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Abstract 

Although previous studies point to qualitative similarities between working memory (WM) and 

attention, the degree to which these two constructs rely on shared neural mechanisms remains 

unknown. Focusing on one such potentially shared mechanism, we tested the hypothesis that 

selecting an item within WM utilizes similar neural mechanisms as selecting a visible item via a 

shift of attention. We used fMRI and machine learning to decode both the selection among items 

visually available and the selection among items stored in WM in human subjects (both sexes). 

Patterns of activity in visual, parietal, and to a lesser extent frontal cortex predicted the locations 

of the selected items. Critically, these patterns were strikingly interchangeable; classifiers trained 

on data during attentional selection predicted selection from WM, and classifiers trained on data 

during selection from memory predicted attentional selection. Using models of voxel receptive 

fields, we visualized topographic population activity that revealed gain enhancements at the 

locations of the externally and internally selected items. Our results suggest that selecting among 

perceived items and selecting among items in WM share a common mechanism. This common 

mechanism, analogous to a shift of spatial attention, controls the relative gains of neural 

populations that encode behaviorally relevant information.  

 
Keywords: attention, working memory, selection, fMRI, decoding 
 

Significance statement 
How we allocate our attention to external stimuli that we see and to internal representations of 

stimuli stored in memory might rely on a common mechanism. Supporting this hypothesis, we 

demonstrated that not only could patterns of human brain activity predict which items were 

selected during perception and memory, but that these patterns were interchangeable during 

external and internal selection. Additionally, this generalized selection mechanism operates by 

changes in the gains of the neural populations both encoding attended sensory representations 

and storing relevant memory representations.  
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Introduction  
Although theories of attention and working memory (WM) often emphasize their 

interrelatedness (Awh & Jonides, 2001; Chun, 2011; Cowan, 1998a; Gazzaley & Nobre, 2012; 

Oberauer, 2002), they are typically studied in isolation. Several lines of empirical evidence 

highlight commonalities between attention and WM. For example, attention and WM share 

similar capacity and resource limitations (Cowan, 1998b; Marois & Ivanoff, 2005; but see 

Fougnie & Marois, 2006) and engage similar brain regions (Awh & Jonides, 2001; Ikkai & 

Curtis, 2011; Jerde et al., 2012; LaBar et al., 1999; Pollmann & von Cramon, 2000; Ranganath & 

D’Esposito, 2005). Moreover, the process of rehearsing items (Awh et al., 1999, 2000; Awh & 

Jonides, 2001; Jha, 2002; Katus et al., 2014; Postle et al., 2004; Shen et al., 2015; Souza et al., 

2020; Theeuwes et al., 2005) and suppressing distracting information (Gazzaley et al., 2005; 

Sreenivasan & Jha, 2007) in WM may be attention-based. In turn, representations in WM can 

guide how we attend to sensory information (Bahle et al., 2020; Gayet et al., 2013; Olivers et al., 

2006; Sasin & Fougnie, 2020; Williams et al., 2022; Woodman & Luck, 2007). However, since 

attention and WM are complex processes involving multiple cognitive operations, it remains 

unclear which underlying components may be shared between the two. Here we focus on the 

process of selection, which refers to how task-relevant information is prioritized over task-

irrelevant information in both attention and WM. Critically, selection helps mitigate the strict 

resource or capacity limitations of attention and WM (Marois & Ivanoff, 2005).  

 

The notion that a common process both selects among external sensory information and among 

internal WM representations is intriguing because it appeals to an intuitive common mechanism 

used to highlight relevant information. Nonetheless, there is little evidence linking attentional 

selection and WM selection. Researchers have intensively investigated attentional selection 

using pre-cueing paradigms, where a cue indicates which forthcoming stimulus to attend 

(Eriksen & Yeh, 1985; Murphy & Eriksen, 1987; Posner, 1980). Behaviorally, pre-cueing 

benefits the processing of selected information (Carrasco et al., 2000; Pestilli et al., 2009) at the 

cost of the processing of unselected information (Pestilli et al., 2007; Pestilli & Carrasco, 2005). 

Both neurons (Bisley & Goldberg, 2003; Bushnell et al., 1981; Luck et al., 1997; Reynolds et al., 

2000) and voxels (Gandhi et al., 1999; Hopfinger et al., 2001; Ikkai & Curtis, 2008; Liu et al., 

2005; Serences & Boynton, 2007; Silver et al., 2007) with receptive fields that match the 
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locations of pre-cued items exhibit increased activity relative to those that match the locations of 

unattended items. Theories of selective attention, including computational models, posit that the 

benefits of attention stem from gain enhancements within the populations of neurons encoding 

selected task-relevant stimuli (Carrasco, 2011; Reynolds & Heeger, 2009). To study the process 

of selection in WM, researchers have used retro-cueing experimental paradigms, where a cue 

presented after WM items have been encoded signifies which memorandum will later be tested 

(Griffin & Nobre, 2003). Behaviorally, the quality of memory is better for the retroactively cued 

item compared to non-cued items (Griffin & Nobre, 2003; Landman et al., 2003; Li et al., 2021; 

Souza et al., 2016). Neurally, WM representations are enhanced within the neural populations 

encoding the selected WM item (Ester et al., 2018; Lepsien et al., 2011; Sprague et al., 2016; 

Yoo et al., 2022). 

 

We directly tested the hypothesis that a common neural mechanism underlies attentional and 

WM selection using fMRI and machine learning. Remarkably, classifiers trained on each type of 

selection were interchangeable in predicting the other, providing novel quantitative evidence for 

theories that posit a shared mechanism (Chun et al., 2011). In addition, using models of voxel 

receptive fields to visualize population activity, we observed elevated responses corresponding to 

the locations of the externally and internally selected items, suggesting that the shared selection 

mechanism involves differential gain. 

 

Materials and Methods 

Participants  
Eleven neurologically healthy participants (ages 23-53; 6 females) with normal or corrected-to-

normal vision participated in this experiment. The sample size was determined using previous 

fMRI studies comparing selection on perceptual and WM representations (Nobre et al., 2004; 

Tamber-Rosenau et al., 2011), and is equal to or larger than previous studies that compared 

within- and across-condition decoding performance of classifiers trained on fMRI data (Jerde et 

al., 2012; Kwak & Curtis, 2022; Rademaker et al., 2019), as well as those that used population 

receptive field-weighted reconstruction analysis (Kwak & Curtis, 2022; Yoo et al., 2022). 

Participants provided written informed consent in accordance with procedures approved by the 

Institutional Review Board at New York University. 
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Experimental design 

We generated stimuli and interfaced with the MRI scanner, button box, and eye tracker using 

MATLAB software (The MathWorks) and Psychophysics Toolbox 3 (Brainard, 1997). Stimuli 

were presented using a PROPixx DLP LED projector (VPixx) located outside the scanner room 

and projected through a waveguide and onto a translucent screen located at the head of the 

scanner bore. Participants viewed the screen at a total viewing distance of 63 cm through a 

mirror attached to the head coil. The display was a circular aperture with an approximately 32-

dva (degrees of visual angle) diameter. A trigger pulse from the scanner synchronized the onsets 

of stimulus presentation and image acquisition.  

 

Participants performed a pre-cue task and a retro-cue task in the two scanning sessions. The task 

procedures are illustrated in Figure 1A. The fixation symbol in both tasks was a centrally-

presented filled circle with a 0.3-dva radius. Subjects were required to maintain fixation in the 

center of the screen. Each pre-cue trial began with a 750ms colored central fixation (0.4-dva 

radius) with three black placeholders. The color of the fixation indicated the target location in the 

upcoming stimulus screen. The distance from the screen center to the center of each placeholder 

was 6 dva, and the diameter of each placeholder was 8 dva. The pre-cue was followed by a 

1500ms ISI, then by the stimulus for 1500ms. Stimulus presentation consisted of three Gabor 

patches, one in each placeholder. The three placeholders were in three different colors, and 

subjects had to select the target Gabor in the placeholder with the pre-cued color. The three 

colors used in each trial were randomly selected from four colors (RGB = [255, 0, 0], [0, 200, 0], 

[0, 0, 255], [255, 165, 0]) and randomly distributed across the three locations (Left, Right, 

Bottom) so that the target location could not be predicted by the representations of the pre-cue. 

The stimulus presentation was followed by a 750ms mask to diminish iconic memory (Sperling, 

1960), then by a 3000ms delay. This was followed by the presentation of a probe, which 

consisted of a circle and an oriented line. The length of the line and the diameter of the circle 

were both 6 dva. Subjects had to judge if the line was rotated clockwise or counterclockwise 

compared to the orientation of the selected Gabor. We adjusted the difference between the 

orientations of target and probe to titrate the behavioral performance to approximately 80%. 

Specifically, the difference between the orientations of the probe and target started at 20° and 
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either increased by 1° after each error trial or decreased by 1° after four continuous correct trials 

(cf. Levitt, 1971). Subjects responded by pressing ‘1’ for clockwise or ‘2’ for counterclockwise. 

The probe screen lasted for 2250ms regardless of subjects’ responses. Subjects then received 

feedback consisting of the selected Gabor overlaid with the probe. The color of the probe 

indicated whether the response was correct (green: correct; red: incorrect). The intertrial interval 

lasted for 9750ms. Each retro-cue trial began with a 1500ms stimulus screen, which contained 

three Gabor patches in three black placeholders. The stimulus was followed by a 750ms mask 

and a 1500ms ISI. Following the ISI, subjects saw a retro-cue consisting of three colored 

placeholders surrounding a colored fixation. The color of the fixation point matched the color of 

one of the placeholders and indicated the location of the target Gabor. The colors on each trial 

were randomly selected from the four possible colors (see above) and randomly distributed 

across the three locations. The delay, probe, feedback, and intertrial interval were the same as 

those in the pre-cue task. Each subject completed two scanning sessions consisting of 10 runs 

each, with five pre-cue runs and five retro-cue runs presented in an interleaved order. Each run 

contained 18 trials, yielding 180 trials per condition (90 per session). Each run started with 13 

dummy TRs (9750ms) of a central fixation screen to allow for magnetic field stabilization.  

 

Eye movements 

Eye position coordinates (x,y) and pupil size were recorded at 500Hz in the scanner using an 

EyeLink 2k (SR Research, Ontario, Canada). Prior to each scanning session, eye position was 

calibrated using a 9-point calibration. Eye data was preprocessed in Matlab using the freely 

available iEye toolbox (github.com/clayspacelab/iEye_ts) using the following steps. (1) Data was 

transformed from raw pixel screen coordinates into dva. (2) Extreme values associated with loss 

of track and blinks were removed. (3) Data was smoothed with a Gaussian kernel (5 ms SD). (4) 

Each trial was drift-corrected by taking the mean over known epochs when the participant was 

fixating (the whole delay in pre-cue task, and the first delay before the cue in the retro-cue task) 

and subtracting that value from the entire trial.  

 

fMRI Methods 

MRI data acquisition. Participants underwent three fMRI scanning sessions - two for the main 

selection experiment and one for retinotopic mapping. All data were acquired at the NYU Center 
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for Brain Imaging on a 3T Siemens Prisma Scanner with a 64-channel head/neck coil. Functional 

scans for the selection experiment were acquired using an EPI pulse sequence with 44 slices and 

a voxel size of 2.53 mm (4x simultaneous-multi-slice acceleration; FoV = 200 x 200 mm, no in-

plane acceleration, TE/TR = 30/750 ms, flip angle = 50°, bandwidth = 2290 Hz/pixel, 0.56 ms 

echo spacing, P → A phase encoding). Data for the retinotopic mapping session was acquired in 

a separate session at a higher resolution, with 56 slices and a voxel size of 2.03 mm (4x 

simultaneous multi-slice acceleration, FoV = 208 x 208 mm, no in-plane acceleration, TE/TR = 

36/1200 ms, flip angle = 66°, bandwidth = 2604 Hz/pixel, 0.51 ms echo spacing, P → A phase 

encoding). To correct for local spatial distortions in the functional data offline, we estimated a 

field map of the field inhomogeneities by acquiring pairs of spin echo images with normal and 

reversed phase-encoding directions with an identical slice prescription to the functional data and 

no simultaneous-multi-slice acceleration (TE/TR = 45.6/3537ms, 3 volumes per phase encoding 

direction). To enable precise localization of functional data, we collected T1-weighted whole-

brain anatomical scans using a MP-RAGE sequence with 192 slices and a voxel size of 0.83 mm 

(FoV = 256 x 240 mm, TE/TR = 2.24/2400ms, flip angle = 8°, bandwidth = 210 Hz/Pixel) for 

each participant.  

 

MRI data preprocessing. T1-weighted anatomical images were segmented and cortical surfaces 

were constructed using the recon_all command in Freesurfer (version 6.0). Functional data were 

preprocessed with custom scripts using functions provided by AFNI. First we applied the B0 field 

map correction and reverse-polarity phase-encoding (reverse blip) correction. Next, we 

performed motion correction using a 6-parameter affine transform, aligned the functional data to 

the anatomical images, and projected the data to the cortical surface. Spatial smoothing (5 mm 

FWHM on the cortical surface) was applied to the retinotopic mapping data, but no explicit 

smoothing was applied to the data from the selection experiment. Data from the selection 

experiment was re-projected into volume space, which incurs a small amount of smoothing along 

vectors perpendicular to the cortical surface. Finally, we removed linear trends from the time 

series data, and then normalized (z-score) across all the time points within each run. 

 

Estimating selection-related BOLD activity. To identify activity related to selection in both our 

tasks, we used the 3dDeconvolve and 3dLSS commands in AFNI (https://afni.nimh.nih.gov/) to 
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implement a least-squares-separate general linear model (LSS-GLM) to the preprocessed blood-

oxygen-level-dependent (BOLD) time series of the functional data. LSS-GLM has been shown 

to isolate single-trial activity in rapid event-related designs (Arco et al., 2018; Mumford et al., 

2012). In the pre-cue condition, we modeled the selection, delay, and response events. The 

stimulus event was not modeled because it overlapped with the selection event. Based on 

previous estimates that symbolic central cues direct selection within 300ms (Carrasco, 2011), we 

set the duration of the selection event equal to one TR (750ms). The retro-cue model was similar 

to the pre-cue model, except the selection event was time-locked to the 750ms retro-cue screen. 

Each event was modeled as a boxcar with the duration of the event convolved with a 

hemodynamic response function (HRF; GAM(10.9, 0.54) in 3dDeconvolve). The beta 

coefficients for the selection event in each trial were estimated separately, resulting in 180 GLM 

iterations for each task condition. In each iteration, we modeled the selection event on the trial of 

interest with a single regressor and the selection events on all other trials with a separate 

regressor. The delay and response events were modeled with one regressor each. Thus, the GLM 

for each task condition included 4 regressors on each iteration (selection for the trial of interest, 

selection for all other trials, delay, and response). In addition, the model included six regressors 

for head motion and four regressors for data drift. The procedure was repeated with each trial in 

turn serving as the trial of interest, resulting in 180 selection betas per condition. Selection betas 

were normalized via z-scoring on a voxel-by-voxel and run-by-run basis before further analysis.  

  

Population receptive field mapping 

Population receptive field (pRF) mapping was conducted using the procedures described in 

(Mackey et al., 2017). Participants maintained central fixation while covertly tracking a bar 

aperture that swept across the screen in discrete steps in one of four orientations/directions: 

oriented vertically and traveling from left to right or right to left, or oriented horizontally and 

traveling from top to bottom or bottom to top. The bar aperture was divided into three 

rectangular segments (a central segment and two flanking segments) of equal sizes, each 

containing a random dot kinematogram (RDK). Participants’ task was to identify which of the 

two flanking RDKs had the same direction of motion as the central RDK. The dot motions of all 

the three segments changed with each discrete step. Participants reported their answer with a 

button press. We adjusted the coherence of the RDK using a staircase procedure to maintain 
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accuracy at ~75%. Each session contained eight to nine runs, each 5-minute run consisted of 12 

sweeps, and each sweep consisted of 12 discrete steps (one step every 2s). The order of the four 

sweep directions was randomized within each run.  

 

We fit the preprocessed BOLD time series for each voxel for each participant using the 

compressive spatial summation model (Kay et al., 2013) �̂�(𝑡)  =  𝛾 𝑆(𝑥, 𝑦)𝑁((𝑥, 𝑦), I𝜎)𝑑𝑥𝑥𝑦  

where 𝑆 is a binary stimulus image (1 in where the stimulus was presented and 0 in where the 

stimulus was not presented), 𝑁((𝑥, 𝑦), 𝐈𝜎) is a normal distribution with mean (𝑥, 𝑦) and variance 𝐈𝜎 , where I is a two-dimensional identity matrix describing a circular, symmetric Gaussian. The 

parameters of this model are the voxel’s receptive field center (𝑥, 𝑦) in dva, standard deviation 𝜎 

in dva, amplitude 𝛾 , and compressive spatial summation factor 𝑛  (where 𝑛 ≤ 1). Parameters 

were fit with a GPU-accelerated course grid search over parameters, followed by a local 

optimization method.  

 

Voxels’ preferred phase angle (arctan( )) and eccentricity ( 𝑥 + 𝑦 ) were visualized on the 

cortical surface. To define retinotopically organized regions of interest (ROIs), we restricted our 

analysis to voxels with greater than 10% response variability explained by the pRF model. We 

then drew ROIs on each participant’s cortical surface using reversals of the voxels’ preferred 

phase angle as boundaries between neighboring visual regions (Mackey et al., 2017). We defined 

four ROIs in anterior and dorsal visual areas (V1–V3AB), four ROIs along the caudal–rostral 

intraparietal sulcus (IPS0–IPS3), and two ROIs along the dorsal-ventral precentral sulcus region 

(sPCS and iPCS), each with a full visual field representation (see Figure 2A for an illustration of 

the ROIs for one subject). Further fMRI analyses were conducted in ROIs that combined regions 

which share a foveal confluence (V1, V2, and V3; IPS0 and IPS1; IPS2 and IPS3; Mackey et al., 

2017; Wandell et al., 2005, 2007). We also combined voxels in sPCS and iPCS into a single PCS 

ROI in order to roughly match the size of our other ROIs, although the results were comparable 

for the individual PCS ROIs.  

 

Decoding analyses 
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We examined whether the machine learning algorithm trained by selection-related activity in the 

pre-cue task can decode the internally selected location in the retro-cue task, and vice versa. To 

decode the selected location, we trained sparse multinomial logistic regression (SMLR) 

classifiers in Matlab using the Princeton MVPA toolbox 

(http://www.csbmb.princeton.edu/mvpa). The SMLR classifier is widely used to decode multi-

class conditions (Krishnapuram et al., 2005; Pereira et al., 2009). The z-scored beta coefficients 

for the selection event in each trial estimated using the LSS-GLM were used to train the 

classifiers. First, the classifiers were tested on the dataset in the same task condition as training 

(i.e., within-condition decoding) to examine if the neural representations we extracted could 

predict the selected location (see an illustration in Figure 1C). Since there were three possible 

locations, we used a leave-three-trials-out cross-validation scheme, in which the classifier was 

trained on the data from all but three trials (one for each location) and then tested on the left-out 

trials in one task condition for each cross-validation fold, resulting in 60 cross-validation folds. 

Decoding accuracy was computed by comparing the true location labels with the classified labels 

across the 60 cross validations. Next, the classifier was trained on all of the data from one task 

condition and tested on each trial from the other task condition (i.e., across-condition decoding) 

to examine if the neural representations were comparable in the two task conditions. To increase 

the reliability of our decoding estimates, we repeated the entire procedure 10 times, taking the 

mean of the decoding accuracy across iterations as the final within- and across- condition 

decoding accuracy. 

 

To estimate the BOLD activity for selection and memory phases in the task, we computed the 

time series of decoding performance. We segmented the z-scored preprocessed BOLD time 

series from 0 to 21s (i.e., the end of ITI) relative to the trial onset, and trained classifiers 

separately using the BOLD signal averaged across every 2TRs. One set of classifiers was trained 

to decode target location, signifying the selection process, while the other set of classifiers was 

trained to decode target orientation, signifying the maintenance process. Decoding of the target 

location was conducted using the leave-three-trials-out cross-validation scheme described above, 

while decoding of target orientation was carried out using a leave-six-trials-out cross-validation 

scheme, corresponding to the six possible Gabor orientations.  
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Estimating population-level activity modulation 

We tested whether external and internal selection both cause an activity increase in voxels whose 

receptive fields match the selected item’s location relative to the unselected items’ locations. To 

estimate the response of the neural populations at the selected location, we reconstructed a pRF-

weighted map using the selection-related activity. This procedure essentially projects voxel 

activity in each ROI to visual space in screen coordinates (Kok & de Lange, 2014; Kwak & 

Curtis, 2022; Yoo et al., 2022). In each ROI, for every selected location (left, right, bottom) in 

each task condition (pre-cue, retro-cue), we created a reconstructed map using  𝑤 ((𝑥, 𝑦), 𝐈𝜎)𝛽  

where 𝑤 ((𝑥, 𝑦), 𝐈𝜎) is the weight associated with the 𝑖th voxel at location (𝑥, 𝑦), and 𝛽  is the 

averaged GLM-acquired selection period 𝛽 at voxel 𝑖 in trials with the same selected location. 

We defined 𝑤  as the receptive field of voxel 𝑖, which was a two-dimensional Gaussian with 

mean (𝜇 , 𝜇 )  and variance 𝐈𝜎 , where 𝐈  is a two-dimensional identity matrix describing a 

circular, symmetric Gaussian (see Figure 3A for an illustration). For each pRF-weighted 

selection activity map, we calculated the mean of selection-related activity in the selected and 

non-selected locations, and averaged across three target location conditions. The activity 

difference between the selected and non-selected locations was taken as the activity modulation 

due to selection.  

 

Relationship between decoding results and population-level activity modulation 

To investigate the relationship between our decoding results and population reconstructions, we 

conducted a median split of trials based on the magnitude of population-level modulation for the 

selected location and compared the relative classifier activation for the selected location for low- 

and high-modulation trials. Classifier activation for each spatial location was calculated as the 

sum over voxels of the classifier training weights assigned to each voxel multiplied by the 

BOLD activity on a given trial, and was normalized to sum to 1 over the three classes. We used 

the relative classifier activation (where higher activation can be taken as greater classifier 

evidence for that class) for the selected location as a measure of the strength of classifier 

evidence for each of the three possible locations.  
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Distinguishing between possible mechanisms underlying enhanced population response 

To explore whether observed increases in population response were consistent with relative gain 

modulation, we used a simulation to compare the expected influence on the spatiotopic 

population response under two plausible mechanisms - multiplicative gain (Herrmann et al., 

2010; Reynolds & Heeger, 2009) and pRF shifts (Vo et al., 2017) - with our observed 

population-level modulations. Each voxel’s activity was simulated by the cumulative distribution 

function Activity = 𝑁(𝑟 − 𝜇) = √ 𝑒 𝑑𝑥, 

where 𝑟  denotes the radius of the selected Gabor stimulus, 𝜇  denotes voxel’s estimated pRF 

center, and 𝜎 denotes voxel’s estimated pRF size (given by the SD of the best-fit Gaussian). In 

the multiplicative gain model, selection-related modulation, m, of activity for voxels with pRF 

centers within the selected Gabor was given by  𝑚 = 1 + 0.6 ( )( ) = 1 + 0.6𝑒 .
, 

where 𝑑 denotes the distance between voxel’s pRF center and the center of the selected Gabor 

and 𝜎 denotes voxel’s estimated pRF size; (cf. Figure 1 in Reynolds & Heeger (2009); Figure 5 

in Herrmann et al. (2010)). In the pRF shift model, we assumed that voxels’ pRF centers would 

shift a distance of s towards the center of the selected location according to  𝑠 = 0.2 × (1 − 𝑒 . ), 

where 𝑑 denotes the distance between voxel’s pRF center and the center of the selected Gabor 

(cf. Figure 2e in Vo et al. (2017)). To assess which model best described our data, we calculated 

the sum of squared error between simulated and observed activity modulation. The simulation 

process and result are shown in Figure 3-1.  

 

Statistical analysis 

For our behavioral analyses, we used paired-sample t-tests to examine differences between 

performance across tasks. For our fMRI analyses, all statistics were calculated using a 

nonparametric permutation analysis (Rademaker et al., 2019). This method is appropriate here 

because there was no a priori reason to believe that the data would be normally distributed. 

Specifically, we repeated each analysis with shuffled trial labels (i.e., selected location: left, 
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right, bottom) 1000 times to build an empirical null distribution of the test statistic of interest 

(e.g., decoding accuracy). For individual-level analyses, the percentage of the empirical null 

distribution that was equal to or larger than the real data was taken as the p-value. For group-

level analyses, our test statistic was the t-value derived from a paired t-test of the real data (vs. 

zero or chance), and the empirical null distribution was the corresponding t-value for each of the 

1000 iterations. The p-value was the percentage of the null distribution equal to or larger than the 

true t-score.  

 

Data Availability 

Behavioral, eye-tracking, and MRI data, and analysis code are available at https://osf.io/jqu95/.  

 

Results 
Behavioral performance 

The accuracy of memory judgments in the pre-cue and retro-cue tasks indicated that participants 

performed each task well (Figure 1B). Each condition utilized a separate staircase with a target 

accuracy of 80%. As expected, we found no significant difference in accuracy between the pre-

cue (81%) and retro-cue (78%) conditions, t(10) = 2.084, p = .064, Cohen’s d = .628, 𝐵𝐹 = 

1.421. At threshold, the angular differences between the sample and probe orientations in the 

pre-cue (13.64°) and retro-cue conditions (15.76°) did not significantly differ, t(10) = 1.856, p = 

.093, Cohen’s d = .560, 𝐵𝐹 = 1.074, suggesting that performance was well-matched across the 

two tasks. 

 

Decoding target location from isolated selection-related BOLD activity 
First, we estimated selection-related activity on each trial using a GLM that modeled each of the 

trial components for each cueing condition (Materials and Methods). Second, for each 

condition separately we trained classifiers to predict the cued locations (i.e., left, right, down; 

Figure 1C). For both pre-cue and retro-cue trials, most of the ROIs could successfully decode the 

selected location (Figure 1D), confirming that our decoding procedures were robust. Third, to 

test our main hypothesis regarding a shared neural selection mechanism, we performed across-

condition decoding. We trained classifiers using pre-cue data and attempted to decode the cued 

location using retro-cue data. Similarly, we trained classifiers using retro-cue data and decoded 
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the cued locations using pre-cue data. Critically, we found that most of the ROIs could 

successfully decode the selected location across cueing conditions (Figure 1D). The performance 

of across-condition decoding was approximately 90% of within-condition decoding, suggesting 

that the neural activity patterns were nearly interchangeable across the two tasks. We ruled out 

that these results were due to gaze shifts during selection (Hedge & Leonards, 2013; Theeuwes et 

al., 2005, 2009); classifiers trained on eye position were unable to predict the selected location 

(all FDR corrected ps ≥ .05).  
 

Figure 1. Methods, behavior, 
decoding analysis, and 
decoding results. (A) Pre-cue 
task: Fixation cued the task-
relevant color. Then, three 
oriented Gabors appeared 
within a colored placeholder 
ring. Participants encoded the 
gabor whose ring color 
matched fixation. After a mask 
and delay, participants 
reported whether the 
orientation of the probe was 
tilted clockwise or 
counterclockwise to the 
memorized target orientation. 
Retroc-cue task: Participants 
encoded the orientations of 
three Gabors that were 
followed by a mask and short 
ISI. Then a retro-cue indicated 
the task-relevant color. 
Participants were instructed to 
remember the orientation of the 
item at the location matching 
the fixation color and later 
compare to the probe 
orientation. (B) Probe task 
accuracy and probe change 
magnitude in pre-cue (blue) 
and retro-cue conditions (red). 

Gray lines indicate individual subjects. The error bars denote 95% bootstrap CI. (C) Retinotopy for a representative 
subject. Color depicts voxels’ preferred polar angle projected to the cortical surface of the left hemisphere. (D) 
Decoding performance across ROIs, for within-condition decoding of pre-cued location (upper left), retro-cued 
location (lower right), and cross-condition decoding of location (gray backgrounds). Gray dashed line indicates 
chance accuracy (33.3%) (colored: individual performance was significantly higher than chance, p < .05; one-
sided, FDR corrected across all ROIs for each decoding condition independently). The jittered dots indicate 
individual performance - filled dots indicate participants from whom decoding performance was higher than chance 
(p < .05, one-sided) and unfilled dots indicate participants with at-chance decoding performance. The horizontal 
line in the violin indicates the mean of accuracy. The stars in the bottom of each plot indicate the group-level 
performance is significantly higher than chance (***, p < .001; ** p < .01; * p < .05; one-sided, FDR corrected 
across all ROIs for each decoding condition independently).  
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Temporal evolution of selection and memory 

To confirm that our decoding results indeed represented selection as opposed to incidental 

maintenance of the selected location, we examined the time course of decoding accuracy. This 

analysis was motivated by the fact that location information was essential during the selection 

process itself, but ceased to be task-relevant once selection was complete (as the memory probe 

was presented at fixation). Thus, we predicted that the time course of decoding accuracy for 

location would rise following the onset of the selection cue and return to chance once selection 

was complete, while the time course of orientation decoding (signifying the maintenance, 

retrieval, and response processes) would peak after selection and remain above chance for the 

duration of the trial. To formalize this prediction, we separately convolved the selection 

regressor and the combined delay + response + feedback regressors from our GLM with the HRF 

to simulate the expected time courses of the selection and memory processes, respectively 

(Figure 2A). We then compared these simulated time courses with the actual decoding time 

course for location and orientation. Critically, the decoding time course analysis was completely 

independent from the GLM used to derive the simulated time courses (see Materials and 
Methods). The decoding accuracy time series for location and orientation (Figure 2B) closely 

matched our simulated time courses. Specifically, the rapid rise and fall of location decoding in 

visual and parietal cortex matched the simulated time course of selection, whereas orientation 

decoding in visual cortex mirrored the simulated memory time course. Moreover, location 

decoding accuracy peaked earlier in the pre-cue relative to the retro-cue condition, consistent 

with the relative timing of selection in the two tasks. Together, these observations support our 

claim that location decoding reflected the selection process while orientation decoding reflected 

memory processes.  
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Figure 2. Temporal evolution of selection and memory decoding. (A) Simulating selection and memory related 
activity and predicting the performance of decoding target location and orientation. The neural activities for 
selection and memory were simulated by convolving the hypothetical duration with an HRF. The performance 
prediction was proportional to the amplitude of neural activities in arbitrary units. (B) The time-series of decoding 
performance for target location and orientation. The gray dashed lines key the chance for decoding location 
(33.3%) and orientation (16.7%). Blue and red lines stand for decoding location in pre-cue and retro-cue 
conditions, respectively. Yellow and green lines stand for decoding orientation in pre-cue and retro-cue conditions, 
respectively. The colored lines depict the mean of the performance for all subjects. The filled area around the line 
keys the 95% bootstrap CI. The dots on the top and bottom indicate the performance at the corresponding time-
points is significantly higher than chance (the darkest color means p < .001; the medium color means p < .01; the 
lightest color means p < .05; one-sided, FDR corrected across all time points for each ROI and decoding condition 
independently). 
 

Reconstructing maps of selection-related activity 

Although these results derived from machine learning approaches provide strong evidence for 

interchangeable patterns of activity during attentional and WM selection, it is notoriously 

difficult to make direct inferences about neural mechanisms based on significant classification 

(Freeman et al., 2011; Naselaris et al., 2011; Serences & Saproo, 2012). We used each voxel’s 

pRF parameters (i.e., position and size) to project selection-related activity within each ROI to 

the screen coordinates of visual space (Figure 3A). We used these reconstructions to visualize 

how selection impacted the distribution of activity within the retinotopically organized maps. 

Notably, we found increased activity in the portions of the maps containing the selected target 

relative to the distractors for both the pre-cue and retro-cue conditions (Figure 3B). To quantify 

these results, we compared the mean activity within the selected and non-selected locations. For 

both pre-cue and retro-cue conditions, the mean activity at the selected location was higher in 

V1-V3, V3AB, and IPS0/1 (Figure 3C). To investigate whether this relative difference in activity 

explained the significant cross-decoding between pre-cued and retro-cued selection, we 

conducted a median split of trials for each subject based on the magnitude of population 

modulation for the selected location and compared classifier evidence (quantified as the classifier 
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activation for the selected location relative to the activation for the non-selected locations) for 

low- and high-modulation trials. Both within- and across-task classifier evidence were 

significantly greater for high-modulation relative to low-modulation trials in V1-V3, V3AB, and 

IPS0/1 (Figure 3D). Such relative difference in spatiotopic activity modulation explains why we 

found significant cross-decoding between selection during pre- and retro-cue tasks. Most 

provocatively, these findings are highly consistent with the effects of multiplicative gain 

enhancement that have been observed at the population (Corbetta et al., 1990; Sprague & 

Serences, 2013) and single-neuron (Connor et al., 1997; McAdams & Maunsell, 1999; Treue & 

Martínez Trujillo, 1999) level; as such, our results point to a plausible neural mechanism 

underlying a shared mechanism of external and internal selection.  

 

 
Figure 3. Reconstructing the topographic patterns of selection. (A) Procedure for reconstructing the pRF-weighted 
selection activity maps. For each condition and ROI, we multiplied the GLM-obtained selection-related 𝛽 
coefficients for each voxel, for each location (i.e., left, right, down) separately, by its pRF model parameters (i.e., 
position, size) and summed across all voxels. This procedure projects the relative population activity within the ROI 
in brain space into screen coordinates of visual space. (B) The pRF-weighted reconstruction maps for each 
condition and ROI. The circles in the map mark the three placeholder rings shown during the experiment, and the 
red ring keys the selected location. (C) The mean of pRF-weighted selection-related activity in the selected and non-
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selected locations in each task and ROI for individual subjects (gray) and across subjects (blue for pre-cue and red 
for retro-cue). These results indicate that changes in population gain underlie attentional and WM selection (see 
Figure 3-1 for simulation results that provide additional evidence in favor of a gain mechanism). (D) The 
relationship between the activity modulation observed in (C) and decoding results. Within-task (left) and across-task 
(right) decoding strength in the form of classifier activation is shown separately for trials with low and high 
modulation. Error bars are the 95% bootstrap CI. Stars in the top indicate the significance of the difference between 
the two conditions indicated in the x-axis (***, p < .001; ** p < .01; * p < .05; one-sided, FDR corrected across all 
ROIs for each task condition independently). 
 

To provide further support for the notion that gain enhancement is the mechanism underlying our 

observed changes in population response, we used simulations to directly compare two 

mechanisms of selection. We simulated fMRI data expected under multiplicative gain and under 

pRF shifts and compared these data to our observed data in Figure 3C. Critically, while both 

multiplicative gain (Herrmann et al., 2010; Reynolds & Heeger, 2009) and RF shifts (Vo et al., 

2017) have been observed with fMRI during spatial selection, these mechanisms make different 

predictions about the spatial pattern of modulation in voxels that represent the selected location. 

Specifically, the gain model predicts that the largest enhancement in response would occur in 

voxels whose RFs cover the center of the selected location, while the RF shift model predicts a 

larger enhancement in voxels whose RFs cover the periphery of the selected location (i.e., voxels 

whose RF centers shift from outside the selected location to inside the selected location). Our 

observed data was significantly more consistent with the gain model in V1-V3, V3AB, and 

IPS1/0 (all FDR corrected ps ≤ .004), but not in IPS2/3 or PCS where the two models did not 

significantly differ (all FDR corrected ps ≥ .080; Figure 3-1). These findings bolster the claim 

that gain modulation supports a common selection operation. 

 

Discussion 

While both attention and WM involve the preferential processing of task relevant information, 

here we addressed the extent to which they draw on shared mechanisms. Importantly, the 

intuitive and appealing notion that attentional and WM selection reflect a single underlying 

process (Chun et al., 2011; Kiyonaga & Egner, 2013) lacks direct evidence. Behavioral studies 

using dual task paradigms report inconsistent effects of a concurrent attention-demanding task on 

WM selection (Janczyk & Berryhill, 2014; Lin et al., 2021); but see (Hollingworth & Maxcey-

Richard, 2013; Makovski & Pertzov, 2015; Rerko et al., 2014). Furthermore, while neural 

studies consistently observe that attentional and WM selection evoke activity in overlapping 
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brain regions (Gazzaley & Nobre, 2012; Griffin & Nobre, 2003; Kuo et al., 2009; Nobre et al., 

2004), this is a qualitative and not a quantitative conclusion, and crucially ignores the possibility 

that selection processes may draw on distinct neural mechanisms that coexist in the same brain 

regions. As an illustrative example, perception of first-order and second-order motion have been 

found to activate nearly identical regions in V1 (Nishida et al., 2003), but a quantitative 

comparison demonstrated that different populations were responsible for each (Ashida et al., 

2007). Our findings establish a stronger case for the overlap of selection operations for 

perceptual and mnemonic information than prior work by identifying interchangeable patterns of 

activity in human visual, parietal, and to a lesser extent frontal cortices during attentional and 

WM selection. An important distinction between our work and existing MVPA studies 

comparing attention, perception, and WM is that these other studies have focused on overlap in 

perceptual and mnemonic representations (Jerde et al., 2012; Serences et al., 2009), as opposed 

to the operations that facilitate the use of these representations to guide behavior. In addition, our 

results represent an advance over previous studies that found task-generalized decoding only in 

prefrontal cortex (Panichello & Buschman, 2021) or not at all (Tamber-Rosenau et al., 2011) by 

providing evidence for a generalized selection mechanism that spans multiple cortical regions. 

An important area for future studies will be to identify the specific contexts that engage this 

shared mechanism.  

  

Another key theoretical advance of our work lies in identifying a putative mechanism – activity 

enhancement of spatiotopic population-level responses in the selected location (i.e., gain 

enhancement) – that underlies selection in attention and WM. Enhanced sensory responses 

during attentional selection is a well-established finding at the population level (Corbetta et al., 

1990; Mangun et al., 1993; Sprague & Serences, 2013), most likely due to a multiplicative 

scaling of neuronal responses within the attended receptive field (Connor et al., 1997; McAdams 

& Maunsell, 1999; Treue & Martínez Trujillo, 1999; Williford & Maunsell, 2006) that drives 

preferential processing of perceptual information. In contrast, there is comparatively little 

evidence for the role of gain enhancement in WM selection besides qualitative similarities 

between WM-induced modulations of visual processing and the enhancement of sensory 

processing during attentional selection (Awh et al., 2000; Merrikhi et al., 2017; Sreenivasan et 

al., 2007; Sreenivasan & Jha, 2007). Our findings suggest that the vast literature on 
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multiplicative gain can be leveraged to better understand how we select information from within 

WM. According to theory, increases in neural gain enhance the signal-to-noise ratio, and 

therefore precision, of neural representations (Ma et al., 2006; Zemel et al., 1998). Thus, the gain 

increases we observed associated with selection might control which items are prioritized in 

WM. Notably, while gain enhancement is the most plausible mechanism based on our simulation 

results (Figure 3-1), we do not claim to have conclusively ruled out all mechanisms of selection. 

Importantly, our results constrain theory by demonstrating that any plausible mechanism would 

need to produce equivalent relative activity modulation at the populational level.  

 

Do our decoding results reflect the selection process itself or the outcome of the selection 

process (i.e., the consequence of having selected a particular location; Myers et al., 2017)? We 

considered this question in two ways – first by examining the time course of location decoding to 

distinguish between selection and memory for the selected information. We found that the 

strongest decoding of location was time-locked to the selection events in both tasks, with 

decoding accuracy quickly falling to chance once the location information was no longer 

relevant. In contrast, orientation decoding peaked later after selection and remained above 

chance for the entire memory delay. This pattern of findings indicates a transient process by 

which the task-relevant location was selected followed by prolonged maintenance of the target’s 

orientation. Thus, location decoding in our data likely represents the selection process itself. The 

time-limited representation of selection that we observed may help explain important 

discrepancies in the behavioral literature – some studies find dual-task costs between attention 

and selection in WM (Janczyk & Berryhill, 2014; Lin et al., 2021) and others do not 

(Hollingworth & Maxcey-Richard, 2013; Makovski & Pertzov, 2015; Rerko et al., 2014). We 

argue that studies that have failed to observe interference generally assume that attention is 

continuously applied to maintain selection in WM (Hollingworth & Maxcey-Richard, 2013), 

while those that find interference generally put the secondary task temporally near the selection 

cue (Janczyk & Berryhill, 2014). Further elucidation of the temporal profiles of selection in WM 

should be an important area for future investigation. 

  

Second, despite the fact that our study was not specifically designed to distinguish the sources 

controlling selection from the effects of selection, our findings intriguingly point to potentially 
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distinct roles of visual and association cortex. In visual cortex, not only could we decode the 

selected location, but in later time points we could decode the target orientation held in memory, 

suggesting a role in WM storage (Curtis & D’Esposito, 2003; Serences et al., 2009; Sreenivasan 

et al., 2014), potentially as a consequence of receiving top-down selection signals (Rahmati et 

al., 2018; Sprague et al., 2016; Yoo et al., 2022). On the other hand, in parietal and frontal 

cortex, we had robust decoding of selected location, while decoding of memorized orientation 

was inconsistent across the delay and across ROIs (Figure 2B), consistent with the idea that gain 

enhancement in topographically organized regions of parietal and frontal cortex reflects the 

sources of top-down signals controlling which locations are selected. While we cannot 

completely rule out the possibility that unsuccessful orientation decoding was due to larger RF 

sizes or increased spatial heterogeneity in the representation of features in these regions (see 

Ester et al. (2015) for a successful demonstration of orientation decoding in frontoparietal 

cortices), our findings are reminiscent of the role of frontoparietal cortex in orienting attention 

and prioritization (Corbetta & Shulman, 2002; Jerde et al., 2012; Serences & Yantis, 2006) and 

gating (Chatham et al., 2014; Frank et al., 2001), and spatial cognition more broadly (Corbetta et 

al., 2000; Heilman et al., 1985; Mackey et al., 2016; Mesulam, 1999; Srimal & Curtis, 2008; 

Szczepanski et al., 2010; Vandenberghe et al., 2001; Yantis et al., 2002). It is worth noting that a 

previous study that failed to find a common multivoxel pattern across attentional and WM 

selection used different features (location and object) for selection across tasks (Tamber-Rosenau 

et al., 2011). Given that neural substrates of selection are sensitive to differences in the medium 

of selection (Giesbrecht et al., 2003), conclusions about a common selection mechanism ought to 

be drawn from comparisons which rigorously match the attention and WM tasks. Here we 

compare across the same selection medium (location), equating relevant features, as well as 

behavioral performance. Consistent with the idea that WM selection relies on internally-directed 

shifts of attention that highlight task-relevant information, our results suggest that a common 

mechanism underlies selection during attention and WM.  
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Extended data 

 
Figure 3-1. Simulating multiplicative gain and pRF shift mechanisms. (A) Schematic illustrating the simulation of 
selection-related activity. (B) Schematic illustrating the simulation of the two possible mechanisms. In the 
multiplicative gain model, activity enhancement was modulated by multiplying the selection-related activity of 
voxels with pRF centers in the selected location. In the pRF shift model, voxels’ pRF centers were shifted towards 
the center of the selected location. (C) The simulated activity modulation maps for the two possible mechanisms. We 
reconstructed the pRF- weighted map using the simulated selection-related activity using the same procedure as that 
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used to generate Figure 3B, isolated activity modulation effect by subtracting the mean of the pRF weighted map for 
the two non-selected locations from that for the selected location (e.g., middle – (left+right)/2), and collapsed the 
modulation maps across three selected locations. The circles in the map mark the three placeholder rings shown 
during the experiment, and the red ring keys the selected location. (D) Comparison between simulated and observed 
data. The modulation effect decays as voxel’s pRF center gets away from the selected location. The blue and red 
lines are for multiplicative gain and pRF shift mechanism respectively, and the black line is for the observed data. 
The filled area around the line indicates the 95% bootstrap CI. The stars in the top of each plot indicate that the 
sum of squared error between the multiplication simulation data and real data was significantly lower than that 
between the pRF shift simulation data and real data (***, p < .001; ** p < .01; * p < .05; one-sided, FDR 
corrected across all ROIs). The observed data was significantly more consistent with the multiplicative gain model 
in most of our ROIs.  
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