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Abstract

Effective conservation of ecological communities requires accurate and up-to-date information about

whether species are persisting or declining to extinction. The persistence of ecological communities

is largely supported by its structured architecture of species interactions, known as an ecological

network. While the persistence of the network supporting the whole community is the most relevant

scale for conservation, in practice, we can only monitor small subsets of these networks due to lo-

gistical sampling constraints. There is therefore an urgent need to establish links between the small

snapshots of data conservationists are able to collect, and the ‘big picture’ conclusions about ecosys-

tem health demanded by policy makers, scientists and societies. Here we show that the persistence

of small subnetworks in isolation — that is, their persistence when considered separately from the

larger network of which they are a part — is a reliable probabilistic indicator of the persistence of

the network as a whole. Our results are general across both antagonistic and mutualistic interaction

networks. Empirically, we show that our theoretical predictions are supported by data on invaded

networks in restored and unrestored areas, even in the presence of environmental variability. Our

work suggests that coordinated action to aggregate information from incomplete sampling can pro-

vide a means to rapidly assess the persistence of entire ecological networks and the expected success

of restoration strategies. This could significantly improve our ability to monitor progress towards

achieving policy targets, such as those enshrined in the UN Convention on Biological Diversity.
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Introduction

To assess progress towards local, national, and international biodiversity conservation targets, it is

crucial to understand how ecological communities are being impacted by global change and how

well they are responding to conservation interventions1,2. Biomonitoring—the process of regularly

measuring ecosystems to track changes in different indicators over time—therefore has a critical role

to play in guiding conservation policy and practice.

Perhaps, the most fundamental indicator of the health of an ecological community is whether any

of its component species are declining to extinction3. Thus, for conservation scientists and decision

makers, community persistence—the probability that a community can sustain positive abundances

of all its constituent populations over time—is one of the most important properties to know about

a community4,5.

One widespread approach to measure community persistence relies on species interaction networks,

where nodes, representing species, are joined by links, representing biotic interactions, such as preda-

tion or pollination6. These networks are then used as a ‘skeleton’ for simulating population dynamics,

from which persistence is then measured. While this approach is powerful, collecting interaction net-

work data using traditional field methods is expensive and time consuming, often requiring huge

investments to approach sampling completeness7–9. For example, studies have shown that even with

exhaustive sampling effort that covered 80% of pollinator fauna, it was only possible to capture 55%

of the interactions in a plant-pollinator network and it was estimated that sampling effort would need

to increase by five times to record 90% of the interactions10. Similarly, while DNA barcoding and

metabarcoding approaches offer the prospect of achieving complete sampling of networks more easily,

at present, these methods are far from the norm11, requiring significant technical expertise, sampling

protocols and infrastructure with costs that can be comparable to traditional field approaches11.

The expense and time involved in collecting community-level data, such as sampling interaction

networks, is in direct contrast to the needs of biomonitoring and the frugal realities of conservation

practice7. Biomonitoring relies on indicators that are sufficiently quick and cheap to sample that

regular ‘snapshots’ of ecosystem status can be taken. Thus, although persistence is a fundamental

property of communities that we wish to monitor, time and cost constraints mean that sampling

the required interaction network data with sufficient temporal, spatial, and taxonomic resolution is

impractical in all but the most well-resourced contexts.
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It has been suggested that interaction networks can be monitored cost efficiently if only a small

subset of interactions – a subnetwork – is sampled7,12. However, it is not known whether there is

any consistent relationship between the persistence of a subnetwork and the persistence of the larger

network that the subnetwork comes from. If such a relationship could be established, then whole-

network persistence could be inferred from subnetworks that require much less effort to sample.

In turn, the prospect of rapid and affordable biomonitoring of network persistence would become

feasible.

Here, we provide a solution to diagnosing the persistence of ecological networks without the need for

extensive sampling. Specifically, we show that the persistence of a network as a whole is linked to the

persistence of small-scale subnetwork structures that require much less sampling effort to monitor

(Figure 1). We use coexistence theory to show that mutualistic and antagonistic interaction networks

that are persistent as a whole are comprised of subnetworks that would persist in isolation. That is,

they are composed of subnetworks that would persist even if they were not embedded within the larger

network of interactions. We term these subnetworks persistent in isolation. We show that reliable

conclusions about the persistence or non-persistence of the whole network can be made from only

sampling 2-4 subnetworks. We corroborate our results using empirical data on invaded mutualistic

interaction networks13. We show that persistent ecological networks, despite their spatio-temporal

variability, contain more persistent subnetworks in isolation in areas where invasive species have been

removed through restoration action than in areas where there has been no restoration. Finally, we

discuss our results in light of new opportunities for rapid biomonitoring of network persistence.

Linking network and subnetwork persistence

The challenge we face is knowing whether the persistence of a large species interaction network can

be inferred by only observing the structure of one or more subnetworks (also known as interaction

motifs). The structural approach in ecology14,15 provides a theoretical solution to this problem by

connecting the persistence of the network as a whole with that of its subnetworks. The central concept

in the structural approach is the coexistence domain (D)—the full range of conditions (parameter

space) under which all species in a network can coexist, given a particular network structure16.

Hence, the persistence of a network as a whole can be studied using the coexistence domain of its

underlying network structure (Dwhole). Similarly, to understand the persistence of a subnetwork, we

can study the coexistence domain of its underlying subnetwork. This can be done in two ways, as
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illustrated in Figures 1 and S1. First, we can study the subnetwork as part of the larger network in

which it is embedded; formally, this is the projection of the coexistence domain of the network onto

the subnetwork (DEmbedded
sub ) (Figures 2 and S1). Second, we can study the coexistence domain of the

subnetwork in isolation, removed from the larger network of which it is a part (DIsolation
sub ) (Figures 2

and S1).

In field surveys, where only a subset of a network can be sampled, the network in which that

subset is embedded is not observed—only DIsolation
sub is known. Thus, the question is whether the

true unobservable coexistence domain of the subnetwork (DEmbedded
sub ) is equivalent to the observed

coexistence domain of the subnetwork in isolation (DIsolation
sub ) and whether DIsolation

sub can be used to

infer the persistence of an unobservable network as a whole (Dwhole).

We formalize DEmbedded
sub and DIsolation

sub using the structural approach. The structural approach applies

to any population dynamics that are topologically equivalent to Lotka-Volterra dynamics5,17. Note

that any quasi-polynomial dynamics, which include a large class of ecological models, can be equiv-

alently mapped into Lotka-Volterra dynamics18. Here, we assume that a network has S-interacting

species in total and is governed by the Lotka-Volterra dynamics19:

dN
dt

= diag(N) (r + AN) , (1)

where N is the vector of species densities and A is the matrix of species interactions. Under the

governing population dynamics, the coexistence domain of a network is given by16:

Dwhole = {r | r =
S∑

j=1
N∗

j Aj , with N∗
j > 0}, (2)

where Aj denotes the j-th column of the interaction matrix A. The coexistence domain of a sub-

network with the set of species S in isolation is given by

DIsolation
sub = {r | r =

∑
j∈S

N∗
j AS ×S

j , with N∗
i > 0}, (3)

where AS ×S is the sub-matrix of A that only has species in the set of species S . In turn, the

coexistence domain of a subnetwork with the set of species S when embedded in the larger network
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is given by

DEmbedded
sub = {r | r =

S∑
j=1

N∗
j AS ×S

j , with N∗
i > 0}. (4)

It is important to note that DEmbedded
sub (Eqn. 4) is always greater than or equal to DIsolation

sub (Eqn. 3).

This is because the summation in Eqn. 4 is done across all columns, while the summation in Eqn. 3

is only done across a subset of all the columns. For example, in Figure 2, DEmbedded
sub = DIsolation

sub for

the subnetwork with species 1 and 2, while DEmbedded
sub ⊃ DIsolation

sub for the subnetwork with species 2

and 3. This result implies that observing only a subset of species without its wider network context

(i.e., DIsolation
sub ) never overestimates the true coexistence potential of this subset when embedded into

the larger network of interactions (i.e., DEmbedded
sub ). This result is general and does not depend on

types of species interactions or the number of species.

Monitoring network persistence from subnetwork persistence

To study the relationship between subnetwork persistence in isolation and network persistence as a

whole, we borrow concepts from statistical physics and test whether a macroscopic (whole-network)

phase transition is reflected in drastic changes of mesoscopic (subnetwork) properties20. At the

macroscopic scale, the network as a whole only exhibits two phases: persistence or non-persistence.

At the mesoscopic scale, a subnetwork has an additional key property: whether the persistence of

the subnetwork is identical in isolation and when embedded in the larger network. An embedded

subnetwork is persistent if, and only if, the network as a whole is persistent. Thus, if the persistence of

a subnetwork is identical in isolation and when embedded in the larger network, then the subnetwork’s

persistence (or not) in isolation also indicates whether the network as a whole persists (or not). This

property is always true for the subnetworks with DEmbedded
sub = DIsolation

sub , and is true with probability

vol(DIsolation
sub ∩DEmbedded

sub )/vol(DEmbedded
sub ) = vol(DIsolation

sub )/vol(DEmbedded
sub ) for all subnetworks. This

relationship between DEmbedded
sub and DIsolation

sub suggests the possibility that the persistence of one

subnetwork can be a probabilistic indicator of the persistence of the network as a whole. Furthermore,

the persistence of many subnetworks can be an almost-deterministic indicator of the persistence of

the network as a whole.

From the above, we hypothesize that the proportion of subnetworks that are persistent in isolation

is different between persistent and non-persistent networks. To formally test this hypothesis, we

simulate theoretical networks, and analyze the persistence in isolation of their constituent subnet-
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works as the network is moved along a gradient from persistence to non-persistence. For brevity, we

focus on mutualistic interaction networks in the main text, but our approach can equally be applied

to antagonistic interaction networks, such as predation and parasitism (see Appendix B)6,21. First,

we generate theoretical mutualistic networks with 10 pollinators and 8 plants (see Appendix B for

the robustness of our results to different network sizes). For illustrative purposes, we present here

Erdős–Rényi structures, however, our results apply and are consistent for other network structures,

such as nested networks (Appendix B). We then follow an ecologically-motivated parameterization

that has been widely adopted in the literature22–25. The interaction matrix of a mutualistic network

can then be partitioned as

A =



intra-guild competition mutualistic benefit

among plants for plants

mutualistic benefit intra-guild competition

for animals among animals


=

 C(P ) M(P )

M(A) C(A)

 . (5)

The mutualistic benefit (M(P ) and M(A)) between species i and j is parameterized as mij = m0bij/dδ
i

where bij = 1 if species i and j directly interact and bij = 0 otherwise, m0 represents the overall

strength of mutualistic interaction, di represents the number of interaction partners, and δ represents

the mutualistic trade-off. The intra-guild competition (C(P ) and C(A)) between species is parame-

terized using a mean-field approach where we set the intraspecific competition c
(P )
ii = c

(A)
ii = −1 and

interspecific competition c
(P )
ii = c

(A)
ii = −ρ.

We systematically sample inside and outside the coexistence domain of simulated networks (i.e.,

across two macroscopic phases: persistence and non-persistence) and check the persistence in isolation

of all constituent subnetworks at each sampling point (Figure 3A). We adopt the normalized distance

of the sampled point from the centroid of the coexistence domain as the tuning parameter of the

phase transition. Specifically, the centroid has a normalized distance 0, all points on the border

of the coexistence domain have normalized distance 0.5, and all points inside (resp. outside) have

normalized distances less (resp. greater) than 0.5 (Figure 3A).

We characterize subnetworks using bipartite motifs26,27. Bipartite motifs are small subnetworks

containing between two and six species, with all species having at least one link26,27. Bipartite

motifs describe all possible unique subnetwork topologies up to six species. As described above, we

enumerate all the motifs present in each network along the gradient of persistent and non-persistent
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networks (Figure 3A) and calculate both the persistence in isolation and embedded persistence of

each motif. Although the number of motifs scales exponentially with network size, we expect to see

a smooth, rather than sharp, phase transition in the persistence of motifs along the gradient, given

the small network size in our simulations20.

Corroborating our hypothesis, as networks were moved along a gradient from network persistence to

non-persistence (Figure 3A), we identified a phase transition of persistence across scales of networks

and subnetworks (Figure 3B). That is, when a network as a whole is persistent, the majority of its

constituent subnetworks (motifs) must themselves be persistent in isolation. Conversely, when the

network as a whole is not persistent, the majority of its constituent subnetworks are not persistent in

isolation. Overall, we found that, when 2-4 of a set of randomly sampled subnetworks are persistent,

the network as a whole is persistent. Simulations suggest that this result is general across mutualistic

and antagonistic interaction networks, and networks of different sizes (Appendices B). We also provide

a heuristic explanation of the emergency of the phase transition (Appendix C).

These theoretical findings additionally corroborate that the presence of a single persistent subnetwork

in isolation is a probabilistic indicator of the persistence of the network as a whole, while the presence

of many persistent subnetworks in isolation is a nearly deterministic indicator (with exponentially

decreasingly error) of the persistence of the network. To formalize this idea, we provide a Bayesian

approach to update our beliefs about the persistence of the network from whether subnetworks

are persistent in isolation. Specifically, we compute the Bayes factor: the ratio of the posterior

likelihood of the network being persistent as a whole over being non-persistent given the observed

persistence in isolation of sampled subnetworks. A Bayes factor larger than 102 can be considered

decisive evidence that the network is persistent, while a Bayes factor smaller than 10−2 can be

considered decisive evidence that the network is non-persistent28. Figure 3C-D shows how many

subnetworks (containing 3-5 species) we need to sample to reach decisive evidence about whole-

network persistence (more details on the simulations in Appendix D). When the network as a whole

is persistent (Figure 3C), the number of required sampled subnetworks decreases with increasing

network size (per statistical laws as roughly only half of subnetworks are persistent in isolation). In

contrast, when the network is not persistent, the number of required sampled subnetworks is much

lower and does not vary with network size (as most subnetworks are not persistent in isolation).

Overall, the results in Figure 3C-D show that only 2-4 subnetworks are needed to be reasonably

confident about the persistence or non-persistence of a whole network.
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Empirical analysis

While it is difficult to directly empirically test the phase transition resulting from the theoretical

analysis above, a testable prediction from our result is that a network as a whole is more likely to

persist if it contains more persistent in isolation subnetworks. To test this, we analyzed a temporal

dataset of 8 plant–pollinator networks from the Seychelles, each sampled over 8 consecutive months

(144 pollinator species and 38 plant species in total). In this dataset, half of the networks are subject

to disturbance in the form of invasive plants, while the other half have had invasive plant species

removed through restoration action13. We expect restored sites to have higher persistence than

unrestored invaded networks and, as a consequence, we expect these restored networks to contain

more persistent in isolation subnetworks (motifs) than invaded networks.

We measure the persistence in isolation of subnetworks as the size of their coexistence domains.

Note that comparisons between subnetworks can easily be confounded by different parameterizations.

That is, small changes in parameters used to calculate the coexistence of different subnetworks can

significantly influence conclusions29,30. To ensure a fair comparison, we focus on subnetwork pairs

that are the transpose of each other, and parameterize both subnetworks in the pair identically

(Figure S9). For example, we compare the subnetwork with two top nodes connected to a single

bottom node, with the subnetwork containing two bottom nodes connected to a single top node.

In ecological terms, this might be comparing the subnetwork describing two pollinators visiting one

plant to the subnetwork with one pollinator visiting two plants. In total, we have seven pairs of

subnetworks that range from 3 species to 5 species each, and 10 pairs of subnetworks with 6 species

each (Figure S9). Note that despite the interaction matrices for each pair of subnetworks being the

transpose of each other, the coexistence domains of the two subnetworks are different because of, and

only because of, their trophic constraints16,31. In other words, plants always have positive intrinsic

growth rates in our bipartite networks.

For each different subnetwork, we compute the size of its coexistence domain by systematically ex-

ploring the parameter space, defined by three parameters: the mutualistic trade-off δ, the overall

strength of mutualistic interactions m0, and the intra-guild competition strength ρ. We then ex-

amined the empirical frequency of each subnetwork (motif) in the observed mutualistic networks.

We first computed the raw number of subnetworks present in each empirical mutualistic network

using the bmotif R package27. Next, we compute the z-score of the empirical subnetwork frequencies

relative to the Erdős–Rényi null model32,33. Next, we compare the patterns of these null-corrected
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subnetwork frequencies between unrestored (invasive species present) and restored (invasive species

removed) sites13. Lastly, we investigate if these patterns remain if we can only monitor a subset

of all species; this tests whether conclusions about whole-network persistence can be made from

easy-to-sample subnetworks.

We expect that networks, where invasive species had been removed, would be more persistent

(i.e., with a larger coexistence domain) and thus would have higher numbers of persistent in iso-

lation subnetworks. Figure 4A shows that the restored (undisturbed) networks have a higher over-

representation of persistent in isolation subnetworks (motifs) compared to the unrestored (disturbed)

networks. This pattern is robust through the whole sampling period, despite the reorganization of

species interactions in the network. Importantly, Figure 4B shows that these patterns remain qual-

itatively true even if we can only monitor the interactions of a small subset of all locally present

species. This shows that we can gain insights about the network as a whole using only information

from a subset of that network that is much quicker to sample.

Discussion

We have uncovered a generic probabilistic link across organizational scales of ecological networks: an

ecological network is more likely to be persistent when a majority of its subnetworks are persistent in

isolation, and vice versa. This establishes a theoretical foundation to rapidly monitor the persistence

of communities by sampling only small numbers of interactions in subnetworks. Given cost and time

constraints common to much conservation work, it is only practical to have high quality data on a

small fraction of all locally present species and interactions. Our results have shown that determining

the persistence in isolation of a few subnetworks can lead to robust conclusions about the persistence

of the network as a whole: if 2-4 randomly sampled subnetworks are persistent, then the network as

a whole is likely persistent. Our monitoring scheme is insensitive to the size of the whole network,

which is in direct contrast to prohibitively expensive sampling of the whole network (estimated to be

exponential efforts with the size of the whole network10). Our results help to address a fundamental

challenge to make predictions under limited observations in conservation management34,35.

Besides the application to rapid biomonitoring, our work also connects two separate schools of thought

on ecological networks defined by distinct ecological scales. One school has focused on the mesoscopic

scale, providing a more mechanistic understanding through the study of specific small subnetworks

or motifs (often called ‘trophic modules’), such as apparent competition36–40. In contrast, the other
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school has focused on the macroscopic scale, studying the interaction networks of entire networks

to provide an ecologically more relevant link, but suffering from being coarse-grained and highly

phenomenological23,41–43. Unfortunately, these two schools have little cross-talk. The few theoretical

studies on this topic suggest there is no deterministic, one-to-one link that maps results across the

two schools44–46. We confirm that such a deterministic link does not exist. However, we found that

a generic probabilistic link does exist (Figures 2 and 3). This generic link provides an opportunity

to take advantage of both schools. For example, we have taken a phenomenological approach with

the trophic constraints to explain why some subnetworks are more persistent in isolation. However,

a rich literature has cataloged and explained why some subnetworks are more persistent in isolation,

ranging from sign stability47,48 to consumer-resource relationships40,49, and then applied it to explain

observed patterns of species-rich ecological networks39,50,51. Our results have justified that such

practice is probably approximately correct52.

We have provided a Bayesian approach to update our belief on the persistence of ecological networks

(Figure 1). Our belief is quantified by the Bayes factor—the ratio of the posterior probability of

the monitored network being persistent over not being persistent. The Bayes factor is consistently

updated by our knowledge of species’ life history (as priors) together with persistence-in-isolation

criteria of the observed subnetworks (as evidence). For simplicity, we have assumed the prior Bayes

factor to be 1 (i.e., equal likelihood for the monitored network to be persistent or not), but we

can set more realistic prior Bayes factor in applied research by incorporating indigenous and expert

knowledge53,54. We have found that conclusions about whole network persistence or non-persistence

can be made from only a handful of subnetworks (Figure 3).

Our key theoretical prediction—that subnetworks with a higher probability of persistence in isola-

tion are over-represented in more persistent networks—is supported by empirical temporal mutu-

alistic networks. These empirical results agree with the natural history details of these systems.

For example, Figure 4 shows how restored networks have only slightly higher frequencies of persis-

tent subnetworks than unrestored networks until month four, when the two treatments diverge, and

persistent subnetworks substantially increase in number in restored sites relative to unrestored (dis-

turbed) sites. Networks in the two treatments then converge at the end of the flowering season. This

divergence in month four corresponds to the start of the rainy season in the Seychelles. Rains create

a patchy distribution of resources. In the unrestored sites, free movement of pollinators between

patches is hindered because invasive species grow densely, disrupting the ability of pollinators to for-
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age effectively13. If pollinators cannot find resources, or cannot move freely between individuals and

species, this increases competition and reduces niche complementarity, which likely causes reduced

persistence.

Overall, the match between theoretical predictions and empirical observations shows that information

about the persistence of a species-rich ecological network is encoded in its small subnetworks and can

be recovered through an appropriate theoretical lens and statistical analysis. This finding has signif-

icant application to biodiversity monitoring as indicators of ecological persistence and biodiversity

intactness are key foci of monitoring networks around the world. The method we have provided here

has the potential to save time and effort and accelerate our ability to detect and mitigate unwanted

change to the structure and function of ecological networks.
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Figure 1: Illustrated scheme to detect network persistence from monitoring subnetworks.
For illustrative purposes, we consider a hypothetical network structure of a mutualistic network
consisting of five pollinator species and four plant species (orange box). Persistence is a network-level
property, which makes the network scale the most relevant scale for measuring persistence. However,
time and cost constraints and sampling biases limit our knowledge of the network structure. Thus,
we most often observe small-scale subnetworks called motifs (two green boxes) that are embedded
into the larger network. ‘Embedded persistence’ refers to persistence of these motifs that are part
of larger networks. However, given that the whole network is unobservable, we can instead study
whether the subnetworks can persist in isolation, removed from the wider network context, which
we call the ‘persistence in isolation’ of a subnetwork. While it is clear that the persistence of the
network determines the embedded persistence of subnetworks, here we show that the persistence in
isolation of subnetworks is linked to the persistence of the network as a whole, and we can update
our belief on the persistence of the whole network from observing the persistence in isolation of the
subnetworks.
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Whole network (1&2&3)
coexistence domain

Isolation coexistence domain of a subnetwork

Coexistence domain of the whole network

Embedded coexistence domain of a subnetwork

 For subnetwork of species 2&3,
the embedded coexistence domain is larger than
 the isolation coexistence domain.

For subnetwork of species 1&2,
the embedded coexistence domain is the same as the isolation coexistence domain.

Figure 2: A structural approach to link persistence across scales. We establish the link
between the network and the subnetwork scales via the concept of the coexistence domain: the region
of all parameters in which a given set of species coexists. For illustrative purposes, we consider a
hypothetical 3-species network. If we want to understand persistence of the network as a whole, we
should study the coexistence domain of the network where all species coexist (orange region). If
we want to understand the isolation persistence of a subnetwork, we should study the coexistence
domain of the subnetwork in isolation i.e., removed from the larger network of interactions in which
it is embedded (hashed region). If we then want to understand the persistence of the network as a
whole, but we can only observe a subnetwork (embedded persistence), then the observed coexistence
domain for the subnetwork is the projection of the network’s coexistence domain into the subnetwork’s
(light green region). The projection of the network’s coexistence domain is always larger than (e.g.,
subnetwork with species 2 and 3) or equal to (e.g., subnetwork with species 1 and 2) the subnetwork’s
coexistence domain.
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Figure 3: Generic phase transition of persistence across scales. (A) Schematic illustration
of the structure of our experiment. For a given network, we measure the proportion of subnetworks
(motifs) that are persistent along ‘transects’ that span inside and outside the coexistence domain
of the network. Within the coexistence domain, the network is persistent; outside the coexistence
domain the network is non-persistent. The transects span a tuning parameter that ranges from 0 to 1,
with 0 being at the centre of the coexistence domain and 0.5 being at the boundary of the coexistence
domain. (B) Here, we explore the subnetwork mechanisms driving network persistence as a whole.
The x axis denotes a tuning parameter moving the network from non-coexistent (non-persistent) to
coexistent (persistent). The y axis denotes the proportion of subnetworks (motifs) in the network
that persist (blue) and do not persist (red) in isolation. The whole network is persistent in the left
half and non-persistent in the right half. Each thin line represents one simulation along a ‘transect’,
as shown by the black line in panel A (50 are shown here), and the think lines denote the average.
We see a transition in the proportions of persistent and non-persistent subnetworks as the network
transitions from persistence into non-persistence. This transition shows that a persistent network
is primarily composed of persistent subnetworks, and vice versa. This phase transition is generic in
nearly almost all simulations (see Appendix B). (C)-(D) Monitoring network persistence as a whole
from subnetworks. Panel (C) shows the case for persistent network (left side of Panel B), while Panel
(D) for non-persistent case (right side of Panel B). The x axis shows the number of randomly sampled
subnetworks (from 3 to 5 species). The y axis shows the proportion of samples that reaches decisive
Bayes factor that supports that the network is persistent (in Panel C) or non-persistent (in Panel
D). The transparency of the lines denotes different network sizes (from 20 to 50). We find that it is
generally easier to statistically determine if the network as a whole is not persistent from monitoring
subnetworks.
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Figure 4: Restored mutualistic networks contain more subnetworks with higher likeli-
hood of persistence in isolation than unrestored disturbed networks. We use a temporal
dataset with 64 networks (8 networks sampled over 8 months) located on the granitic island of Mahé,
Seychelles13. The x axis denotes the eight consecutive months between September 2012 and April
2013. The y denotes the z-scores of a given subnetwork (over- or under-representation of empirical
motif frequency compared to motif frequency in randomized networks). The black horizontal line
corresponds to the threshold above or below which a subnetwork (motif) occurs significantly more
than random (z-score = 2). The green lines correspond to the restored networks, while the pur-
ple lines correspond to the disturbed and unrestored networks. (A) Monitoring the network. Each
translucent light line corresponds to a different network. The thick lines correspond to the average
across 4 different networks. The persistent in isolation subnetworks are significantly over-represented
in the larger networks, and the over-representation is stronger in restored networks than in disturbed
networks. These patterns are consistent with the natural history of these plant-pollinator networks.
(B) Monitoring a subset of the network. Suppose that we cannot monitor the whole network but only
a subset of it. Here we show the case for monitoring 6 species (see Appendix F for other numbers of
monitored species). We find that all the qualitative patterns linking subnetworks and the network in
Panel (A) remains. This shows that we can monitor a subnetwork (6 species of the whole network)
and then study the persistence in isolation of its subnetworks (3-5 spices in the monitored 6 species),
which would provide useful information of the network as a whole.
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