCH results for all ENCODE eCLIP data currently available. a. Cumulative 

distribution of the number of significant binding sites detected per experiment (FDR threshold=0.1, in 

black). Cumulative distributions are also shown separately for samples corresponding to proteins with 

a known binding motif (gray) and to proteins for which no known motif is available in ATtRACT, but one 

was found by RCRUNCH (blue). b. Left: Distribution of enrichment scores for the de novo identified 

motifs in RCRUNCH crosslink (blue) and RCRUNCH peak center peaks, for RBPs that are not 
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represented in ATtRACT. Right: Venn diagram illustrating the type of motifs identified across samples. 

We distinguished three categories of samples: for which (1) no significant or fewer than 20 significant 

peaks were found and thus no motif was searched/reported, (2) only a de novo motif was found and (3) 

a de novo motif was found and a motif is already known. c. Enrichment of the de novo motif predicted 

in the RCRUNCH-identified peaks from each sample, versus the enrichment score of the known motif 

for the protein assayed in the respective experiment. Marginal distributions of the known motif 

enrichments in RCRUNCH crosslink (blue) and RCRUNCH peak center (red) peaks are also shown. d. 

Cumulative density function of pairwise similarity scores for random pairs of known RBP-binding motifs 

(gray), known and de novo motifs identified from RCRUNCH crosslink sites (blue), known and de novo 

motifs identified for RCRUNCH peak center sites of individual RBPs (red). The same known motif was 

used for a given protein. e. Relationship between the similarity of de novo motifs inferred from replicate 

experiments and the minimum number of binding sites identified in these replicates. Experiments (each 

corresponding to an RBP and cell line) are colored according to whether (green) or not (blue) a motif 

was found in ATtRACT for the assayed RBP. f. Relationship between the similarity of de novo motifs 

identified in replicate experiments for a given RBP and the similarities of these de novo motifs and the 

known motif of the corresponding RBP. Lines connect replicate samples. 
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Figure S5. Binding events spanning splice junctions. a. Scatterplot of average fraction of peaks 

predicted by RCRUNCH (genomic approach) that overlap with annotated splice junctions. The samples 

are from ENCODE and the average is for sample replicates and cell lines. b. Scatterplot showing the 

fraction of the peaks that overlap a junction (e.g 3’ss) and also have a “pair” peak which overlaps the 

other side of the same junction (5’ss).  
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