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Abstract 

When we see a stimulus, e.g. a star-shaped object, our intuition is that we should perceive a 

single, coherent percept (even if it is inaccurate). But the neural processes that support perception 

are complex and probabilistic. Simple lines cause orientation-selective neurons across a 

population to fire in a probabilistic-like manner. Does probabilistic neural firing lead to non-

probabilistic perception, or are the representations behind perception richer and more complex 

than intuition would suggest? To test this, we briefly presented a complex shape and had 

participants report the correct shape from a set of options. Rather than reporting a single value, 

we used a paradigm designed to encourage to directly report a representation over shape space—

participants placed a series of Gaussian bets. We found that participants could report more than 

point-estimates of shape. The spread of responses was correlated with accuracy, suggesting that 

participants can convey a notion of relative imprecision. Critically, as participants placed more 

bets, the mean of responses show increased precision. The later bets were systematically biased 

towards the target rather than haphazardly placed around bet 1. These findings strongly indicate 

that participants were aware of more than just a point-estimate; Perceptual representations are 

rich and likely probabilistic. 

 

Keywords: visual perception; probability; representations; decision-making; shape-space 
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Introduction 

Imagine being shown a star-shaped object. After taking it away, what awareness of it 

would you have? Would you be aware of having seen its shape, or would your awareness of it be 

hazy and probabilistic? Our intuitive idea is that perception would be discrete[1]: Either we would 

see the star, or if the percept was too brief, perhaps nothing at all. However, the machinery of 

perception produces probabilistic computations and mechanisms throughout the visual system. 

For example, orientation-selective neurons in primary visual cortex have a preferred orientation 

with the firing rate of neurons dropping off the further the stimulus is from their preferred 

orientation[2]. The same also applies to moving stimuli in the MT cortex[3] and neural firing in 

response to visual stimuli in general resembles probability density functions[4]. Decoding of these 

neural activities, both in visual and prefrontal cortices, demonstrate correlations with reported 

confidence[5], suggesting that people are aware of and can report their internal representations at 

least to some extent. Given that neural representations are probabilistic, how could perception be 

discrete? Indeed, visual perception may only seem non-probabilistic since our vision is rarely 

imprecise. If the star shape is seen just for an instant, maybe then we might feel unsure if asked 

to report on the number or depth of the points. Such a feeling could reflect that the underlying 

representation is hazy or probabilistic.  

 

Our contention is that perception is rich, complex, and probabilistic. It is “rich” in that 

representations are more than a discrete point[1], and “complex” in that it is more than just 

discrete representation coupled with some sense of confidence (e.g., a symmetrical interval or 

Gaussian around the discrete point). “Probabilistic” we take to mean that the internal 

representation is akin to a distribution over a feature space (a shape space, in this case). 
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Although the computations that assist vision are probabilistic[6,7,8,9,10,11], several 

researchers have argued that the outcome of perceptual computations, while probabilistic 

themselves, result in single, discrete percepts. For example, Block[1] proposes that "competition 

among unconscious representations yields conscious representations through winner-takes-all 

processes of elimination or merging”. In support of such a view, researchers have found that 

perceptual decisions show little evidence of knowledge of the probability distributions formed 

during perception[12]. Other studies reveal conflicting results, but since they use an array of target 

stimuli per display, e.g. orientations that have some spread[13,14] , they do not meet the ideal 

criteria for isolating perception. For example, Rahnev and Block[15] argue that perception is only 

likely to be discrete in instances in which an object is briefly presented in isolation. Otherwise, 

probabilistic computation could arise from multiple discrete perceptual events being combined at 

decision-making stages.  

 

The advantage of perceptual decision-making tasks is that they reveal what properties of 

a perceptual representation are available to higher-level cognition. However, a disadvantage is 

that if decisions are not using encoded information optimally it is unclear whether perception 

lacks this information or whether this information is not incorporated into decisions. Therefore, 

our task was designed to allow participants to directly report their internal representations rather 

than inferring representational properties from the optimality (or sub-optimality) of decisions. 

We used a modified continuous report paradigm—where participants report the value of a shown 

shape from a continuous shape space arrayed on a circle—to allow participants to place ‘bets’ 

over the circular feature space. Participants placed multiple Gaussian bets over positions on the 
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circle and the combination of these bets allowed participants to draw an ‘uncertainty profile’ on a 

per trial basis. 

 

To preview our results, we found evidence of rich and probabilistic information in the 

reports. The spread of the uncertainty profiles, which can be taken as a measure of 

representational noise, was correlated with the imprecision of reports, indicating an awareness of 

the amount of imprecision in their representations. The drawn uncertainty profiles matched the 

shape of bet 1 errors, further demonstrating that later bets within a trial were likely constrained 

by representational content rather than reflecting strategy. Most importantly, while the later bets 

in a trial were associated with larger error magnitudes than bet 1, they cumulatively shift the 

mean of the uncertainty profile closer and closer to the true stimulus. The later bets were 

systematically biased towards the target rather than haphazardly placed around bet 1. Taken 

together, these findings point towards participants having an awareness of the target that extends 

beyond one discrete response or even a discrete response plus a separate notion of confidence[15].  

 

Methods 

Participants 

Forty naïve participants (16 female, median age 22) were recruited for Experiment 1. Our 

sample size was based on previous work—a previous study on working memory[16] using a 

similar paradigm had sufficient power with 40 participants to detect the effects of interest. All 

participants declared normal or corrected-to-normal visual acuity and color vision. Participants 

were recruited online (via www.prolific.co) for a base allowance of 5.20GBP per hour and were 

told that they could also receive a monetary bonus depending on their performance (mean bonus 
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= 2.46 GBP). The experiments were approved by the New York University Abu Dhabi 

Institutional Review Board and carried out in accordance with relevant guidelines and 

regulations. Informed consent was obtained from all participants. 

 

Apparatus and stimuli 

Because of the online nature of the experiment, stimulus sizes would vary slightly 

depending on the participant’s screen size/viewing distance. Assuming that a 27-inch 1920 x 

1080 resolution monitor placed 70 cm away was used, targets would be from the center of the 

screen, with the target shapes themselves occupying 2° of visual angle. The background of the 

screen was white throughout the experiment. Targets (one per trial) always appeared off-center 

from the fixation point (approximately 2° away), at some random bearing. Effort was made to 

ensure that the drawn display fit within the participant’s browser page. Participants were also 

asked to maximize their browser window prior to launching the experiment. All reported 

experiments were programmed entirely in HTML Canvas/Javascript.  

 

The targets were derived from the validated circular shape space[17], which consists of 

360 shapes (one per integer degree angle of the circle). As with typically used color wheels, each 

shape was only slightly different from its neighbors and angular distance along its 2D circle is 

correlated to visual similarity (Figure 1a), resulting in a continuous and circular stimulus space. 

Stimulus display duration was 40ms. The targets were degraded/noised by replacing 90% of the 

black pixels with white ones to match the background (Figure 1c). To recap, from our original 

design to investigate working memory[16] we made three important changes overall to adapt it to 

study perception, first was the switch to a single shape stimulus per display, not an array[13,14], 
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since having multiple items introduces problems with confusion among the items[18,19,20,21]. 

Second was the short stimulus timing, and third was the noise added to the stimuli. These latter 

two were to increase the likelihood that we still have performance below ceiling while having 

only one stimuli per display. 

 

 
 
Figure 1. Experiment Paradigm. a) Trials began with a 500ms fixation. A target shape then appeared (at some 

random bearing off-center) for a short duration of 40ms. For illustration the target is noiseless, but actually was 

noised in the experiment. Thereafter, the participant is free to make their bets on what they saw using the shape 

wheel. The currently selected shape appeared on the center of the screen. b) Participant bets add Gaussian (SD = 4°) 

component on the circle, which was always previewed to participants pre-click. Participants were awarded points 

based on the height on the target shape’s position on the circle. Participants were given incentive to spread their bets 

as stacking provided diminishing returns on height. c) Illustration of the noise effect of replacing the black pixels 

with the background color. The shapes and shape wheel were adapted from Li et al.[17]. 

 

Procedure 

 Each trial began with a blank screen with a fixation cross lasting for 500ms. A randomly 

selected noised target shape then appeared on-screen for 40ms, at some off-centered bearing 

from fixation. Stimulus presentation was immediately followed by the response phase. 
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Participants were asked to indicate the shape that they remembered using the shape wheel (see 

Figure 1a). The chosen shape was previewed to participants and updated at the center of the 

wheel with every mouse movement. A black Gaussian distribution (standard deviation of 4° on 

the shape space) also appeared on the wheel, centered on and updated with participants’ mouse 

location. Participants confirmed their choice with a mouse click.  

 

For the 2nd to 6th bets, a similar  Gaussian appeared at a random position on the bar, and 

participants were asked to move the mouse to place the Gaussian over the shape they want to 

respond with, again confirming the bet with a mouse click (iteratively, for a total of six bets). 

Note that the Gaussian for bets 2-6 had half the height of the Gaussian for bet 1. This was to 

encourage participants to be as accurate as possibly during the first bet. During each bet, the 

uncertainty profile (based on current mouse position) was updated per frame and previewed to 

participants. Participants were instructed to build a distribution that matched their internal state. 

The six Gaussians summed to create a final uncertainty profile for that trial. Participants were 

free to stack responses on top of one another or to spread it across a larger shape space. As a 

result, the uncertainty profile ‘drawn’ at the end of the sixth response need not have a Gaussian 

shape. Note that the Gaussians spawned in a random location between responses to prevent 

stereotyped successive clicks on the same shape location, and participants had to wait a 

minimum of 300ms and make a lateral mouse movement before they could register the next 

click. To encourage participants to report something resembling the true internal representation, 

participants were awarded points based on the height of the final drawn distribution over the 

target shape: 

points = Height of final distribution at target shape * 500 
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The first bet was twice as tall (i.e., worth twice as many points) to encourage participants 

to place the first bet accurately. To prevent participants from adopting the strategy of stacking 

responses at the first bet, we implemented diminishing returns to stacking by reducing the value 

or rewarded points when stacking bets on existing bets. This penalty was scaled by height. 

Specifically, the height of the Gaussian component to be added was penalized by the current 

height of the uncertainty profile raised to a penalty parameter. For example, if the current bet is 

b, and the uncertainty profile already drawn due to the previous bets is y, then the new bet y’ is: 

y’ = y + standard Gauss * (1 – Height y at b0.4), where 0.4 is the penalty value 

 

The taller the current height at the new bet value, the smaller the possible gain in height 

(and therefore the smaller the gain in points). Importantly, this penalty was built into the 

visualization of the drawn distribution seen by participants. After the six guesses were placed, 

the trial score, total score, as well as the current accumulated monetary bonus (every 200 points 

earned 0.10 GBP) were displayed on the feedback screen until the participant re-centered the 

mouse on the central fixation. The maximum possible points per trial was 200. Each participant 

first completed 6 practice trials, followed by 150 main trials, with a break every 50 trials. 

Practice trials were excluded from the analyses. 

 

Results 

Evidence that the reported distributions incorporate imprecision 

To explore the degree to which participants’ bets captured representational noise, we first 

looked at whether the spread of bets predicted performance. To maximize performance, a 

participant should place bets narrowly when the shape representation is precise is low and spread 
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bets widely when precision is low. Indeed, we found significant positive correlations (p< .05) 

between the magnitude of the error of the first response and the median absolute distance 

between adjacent bets for 33 of the 40 participants (mean r = .392). These individual correlations 

were Fisher-transformed (mean z = .434, 95% CI = [0.029, 0.899]) and a t-test found this 

distribution to be significantly different from zero (t(39) = 11.75, p <.001). Similar results were 

found using other measures of the bet spread, including the standard deviation (mean z = .343) or 

the interquartile range[22] (mean z = .333) of the uncertainty profile.  

 

Evidence that profiles reflect trial-specific probability 

This analysis demonstrates that the way the bets are placed reflects the error in 

participants’ first response. But how closely does the reported uncertainty profiles within trials 

match participants’ across-trial error, as assessed by the uncertainty profile of the error in first 

responses across trials? If participants were accurately recreating their internal representations by 

sampling from it to derive first responses, the across trial error distributions would match the 

average of the uncertainty profiles reported within a single trial. We examined this using two-

sample Kolmogorov-Smirnov (KS) tests[22] to compare the across-trial error distribution (error of 

the first response relative to the correct answer) to the trial averaged uncertainty profile for each 

participant. Uncertainty profiles were circle-shifted to align the target shapes and averaged at 

each integer value of the shape space (e.g., at 360 discrete points). In 32 of the 40 participants, 

the D-value (the KS statistic which measures the maximum difference between the two empirical 

cumulative distribution functions) was small (mean D = .045, SD = .025) and non-significant 

(p>.05), highlighting that the average reported uncertainty profiles was not significantly different 

from the across-trial error of the first response (Figure 2a). This analysis suggests that 
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participants have access to, and can report, rich probabilistic information. The manner in which 

participants spread their bets are likely constrained by their internal representations. 

 

 

Figure 2. Comparing the error distribution of the first response across trials (red) versus the drawn uncertainty 

profiles (after all six bets) averaged across trials (blue), for each participant. a) The 40 participants of in the main 

study. b) 20 participants from a control study where participants had the ability to undo a response. 

 

Further, if participants were just using a confidence plus a discrete remembered 

percept[15] rather than having access to a rich internal distribution, we would expect that the 

drawn distributions should be roughly symmetrical about bet 1. Therefore, if we flip the 

uncertainty profiles before comparing it against the across-trial error distribution, it should not 

significantly affect the KS test results. However, doing this results in only 11 out of the 

participants (versus 32 in the original analysis) having the two distributions be non-significantly 

different (mean D = .098, SD = .064). Comparing this to the original analysis, these D-values are 

significantly different (t(39)=5.05, p<.001). In other words, the overlap between the averaged 

within-trial uncertainty profiles and the across-trial first bet error density plot is significantly 
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worse if we flip one of the two distributions, suggesting that there is important information about 

the target percept held in the asymmetry of the uncertainty profiles. 

 

Evidence that the bets contain more information than found in the first response 

The previous analyses highlight that the uncertainty profiles convey rich information 

about internal representations. But do they also contain information about what is in memory 

beyond what is captured by the initial response or the first response plus a separate notion of 

confidence[15]? If participants have an internal distribution from which to make multiple 

responses from, it is possible that the cumulative error across bets is more precise than any single 

bet, even the first one (see Supplementary Materials). An example of how this could work is if 

participants have an internal representation but are able to only draw one sample from it at a time 

(e.g., one different sample per bet), rendering the initial bet suboptimal. This is unlike a discrete 

or a discrete + confidence model, where the cumulative error can only get worse (particularly if 

we assume there is some memory component that is causing a decay of information over the 

bets).  

 

We analyzed the placement of individual bets, as well as the cumulative circular average 

of the bets (e.g., if the first bet was a shape 10° clockwise and the second was 4° 

counterclockwise, the cumulative average would be 3° clockwise). As shown in Figure 3, the 

first bet placement is the most accurate, with a relatively monotonic decline in the accuracy of 

individual bets across the trial (when considering the center of bets in isolation). To examine 

this, we subjected the bets to a one-way ANOVA with the six levels of bet order as a within-
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subjects factor. Errors generally increased with bet number (bet 1 = 14.9°, bet 6 = 20.3°), 

F(5,195) = 17.76, p <.001, η2 =.313. This result is not surprising given that the first response was 

worth double the points of subsequent responses and that subsequent responses occurred after 

increasing delays and potential interference from previous responses.  

 

 

Figure 3. Individual response errors (red) and cumulative errors (blue) as a function of response order. Cumulative 

errors are calculated as the error of the mean of responses. For example, the cumulative error for response 3 would 

be influenced by response 2 and response 1, whereas the individual response error for response 3 is solely 

determined by that bet. a) Errors for Experiment 1. b) The equivalent errors for Experiment 2. 

 

Despite being less accurate than the first responses, subsequent responses could 

nevertheless contain additional, unique information about the target item. To test this, we 

examined whether additional bets were providing novel information not contained in the first 

response by testing whether the center of the uncertainty profile approaches the true shape with 

repeated placement of bets. We subjected mean bet placement to a one-way ANOVA and we 

found that performance improved with additional bets (bet 6 = 14.1°), F(5,195) = 3.71, p = .003, 

η2 =.087, despite the fact that average error trended much worse for the later bets. This suggests 
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that the combination of responses contains more information than any individual response, 

including the first response.  

 

Evidence that averaging benefits are not caused by errant first responses 

As a precaution, we wanted to ensure that any effects were not due to participants making 

a mistake at Bet 1 (e.g., a mis-click) but with correct reports in subsequent bets1. The paradigm 

for this control study was virtually identical to Experiment 1, except that for any given trial, 

participants were given the ability to erase one bet by making a right-mouse click. For example, 

if they made a mistake for Bet 1, then can go back before confirming their Bet 2. Likewise, a 

participant can undo Bet 5 before confirming Bet 6. Participants who did not use this feature 

within the first 20 trials were given a reminder of this functionality. All participants were also 

reminded of it between the practice/main trials and on each break. 

 

Participants rarely used the undo function (mean = 2% of trials), despite the constant 

reminders. Pointing-related error rates show a speed-accuracy trade-off[24]; thus, a low-correction 

rate was to be expected given the non-speeded nature of the task. These undone bets were 

generally of greater error magnitude error (mean = 70°) and in-line with random clicking (chance 

error = 90°) compared to the bets that replaced them (mean = 16°), indicating that these were 

mis-clicks rather than true responses. The use of the undo function was split evenly across the 

bets, e.g., it was used as frequently for undoing bet 1 as it was used for bets 2, 3, 4 or 5. Still, an 

independent t-test on the Bet 1 error magnitudes for Experiment 2 (M = 18.2°, SD = 1.3°) was 

marginally higher than the one for Experiment 1 (M = 14.9°, SD = 0.9°), (t(58) = 1.82, p = .074, 

 
1 We would like to thank Ned Block for highlighting this possibility and for suggesting a way to test it. 
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η2 = .05) despite the ability to erase an incorrect response, suggesting that Experiment 1 did not 

suffer from much of these mis-clicks. 

 

Otherwise, results of this control study mirror that of the main study. Significant positive 

correlations (p< .05) were also found between the magnitude of the error of the first response and 

the median absolute distance between adjacent bets for 19 of the 20 participants (mean r = .440). 

When comparing the error distribution of the first response across trials versus the uncertainty 

profiles (after all six bets) averaged across trials (Figure 2b), in 14 of the 20 participants, the KS 

test D-value was small (mean D = .055, SD = .016) and non-significant (p>.05). Errors also 

generally increased with bet number (bet 1 = 18.2°, bet 6 = 24.2°), F(5,95) = 11.82, p <.001, η2 

=.384, while the cumulative bet error (bet 6 = 17.0°) decreased, F(5,95) = 2.51, p = .035, η2 =.12 

(Figure 3b). Therefore, we see no evidence that the improvement from later responses is caused 

by participants realizing after they have made an errant response.  

 

Discussion 

We rapidly perform complex calculations and process information about our 

environment. The neural computations supporting perception are capable of producing 

probabilistic information, but is this information available to consciousness and higher-level 

decision-making? This has generally been studied by determining whether humans can perform 

flexible and deliberate computations that require access to more than summary statistics[15]. 

Studies using this approach have yielded mixed results[12,13,14] and there are concerns about 

whether a failure to perform optimal calculations reflects a lack of information about internal 

representation, or just an ability to effectively reason about it. Here we try a more direct 
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approach by asking participants to place multiple Gaussian bets per trial over a shape space in 

order to convey a sense of probability of a perceived shape. The summation of these Gaussian 

bets create uncertainty profiles on a per trial basis. Several lines of evidence suggest that 

participants have access to more than a discrete shape and can report something akin to 

probability distribution. Spread of the bets/ uncertainty profiles was correlated with first bet 

precision, indicating an awareness of the amount of imprecision in representations. The 

uncertainty profiles matched the shape of bet 1 errors, further demonstrating that later bets within 

a trial were likely constrained by internal representations rather than reflecting strategy. Most 

importantly, while the later bets in a trial were associated with larger error magnitudes than bet 1, 

they cumulatively shift the mean of the uncertainty profile closer and closer to the true stimulus. 

This is unlikely the case if participants were only using some sense of confidence to guide how 

to spread the later bets: Because bets would be spread symmetrically about bet 1, cumulative 

error should not decrease). All these point towards participants having an awareness of the target 

that extends beyond one discrete response. Using the betting game paradigm, we similarly found 

evidence that working memory representations were rich[16]. 

 

 It may not seem surprising that the betting game task would yield similar results when 

applied to perception or working memory, given that there is considerable evidence that working 

memory representations are perceptual representations that are maintained by internal 

attention[25,26,27]. However, this is not to say that the two tasks would be driven by the same 

representations. Indeed, there were major differences in the two tasks: stimulus presentation 

(single-item versus an array), task demands (retention interval or instant report) and performance 

(reports for working memory tasks have considerably more variability). Rather, this suggests that 
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the representations that occupy the human mind are more complex and richer than what discrete 

reports can capture, and that access to such information is a property of both perception and 

memory.  

 

Do these results suggest that perception is probabilistic? Clearly, participants have more 

information in mind than a discrete response. However, this may not be sufficient to conclude 

that perception is fully probabilistic. Rahnev et al.[15] highlighted the possibility that perception 

might only be probabilistic in a “weak” sense: People might have a discrete value in mind plus a 

sense of confidence about their perception. However, one piece of evidence from our findings 

argues against the weak probabilistic account. As participants place more bets, they do so in an 

asymmetric fashion, with later bets shifting the mean towards to the true value. This suggests 

that participants encode and have access to representations more descriptive than would be 

provided by a confidence interval.  

 

The current findings suggest that perceptual reports have probabilistic properties. A 

distinct, but equally important question is whether this entails full conscious access to this 

probabilistic information at a given time. It could be that individual bets (and conscious 

awareness) are limited to discrete samples that are drawn from an internal probability 

distribution of information. Evidence of such noisy sampling has been found in many paradigms 

including decision-making[28], object recognition[29], attention[30], etc. Studies have further argued 

that access to consciousness is all-or-none[31,32], consistent with Block's[1] proposal of conscious 

representations through winner-takes-all processes (but see Karabay et al.[33]). However, even if 
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our results were the result of sampling, this means that probabilistic information is perceptually 

encoded even if there are limits in moment-to-moment accessibility.  

 

Ultimately, whether or not the internal representation can be classified as fully 

probabilistic or simply probabilistic-like (e.g., a rich collection of samples, etc.), the current 

paradigm indicates that there is practically useful information not tapped into if only discrete 

response paradigms are used. 

 

Data Availability 

The datasets generated and analyzed during the current study are available at 

https://osf.io/vrpbd/ 
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