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Abstract

Understanding the effect of spike-timing-dependent plasticity (STDP) is key to
elucidate how neural networks change over long timescales and to design inter-
ventions aimed at modulating such networks in neurological disorders. However,
progress is restricted by the significant computational cost associated with simulat-
ing neural network models with STDP, and by the lack of low-dimensional descrip-
tion that could provide analytical insights. To approximate STDP in phase oscilla-
tor networks, simpler phase-difference-dependent plasticity (PDDP) rules have been
developed, which prescribe synaptic changes based on phase differences of neuron
pairs rather than differences in spike timing. Here we construct mean-field approxi-
mations for phase oscillator networks with STDP to describe the dynamics of large
networks of adaptive oscillators. We first show that single-harmonic PDDP rules
can approximate a simple form of symmetric STDP, while multi-harmonic rules
are required to accurately approximate causal STDP. We then derive exact expres-
sions for the evolution of the average PDDP coupling weight in terms of network
synchrony. For adaptive networks of Kuramoto oscillators that form clusters, we
formulate a low-dimensional description based on mean field dynamics and average
coupling weight. Finally, we show that such a two-cluster mean-field model can
be fitted to provide a low-dimensional approximation of a full adaptive network
with symmetric STDP. Our framework represents a step towards a low-dimensional
description of adaptive networks with STDP, and could for example inform the de-
velopment of new therapies aimed at maximizing the long-lasting effects of brain
stimulation.
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1 Introduction

Synaptic plasticity is considered the primary mechanism for learning and memory con-
solidation. Neurons with similar activity patterns strengthen their synaptic connections,
while others connections may weaken. Spike-timing-dependent plasticity (STDP) has
been suggested as an unsupervised, local learning rule in neural networks (Gerstner,
Kempter, Van Hemmen, & Wagner, 1996; Song, Miller, & Abbott, 2000) motivated
by experimental findings (Markram, Lübke, Frotscher, & Sakmann, 1997; Bi & Poo,
1998; Feldman, 2000; Froemke & Dan, 2002; Cassenaer & Laurent, 2007; Sgritta, Lo-
catelli, Soda, Prestori, & D’Angelo, 2017). These experimental studies reported synaptic
strengthening or weakening depending on the order and timing of pre- and postsynaptic
spikes. In causal STDP, long-term potentiation (LTP) occurs when the postsynaptic neu-
ron fires shortly after the presynaptic neuron. Conversely, long-term depression (LTD)
occurs when the postsynaptic neuron fires shortly before the presynaptic neuron. The
closer the spike times are, the larger the effect. Non-causal, symmetric STDP has also
been reported in the hippocampus (Abbott & Nelson, 2000; Mishra, Kim, Guzman, &
Jonas, 2016). Although Donald Hebb emphasized the importance of causality in his the-
ory of adaptive synaptic connections in 1949 (Hebb, 2005), such non-casual rules, that
neglect temporal precedence, are sometimes referred to as Hebbian plasticity rules. 1

As a major contributor to long-term plasticity (time scale of 1s or longer), STDP is key
to investigate long-term neural processes in the healthy brain such as memory (Litwin-
Kumar & Doiron, 2014) and sensory encoding (Coulon, Beslon, & Soula, 2011), but also to
modulate networks affected by neurological disorders (Madadi Asl, Vahabie, Valizadeh,
& Tass, 2022). In particular, long-term plasticity is critical to the design of effective
therapies for neurological disorders based on invasive and non-invasive brain stimula-
tion. Paired associative stimulation using transcranial magnetic stimulation (TMS) has
been shown to trigger STDP-like changes (Müller-Dahlhaus, Ziemann, & Classen, 2010;
Johnen et al., 2015; Wiratman et al., 2022), and STDP models have been used to de-
sign electrical stimulation for stroke rehabilitation (Kim et al., 2021). Coordinated reset
deep brain stimulation (DBS) for Parkinson’s disease was designed to induce long-term
plastic changes outlasting stimulation using STDP models (Tass & Majtanik, 2006), and
was later validated in non-human primates (Tass et al., 2012; Wang et al., 2016) and
patients (Adamchic et al., 2014).

1In this work, we call plasticity rules causal when temporal precedence is enforced (as in ‘classical’
STDP rules (Bi & Poo, 1998)), and symmetric when inverting spike timings/phase differences leads to the
same type of adaptation. We stay clear of the ambiguous term Hebbian STDP, which is also sometimes
used to refer to causal STDP in the experimental literature (Cassenaer & Laurent, 2007; Sgritta et al.,
2017).
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However, progress in these areas is restricted by the significant computational cost
associated with simulating neural network models with STDP and by the lack of low-
dimensional description of such networks. Indeed, simulating networks with STDP of
even moderate size for more than a couple of minutes of biological time can be im-
practical because the number of weight updates scales with the square of the network
size. Low-dimensional mean-field approximations have been developed for networks with
short-term plasticity (Tsodyks, Pawelzik, & Markram, 1998; Taher, Torcini, & Olmi,
2020; Gast, Schmidt, & Knösche, 2020; Schmutz, Gerstner, & Schwalger, 2020; Gast,
Knösche, & Schmidt, 2021), but reductions for STDP have assumed that plasticity does
not change firing rates and spike covariances (Ocker, Litwin-Kumar, & Doiron, 2015)
or that the network is in a balanced state at every point in time (Akil, Rosenbaum, &
Josić, 2021). Event if node dynamics are given by a simple Kuramoto-type model, it
is a challenge to understand the dynamics of large networks with adaptivity. While the
continuum limit of Kuramoto-type networks with STDP-like adaptivity can be described
by integro-differential equations from a theoretical perspective (Gkogkas, Kuehn, & Xu,
2021), these do not necessarily elucidate the resulting network dynamics or yield a com-
putational advantage. Approaches like the Ott–Antonsen reduction (Ott & Antonsen,
2008), which have been instrumental to derive low-dimensional descriptions of phase os-
cillators (see (Bick, Goodfellow, Laing, & Martens, 2020) and references therein), cannot
be applied to phase oscillator networks with STDP. Indeed, adaptive networks and the
corresponding high-dimensional dynamical equations are quite rich and can, for example,
show significant multistability (Berner, Schöll, & Yanchuk, 2019).

Models of causal, additive STDP based on differences in spike timing are exemplified
by the work of Song, Miller and Abbott (Song et al., 2000). They assumed that the
synaptic strength κkl from presynaptic neuron l to postsynaptic neuron k is updated only
when either neurons spike, and the corresponding change in synaptic strength from l to k
is given by

∆κkl =


A+e−∆tkl/τ+ for ∆tkl = tk − tl > 0,

−A−e−|∆tkl|/τ− for ∆tkl < 0,

0 for ∆tkl = 0,

(1)

where the most recent spike times of neurons k and l are tk and tl, the parameters A+

and A− determine the magnitude of LTP and LTD, and τ+ and τ− determine the timescale
of LTP and LTD, respectively (see Fig. 3A). Conversely, symmetric STDP with both LTP
and LTD can be modeled by asserting that synaptic strengths are updated when either
neuron spikes, with a change in synaptic strength from l to k given by the Mexican hat
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function (Ricker wavelet)

∆κkl = 2a√
3bπ1/4

1−
(

∆tkl
b

)2
 e−∆t2kl/(2b

2), (2)

where a scales the magnitude of STDP, and b scales the temporal width of the Mexican
hat (see Fig. 1A).

To approximate STDP in phase oscillator networks, simpler phase-dependent plasticity
(PDDP) rules have been developed, which prescribe synaptic changes based on differences
in phase of neuron pairs rather than differences in spike timing. If the state of oscillator k
is given by a phase variable θk ∈ [0, 2π) on the circle, the change of coupling weight
between oscillators k and l according to PDDP depends on their phase difference θl − θk.
While symmetric STDP can be approximated by the symmetric PDDP rule originally
proposed by Seliger et al. (Seliger, Young, & Tsimring, 2002), several authors added
a phase-shift parameter ϕ in order to approximate causal STDP-like learning (Aoki &
Aoyagi, 2009; Berner et al., 2019), as well as other types of plasticity. With this single-
harmonic PDDP rule, the weight κkl from oscillator l to oscillator k evolves according
to

dκkl
dt = ε [λ cos(θl − θk + ϕ)− κkl] , (3)

where λ controls the strength of PDDP relative to the decay of the synaptic strength and ε
sets the relative time scale between the plasticity mechanism and the phase dynamics.
When ϕ = 0, we recover the learning rule introduced by Seliger et al., which is symmetric
around a phase difference of zero. For ϕ = π/2, the cosine term is anti-symmetric around
zero, which provides a first level of approximation of additive, causal STDP (in the absence
of the decay term). However, this is a coarse approximation. A PDDP rule directly based
on causal STDP exponential kernels (Maistrenko, Lysyansky, Hauptmann, Burylko, &
Tass, 2007) could be more closely related to causal STDP. Lücken et al. proposed such
a rule, and determined the correspondence between the parameters of the causal STDP
rule, the parameters of the PDDP rule, and the parameters of the underlying network of
coupled oscillators (Lücken, Popovych, Tass, & Yanchuk, 2016) (see Fig. 3B). Importantly,
the synaptic strengths are continuously updated based on the evolving phase differences,
while standard models of neural plasticity assume updates as discrete events when a
neuron spikes.

Here, we construct mean-field approximations for coupled Kuramoto phase oscillators
subject to PDDP and compare these approximations to fully adaptive networks where
every edge evolves according to STDP. Specifically, we consider two types of PDDP rules:
rules which update connection weights continuously as was done in previous studies, and
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event based rules, where weights are updated according to phase differences at a particular
phase corresponding to spiking. In Section 2 we show that single-harmonic PDDP rules
can indeed approximate symmetric STDP in adaptively coupled networks of Kuramoto os-
cillators, while a multi-harmonic rule is required to accurately approximate causal STDP.
For PDDP rules, we derive exact equations describing the evolution of the mean coupling
strength in terms of the Kuramoto/Daido order parameters that encode synchrony of the
oscillators’ phases; see Section 3. We then focus on networks with symmetric adaptive
coupling that naturally form clusters (cf. Section 2 or (Berner et al., 2019)). For such
networks we construct a mean-field approximation (Section 4) where each cluster corre-
sponds to a coupled population. If we assume that coupling between clusters is through
the mean coupling strength—rather than by individual weights between oscillators—we
obtain low-dimensional Ott–Antonsen equations for the mean-field limit. We explicitly
analyze the dynamics of the reduced equations for adaptive networks for one and two
clusters. Note that these mean-field descriptions are not valid globally (i.e., there is no
single reduced equation that is valid on all of state space) but rather aim to capture the
dynamics on part of overall phase space determined by the initial conditions. Finally, we
show that coupled populations described by such mean-field approximations can approx-
imate the corresponding full network (Section 5) by extracting the mean field description
from the emergent clustering. Since brain activity is transient, we focus on transients and
consider additive plasticity without bounds on individual weights throughout this paper.
In line with previous studies, we however include a weight decay term when considering
symmetric STDP (Seliger et al., 2002; Berner et al., 2019).

2 PDDP can approximate STDP in Kuramoto net-
works

Adaptation of network connections through STDP rely — as the name suggests — on
the timing of action potentials of the coupled neurons. If the state of each neuron can
be described by a single phase variable (for example, if the coupling is weak (Ashwin,
Coombes, & Nicks, 2016)) then it may be possible to approximate STDP by an adaptation
rule that depends on the phase differences between oscillators such as equation (3). In
this section we now consider general PDDP rules, that can update weights continuously
(as in equation (3)) or update at discrete time points (spiking events). We show that, for
a network of phase oscillators, these PDDP rules can approximate both symmetric and
causal STDP. For causal STPD, the accuracy increases substantially as the number of
harmonics in the PDDP rule is increased.
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To illustrate this, we focus on the Kuramoto model (Kuramoto, 1975), which is widely
used to understand synchronization phenomena in neuroscience and beyond, subject to
plasticity. Specifically, we consider N coupled Kuramoto oscillators where oscillators rep-
resent coupled neurons (Weerasinghe et al., 2019; Nguyen, Hayashi, Baptista, & Kondo,
2020; Weerasinghe, Duchet, Bick, & Bogacz, 2021). The phase θk of oscillator k evolves
according to

dθk
dt = ωk + 1

N

N∑
l=1

κkl sin(θl − θk) (4)

with intrinsic frequency ωk and strength κkl of the synaptic connections from oscillator l
to oscillator k (subject to plasticity). Recall that (cluster) synchrony in the Kuramoto
model is captured by the (complex-valued) Kuramoto–Daido order parameters

Z(m) = 1
N

N∑
k=1

eimθk

for m ∈ Z. For example, for the first order parameter Z := Z(1) (simply the Kuramoto
order parameter), we have Z = ρeiΨ, where ρ is the level of synchrony and Ψ is the average
phase angle. All oscillators are phase synchronized if and only if ρ = |Z| = 1, that is,
θ1 = · · · = θN .

2.1 Principles to convert STDP to PDDP

PDDP rules prescribe synaptic changes based on differences in phase of neuron pairs rather
than differences in spike timing, and can be used to approximate both symmetric and
causal STDP in phase oscillator networks. In particular, the approximation is expected
to hold under the assumption that the evolution of phase differences is slower than the
phase dynamics (Lücken et al., 2016). Under this assumption, spike time differences are
approximated by dividing phase differences by the mean angular frequency of the network
Ω = 1

N

∑N
k=1 ωk.

As the phase difference is continuous in time, the discrete weight updates, based
on spike-time differences in the case of STDP, can be converted to a continuous-time
differential equation in terms of the phase differences. As a result, the coupling weight
between each pair of neurons updates continuously based on the phase difference between
the pre- and postsynaptic oscillators; we refer to this as continuously updating PDDP
or simply PDDP when there is no ambiguity. To ensure that STDP and continuously
updating PDDP scale similarly, we use the scaling factor Ω/2π, which represents the
average number of spikes per unit time.
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Rather than updating weights continuously, we can restrict weight updates to occur
only at spiking events. We say that oscillator k spikes if its phase passes through θk = 0,
and let tqk be the qth firing time of neuron k. At each spiking event, we update the coupling
weight between each pair of neurons based on their phase difference; we give explicit
examples of the functional form of the updates below. We refer to this type of PDDP rule
as event-based PDDP (ebPDDP). While there is an explicit phase dependence through the
events, the actual change only depends on the phase difference. To ensure appropriate
scaling, we now have to consider a scaling factor C =

[∑
q δ(t− tqk) +∑

q δ(t− tql )
]
/2,

where δ denotes the Dirac delta function2. Note that C is only non-zero if t = tqk or
t = tql , i.e., when either the pre- or postsynaptic neuron spikes.

2.2 Symmetric STDP and single-harmonic PDDP

In this section, we show that symmetric, non-causal STDP modelled by equation (2)
together with the weight decay dκkl

dt = −εκkl can be approximated by the single-harmonic
PDDP learning rule introduced by Seliger et al. (equation (3) with ϕ = 0). We refer to
this rule in what follows as the Seliger rule. As detailed in the previous section, discrete
STDP updates should be scaled by Ω/2π to obtain continuous PDDP updates. Therefore,
by matching the scaled maximum of equation (2) with the maximum of equation (3), we
have [Ω/(2π)]

[
2a/(
√

3bπ1/4)
]

= ελ, which determines the value of λ for a given ε (see
example in Fig. 1). Moreover, to ensure that the scale of spike timing differences in the
STDP rule and the scale of phases differences in the PDDP rule match without modifying
the Seliger rule, we choose b ≈ π/(2Ω) (see Fig. 1). Arbitrary values of b could be
accommodated by scaling the phase difference term in the Seliger rule as detailed in the
previous section. The corresponding event-based PDDP rule reads

dκkl
dt = ε

[
λeb

∑
q δ(t− tqk) +∑

q δ(t− tql )
2 cos(θl − θk)− κkl

]
, (5)

with λeb = λ2π
Ω . Note that updates to the coupling strengths happen whenever the pre-

or postsynaptic neurons spikes.
As shown in Fig. 2, both single-harmonic PDDP rules (the Seliger rule and equa-

tion (5)) can approximate symmetric STDP (equation (2)) in networks of Kuramoto os-
cillators. Simulation details can be found in Section A.1. The time evolution of the weight
distribution (panel A), the coupling matrix at the last simulation time point (panel B), as
well as the the time evolution of the average coupling (panel C1) and network synchrony

2The division by 2 ensures that this rule scales similarly to the STDP rule and the PDDP rule with
continuous updates.
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Figure 1: From symmetric STDP to single-harmonic PDDP. A: symmetric STDP
function (Mexican hat, equation (2)) describing the change in weight ∆κkl as a function of the
difference between spikes times ∆tkl. B: Considering the phase difference φkl mod 2π instead of
the difference between spike times, the STDP function in A can be approximated by the PDDP
function in B (equation (3) with ϕ = 0). The horizontal axis is φklΩ , and the vertical axis is 2π

Ω
dκkl
dt

to enable comparison with panel A. The solid blue line correspond to one oscillatory period at
frequency Ω. The parameters used in panel A are a = 0.025822, b = 0.049415, corresponding to
λ = 1, ε = 0.5, Ω = 10π in panel B. LTP is highlighted in blue, and LTD in red.

(panels C2-C3) are comparable across learning rules. For the parameter set shown in
Fig. 2, we see the emergence of two synchronised clusters. For this type of dynamics, the
average coupling as a function of time may be better captured by ebPDDP than PDDP
(panel C1). However, for the desynchronized state (shown in the Supplemental Material C
Fig. C.1), there is little difference between continuous PDDP and ebPDDP. In both states,
the accuracy of the approximation could be improved by considering a Fourier expansion
of the Mexican hat function rather than a single cosine term. We explore this for causal,
non symmetric STDP in the next section since even a single sine term is in general a poor
approximation of the causal STDP kernel.

2.3 Causal STDP and multi-harmonic PDDP

In the previous section, we considered PDDP rules with a single harmonic in the phase
difference. To get a better approximation of causal STDP, one can take more harmonics
into account.
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Figure 2: Comparison between symmetric STDP and PDDP in a Kuramoto network
(two synchronised cluster state). A: Evolution of the distribution of coupling weights with
time (100 bins at each time point). The average weight is represented by a thin black line.
STDP is shown in A1, PDDP in A2, and ebPDDP in A3. B: Coupling matrix at t = 150s, with
oscillators sorted by natural frequency. STDP is shown in B1, PDDP in B2, and ebPDDP in
B3. C: Time evolution of average coupling (C1, error bars represent the standard error of the
mean over 5 repeats, the high variability is due to sensitivity to initial conditions) and network
synchrony (C2-C3). STDP is shown in black, PDDP in blue, and ebPDDP in red. [a = 0.38733,
b = 0.049415, σκ = 3, ∆ = 1.2π, Ω = 10π (5Hz)]
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2.3.1 Obtaining multi-harmonic PDDP rules from causal STDP

To approximate causal STDP, we consider the PDDP rule proposed by Lücken et al.
(Lücken et al., 2016) as

dκkl
dt = Ω

2π

(
A+e

−φkl
Ωτ+ − A−e

φkl−2π
Ωτ−

)
= F (φkl), (6)

where φkl = (θl−θk) mod 2π, Ω is the mean (angular) frequency of the network, and other
parameters have been defined in equation (1). In equation (6), both synaptic potentiation
(first term) and synaptic depression (second term) are described without requiring a
piecewise definition thanks to the fast decaying exponentials. The correspondence of this
PDDP rule with additive STDP is illustrated in Fig. 3B. If the postsynaptic neuron k

spikes (i.e., its phase increases through 0) shortly after the presynaptic neuron l, φkl is
small and positive, which will lead to a potentiation of κkl. Conversely, if the postsynaptic
neuron spikes shortly before the presynaptic neuron, φkl−2π is small and negative, which
will lead to a depression of κkl. As laid out in Section 2.1, spike time differences are
approximated in equation (6) by dividing phase differences by the network mean angular
frequency. Moreover, the scaling factor Ω/2π (average number of spikes per unit time)
accounts for the conversion of discrete weight updates to a continuous-time differential
equation. The corresponding event-based PDDP rule can be obtained as

dκkl
dt =

∑
q δ(t− tqk) +∑

q δ(t− tql )
2

(
A+e

−φkl
Ωτ+ − A−e

φkl−2π
Ωτ−

)
,

= π

Ω

(∑
q

δ(t− tqk) +
∑
q

δ(t− tql )
)
F (φkl), (7)

where F is given by equation (6).
In both cases, we can expand F (φkl) as a Fourier series of the phase difference since φkl

is defined modulo 2π, which makes F (φkl) a 2π-periodic function. The Fourier expansion
will be key to derive the evolution of the average coupling strength in Section 3, and can
be truncated to only include Nf components for simulations (see examples in Fig. 3C).
We note that the PDDP rule by Berner et al. with ϕ ≈ π/2 is a single-harmonic version
of the rule by Lücken et al. (with a vertical shift), and call truncated Fourier expansions
of equation (6) and equation (7) with Nf > 1 “multi-harmonic PDDP”. We express the
Fourier series of F as

F (φkl) =
∞∑

m=−∞
cme

mi(θl−θk) = a0

2 +
∞∑
m=1

[am cos{m(θl − θk)}+ bm sin{m(θl − θk)}] , (8)

where (cm)m∈Z are the complex-valued Fourier coefficients, or equivalently (am)m∈N and
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Figure 3: From causal STDP to multi-harmonic PDDP. A: STDP function (equa-
tion (1)) describing the change in weight ∆κkl as a function of the difference between spikes
times ∆tkl. B: Considering the phase difference φkl mod 2π instead of the difference between
spike times, the STDP function in A can be approximated by the PDDP function in B2 (equa-
tion (6)). As shown in B1, wrapping the PDDP function around a cylinder to join φkl = 0 and
φkl = 2π illustrates the correspondence with the STDP function. In B3, the PDDP function is
approximated using truncated Fourier series with 1, 5, and 25 Fourier components. The ver-
tical axis is 2π

Ω
dκkl
dt to enable comparison with panel A. The parameters used in all panels are

τ+ = 16.8ms and τ− = 33.7ms, A+ = A− = 0.2. LTP is highlighted in blue, and LTD in red.

(bm)m∈N∗ are the real-valued Fourier coefficients. The Fourier coefficients only depend on
the parameters of the STDP rule (equation (1)) and Ω, and the real-valued coefficients
can be obtained analytically as

am = 1
π

∫ 2π

0
F (x) cos(mx)dx = Ω

2π2

[
A+τ+

1 +m2τ 2
+

(
1− e−

2π
τ+

)
+ A−τ−

1 +m2τ 2
−

(
e
− 2π
τ− − 1

)]
,

(9)

bm = 1
π

∫ 2π

0
F (x) sin(mx)dx = Ω

2π2

[
mA+τ

2
+

1 +m2τ 2
+

(
1− e−

2π
τ+

)
+ mA−τ

2
−

1 +m2τ 2
−

(
1− e−

2π
τ−

)]
.

2.3.2 Comparison of learning rules

Multi-harmonic PDDP can approximate causal STDP in Kuramoto networks (simulation
details can be found in the Supplemental Material A.2). As the number of harmonics in-
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cluded in the PDDP rules is increased, the dynamics for the networks with PDDP begin to
match those of the STDP network (Fig. 4). The time evolution of the weight distribution
(panel A), the coupling matrix at the last simulation time point (panel B), as well as the
the time evolution of the average coupling (panel C1) and network synchrony (panels C2-
C7) are closely matched for causal STDP and multi-harmonic PDDP or ebPDDP when
enough Fourier components are included (Nf = 25). Simulations were also performed for
a range of parameter values and the findings were similar (see Figs. C.2–C.5 in Supple-
mental Material C). Single-harmonic PDDP or ebPDDP (Nf = 1) can provide a first level
of approximation of causal STDP in certain cases when the time evolution of the weight
distribution is simple (see Supplemental Material C Fig. C.4). However, single-harmonic
rules are unable to describe more complex cases, even qualitatively (as seen in Fig. 4).
In all cases studied for a network frequency of 5Hz, 25 Fourier components are deemed
sufficient to approximate the dynamics of the network with causal STDP. While the per-
formance of ebPDDP is similar to PDDP, ebPDDP is slightly more accurate than PDDP.
To quantitatively compare STDP to PDDP and ebPDDP, we construct error metrics for
the time evolution of the weight distribution ehist(κkl), the average coupling eκ̂, and the
network synchrony eρ, as well as the coupling matrix at the last simulation time point
eκ∞

kl
. These error metrics are defined in the Supplemental Material A.2. In general, these

error metrics decrease with increasing Nf (Fig. 5A), although stagnation or a slight in-
crease can be seen when the error is already low. Although it is of no consequence in
Kuramoto networks with sine coupling, self-coupling weights are consistently different
between causal STDP and multi-harmonic PDDP or ebPDDP in our simulations. This is
due to the truncated Fourier expansions of F not being zero when the phase difference is
zero (see Fig. 3C).

2.3.3 Parameter dependence

Model parameters influence the four error metrics described in the previous section
(Fig. 5B). Increasing the standard deviation of the frequency distribution (∆) tends to
decrease the error metrics. This is expected since a larger ∆ reduces synchrony and makes
the weight distribution more unimodal. The impact of the standard deviation of the initial
coupling distribution (σκ) on the error metrics is smaller, except for the time evolution of
the weight distribution. The effect of the ratio of the scales of LTD to LTP (β) depends
more strongly on the error metric considered. The largest effect is a lowering of eρ when
LTD dominates (β = 1) compared to the balanced situation (β = 0.5). This is due to
the fact that the time evolution of ρ is closely approximated with Nf = 1 when LTD
dominates, whereas in the balanced state more Fourier components are required to obtain
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a good approximation. Since dominant LTD leads to lower synchrony, this matches the
previous observation that lower synchrony is associated with lower error metrics. Time
courses of ρ for both state can be found in Supplemental Material C; Fig. C.2 shows the
balanced state and Fig. C.4 shows the LTD dominant regime.

To test the robustness of our findings, we studied a network with a mean frequency four
times higher (20Hz) and considered the least favorable part of parameter space (lowest ∆,
lowest σκ, and β = 0.5) (see Supplemental Material C Fig. C.5). The order of magnitude
of the error metrics is the same as for 5Hz, except for eκ∞

kl
(Supplemental Material C

Fig. C.6C). The larger value for eκ∞
kl

may be explained by the larger range of individual
coupling weights, and the coupling matrix obtained at the last stimulation point with
multi-harmonic ebPDDP for Nf = 75 (see Supplemental Material C Fig. C.5B7) is qual-
itatively very similar to the coupling matrix obtained with STDP (panel B1). At 20Hz,
the period of the oscillators is comparable to the STDP time constants, hence the weight
distribution patterns unfolding in time are more highly multimodal than at 5Hz. These
patterns are still well approximated by multi-harmonic PDDP and ebPDDP, but a larger
number of Fourier components than at 5Hz is warranted for accurate results. Simulat-
ing this higher frequency network required a smaller simulation time step (∆t = 0.1ms).
However, the time step has overall little impact on the error metrics at lower frequencies
(Fig. C.6B).

Additional explorations of the parameter dependencies can be found in the Supple-
mental Material C Fig. C.6 and Fig. C.7.
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Figure 4: Comparison between STDP and PDDP in a Kuramoto network, [β = 0.5,
σκ = 0.2, ∆ = 0.6π, Ω = 10π (5Hz)]. Results for PDDP and ebPDDP are shown for 1, 5,
and 25 Fourier components Nf (first, second, and third column on the right hand side of the
figure, respectively). A: Evolution of the distribution of coupling weights with time (100 bins
at each time point). The average weight is represented by a thin black line. STDP is shown in
A1, PDDP in A2-A4, and ebPDDP in A5-A7. B: Coupling matrix at t = 150s, with oscillators
sorted by natural frequency. STDP is shown in B1, PDDP in B2-B4, and ebPDDP in B5-B7.
C: Time evolution of average coupling (C1, error bars represent the standard error of the mean
over 5 repeats) and network synchrony (C2-C7). STDP is shown in black, PDDP in blue, and
ebPDDP in red.
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Figure 5: Influence of Nf , σκ, ∆, and β on error metrics. Error metrics for PDDP
compared to STDP for the time evolution of network synchrony eρ, average coupling eκ̂ and
distribution of weights ehist(κkl), and for the coupling matrix at the last stimulation point eκ∞

kl

are shown in the first, second, third, and fourth columns, respectively. Results for PDDP are in
blue, and for ebPDDP in red. A: Influence of the number of Fourier coefficients Nf on the error
metrics for the parameters used in Fig. 4 (β = 0.5, σκ = 0.2, ∆ = 0.6π, Ω = 10π), error bars show
the standard error of the mean (sem) over 5 repeats. B: Influence of the network parameters on
the error metrics for Nf = 40. The standard deviation of the oscillator frequency distribution
∆ is shown in the first row, the standard deviation of the initial weight distribution σκ is given
in the second row, and the ratio the LTP to LTD scaling factors β is depicted in the third row.
All of the combination of parameters ∆ = {0.6π, 1.2π, 1.8π}, σκ = {0.2, 1.5, 3}, β = {0.5, 1}
are included with 5 repeats for each combination. In each row, averaging is performed over the
parameters that do not correspond to the horizontal axis (standard deviation error bars). Note
that the scale of the vertical axes is two to ten times smaller than in panel A for readability
(range indicated by grey bars). See Supplemental Material C Fig. C.7 for detailed slices in
parameter space.
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3 Evolution of the average coupling strength in net-
works with PDDP

While each coupling weight κkl evolves independently of one another, we now derive
evolution equations for the average coupling weight

κ̂ = 1
N2

N∑
k=1

N∑
l=1

κkl (10)

for both continuously updating and event-based PDDP.

3.1 Average coupling for general PDDP

Suppose that each weight κkl evolves according to a general, continuously updating PDDP
rule dκkl

dt = F (φkl), where F is a 2π-periodic function of the phase difference φkl. The
PDDP rule in Section 2.3 with F approximating causal STDP (equation 6) is a particular
example. Writing F (φkl) = ∑∞

m=−∞ cme
mi(θl−θk) as in (8) and differentiating (10) yields

dκ̂
dt =

∞∑
m=−∞

cm
N2

N∑
k=1

N∑
l=1

emiθle−miθk . (11)

This expression can be written in terms of the Kuramoto–Daido order parameters Z(m).
We have Z(−m) = Z̄(m) and consequently Eq. (11) reads

dκ̂
dt =

∞∑
m=−∞

cmZ
(m)Z̄(m) =

∞∑
m=−∞

cm
∣∣∣Z(m)

∣∣∣2 .
The series converges as |Z(m)| ≤ 1 and the Fourier series of F is assumed to converge.
Since cm + c−m = am and 2c0 = a0, the evolution equation for κ̂ can be simplified to

dκ̂
dt = a0

2 +
∞∑
m=1

am|Z(m)|2. (12)

In the case of F approximating causal STDP, the coefficients (am)m∈N are given by equa-
tion (9). In the absence of bounds on the coupling weights, equation (12) exactly describes
the average coupling strength in a phase oscillator networks with PDDP as illustrated in
Fig. 6.

If the PDDP rule contains a decay term, the evolution of the mean coupling strength
will reflect this as well. More concretely, consider an evolution of individual coupling
weights dκkl

dt = ε [λF (φkl)− κkl] as in the PDDP rule by Seliger et al. (Seliger et al., 2002)
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Figure 6: Simulation of average coupling rules in Kuramoto networks. Equation (12)
(blue circles) describes exactly the average coupling weight in Kuramoto networks with PDDP
(blue lines). The correspondence between equation (15) (red circles) and the average coupling
weight in Kuramoto networks with ebPDDP (equation 7, red lines) is not exact as explained in
the main text. The same number of Fourier components are used in all cases (Nf = 40). The
four sets of parameters used for the simulations are indicated by the bold axes and correspond
to those used in Fig. 4 as well as Fig. C.2, C.3, and C.4 from the Supplemental Material C.

where λ and ε are parameters. Then the evolution of the average coupling is

dκ̂
dt = ε

[
λ

(
a0

2 +
∞∑
m=1

am|Z(m)|2
)
− κ̂

]
. (13)

In particular, for a1 = cos(ϕ) and all other Fourier coefficients equal to zero, this equa-
tion exactly describes the evolution of the average coupling for the PDDP rule given by
equation (3).

3.2 Average coupling for general event-based PDDP

We consider the general ebPDDP rule represented by equation (7) where F is any 2π-
periodic function of the phase difference that can be expanded as a Fourier series according
to equation (8). To obtain the corresponding average coupling strength, the Dirac deltas
indicating spiking events need to be expressed as functions of neuron’s phases. Since θk
is defined mod 2π, we have ∑q δ(t − tqk) ≈ Ωδ(θk) as in (Coombes & Byrne, 2019). We
use this approximation to define an ebPDDP rule which depends only on the phases of
the oscillators,

dκkl
dt = π (δ(θk) + δ(θl))F (φkl). (14)
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Using the Fourier expansion of F as before, the corresponding average coupling κ̂ can
be obtained as

dκ̂
dt = π

∞∑
m=−∞

cm
N2

N∑
k=1

N∑
l=1

(
emiθlδ(θk)e−miθk + e−miθkδ(θl)emiθl

)
.

With θ defined mod 2π, δ(θ) can also be Fourier-expanded as δ(θ) = 1
2π
∑
p∈Z e

piθ (Coombes
& Byrne, 2019). Since

1
N

N∑
k=1

δ(θk)e±miθk = 1
2πN

N∑
k=1

∑
p∈Z

e(p±m)iθk = 1
2π

∑
p∈Z

1
N

N∑
k=1

epiθk = 1
2π

∑
p∈Z

Z(p),

we obtain

dκ̂
dt =

1
2
∑
p∈Z

Z(p)

 ∞∑
m=−∞

cm
(
Z(m) + Z̄(m)

)
=
1 + 2

∞∑
p=1

Re
(
Z(p)

) ∞∑
m=−∞

cmRe
(
Z(m)

)
.

Using the real-valued Fourier coefficients defined in equation (9), this expression becomes

dκ̂
dt =

1 + 2
∞∑
p=1

Re
(
Z(p)

)(a0

2 +
∞∑
m=1

amRe
(
Z(m)

))
. (15)

As in the previous subsection, this result can be extended to include a decay term.
Simulations show that average weights obtained from equation (15) are similar to

average weights obtained from equation (7) as shown in Fig. 6. Although equation (15)
is an exact description of the average weight in phase oscillator networks with adaptivity
given by equation (14) (where the Dirac deltas are functions of phase), our simulations are
based on equation (7) (where the Dirac deltas are functions of time). The approximation∑
q δ(t− tqk) ≈ Ωδ(θk) used to derive equation (14) from equation (7) gives rise to the

discrepancies visible in Fig. 6.

4 Mean-field dynamics of oscillator populations with
adaptive coupling

Symmetric or nearly symmetric STDP rules can lead to the formation of densely connected
clusters with homogeneous coupling strength; cf. Section 2.2. Specifically, Figure 2 shows
the emergence of multiple clusters of distinct mean intrinsic frequencies. For the remainder
we will focus on such plasticity rules and interpret each cluster as an emergent population
of phase oscillators. Suppose that there are M emergent clusters and the corresponding
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populations µ ∈ {1, . . . ,M} have Nµ oscillators. Rewriting (4) with the cluster labelling,
the evolution of θµ,k, the phase of oscillator k ∈ {1, . . . , Nµ} in cluster µ, evolves according
to

θ̇µ,k = ωµ,k + 1
N

M∑
ν=1

Nν∑
l=1

κµν,kl sin(θν,l − θµ,k), (16)

where κµν,kl is the coupling strength from oscillator l in population ν to oscillator k in
population µ. We now suggest a low-dimensional description of the resulting dynamics
for populations corresponding to emergent clusters in the fully adaptive network in terms
of the population Kuramoto order parameters Zµ := 1

Nµ

∑Nµ
k=1 e

iθk .

4.1 Low-dimensional dynamics for homogeneous coupling

Since the emergent coupling within and between clusters is homogeneous, we replace
individual coupling strengths κµν,kl from oscillators in population ν to oscillators in pop-
ulation µ by the mean coupling strength from population ν to population µ,

κ̂µν = 1
NµNν

Nµ∑
k=1

Nν∑
l=1

κµν,kl. (17)

Writing qµ = Nµ
N

for the relative population size, we obtain

θ̇µ,k = ωµ,k +
M∑
ν=1

qν
Nν

κ̂µν

Nµ∑
l=1

sin(θν,l − θµ,k) (18)

that describes homogeneously coupled populations.
Such networks of Kuramoto oscillators admit an exact low-dimensional description in

terms of the dynamics of the population order parameter Zµ due to the Ott–Antonsen re-
duction (Ott & Antonsen, 2008, 2009); see also the recent review (Bick et al., 2020). In the
mean-field limit of infinitely large networks, the Kuramoto–Daido order parameters Z(m)

µ

for each population µ describe the distribution of oscillators. The key observation for this
reduction is that for networks of the form (18) the mth Kuramoto–Daido order param-
eter can be expressed as a power of the Kuramoto order parameter Zµ := Z(1)

µ , that is,
Z(m)
µ = (Z(1)

µ )m = Zm
µ . If we assume that the intrinsic frequencies ωµ,k are distributed

according to a Lorentzian with mean Ωµ and width ∆µ, then the dynamics of (18) are
determined by

dZµ
dt = (−∆µ + iΩµ)Zµ + 1

2

M∑
ν=1

qν κ̂µν(Zν − Z̄νZ2
µ). (19)

The dynamical equations for the evolving coupling weights can be derived as in Sec-
tion 3 and then taking the limit N →∞. Now the Ott–Antonsen reduction allows us to
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simplify the expressions through Z(m)
µ = Zm

µ . If individual weights evolve according to
the general PDDP rule dκνµ,jk

dt = F (θν,j − θµ,k) then

dκ̂µν
dt =

∞∑
m=−∞

cmZ
m
µ Z̄

m
ν . (20)

Similarly, for the event-based rule (14) we note that
(∑

p∈Z Z
(p)
µ

)
= 1−|Zµ|2

1−Zµ−Z̄µ+|Zµ|2
=: f(Zµ)

and thus
dκ̂µν
dt =

∞∑
m=−∞

cm
(
f(Zµ)Zm

ν + f(Zν)Z̄m
µ

)
. (21)

Decay terms can be incorporated in the same way as above.
Note that (19) together with either (20) or (21) form a closed set of equations. In the

following we will analyze the dynamics of the reduced equations explicitly. Here, we will
focus on the symmetric STDP rule approximated by a single harmonic PPDP rule (3)
with ϕ = 0 such that

dκ̂µν
dt = ε

(
2λRe(ZµZ̄ν)− κ̂µν

)
. (22)

Equations (19) and (22) now form a closed low-dimensional system of coupled adaptive
oscillator populations.

4.2 Single harmonic PDDP, one population

We begin by considering a one-population model to illustrate the types of behaviour
possible for a one-cluster state. For a one-population model, the learning rule (22) does
not depend on the mean phase. As such, the system reduces to the two-dimensional
problem

dκ̂
dt = ε

[
λρ2 − κ̂

]
(23)

dρ
dt =

(
−∆ + 1

2 κ̂−
1
2 κ̂ρ

2
)
ρ, (24)

where ρ := |Z|.
There is a trivial fixed point at κ̂ = 0, ρ = 0. While κ̂ = λρ2, ρ =

√
1− 2∆

κ̂
defines a

pair of non-trivial fixed points, which exist for λ > 8∆. Computing the Jacobian, we find
that the trivial solution is stable for all physical parameter values (∆ > 0, ε > 0), and for
the non-trivial fixed points, one is stable and the other unstable.

Using XPPAUT (Ermentrout, 2002), we performed a one parameter continuation in
the heterogeneity parameter ∆ (Fig. 7). When the heterogeneity is low, there exists a
non-trivial stable fixed point, where the mean coupling does not decay to zero. Whereas
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Figure 7: Bifurcation analysis of the mean field equations for a single population.
One parameter continuation in the heterogeneity parameter ∆ for (23)–(24) with λ = 1 and
ε = 0.5. A saddle-node bifurcation occurs at ∆ = 0.125, which corresponds to the analytical
value λ/8.

after the saddle-node bifurcation at ∆ = 0.125, the mean coupling will always decay to
zero and the oscillators will be asynchronous (ρ = 0). As the strength of the plasticity rule
λ is increased, the saddle-node moves to the right and the region of bistability (where the
trivial and non-trivial fixed points co-exist) increases. These results agree with analytical
results outlined above.

4.3 Single harmonic PDDP, two populations

Next we consider a two population model,

dZ1

dt = (−∆ + iΩ)Z1 + 1
2qκ̂11Z1(1− |Z1|2) + 1

2(1− q)κ̂12(Z2 − Z̄2Z
2
1) (25)

dZ2

dt = (−∆ + i[Ω + ∆Ω])Z2 + 1
2qκ̂21(Z1 − Z̄1Z

2
2) + 1

2(1− q)κ̂22Z2(1− |Z2|2), (26)

where q is the fraction of oscillators in population 1 and ∆Ω is the difference in mean
intrinsic frequency between oscillators in each population. The dynamics for the intra-
population coupling are as in the one population model,

dκ̂µµ
dt = ε

[
λ|Zµ|2 − κ̂µν

]
(27)

for µ ∈ [1, 2], while the inter-population coupling is given by (22).
Setting q = 0.5 (two equally sized populations), we perform a one parameter contin-

uation in the intrinsic frequency difference ∆Ω (Fig. 8A). We find that for a small range
of ∆Ω values (∆Ω ∈ [−0.23, 0.23]) the two populations synchronize in frequency. We call
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Figure 8: Bifurcation analysis of the mean field equations for a two population
model. One and two parameter continuations for the system of equations given by (25)–
(27) and (22). A: One parameter continuation in intrinsic frequency difference ∆Ω for equally
sized populations (q = 0.5). Given the symmetry in the system, both populations have the
same within-population synchrony and intra-/inter-population coupling strengths. Black solid
(dashed) lines correspond to the stable (unstable) fixed point values for both populations/sets of
coupling strengths. B: Continuation in ∆Ω for q = 0.1. As the mean inter-population coupling
strengths are equal, the curve in panel B3 corresponds to both κ̂12 and κ̂21. C: Two parameter
continuation in the intrinsic frequency difference ∆Ω and the relative size of population 1 q,
showing the saddle-node, pitchfork and torus bifurcation curves. Parameter values: ∆ = 0.1,
Ω = 30, ε = 0.5, λ = 1.
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this the frequency-locked solution. Given the symmetry in the systems for q = 0.5, the
level of within-population synchrony is equal (ρ1 = ρ2) and the intra- and inter-population
coupling strength are the same (κ̂11 = κ̂22, κ̂12 = κ̂21). The two non-trivial branches in
the inter-population coupling strength (Fig. 8A3), correspond to the in-phase/symmetric
solution (positive κ̂µν) and the anti-phase/asymmetric solution (negative κ̂µν).

For two unequally sized populations, an additional solution can emerge, where one
population is asynchronous (ρ1 = 0, κ̂11 = 0) and the other is partially synchronized
with non-trivial dynamics (ρ2 6= 0, κ̂22 6= 0). We call this the decoupled solution. In
this scenario, the inter-population coupling strengths are also zero, as the fixed point
value depends on Z1, which is zero. The decoupled solution is equivalent to the non-
trivial solution for the one-population model (Fig. 7), which exists for λ > 8∆. The
only difference is that the coupling κ̂ is replaced by an effective coupling qµκ̂µµ. Hence,
the decoupled solution only exists for q < 2∆/λ (population 2 has non-trivial dynamics
ρ2 6= 0) and q > 8∆/λ (population 1 has non-trivial dynamics ρ1 6= 0).

Letting q = 0.1, we find and continue the decoupled solution where population 1 is
asynchronous and population 2 has non-trivial dynamics (ρ1 = 0, ρ2 6= 0) (Fig. 8B). The
dynamics of population 1 (population 2) is shown in red (black). The inter-population
coupling strengths are equal for all value of values of ∆Ω. Hence, the curve in Fig. 8B3
corresponds to κ̂12 and κ̂21. The decoupled solution goes unstable at a torus bifurcation
(blue stars) ∆Ω ≈ −0.3 and restabilizes at a second torus bifurcation at ∆Ω ≈ 0.3. The
frequency-locked solution branches off the decoupled solution at a pitchfork bifurcation at
∆Ω ≈ −0.15 and ∆Ω ≈ 0.15. As in the q = 0.5 case, for the frequency-locked solution, the
two populations have non-zero within-population synchrony and intra-/inter-population
coupling strengths. However, the within-population synchrony and the intra-population
coupling strength are non-longer equal (ρ1 6= ρ2, κ̂11 6= κ̂22). We note that the trivial
solution (ρµ = 0, κ̂µν = 0), which is stable for all values of ∆Ω, is not shown in Fig. 8B,
as it would have obscured the unstable region of the decoupled solution.

Finally, we performed a two-parameter continuation in ∆Ω and q (Fig. 8C). The
saddle-node curves, which demarcate the region of existence for the coupled solution,
are shown in green. The coupled solution exists between the two green curves. The
orange curve corresponds to the pitchfork bifurcation, where the frequency-locked solution
branches off the decoupled solution. There is a global bifurcation at q = 0.2 = 2∆/λ and
q = 0.8 = 8∆/λ, when the decoupled solution ceases to exist and, as such, there is no
longer a pitchfork bifurcation. The torus bifurcation curve, where the decoupled solution
changes stability, is plotted in blue. In the region between the torus bifurcation curve
and the saddle-node bifurcation curve, the two populations have non-trivial dynamics,
but they are not entrained to each other. Hence, the coupling strengths oscillate as the
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populations move in- and out-of-phase with each other.

5 Describing the full adaptive network using coupled
populations evolving according to mean-field dy-
namics

In this section, we aim to approximate a network of Kuramoto oscillators (equation (4))
with adaptivity given by symmetric PDDP (equation (3) with ϕ = 0) using two coupled
populations evolving according to the mean-field dynamics. As shown in Section 2.2, the
full adaptive network with symmetric PDDP is itself a good approximation of the full
adaptive network with symmetric STDP. Here, we optimise parameters of the coupled
mean-field equations to best approximate the full network.

5.1 Optimising the parameters of the two-population mean-field
to approximate the full adaptive network

To approximate the full adaptive network, we consider the two-population mean-field
model 

dZµ
dt = (−∆µ + iΩµ)Zµ + 1

2
∑2
ν=1 qν κ̂µν

(
Zν − Z̄νZ2

µ

)
,

dκ̂µν
dt = εµεν

[
λµλν

2

(
ZµZ̄ν + Z̄µZν

)
− κ̂µν

]
,

(28)

where µ, ν ∈ {1, 2} are population indices, Zµ is the order parameter of population µ,
and κ̂µν is the average weight from population ν to population µ. Synthetic data from
the full adaptive network is generated by simulating a network of N = 100 Kuramoto
oscillators (equation (4)) with adaptivity given by symmetric PDDP (equation (3) with
ϕ = 0). Further details on the generation of synthetic data, as well as descriptions of the
test and training sets can be found in Supplemental Material B.

To describe the full adaptive network using the two-population mean-field approxima-
tion (28), we optimise εµ and λµ with µ ∈ {1, 2}, as well as the proportion of oscillators
allocated to the first population denoted by q1. The allocation of oscillators is optimised
as follows. We sort oscillators by the average value of their mean outgoing coupling (i.e.∑N
k=1 κkl/N), and allocate the first 100 × q1% to the first population, and the rest to

the second population (q2 = 1 − q1). This results in populations of size N1 and N2, and
initial conditions for equation (28) can be obtained from the initial conditions used to
simulate the full adaptive network. For each initial condition, the parameters Ωµ and ∆µ
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are obtained as the median frequency and half of the interquartile range of the frequency
of oscillators in each population, respectively. The optimisation is performed as a sweep
over q1 = {0.1, 0.2, 0.3, ..., 0.9}, and for each value of q1, 36 local optimisations over the
remaining parameters are carried out. Each local optimisation starts from a random set of
parameters, and consists in successive optimisations using patternsearch and fminsearch
(MatlabR2021a) over all initial conditions in the training set.

The cost function minimised by the optimisation is the average over initial conditions
in the training set of

c = wρ
∑
n

[ρmod(tn)− ρdat(tn)]2+wψ
∑
n

[ψmod(tn)− ψdat(tn)]2+wκ̂
∑
n

[κ̂mod(tn)− κ̂dat(tn)]2 ,

where tn are all the time points corresponding to the second half of the simulation (to
limit the influence of transients), ρ is the modulus of the order parameter of the entire
system, ψ is the (unwrapped) phase of the order parameter of the entire system, κ̂ is
the mean coupling weight of the entire system, and subscripts “mod” and “dat” refer
to equation (28) and synthetic data from the full adaptive network, respectively. The
coefficients wρ, wψ, wκ̂ are chosen to ensure that the costs corresponding to ρ, ψ, and
κ̂ are on a similar scale. For the two-population mean-field approximation, the order
parameter of the whole system is obtained as Z = q1Z1 + q2Z2, and similarly the average
coupling is obtained as κ̂ = q2

1κ̂11 + q2
2κ̂22 + q1q2κ̂12 + q1q2κ̂21.

5.2 Performance on training set and test set

The optimised two-population mean-field approximation with the lowest cost was found
for q1 = 0.6 (dark blue in Fig. 9), and its parameters are given in Table C.1 of Supplemental
Material C. To test the model performance, we construct three different control models;
(i) a constant model defined from initial conditions by ρ = ρ0 and κ̂ = κ̂0, (ii) a two-
population mean-field approximation with q1 = 0.6 as in the fully optimised model, but
without adaptivity (ε1 = ε2 = 0), and (iii) a two-population mean-field approximation
where λ1λ2 = 25 and ε1ε2 = 0.5 are chosen to match λ and ε, respectively. For the
third control model, we performed as sweep over q1 and found the best fit for q1 = 0.95.
The fully optimised two-population mean-field approximation with the lowest cost on the
training set is better at describing the dynamics of ρ and κ̂ both on the training set and on
the test set than the controls shown in Fig. 9. The constant model is shown in light orange,
the two-population mean-field approximation with no adaptivity is shown in dark orange,
and the two-population mean-field approximation where the plasticity parameters are
not optimised is in light blue. In the test set, the greatest improvement of the optimised
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two-population mean-field approximation over the controls is for κ̂ (Fig. 9D). With the
exception of the constant model, the controls already approximate ρ well in the test
set (Fig. 9C). Representative trajectories of the two-population mean-field approximation
obtained from initial conditions in the test set approximate the network synchrony, phase,
and average coupling of synthetic data from the full adaptive network (see Figure C.8 in
the Appendix). The approximation of κ̂ is overall better when εµ and λµ are optimised.

Figure 9: Performance of the two-population mean-field approximation. Each panel
compares the sum of squared differences over time between model and synthetic data for ρ or κ̂,
averaged over the training set or test set. The two-population mean-field approximation with
optimised plasticity parameters is shown in dark blue, the two-population mean-field approx-
imation with plasticity parameters obtained from the full system is shown in light blue, the
two-population model without adaptivity is shown in dark orange, and the constant model is
shown in orange. Training and test sets are composed of 13 and 20 trajectories, respectively,
with varied initial conditions (more details in Section B in the Appendix).

6 Discussion

Using simulations, we showed that PDDP and ebPDDP can provide useful approximations
of STDP. In particular, single-harmonic rules can approximate simple forms of symmetric
STDP, while multi-harmonic rules are required to accurately approximate causal STDP. In
the latter case, the accuracy of the approximation increases with the number of Fourier
coefficients before reaching a plateau. The Fourier coefficients can be easily computed
using analytical expressions only involving causal STDP parameters (equation (9)). We
found ebPDDP to be a slightly better approximation than PDDP both in the case of
symmetric STDP and causal STDP. This is expected since contrary to PDDP, ebPDDP
restricts synaptic weight updates to spiking events, which is conceptually closer to STDP.
One limitation of approximating STDP using plasticity rules based on phase difference is
that the evolution of phase differences is required to be slower than the phase dynamics
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(Lücken et al., 2016). Under this assumption, the intricate evolution of coupling weights
can be well approximated by PDDP and ebPDDP (see e.g Fig. C.1 and Fig. C.5 in
Supplemental Material C). For best results, the STDP function should also decay to
zero faster than the network mean frequency for both positive and negative spike-timing
differences (in the case of causal STDP to avoid both components in equation (6) strongly
overlapping).

We derived exact expressions for the evolution of the average coupling weight in net-
works of phase oscillators with PDDP and ebPDDP. These expressions make no assump-
tion about the underlying network, and are compatible with any plasticity rule based
on phase difference as long as it can be expended as a Fourier series of the phase dif-
ference. As a proof of principle, we focussed on mean-field approximations based on the
average coupling evolution for two-cluster states in a population of adaptive Kuramoto
oscillators, and performed a bifurcation analysis to highlight the different possible be-
haviours. However, our framework could easily be adapted to consider more biologically
realistic oscillator models, such as the θ-neuron model or the formally equivalent quadratic
integrate-and-fire (QIF) neuron model. Like the Kuramoto model, the θ-neuron model
is amenable to the Ott-Antonsen ansatz, and as such, boasts an exact mean-field de-
scription. Given the explicit phase dependency of the coupling, we can expect a richer
set of dynamics for a network of θ-neurons than observed here for Kuramoto oscillators.
We could also include explicit synaptic variables, as in (Byrne, O’Dea, Forrester, Ross,
& Coombes, 2020), to more accurately model synaptic processing. Previous studies of
adaptive oscillators (Berner et al., 2019), and our full network simulations, point to the
existence of three-, four- and five-cluster states. Although computationally expensive and,
perhaps, numerically challenging, both the bifurcation analysis and model fitting could
be extended to consider more than two clusters.

Combining theoretical insight and data-driven inference, we fitted a two-cluster mean-
field approximation to a full adaptive network of Kuramoto oscillators in order to obtain
a low-dimensional representation of the full system. While the two-cluster mean-field
model can approximate the full adaptive network on the test set, the accuracy of the
approximation could be improved in several ways. First, a richer training set could be
used. Second, the mean-field description of the order parameter is not exact, and a
moment or cumulant approach may capture more of the full system dynamics (Tyulkina,
Goldobin, Klimenko, & Pikovsky, 2018). Third, considering more than two populations
may provide a more accurate approximation. Fourth, rather than allocating oscillators to
clusters by thresholding their mean outgoing coupling, a finer partition could be learnt
(Snyder, Zlotnik, & Lokhov, 2020). Nevertheless, data-driven inference of low-dimensional
representations of phase-oscillator networks (Thiem, Kooshkbaghi, Bertalan, Laing, &
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Kevrekidis, 2020; Snyder et al., 2020) is a promising approach to approximate the behavior
of networks with STDP.

More general types of STDP call for extensions of our framework. First, one would
naturally expect that the strength of plastic connections are bounded. While a dampening
term in the adaptation rule can account for (soft) bounds, we did not explicitly investigate
the validity of our approach for hard bounds of the coupling strengths. Second, we pri-
marily focused on symmetric STDP rules, that is, interchanging the order of spikes does
will have little to no effect on the change of connection strength. For such adaptation,
the network naturally forms clusters of strongly connected units (cf. Fig. 2). By con-
trast, the causality of traditional asymmetric STDP rules will be reflected in the network
structure as shown in Fig. 4. To analyze the mean-field dynamics of such networks, a
natural approach would be to computationally identify emerging feed-forward structures
in such networks instead of looking for clusters. In this case, finding a corresponding low-
dimensional description as in Section 4 is more challenging. Third, we consider STDP
adaptation rules that depend on pairs of oscillator states. More elaborate, spike-based
rules such as triplet interactions have recently attracted attention (Pfister & Gerstner,
2006; Montangie, Miehl, & Gjorgjieva, 2020). It would be interesting to have such adapta-
tion reflected in the STDP model as these could be interpreted as “higher-order” network
effects (cf. (Bick, Gross, Harrington, & Schaub, 2021)).

As a step towards low-dimensional description of adaptive networks with STDP, our
framework has implications for the study of long-term neural processes. In particular, the
effects of clinically available DBS quickly disappear when stimulation is turned off, thus
stimulation needs to be provided continuously. To spare physiological activity as much
as possible, it would therefore be highly desirable to design stimuli aimed at eliciting
long-lasting effects. Continuous stimulation can also lead to habituation, where stimula-
tion benefits diminish considerably over the years in some patients with essential tremor
(Fasano & Helmich, 2019). Optimising brain stimulation to have long-lasting effects so
far relied on computational studies e.g. (Tass & Majtanik, 2006; Popovych & Tass, 2012;
Ebert, Hauptmann, & Tass, 2014; Manos, Zeitler, & Tass, 2018), or on analytical insights
under the simplifying assumption that spiking is only triggered by stimulation pulses
(Kromer & Tass, 2020). Other analytical approaches based on mean-field models are
focused on short-term changes due to stimulation and do not consider plastic changes
(Duchet et al., 2020; Weerasinghe et al., 2019, 2021). Our framework offers an alterna-
tive, where exact evolution equations for the average coupling within and between neural
populations could inform the development of new therapies aimed at maximising the
long-term effects of brain stimulation.
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Supplemental Material

A Simulation methods used to compare STDP to
PDDP

Using simulations, we compare networks of Kuramoto oscillators with adaptivity given
by symmetric or causal STDP, to the same networks with adaptivity given by the corre-
sponding single- or multi-harmonic PDDP and ebPDDP rules.

A.1 Symmetric learning rules

We simulate networks of N = 60 Kuramoto oscillators evolving according to equation (4),
where the natural frequencies ωk are sampled from a normal distribution of mean Ω = 10π
(5Hz) unless otherwise stated and standard deviation ∆. A normal distribution was
chosen over a Lorentzian distribution to avoid extreme natural frequencies which lead to
increased variability in simulation repeats. Initial conditions are also sampled from normal
distributions. Phases θk(t = 0s) are sampled from N (0, π2/9), and couplings κkl(t =
0s) from N (5, σ2

κ). The evolution of the coupling weights κkl is simulated according to
equation (2) (symmetric STDP) together with the weight decay dκkl

dt = −εκkl, equation (3)
with ϕ = 0 (symmetric PDDP), or equation (5) (symmetric ebPDDP). For ebPDDP, we
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use δ(t− tqk) ≈ 1Iq
k
(t)/∆t where 1Iq

k
is the indicator function of Iqk = [tqk, t

q
k+∆t) and ∆t is

the simulation time step. The network is simulated for 150s, using the Euler method with
∆t = 1ms unless otherwise stated. We use ε = 0.5, and the values of other parameters
are detailed in Fig. 2 and Fig. C.1.

A.2 Causal learning rules

Error metrics (described below) are computed between multi-harmonic PDDP or ebPDDP
and causal STDP for selected regions of parameter space. To limit computational cost, we
constrain causal STDP parameters based on data and biological motivations. We use τ+ =
16.8ms and τ− = 33.7ms, which were obtained by fitting equation (1) to experimental data
(data published in (Bi & Poo, 1998), and fit in (Bi & Poo, 2001)). Several experimental
studies have reported the LTD time constant τ− to be larger than the LTP time constant
τ+, e.g. in the rat hippocampus (Bi & Poo, 1998), somatosensory cortex (Feldman, 2000),
and visual cortex (Froemke & Dan, 2002). We take A+ = 0.2 and A−/A+ = β. Since the
time window for LTD is twice as long as the time window for LTP, we choose β = 0.5 to
study a balanced situation where LTP dominates for shorter spike-timing differences and
LTD dominates for longer spike-timing differences, and β = 1 to study a situation where
LTD always dominates.

We simulate networks of Kuramoto oscillators as for symmetric STDP (see previous
section) with the following differences. Initial couplings κkl(t = 0s) are sampled from
N (12, σ2

κ). The evolution of the coupling weights κkl is simulated according to equa-
tion (1) (causal STDP), equation (6) (causal PDDP), or equation (7) (causal ebPDDP).
For PDDP and ebPDDP, the Fourier expansion of F is truncated after Nf coefficients.
No weight decay term is included.

The comparison of multi-harmonic PDDP or ebPDDP to causal STDP relies on four
error metrics. In the following error metric definitions, we use the subscript or superscript
X to refer to quantities corresponding to multi-harmonic PDDP or ebPDDP. To compare
the time evolution of network synchrony we define

eρ =
〈
[ρX(t)− ρSTDP(t)]2

〉
, (29)

where 〈.〉 denotes time averaging over the duration of the simulation [0, tmax], and ρ(t) = |Z(t)|
is the network synchrony. To compare the time evolution of the network average coupling
we compute

eκ̂ =
〈
[κ̂X(t)− κ̂STDP(t)]2

〉
, (30)

where the average coupling is given by equation (10). The time evolution of the weight
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distribution is compared using

ehist(κkl) = n2
bins
N4

〈
nbins∑
j=1

[
hX
j (t)− hSTDP

j (t)
]2〉

, (31)

where hj(t) is the count of couplings weights falling into the jth bin in the histogram
of coupling weights at time t (bin boundaries are taken identical across rules and time
for a given set of parameters). The fourth error metric quantifies the difference between
coupling matrices at the last simulation time point as

eκ∞
kl

= 1
N2

N∑
k=1

N∑
l=1

[κX
kl(tmax)− κSTDP

kl (tmax)]2 . (32)

The scaling factors in equations (31) and (32) ensure that the corresponding metrics are
independent of the size of the network, and of the number of bins in the case of ehist(κkl).
For each set of parameters, the four metrics are averaged across five repeats. For a
given repeat and a given set of parameters, the same random samples are used as initial
conditions to compare the network evolution between plasticity rules.

B Methodological details pertaining to the optimisa-
tion of the two-population mean-field approxima-
tion

Synthetic data is generated by stimulating N = 100 Kuramoto oscillators evolving accord-
ing to equation (4), with adaptivity given by symmetric PDDP (equation (3) with ϕ = 0,
λ = 25, and ε = 0.5). Oscillator natural frequencies ωk are sampled from a Lorentzian
distribution of center Ω = 10π (5Hz) and width ∆ = 0.6π. Initial phases are sampled
from a Von Mises distribution of standard deviation π/4. Initial couplings κkl(t = 0s)
are sampled from N (κ̂0, 0.52). The network is simulated for 20s, using the Euler method
with ∆t = 0.1ms.

We create a training set and a test set based on different initial conditions and in partic-
ular various κ̂0. The training set corresponds to κ̂0 = {2, 2, 2, 3, 4, 5, 5, 10, 10, 15, 15, 15, 20},
and the test set to κ̂0 = {3.5, 3.5, 3.5, 3.5, 7, 7, 7, 7, 12, 12, 12, 12, 17, 17, 17, 17, 22, 22, 22, 22}.
For each trajectory in the training and test sets, natural frequencies, initial phases, and
initial couplings are sampled from their respective distributions. Repeated κ̂0 values
therefore correspond to different systems with different initial synchrony.

For optimisation speed and accuracy the two-population mean-field approximation is

31

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.02.498537doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.02.498537
http://creativecommons.org/licenses/by/4.0/


simulated using the variable order solver ode113 in Matlab (variable-step, variable-order
Adams-Bashforth-Moulton solver of orders 1 to 13).

C Supplementary figures and tables

Parameter ε1 ε2 λ1 λ2
Value 0.0263 3.0262 5.2985 5.4759

Table C.1: Best parameters of two-population mean-field approximation. Parameters
correspond to equation (28). Full network parameters used to generate synthetic data for the
optimisation are given in Section B.
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Figure C.1: Comparison between symmetric STDP and PDDP in a Kuramoto
network (desynchronised state). A: Evolution of the distribution of coupling weights with
time (100 bins at each time point). The average weight is represented by a thin black line.
STDP is shown in A1, PDDP in A2, and ebPDDP in A3. B: Coupling matrix at t = 150s,
with oscillators sorted by natural frequency. STDP is shown in B1, PDDP in B2, and ebPDDP
in B3. C: Time evolution of average coupling (C1, error bars represent the standard error of
the mean over 5 repeats, too small to see) and network synchrony (C2-C3). STDP is shown
in black, PDDP in blue, and ebPDDP in red. [a = 0.025822, b = 0.049415, σκ = 3, ∆ = 0.2π,
Ω = 10π (5Hz)]
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Figure C.2: Comparison between STDP and PDDP in a Kuramoto network, [β =
0.5, σκ = 3, ∆ = 1.8π, Ω = 10π (5Hz)]. Results for PDDP and ebPDDP are shown for 1,
5, and 25 Fourier components Nf (first, second, and third column on the right hand side of the
figure, respectively). A: Evolution of the distribution of coupling weights with time (100 bins
at each time point). The average weight is represented by a thin black line. STDP is shown in
A1, PDDP in A2-A4, and ebPDDP in A5-A7. B: Coupling matrix at t = 150s, with oscillators
sorted by natural frequency. STDP is shown in B1, PDDP in B2-B4, and ebPDDP in B5-B7.
C: Time evolution of average coupling (C1, error bars represent the standard error of the mean
over 5 repeats) and network synchrony (C2-C7). STDP is shown in black, PDDP in blue, and
ebPDDP in red.
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Figure C.3: Comparison between STDP and PDDP in a Kuramoto network, [β = 1,
σκ = 0.2, ∆ = 0.6π, Ω = 10π (5Hz)]. Results for PDDP and ebPDDP are shown for 1, 5,
and 25 Fourier components Nf (first, second, and third column on the right hand side of the
figure, respectively). A: Evolution of the distribution of coupling weights with time (100 bins
at each time point). The average weight is represented by a thin black line. STDP is shown in
A1, PDDP in A2-A4, and ebPDDP in A5-A7. B: Coupling matrix at t = 150s, with oscillators
sorted by natural frequency. STDP is shown in B1, PDDP in B2-B4, and ebPDDP in B5-B7.
C: Time evolution of average coupling (C1, error bars represent the standard error of the mean
over 5 repeats) and network synchrony (C2-C7). STDP is shown in black, PDDP in blue, and
ebPDDP in red.
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Figure C.4: Comparison between STDP and PDDP in a Kuramoto network, [β = 1,
σκ = 3, ∆ = 1.8π, Ω = 10π (5Hz)]. Results for PDDP and ebPDDP are shown for 1, 5,
and 25 Fourier components Nf (first, second, and third column on the right hand side of the
figure, respectively). A: Evolution of the distribution of coupling weights with time (100 bins
at each time point). The average weight is represented by a thin black line. STDP is shown in
A1, PDDP in A2-A4, and ebPDDP in A5-A7. B: Coupling matrix at t = 150s, with oscillators
sorted by natural frequency. STDP is shown in B1, PDDP in B2-B4, and ebPDDP in B5-B7.
C: Time evolution of average coupling (C1, error bars represent the standard error of the mean
over 5 repeats) and network synchrony (C2-C7). STDP is shown in black, PDDP in blue, and
ebPDDP in red.
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Figure C.5: Comparison between STDP and PDDP in a Kuramoto network, [β =
0.5, σκ = 0.2, ∆ = 0.6π, Ω = 40π (20Hz), ∆t = 0.1ms]. Results for PDDP and ebPDDP
are shown for 5, 25, and 75 Fourier components Nf (first, second, and third column on the
right hand side of the figure, respectively). A: Evolution of the distribution of coupling weights
with time (100 bins at each time point). The average weight is represented by a thin black
line. STDP is shown in A1, PDDP in A2-A4, and ebPDDP in A5-A7. B: Coupling matrix at
t = 150s, with oscillators sorted by natural frequency. STDP is shown in B1, PDDP in B2-B4,
and ebPDDP in B5-B7. C: Time evolution of average coupling (C1, error bars represent the
standard error of the mean over 5 repeats) and network synchrony (C2-C7). STDP is shown in
black, PDDP in blue, and ebPDDP in red. 37
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Figure C.6: Influence of Nf , ∆t, and network frequency on error metrics. Error
metrics for PDDP compared to STDP for the time evolution of network synchrony eρ, average
coupling eκ̂ and distribution of weights ehist(κkl), and for the coupling matrix at the last stimu-
lation point eκ∞

kl
are shown in the first, second, third, and fourth columns, respectively. Results

for PDDP are in blue, and for ebPDDP in red. Showing sem error bars over 5 repeats. A: In-
fluence of the number of Fourier coefficients Nf on the error metrics for the parameters used
in Fig. C.2 (β = 0.5, σκ = 3, ∆ = 1.8π, Ω = 10π) in the first row, in Fig. C.3 (β = 1, σκ = 0.2,
∆ = 0.6π, Ω = 10π) in the second row, in Fig. C.4 (β = 1, σκ = 3, ∆ = 1.8π, Ω = 10π) in the
third row. B: Influence of the time step ∆t for the parameters used in Fig. 4 (β = 0.5, σκ = 0.2,
∆ = 0.6π, Ω = 10π) and Nf = 40. C: Influence of the number of Fourier coefficients Nf on error
metrics for the parameters used in the 20Hz example, see Fig. C.5 (β = 0.5, σκ = 0.2, ∆ = 0.6π,
Ω = 40π, ∆t = 0.1ms).
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Figure C.7: Influence of σκ, ∆, and β on error metrics (slices through parameter
space). Error metrics for PDDP compared to STDP for the time evolution of network synchrony
eρ (first and fifth columns), average coupling eκ̂ (second and sixth columns) and distribution of
weights ehist(κkl) (third and seventh columns), and for the coupling matrix at the last stimulation
point eκ∞

kl
(fourth and eighth columns). Results for PDDP are in blue, and for ebPDDP in red.

Each of the panels represents a different slice through parameter space as indicated by the axes.
The error metrics are shown for Nf = 40 Fourier components, with sem error bars over 5 repeats.
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Figure C.8: Representative trajectories from initial conditions in the test set. The
two-population mean-field approximation with optimised plasticity parameters is shown in dark
blue, the two-population mean-field approximation with plasticity parameters obtained from the
full system is shown in light blue, and synthetic data from the full adaptive Kuramoto network is
shown in black. The first row shows the network synchrony, the second row the network phase,
and the third row the network average coupling.
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