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1. Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression through different
molecular mechanisms, including DNA binding. We curated a database of RNA
Binding Sites (RNABSdb) by harmonising  publicly available raw-data of RNA-DNA
binding. This resource is required to enable systematic studies on transcriptional
regulation driven by lncRNAs. Focusing on high quality experiments, we found that the
number of binding sites for each lncRNAs varies from hundreds to tens of thousands.
Despite being poorly characterised, the formation of RNA:DNA:DNA triple helices (TPXs)
is one of the molecular mechanisms that allow lncRNAs to bind the genome and drive
alteration of gene expression. Few computational methods exist which can predict
TPXs in silico and, in this study, we developed 3plex, a software that improves the
state-of-the-art TPXs prediction method. Leveraging the data collected in RNABSdb for
lncRNAs known to form funcional TPXs, we showed that 3plex outperformed existing
approaches. Our analysis showed that TPXs tend to be shorter and more degenerated
than expected. Finally, we applied 3plex to all the lncRNAs collected in RNABSdb and
we show that the majority of lncRNA could bind the genome by TPXs formation.

Data and software are available at https://molinerislab.github.io/RNABSdb/.

2. Introduction
When pervasive transcription of mammalian genomes was first discovered (1), the
prevailing hypothesis was that long non protein-coding RNAs were just “junk RNAs”
resulting from random and unregulated RNA polymerase II activity. This theory was
supported by RNA expression studies on bulk tissues, which showed that lncRNAs are
expressed at lower levels compared to mRNAs. It was unclear whether this was caused
by a uniform low expression level of lncRNAs across the cells of a tissue, or because
lncRNAs had diverse expression levels in specific cellular subpopulations. This latter
hypothesis pointed out that lncRNAs, previously thought to be transcriptional noise,
might have highly specialised roles in the function of specific cell types. Thanks to
single-cell transcriptomics, an increasing amount of evidence in different biological
contexts is supporting this explanation (2–5). Moreover, several lncRNAs are reported to
be tissue or cell-line specific (6).

Nowadays, the “junk RNA” hypothesis is almost completely discarded, and many
lncRNAs have been shown to regulate gene expression both transcriptionally and
post-transcriptionally (7). Focusing on transcriptional regulation, key tools to investigate
the functional role of lncRNAs are represented by genome wide RNA-DNA binding
assays. Several different techniques exist that enable the identification of the genomic
RNA binding regions (listed in Table 1). Amongst those, the most used is Chromatin
isolation by RNA purification (ChIRP-seq). In this paper we will generically refer to any of
these assays as RNABS-seq (RNA Binding Sites Sequencing).
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Despite the amount of data produced, we are still missing a curated collection of
publicly available RNABS-seq data that would be required to enable systematic studies
on transcriptional regulation driven by lncRNAs. As this resource is still missing, we
created the RNA Binding Sites database (RNABSdb), a collection of all the publicly
available genome wide RNA binding regions, uniformly re-analysed with the ChIP-seq
ENCODE pipeline.

One of the molecular mechanisms that enables lncRNAs to bind specific DNA
sequences  in cis or in trans is the formation of RNA:DNA:DNA triple helices. These
structures are formed by an RNA molecule that, laying on the DNA major groove,
establishes hydrogen bonds with DNA nucleotides already paired in the double helix.
Those RNA-DNA hydrogen bonds do not follow the usual Watson-Crick laws, but the
Hoogsteen rules (8,13). The bound portion of the lncRNA is named triplex forming oligo
(TFO) and the cognate portion of DNA is named triplex target site (TTS).

Some lncRNAs are known to regulate gene expression of specific target genes through
binding to specific TTS in their DNA regulatory regions, acting analogously to
transcription factors. For example, the murine lncRNA EPR binds on Arrdc3 promoter,
thus activating its expression and modulating the epithelial to mesenchymal transition
(9). Similarly, LncSmad7 binds and recruits p300 to enhancers in trans, to trigger
enhancer acetylation and transcriptional activation of its target genes, controlling the
expression of key stemness regulators (10). Other examples can be found in recent
reviews (11,12).

Nowadays, there are few bioinformatic software available to predict the ability of a
lncRNA to form triplexes that take in account the ability to form TFO and TTS and the
pairing with Hogsteen rules.

Triplex Domain Finder is one of the most used (15), and it is based on the logic of the
Triplexator algorithm (16). Triplexator has many parameters, one of the most relevant is
the minimum length allowed for TPX, that is set by default at 16nt and cannot be
lowered below 10 without modifying the source code. Moreover this parameter is often
increased in most of the applications. As an example, Jalaly et al performed an
interesting genomic survey of potential triplexes in the human genome by using a
cutoff of 35 for the TPX length (17). LongTarget is an alternative to Triplexator that
focuses even  longer TPX (18) (see Table 2).

There are two principal reasons to focus on long TPX: 1) the identification of small TPX is
computationally demanding, 2) longer sequences are required for a stronger and more
specific match. For these reasons, shorter TPX have been so far mainly neglected in this
type of analysis.

To better characterise the TPX mechanism, we developed 3plex, a TPX prediction
software, by integrating Triplexator rules, computational evaluation of thermal stability
and RNA secondary structure prediction. Using data included in RNABSdb as positive
control, we evaluated the performance of 3plex and showed that it outperformed the
state of the art in this field.  We found that lncRNAs tend to bind DNA with short and
degenerated TPXs and we revealed  that many lncRNAs not previously reported can
bind DNA.
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3. Results

3.1. RNABSdb
We surveyed the literature and found experimentally determined binding sites for
different lncRNAs in human, in mouse, and Drosophila (see Supplementary Table 1 for
details).

Data obtained employing RNABS-seq techniques are frequently processed using
custom bioinformatic pipelines and published as a list of binding sites. Coming from
different laboratories, these lists can be biassed by custom parameter settings, cutoffs
and different software used.

For this reason we collected and re-analyzed the raw-data in a uniform way for 16
human and 12 murine lncRNAs of which raw data were available.

Previous studies showed that, in contrast to histone modifications, which often broadly
occupy genomic regulatory elements such as promoters and enhancers, lncRNAs
occupancy tends to be focal, interspersed, and gene-selective in nature, more
resembling the transcription factors pattern (19).

We employed the ENCODE transcription factor ChIP-seq data processing pipeline that
is suitable for molecules that are expected to bind DNA in a punctate manner (Figure 1).

For this analysis, we focused on ChIRP-seq, CHART-seq and ChOP-seq data that allow
the identification of individual lncRNA and excluded ChAR-seq, GRID-seq and
MARGI-seq data.

To enable systematic studies on transcriptional regulation driven by lncRNAs we made
the harmonised data available through the RNABSdb website. RNABSdb allows the
user to submit new data that will also be collected in the database upon proper
revision. Moreover, we provide, as a service, the analysis of unpublished raw data with
the pipeline we describe in this paper, thus allowing the proper comparison of new
data with all the collected references.

RNABS-seq data analysis and triplex prediction depend on the choice of many different
parameters, among which some are more relevant than others. We chose to deeply
investigate the parameter space of triplex forming prediction algorithms as they have
been less extensively tested with respect to Chip-seq analysis pipelines.

For the RNABS-seq techniques, we decided to focus on the strategy used to handle
replicates, namely 1) IDR-conservative, 2) IDR-optimal, 3) overlap-coservative, 4)
overlap-optimal, 5) the top 1000 IDR or overlap peaks (see methods) and 6) the set of
peaks provided by the authors as bed file if available. This parameter is indeed the one
with the stronger impact on the final number of called peaks. For sake of simplicity we
refer to these different strategies as “peak filtering methods''. The Irreproducible
Discovery Rate (IDR) is the approach suggested by ENCODE and measures the
reproducibility of an assay (20).
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The IDR-conservative method applies the IDR procedure on the true replicates (in
RNABS-seq typically arising from even and odd probes) whilst IDS-optimal considers
pseudoreplicates too, including those obtained by subsampling pooled replicates. The
optimal set is more sensitive, in particular when one of the replicates has substantially
lower data quality than the other. The overlap peaks set is obtained considering
overlapping peaks employing bedtools intersect; also in this case conservative sets
consider true replicates while optimal sets consider pseudoreplicates.

By applying the ENCODE pipeline and varying this parameter we determined the
number of binding sites for each lncRNA. Starting from IDR-conservative filtered peaks
we observed that only 16 out of 33 lncRNAs show at least 100 binding sites, but this
number increases to 23 when considering IDR optimal filtered peaks (Figure 2).
Moreover in many cases we observed 3 orders of magnitude more peaks in the optimal
version compared with the conservative one, impling poor reproducibility, maybe due
to poor quality of one of the replicates. According to ENCODE recommendations (see
methods), about one third of experiments reach an “ideal” reproducibility rate. Focusing
on this high quality subset, we noticed a difference in IDR-conservative peaks numbers
ranging from 649 (mouse DT926623.1) to 75109 (human HAND2-AS1) (Figure 2 and
Supplementary Table 2).

At first, we asked if the great variability in the number of peaks depends on quality
control (QC) parameters (Supplementary Table 3). Interestingly, we found that the
number of IDR conservative peaks does not correlate significantly with any QC metrics
(Spearman correlation test). This reassures us that the bona-fide number of peaks
found with this method (theoretically more stringent than others) does not critically
depend on technical variability among experiments, but possibly reflects intrinsic
biological characteristics of different lncRNAs.

With this initial analysis we could establish that a typical DNA-binding lncRNA displays
hundreds to tens of thousands DNA binding sites when the RNABS-seq is consistent
among replicates.

Other methods often recall more peaks than IDR conservative, but are affected by
technical variability (measured with different QC metrics),including the number of
uniquely mapped reads, normalised strand cross-correlation, library complexity and
Jensen-Shannon distance in fingerprint (Supplementary Table 4).

The available data allowed us to identify differences in the number of peaks
determined using ChIRP-seq, CHART-seq or ChOP-seq, but at this stage, at this stage,
the statistics are too poor to draw conclusions about the accuracy of different
techniques.

3.2. 3plex implementation
We developed 3plex, a software tool to predict the DNA:DNA:RNA TPX. 3plex is built on
top of Triplexator and implements further TPX evaluation methods based on thermal
stability derived by LongTarget (18) and RNA secondary structure prediction.
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The input of the 3plex algorithm is a single stranded RNA sequence (ssRNA) and a set
of double stranded DNA sequences (dsDNAs). The output consists of 1) all possible TPXs
that satisfy a set of constraints derived from Triplexator with associated thermal
stability evaluation, and 2) a score for each dsDNA that predicts the capability of ssRNA
to bind to it.

3.3. 3plex and RNABS-seq techniques evaluation.
Among lncRNAs for which DNA binding sites have been determined we identified 7
(TERC, NEAT1, HOTAIR, MEG3, ANRIL, Meg3, lncSmad7) for which  the TPX  binding
mechanism have been experimentally validated (Supplementary Table 1). For these 7
lncRNAs that are known to form triple helices,  we expected a good fraction of RNABS
with high predicted triplex score. So we could use experimentally identified lncRNA
binding sites as a benchmark to evaluate the goodness of triplex prediction
approaches. Noteworthy,  we could also do the other way round: we could evaluate the
different RNABS-seq analysis parameters according to our TPX prediction.

To evaluate the concordance between experimental RNABS and predicted TTS we used
the Area Under the Receiver Operator Curve (AUC). For each lncRNA we obtained a
different RNABS set by varying the definition of true binding sites (changing the
replicate handling strategy of ENCODE pipeline) and using different TTSs sets (by
varying many 3plex parameters). Each combination of binding-sites and 3plex
parameters produces a different AUC, so we used multivariate linear regression analysis
to estimate the relevance of each parameter. Since different instances of parameters
are clearly non independent, the statistical estimation is made using permutation tests
that preserve the interdependencies in the null hypothesis.

Then we included in our analysis also other lncRNAs in RNABSdb, not having strong
experimental evidence of functional TPX. With the same method, we discovered
statistical evidence supporting the hypothesis that many of these lncRNAs directly
bind the DNA via triplex formation.

3.3.1. Minimal TPX length and error rate.
In order to investigate the influence of the minimal TPX length on the prediction, we
chose to compare Triplexator default minimal TPX length of 16, with shorter lengths.
Indeed, experimental triplex evidence revealed functional TPXs of few nucleotides (see
Introduction). For this analysis, we only took into consideration the 7 lncRNAs with
reported evidence of functional TPXs. We fixed Triplexator parameters to the values
suggested by Matveishina et al. 2020 and excluded 3plex specific parameters (thermal
stability and secondary structure). To evaluate the relevance of minimal TPX length we
first computed AUC values for minimal length 8, 10, 12 and 16, and then we compared a
multivariate linear model that investigates the dependency of AUC on different
parameters (minimal TPX length, number of peaks, peak filtering method and different
ssRNA) with a similar nested model where the dependency on minimal TPX length is
removed. We observed a significant influence of this parameter (p-value < 1e-04,
permutation test), in particular the best minimal TPX length values were 8 and 10
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(equally). The default cutoff of 16 resulted to be the worst, producing an average
reduction in AUC of 0.1, while 12 gave an intermediate performance  (Figure 3).

Thus, we fixed the minimal TPX length to 8 or 10 and further investigated 3plex
parameters space by introducing other parameters in the linear model (single
strandedness cutoff, minimal error rate, guanine rate, repeat filter, maximal number of
consecutive error, scoring method). Again, we compared the dependency of the AUC
from these parameters with a similar nested model where the dependency from
minimal TPX length is removed. We obtained a moderate, but significant preference for
a value of 8 over 10 (average AUC difference of 0.005, p-value < 9e-4, permutation test).

It's to be noted that 8 is below the minimum available threshold of Triplexator (thus we
modified the source code), meanwhile LongTarget only focuses on long TPX.

Our observation highlights the fact that typical TPX are shorter than previously
expected. Because of the long computational time required, we did not extensively test
lower values for this parameter, but we evaluated minimal TPX length of 6 in a
subsample confirming that the signal to noise ratio was too poor and we didn’t obtain
any further improvement.

With the same strategy used to evaluate the relevance of the minimal TPX length, we
also evaluated the relevance of the error rate. In this context, an error is a non-proper
pairing in the TTS and TFO that forms a TPX, as well as deviation from the rules that
sequences forming TSSs and TFOs should satisfy. The linear model shows that this
parameter is relevant (p-value < 1e-4 permutation test). Setting the error rate to 20%
resulted in an increase of average AUC of 0.02 compared to 10%. Moreover, we tested if
the number of consecutive errors was relevant and we observed no significant
differences in average AUC, allowing for just 1 or up to 3 consecutive errors.

These data suggest that TPXs are generally relatively small and degenerated. This
observation could be surprising, since it seems that such models account for too little
information to be biologically relevant. Actually these binding models do not differ
much from many famous TF binding models (see  Methods Section 4.7), considering
their typical length and degeneration. This is reflected by the comparison of ROC
curves describing the prediction of RNA binding sites and those describing the
prediction of TF binding sites (Figure 4).

3.3.2. Effect of the thermal stability computation
3plex implements a thermal stability evaluation of TPX similar to the one developed in
LongTarget (18). In particular, given a ssRNA and a dsDNA, 3plex finds all TPXs that
satisfy the constraints as in Triplexator, then reports the best and the average stability
over all TPXs. To evaluate the probability that a lncRNA may form a triplex on a given
dsDNA sequence we compared 4 alternative triplex scoring methods:

1. The Triplexator potential (the commonly used triplex potential returned by
Triplexator, that is the length normalised number of TPXs (16))

2. Normalised stability (the length normalised average thermal stability of TPXs)
3. Best stability (the stability score of the more stable among predicted TPXs)

7

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2022. ; https://doi.org/10.1101/2022.07.06.496678doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.496678
http://creativecommons.org/licenses/by-nc/4.0/


4. Triplexator best score (the highest Tripelxator score among predicted TPX, where
the score is computed as the TPX length minus errors, such as mismatches or
nucleotides not suitable for the TFO and TTS moled.

Focusing on the 7 lncRNA with reported evidence of functional TPXs we investigated
the dependency of AUC on different parameters. We considered a full multivariate
linear model including all studied parameters as covariates (Peak_filtering_method,
ssRNA, n_peaks, singleStrandedness, minimal_length, error_rate, guanine_rate,
repeat_filter, consecutive_error, triplex_scoring_method) and evaluated the effect of the
triplex scoring method by comparing the full model with a similar nested model where
the dependency from triplex scoring method is removed. We found that the AUC
depends on this parameter (p-value < 1e-4, permutation test), in particular the best
stability method scored as best and produced an increase in average AUC of 0.01, if
compared with the usual triplex potential (Figure 3).

Considering each lncRNA individually, the parameters sets that produce the best AUC
require a stability based scoring method (best stability or normalised stability) for 4 out
of 7 lncRNAs. Changing the scoring method and maintaining fixed all the other
parameters we found that there was a statistically significant reduction in AUC when
the scoring method was not based on stability (best Triplexator score or Triplexator
potential). On the contrary, 3 lncRNAs show the best AUC with Triplexator score or
Triplexator potential but in this case the difference in AUC with respect to the one
computed using a stability based scoring method is not significant (see Supplementary
Table 5).

3.3.3. Peak filtering method
The use of different peak filtering methods (described in section 3.1) is one of the
covariates included in the multivariate model. By comparing the full model with the
corresponding nested one and excluding this parameter, we found that it is relevant for
the AUC (p-value < 1e4, permutation test). Interestingly, we observed that the RNABS
redefined using the ENCODE pipeline showed on average higher AUC value than the
sets of peaks provided by the authors. The best method was the IDR conservative one,
producing an increase in average AUC of 0.09 compared with published peaks sets.
Only 2 out of 7 lncRNA considered in this analysis had a defined set of IDR conservative
peaks, the other 5 showed insufficient reproducibility among replicates to apply this
method. Anyway, we controlled for different lncRNAs as covariate in our model.
Moreover, considering IDR optimal peaks that are available for 5 out of 7 lncRNA, we
still obtained a significant increase in average AUC of 0.015 (Fig 3).

This highlights the importance of uniform and standard processing of RNABS-seq data
and the relevance of the proposed RNABSdb, while the peaks are derived from custom
analysis by the authors of single papers (available for 6 out of 7 lncRNAs) show the
worst performance.
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3.3.4. RNA secondary structure
In order to establish Hoogsteen hydrogen bonds with a DNA double helix, the
nucleotides of the RNA molecule need  to be in a free conformation. Previous studies
report improvements in triplex prediction of specific lncRNAs by integrating RNA
secondary structure information (Matveishina et al., 2020), but none of the triplex
prediction software available do it. In 3plex we implemented a Single Strandedness (ss)
parameter that determines the importance of secondary structure in the prediction of
TPX, by masking the RNA sequence according to the probability of base pairing (see
Methods). Despite testing different extent of sequence masking (0%, 10%, 20% or 50%),
we found that, on average, the best AUC value is obtained by keeping the RNA
sequence completely unmasked. Surprisingly, this means that the secondary structure
of RNA does not affect TPX prediction in general and that TFO can be formed also in
lncRNA regions likely to form double stranded RNA.

Nevertheless, looking at each individual experiment one by one, and considering the
full set of lncRNA (including those yet lacking strong experimental evidence of
functional TPX) 10 cases show improvement in AUC using secondary structure filtering.
Notably, Lin28a AUC reaches 0.60 without filtering and 0.95 masking the 10% of most
probable paired nucleotides in the RNA, highlighting the relevance of this 3plex feature
in some cases. Further studies would be required to identify eventual secondary
structure characteristics typical of these lncRNAs.

3.3.5. Other parameters
According to constraints due to Hoogsteen hydrogen bonding rules a minimum
guanine rate in the TTS is often required in TPX prediction. Our analysis shows that this
parameter is relevant (p-value <1e-4, permutation test) and in general a minimum rate
of 40% is preferable with respect to 70% or 10% and produces an increase in average
AUC of 0.06 compared to 10%.

The option of filtering the repeats on the DNA sequences is available in Triplexator. The
choice of this parameter significantly impacts the AUC in general (p-value <1e-4,
permutation test) and to avoid filtering improves triplex predictions.

It would be interesting to evaluate if different RNABS-seq techniques produce different
results in terms of TPX AUC. Unfortunately there is not enough data available to
investigate this aspect.

3.4. Evidence of TPX potential for many lncRNA
In RNABSdb we have 20 human and murine lncRNAs with publicly available
RNABS-seq data but without experimental evidence of functional TPX. For two of them,
the authors tested the capability of forming TPXs in silico (AC087482.1, Eprn) (9,21) and
for Tug1 (22), the TPX mechanism of binding is only speculated.

We wondered for how many lncRNAs we could observe statistical evidence supporting
a mechanism of DNA binding involving TPX formation. We used 3plex to predict TPX on
the available binding sites collected in RNABSdb. We considered those sites as positive

9

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2022. ; https://doi.org/10.1101/2022.07.06.496678doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.06.496678
http://creativecommons.org/licenses/by-nc/4.0/


controls and we created a randomised selection of genomic regions as negative control
(See Methods), and we investigated the same parameter space as before.

Interestingly, we found 4 lncRNAs having an AUC above 0.8 (Lin28a, AK156552.1,
HAND2-AS1, MALAT1), 4 lncRNAs above 0.7 (AL109615.3, 7SK, 1200007C13Rik, CPEB2-DT)
and 6 lncRNAs above 0.6 (Rn7sk, AC087482.1, Tug1, Eprn, AC018781.1,
1200007C13Rik@NDL, SRA1, MIR503HG, Bloodlinc). All the mentioned AUC values have a
corresponding highly-significant p-value, even if we consider the high number of tests
due to the parameter space exploration ( FDR < e-10, Mann-Whitney test with
Benjamini-Hochberg correction), suggesting that they may bind DNA forming TPXs
(Figure 5, supplementary table 6).

4. Methods

4.1. Collection of high throughput RNA:DNA interaction data
We collected high-throughput RNA:DNA interaction data primarily through manual
mining of literature published between November 2011 (when the first ChIRP-seq was
published) and February 2022. Gene Expression Omnibus, PubMed and European
Nucleotide Archive databases were queried using the experimental techniques that
map RNA-binding sites at a whole genome level as keywords: ChIRP-seq, CHART-seq,
ChOP-seq, RAP-seq, MARGI-seq, GRID-seq and RADICL-seq. RNA molecules were
uniformly annotated using GENCODE gene symbols. We excluded from the analysis
experiments without available public raw data or with unclear annotation of the
replicates. Xist was excluded because the experimental data were limited to X
chromosomes only.

4.2. ENCODE pipeline on RNABS-seq data
We downloaded raw fastq from GEO or ENA and analysed them using the ENCODE
transcription factor pipeline
(https://www.encodeproject.org/chip-seq/transcription_factor/ version v1.6.1) (23).

In ENCODE pipeline, after SPP (24) peak calling with low stringency, replicate
concordance is measured by calculating peaks overlap or IDR (20). Some of the
considered experiments didn’t pass the IDR filter on both rescue and self consistency
ratio, in these cases no IDR consistent peaks are found. The pipeline also returns a less
stringent peak selection without applying IDR procedure, this set is named “overlap”.
We further filtered the “overlap” peaks sets considering only those having a SPP q-value
below 0.05.

Apart from IDR (conservative and optimal) and overlap (conservative and optimal)
peaks, we created a selection of top 1000 peaks obtained as follows: preliminary
selection of IDR conservative peaks; then, if the number of selected peaks is below
1000, inclusion of the best IDR optimal peaks not overlapping with IDR conservative
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ones; then if the number of selected peaks is still below 1000, addition of best
overlapping conservative peaks that do not overlap any of the IDR peaks.

4.2.1. Replicate handling
The experimental designs were different across data collected. The majority of the
experiments used a couple of even/odd sets of probes that we defined as replicate 1
and 2 in the ENCODE pipeline.

ENCODE guidelines suggest to evaluate the reproducibility of the data by computing:

● N1: Replicate 1 self-consistent peaks (comparing two pseudoreplicates generated
by subsampling Rep1 reads)

● N2: Replicate 2 self-consistent peaks (comparing two pseudoreplicates
generated by subsampling Rep2 reads)

● Nt: True Replicate consistent peaks (comparing true replicates Rep1 vs Rep2)
● Np: Pooled-pseudoreplicate consistent peaks (comparing two pseudoreplicates

generated by subsampling pooled reads from Rep1 and Rep2)
● Self-consistency Ratio: max(N1,N2) / min (N1,N2)
● Rescue Ratio: max(Np,Nt) / min (Np,Nt)

Then the reproducibility test returns “ideal” if Self-consistency Ratio >2 and Rescue
Ratio > 2, “acceptable” if one of the two ratios is <2, “concerning” if both the ratios are <
2.

4.2.2. Correlation between number of peaks and QC parameters.

We used the Spearman coefficient (cor_test in R) to evaluate the correlations between
the number of called peaks and QC parameters reported by the ENCODE pipeline over
each experiment analysed. If a certain QC parameter has more than one value per
experiment (e.g. one value for each replicate) we aggregated the values considering
the average, minimum and maximum value independently before the correlation.

For the IDR conservative number of peaks we found a significant correlation with the
rescue ratio, this is by construction, because the number of peaks is directly
indicated in the rescue ratio formula. No other QC parameter correlates significantly
with IDR conservative number of peaks.

4.3. 3plex scoring method based on thermal stability
Given a TPX found according to constraint parameters of Triplexator, a triplet is defined
as a group of two Watson-Crick interacting nucleotides in the dsDNA and one
Hoogsteen interacting nucleotide in the ssRNA. 3plex implements a new scoring
method based on experimentally determined triplets stability stability data derived by
(18).

To compute the normalised stability, that is the length normalised average thermal
stability of TPXs on the entire dsDNA considered, we used bedtools merge to avoid
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overestimation of stability. Since different TPX can overlap, for each set of overlapping
TPX we considered only the one with maximal stability. Hence we selected the maximal
stability value among all merged TTSs for each dsDNA and we divide it by the dsDNA
length.

This scoring method undercounts the stability for each dsDNA, indeed the contribution
to the stability of some dsRNA portion is discarded because of partial overlap. Using
RNABSdb bising sites of 7 lncRNA with experimentally validated functional TPX we
compared the performance of this scoring in terms of AUC with an alternative that
overcount the stability by ignoring overlaps and found that the undercounting
performs similarly or slightly better than the overcounting.

4.4. RNA secondary structure prediction
RNAplfold from the ViennaRNA package (25) used with -u option measures the
probability that stretches of n sequential nucleotides on the RNA sequence are
unpaired. As suggested by the authors, this option makes it possible to compute the
probability that a stretch of x consecutive nucleotides is unpaired, which is useful for
predicting possible binding sites. Given an RNA sequence, we associated to each
nucleotide the probability that a window of length 8 centred on that position is single
stranded. Subsequently, we masked nucleotides from the RNA sequence which report
a probability value lower than a certain cutoff. The selected cutoffs enable masking the
10%, the 20% or the 50% of the sequence (ss10, ss20, ss50). The unmasked sequence is
defined as ss0.

4.5. Positive and negative regions for parameter evaluation
and AUC computation
Positive regions are peaks reported in RNABSdb, considering 5 different filtering
methods available as described in section 3.1. If more than one even/odd set were
provided, then the intersection of the called peaks is considered as a positive set for
3plex evaluation.

Negative regions are randomly selected from the genome maintaining the same
length distribution of the positive ones using bedtools shuffle. Positive regions, genome
gaps and ENCODE blacklist regions are excluded from the selection.

ROC curves and AUC are obtained for different scoring methods using pROC package
version 1.17.0.1 (26). We compared different AUC using roc.test of the same package (two
sided Delong’s test).

Mann-Whitney test was performed using the R function wilcox.test with alternative
“less” in order to test the significance of the difference between the scores of the
positive and negative regions.

Benjamini-Hochberg correction on p-values was computed using the R function
p.adjust setting method to “BH”.
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4.6. Linear models for parameters relevance evaluation
To evaluate the relevance of parameters in the TPX prediction we explored the
parameters space of RNABSdb and 3plex. The complete list of parameters evaluated is

● Peak filtering method, described in section 3.1 and 4.2.1, with possible values:
○ IDR conservative
○ IDR optimal
○ Overlap conservative, filtered at q<0.05
○ Top1000 as described in section 4.2
○ The set of peak provided by the authors of the experiment

● ssRNA, a factorial variable indicating the specific lncRNA,
● the number of peaks in RNABSdb for the given lncRNA and peak filtering

method,
● single strandedness, as described in section 4.4, whit possible values:

○ ss0,
○ ss10,
○ ss20,
○ ss50,

● the minimal length of TPX to be considered, with possible values:
○ 16
○ 12
○ 10
○ 8

● the minimal error rate allowed in a TPX, with possible values:
○ 10%
○ 20%

● the maximum number of consecutive error allowed in TPX, with possible values:
○ 1
○ 3

● the minimal guanine rate allowed in TTS, with possible values:
○ 10%
○ 40%
○ 70%

● repeat filter, indicating if low complexity regions in ssRNA should be masked or
not,

● the triplex scoring method as described in section 3.3.2 and 4.3, with possible
values:

○ Triplexator potential,
○ Best stability,
○ Normalised stability
○ Triplexator best score

We considered 2 different models.

The first model aims to investigate the effect of minimal length, keeping the Triplexator
parameters fixed at the value suggested by Matveishina et al. (27) (namely: minimal
length=10, error rate=20, guanine rate=40) or the Triplexator default, we also excluded
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3plex specific parameters (thus excluding thermal stability triplex related scoring
methods and secondary single strandedness). We computed AUC for 7 lncRNA having
experimental evidence of cunctional TPX in each configuration of parameters (namely
peak filtering method and minimal length), then we fitted a linear model (lm function
on R) to study the dependency of AUC on different parameters controlling for the
ssRNA as covariate (formula: AUC ~ peak filtering method + ssRNA + n peaks + minimal
length) model. We also fitted an analogous nested model with the same formula but
excluding the minimal length parameter, then evaluated the difference in performance
between the two models (ANOVA function of R) obtaining a p-value Panova_real<2.2e-16.
Since the different observations are not independent, the analytically estimated
Panova_real considers inflated degrees of freedom and is not reliable. To obtain a
statistically correct estimation of the difference in performance between the full and
nested model we performed a randomisation test. We computed 10000 permutations
of the AUC versus parameter association, and fitted the full and nested model on
randomised data as before. Noticeably, randomised data maintained the correlation
structure of real data and only the association between the AUC and the independent
variables was lost. For each permutation we computed the p-value Panova_random

comparing full and nested models. To measure the relevance of the minimal length
parameter, we counted the number of permutations resulting in Panova_random<=Panova_real.
Since we did not obtain any random p-value less than the real one, we can say that the
minimal length parameter is relevant and we can estimate its probability as less than
1e-4.

Subsequently, we considered the full parameters space of 3plex (formula: AUC ~ peak
filtering method + ssRNA (or technique) + n peaks + single strandedness + minimal
length + error rate + guanine rate + repeat filter + consecutive errors + scoring method),
still focusing on the  7 lncRNA having experimental evidence of functional TPX. To
reduce the computational time we considered only the values 8 and 10 for the minimal
length. We performed a permutation test as previously explained for each parameter
and we obtained a p-value lower than 1e-4 for all of them except for minimal length
(p-value < 1e-3) and consecutive error (not significant).

To efficiently explore the parameters space considered we leveraged the Paramspace
functionality of snakemake (28).

4.7. TF binding sites prediction evaluation.
A set of TF for binding sites prediction evaluation were selected from Jayaram et al. (29)
in the human K562 cell line (CTCF, E2F1, GATA2, IRF1, MAX, NFYA, TAL1, YY1). We
downloaded the ChIP-seq IDR conservative thresholded peaks from the ENCODE
database as true positive binding sites. Hence, we selected genomic random regions as
negative controls, maintaining the same length distribution of the positive ones using
bedtools shuffle as for lncRNAs binding sites. We downloaded the PWM models of
binding sites for those TFs from JASPAR (30) (respectively MA0139, MA0024, MA0036,
MA0050, MA0058, MA0060, MA0091, MA0095) and used FIMO (31) from the MEME suite
(32) (one of the most used TF motif scanning tools) with standard parameters in order
to associate a score to each genomic region. The obtained values are used to evaluate
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the performance of the TFs binding sites predictor using ROC and AUC values using
pROC r package (26) as for lncRNAs binding sites.

5. Discussion
RNABSdb collects high throughput data regarding the binding of lncRNA on the
human and murine genome. By uniform re-analysis of available raw data using the
ENCODE pipeline, we observe a range in experimental quality. We estimated that a
typical DNA-binding lncRNA can have from hundred to tens of thousands binding sites,
and we argued that this quantification corresponds to a biological property of specific
lncRNAs rather than to technicalities of experiments. This is because the number of
binding sites does not significantly depend upon quality control parameters (e.g.
number of mapped reads), as long as the replicates are consistent with one another.

We applied a model of RNA:DNA:DNA triple helices implemented in 3plex to the
collected binding sites and showed that lncRNAs tend to form TPX that are short
(around 8-10 nucleotides long) and degenerate (around 10%-20% of errors). This
observation could be surprising, since it seems that such models account for too little
information to be biologically relevant. Actually they do not differ much from that of
typical DNA binding sites of many important transcription factors, considering their
typical length and degeneration. This is reflected by the comparison of ROC curves
describing the prediction of RNA binding sites and those describing the prediction of
TF binding sites (Figure 4). Indeed the information content of a typical TFBS is
paradoxically low when compared to the complex regulatory program they orchestrate
in eukaryotic gene regulation programs (33). These observations suggest that lncRNAs
(as well as TF) may not work alone, reinforcing the common idea that eukaryotic gene
regulation is a complex process involving cooperation and competition of many
different molecules. Another possibility is that multiple short TPX close to each other in
the same genomic region act cooperatively to enhance the specificity of the binding as
observed in the X chromosome inactivation by Xist (34).

Actually in vitro biochemical experiments show that even TXP as small as 12 nt can be
functional (35), and in a previous work we experimentally validated functional specificity
of some short TPXs formed by lncSmad7 (10). Moreover Matveishina et al elaborated a
practical guidance in genome-wide RNA:DNA triple helix prediction using
experimentally validated binding sites of 4 lncRNA and found that the minimal
available cutoff in TPX length of Triplexator produced the best prediction(27). We
confirmed these findings on a much wider dataset.

Moreover, investigating the TPX potential of 20 lncRNA not previously reported to bind
DNA using this mechanism and having available binding sites in RNABSdb, we found
strong evidence of TPX formation for 4 lncRNAs (Lin28a, AK156552.1, HAND2-AS1,
MALAT1), good evidence for other 4 lncRNAs (AL109615.3, 7SK, 1200007C13Rik,
CPEB2-DT), and moderate evidence for other 8 (Rn7sk, AC087482.1, Tug1, Eprn,
AC018781.1, SRA1, MIR503HG, Bloodlinc) suggesting that DNA binding forming TPX
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could be a widespread mechanism adopted by lncRNAs. This idea was previously
reported in literature (17,36) using purely computational methods. RNABSdb allows the
first large-scale evaluation of this hypothesis leveraging high-throughput experimental
data.

Hour work suggests guidelines to genome wide TPX prediction, moreover 3plex
improves the state of the art in this field. Using RNABSdb data we showed the
relevance of integrating Triplexator rules with thermal stability evaluation and
discussed the impact of RNA secondary structure prediction.

6. Data availability
RNABSdb is available through https://molinerislab.github.io/RNABSdb/. For the sake of
simplicity and maintainability all data are simply available as static downloadable files.
Binding sites and signal levels are also visualizable on the UCSC genome browser.

3plex source code is available at https://github.com/molinerisLab/3plex.
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8. Table and figures

8.1. Figure 1
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Figure 1. TPX data collection and analysis. (A) Schematic representation of our
workflow: we collected publicly available RNA-DNA interaction data in a new database,
RNABSdb. We uniformly annotated and processed these data using the ENCODE
ChIP-seq pipeline, obtaining quality controls and binding sites at different stringengy.
This consistent collection was used to test our TPX prediction software (3plex) that
integrates methods from Triplexator, RNAplfold and LongTarget. (B) Example of 3plex
TPX recognition given a couple of ssRNA and dsDNA: the blue string represents the
TFO located on the ssRNA, while the green and orange strings are the interacting TTS
located on the dsDNA. Each grey line represents a Hoogsteen hydrogen bond; the
asterisks indicate mismatches in TPX pairing.

8.2. Figure 2

Figure 2. Binding sites count of lncRNAs using different peak filtering methods.
Different colours discriminate among the customised called peaks produced by the
authors (red), IDR conservative consistent peaks (blue), IDR optimal consistent peaks
(yellow) and q-value filtered overlap conservative consistent peaks (violet). Three
different transparency levels are used to represent the replicate concordance: dark
colours when “ideal”, medium transparency when “acceptable” and high transparency
when “concerning”. The data are available in Supplementary Table 2.
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8.3. Figure 3

Figure 3. Impact of various parameters in triplex prediction accuracy. 3plex
prediction performance is expressed as AUC obtained by comparing triplex scores of
RNA binding sites in RNABSdb with randomised negative controls. Every parameter
combination tested produces an AUC value for each lncRNA. For all the levels of the
investigated parameters, the average AUC is represented as a blue dot and the
standard deviation as error bars. The values for the minimal length are computed
considering only a subset of the parameter space (see Methods).
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8.4. Figure 5

Figure 5. AUC values of all the analysed lncRNAs. The AUC values are reported from
the best parameter set for each lncRNA (see Supplementary Table 6). Darker bars
highlight lncRNAs with experimental TPX evidence.
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8.5. Figure 4

Figure 4. ROC curves showing the performance of lncRNAs TPX prediction
compared with TFs binding sites prediction. ROC curves for each lncRNA with
experimental evidence of functional TPX considering the 3plex parameter combination
that produced the best AUC value (reported in the figure legend) (see Supplementary
Table 6). The grey dashed line represents the performance of a random classifier. The
grey dotted line illustrates the average ROC curve computed from the performance
evaluation of FIMO TFs binding sites predictions. The dark grey shade represents the
standard deviation from the average ROC curves for TFs, the light grey shade
boundaries correspond to  the worst and best TF ROC curves.
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8.6. Table 1

acronym name method description RNA specificity DOI (reference)

ChIRP-seq
Chromatin isolation by RNA
purification

Hybridization of biotin-labelled antisense
oligos to target RNA specific for a single RNA 10.3791/3912 (38)

CHART-seq
Capture Hybridization
Analysis of RNA Targets

Hybridization of biotin-labelled antisense
oligos to target RNA specific for a single RNA

10.1002/0471142727.mb2125s101
(39)

RAP-seq RNA affinity purification
Hybridization of biotin-labelled antisense
oligos to target RNA specific for a single RNA 10.1126/science.1237973 (40)

ChOP-seq
Chromatin Oligo affinity
Precipitation

Hybridization of biotin-labelled antisense
oligos to target RNA specific for a single RNA 10.1038/ncomms8743 (35)

ASO-Caputre-Seq
Anti-Sense Oligonucleotide
mediated capture

Hybridization of biotin-labelled antisense
oligos to target RNA (deproteinized
chromatin) specific for a single RNA 10.1093/nar/gky1305 (41)

TRIP-seq
Triple helix-sequencing
assay

Enrich triplex-forming sequences
relative to nucleosome positions.

all genomic regions
involved in triplexes (no
RNA specificity) 10.1016/j.molcel.2019.01.007 (42)

MARGI-seq
Mapping RNA-genome
interactions

Isolation of genome-wide
RNA–chromatin interactions through
proximity ligation all RNAs 10.1016/j.cub.2017.01.011 (43)

GRID-seq
Global RNA Interactions
with DNA

Isolation of genome-wide
RNA–chromatin interactions through
proximity ligation all RNAs 10.1038/nbt.3968 (44)

RADICL-seq
RNA And DNA Interacting
Complexes Ligated

Isolation of genome-wide
RNA–chromatin interactions through
proximity ligation all RNAs 10.1038/s41467-020-14337-6 (45)

ChAR-seq
Chromatin-Associated RNA
sequencing

Isolation of genome-wide
RNA–chromatin interactions through
proximity ligation all RNAs 10.7554/eLife.27024 (46)

Table 1. List of experimental methods used to isolate RNA genomic interaction sites.

8.7. Table 2

name Easy installation
using containers

Computation
time

Minimal - default
TPX length

Thermal stability
computation

Secondary structure
integration

Last commit
on github

3plex yes low 6-10 yes yes 2022

Triplexator no low 10-16 no no 2013

LongTarget no high NA-20 yes no 2018

TDF no low 10-16 no no 2021

Table 2. comparison of TPX prediction softwares.
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