bioRxiv preprint doi: https://doi.org/10.1101/2022.07.02.498058; this version posted July 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

SiRCle (Signature Regulatory Clustering)
model integration reveals mechanisms of phenotype
regulation in renal cancer

Ariane Mora'", Christina Schmidt?3*, Brad Balderson', Christian Frezza*, Mikael Bodén'*

1) School of Chemistry and Molecular Biosciences, University of Queensland, Molecular Biosciences Building 76, St Lucia QLD

4072, Australia.

2) Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge

Biomedical Campus, Cambridge CB2 0X2, United Kingdom

3) CECAD Research Center, University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany

*Joint first authors equally contributed; the order is interchangeable and up to the authors discretion
#Joint last authors; correspondence to MB (ugmboden@ug.edu.au) and CF (christian.frezza@uni-koeln.de)

Abstract

Clear cell renal cell carcinoma (ccRCC) tumours
develop and progress via complex remodelling of
the kidney epigenome, transcriptome, proteome,
and metabolome. Given the subsequent tumour and
inter-patient heterogeneity, drug-based treatments
report limited success, calling for multi-omics
studies to extract regulatory relationships, and
ultimately, to develop targeted therapies. However,
current methods are unable to extract nonlinear
multi-omics perturbations.

Here, we present SiRCle (Signature Regulatory
Clustering), a novel method to integrate DNA
methylation, RNA-seq and proteomics data.
Applying SiRCle to a case study of ccRCC, we
disentangle the layer (DNA methylation,
transcription and/or translation) where dys-
regulation first occurs and find the primary
biological processes altered. Next, we detect
regulatory differences between patient subsets by
using a variational autoencoder to integrate omics’
data followed by statistical comparisons on the
integrated space. In ccRCC patients, SiRCle allows
to identify metabolic enzymes and -cell-type-
specific markers associated with survival along
with the likely molecular driver behind the gene’s
perturbations.

Integration | multi-omics | regulation | machine learning |
variational autoencoder | clear cell renal cell carcinoma

Introduction

Clear Cell Renal Cell Carcinoma (ccRCC) is the
most prevalent form of kidney cancer and accounts
for 70% of renal malignancies!. It is now
established that most ccRCC cases are driven by the
loss of the Von Hippel-Lindau (VHL) tumour
suppressor gene, in turn leading to the activation of
the transcription factor (TF) Hypoxia-Inducible
Factors (HIFs)?. Although the activation of the HIF
pathway is considered to be a driving event in VHL
mutant c¢cRCCs, VHL mutations alone are
insufficient for ccRCC formation and cooperating
mutations such as PBRM1, BAP1, KDM5C and
SETD2 are necessary for full transformation’.
Hence, ccRCC transformation and progression
have been reported to affect multiple regulatory
layers, beyond transcription, including the
epigenome, via changes in DNA methylation of
CpG islands®, the proteome, via alterations in the
mammalian target of rapamycin (mTOR) pathway’
that in turn affects protein synthesis’, and the
metabolome, whose dysregulation is considered a
hallmark of ccRCC®®,

Due to the complexity of gene regulation in
ccRCC, molecular analyses for patient stratification
and drug treatment based exclusively on genomic
or  transcriptomics  analysis have  been
unsuccessful’. For example, protein expression via
(post-) translational regulation is altered in cancer!®
and there is a lack of correlation between
transcriptome and proteome'!. Hence, it is difficult
to predict pathway activity such as TFs driving
disease states from transcriptomics data alone,
suggesting that data from distinct regulatory layers
need to be analysed jointly. Furthermore, patient’s
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responses to different RCC treatments can be
dependent on the mutational and methylation
landscape of the patients'>. To overcome these
issues, consortia such as CPTAC (Clinical
Proteomic Tumor Analysis Consortium) are
leading efforts to produce multi-omics datasets with
various patient demographics!®. Clark et. al
reported the first extensive dataset of ccRCC
patients that included tumour and normal RNA-seq
and proteomics data, and tumour DNA methylation
data'®. Using largely correlative analyses, Clark et.
al proposed a stratification of ccRCC patients for
personalised therapeutic interventions based on the
differential RNA and protein profiles of the
patients, along with the copy number variation and
phosphoproteome!*. However, it remains unclear if
in ccRCC a gene of interest is regulated at the level
of DNA-methylation, transcription or translation,
and at what regulatory level (henceforth “layer”)
dictates the cellular phenotype of ccRCC.
Addressing this question is vital to identify
determinants that explain disease states and to
subsequently  develop  effective  anticancer
therapies.

Data integration has become a core
component of multi-omic analyses but remains a
challenge owing to dataset heterogeneity, noise,
and non-linearities between genetic and epigenetic
interactions'>. Many approaches exist to integrate
bulk multi-omic assays to understand cancer
genomics; they are typically based on standard
statistical methods, clustering, or linear matrix
factorisations to integrate different biological
data'®!’. Recently, deep learning methods, such as
Variational Autoencoders (VAEs)'®, have been
applied to detect non-linear patterns across patients
in single genomic data types in cancer patients!®-%,
VAEs have been used for differential analysis,
cancer subtype identification, data integration®'*?,
and survival analysis®, involving both bulk!® and
single cell** data, and on a variety of assays
(ATAC*, mRNA!?>2¢ DNA methylation®®).

VAE:s present a machine learning approach
to extract latent features that summarise variation
across the dataset®’. Recent research suggests that
latent embeddings can be used to identify co-
regulated gene groups?; however, such analyses
have yet to be adapted for application on cancer or
patient data. Other integration methods enable
biological signals to be extracted along latent
embeddings, typically in the forms of correlative or
linear relationships®**, statistics on these bulk-
cancer embeddings are not often performed. Yet,
this is becoming increasingly important as it has
been shown that patient’s demographics such as
age*?7, gender’®* and ethnicity®® alter the gene

expression profile in ccRCC as in many other
tumour types. Furthermore, it is important to
stratify patients on stage*!, and mutational profile*
since these factors are known to affect survival. To
date, studies involving GWAS data suggest
principal component analysis (PCA) embedding
statistics enable complex relationships to be
identified, opening an avenue for multi-omic
patient changes to be extracted***.

Here we present “Signature Regulatory
Clustering" (SiRCle), a method for integrating
DNA methylation, mRNA, and protein data at the
gene level to deconvolute the association between
dysregulation within and across possible regulatory
layers (DNA methylation, transcription and/or
translation), which is available as a Python
package. Using SiRCle, we disentangled the
regulatory layer behind metabolic rewiring in
ccRCC and showed that glycolysis is regulated by
DNA hypomethylation, whilst mitochondrial
enzymes and respiratory chain complexes are
translationally suppressed. Moreover, we identified
that HIF1A was likely driving expression changes
in glycolytic enzymes. We also explored the
heterogeneity between ccRCC patient
subpopulations to identify cell-type specific
markers associated with patients’ survival along
with the likely regulatory layer behind the
differences in gene expression. We found that
downregulation of proximal renal tubule genes and
hence loss of cellular identity is implicated with
stage IV patients’ survival. Here, we demonstrate
how we can use SiRCle to uncover drivers across
regulatory layers that may explain distinct cohorts
of ccRCC, but we anticipate other cancers and data
types can be analysed similarly.

Results

Functional effects of ccRCC are regulatory
layer dependent

ccRCC is a heterogeneous cancer with
transformation and progression linked to
widespread dysregulation of biological processes.
To understand how cellular processes are affected,
analyses must extend across regulatory layers and
therefore incorporate multiple omics’ datatypes.
Recently, Clark et. al. and the CPTAC consortium,
investigated the impact of genomic alterations on
protein regulation and created revised subtypes
based on their integrated analyses'®. As part of their
study, Clark et. al. generated protein, RNA, and
DNA methylation measurements from 110 patients
with ¢ccRCC!". We sought extend their work by
investigating the compounding effects of
dysregulation by following gene changes from the
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DNA methylation via the mRNA to protein layers
to unravel the regulatory layer of each gene. Since
no DNA methylation samples from normal tissue
were available, we coupled the CPTAC data with
tumour adjacent normal (herein normal) DNA
methylation data from 151 patients in TCGA® (see
Supplementary Table 1 for sample annotations
and Methods for quality controls). The CPTAC
cohort is demographically homogenous, but
includes cases across four stages of ccRCC and
multiple mutational patterns (Supplementary
Table 1, Supplementary Fig. 1a). Data types are
herein denoted “data layer” as they correspond to
distinct layers of regulation (DNA methylation beta
values, normalised mRNA expression and
normalised protein expression). PCA established
that the primary source of variation in a data layer
(in isolation) is the sample type (tumour versus
normal) with neither of the top two components
explaining tumour stage, age, presence of a BAP1
or PBRM1 mutation (Supplementary Fig. 1b).

We identified genes changing significantly
between tumour and normal by performing
differential analysis tests for each data layer and
found widespread changes, most notably on the
mRNA layer (Methods, Supplementary Table 1).
While there is minimal negative correlation
between gene changes on the DNA methylation and
mRNA layers, the mRNA and protein layers are
strongly correlated (Fig. 1a). We found 689
significant genes shared across the mRNA and
protein layers and 461 significant genes between all
three layers (see Methods for thresholds).

Given the small number of significant
genes shared across layers, yet comprehensive
changes within each layer, we sought to determine
whether the affected genes shared biological
function. To do this, we performed Over
Representation Analysis (ORA) of Gene Ontology
(GO) terms on significant genes from each
differential analysis, sub-setting genes by direction
of change. We observed both unique and shared
biological functions between the layers, with more
similar functions enriched across layers for
upregulated than downregulated genes (Fig. 1b).
Hypermethylated genes were most enriched for
terms associated with development, while repressed
genes were most associated with transporter
activity (mRNA layer) and mitochondrial processes
(protein layer) (Supplementary Fig. 1c-d,
Supplementary Table 2). In line with the findings
from the original study'*, immune response terms
showed the most significant enrichment across all
data layers for genes upregulated on the protein and
mRNA layers (Supplementary Fig. 1lc-d,
Supplementary Table 2).

Following the flow of information extracts
clusters that drive specific cellular
phenotype in ccRCC patients

Given the lack of correlation between the data
layers and the heterogeneity of functional
enrichment resulting from them, we posited if
grouping genes by their pattern across layers, prior
to performing ORA would facilitate biological
interpretation. Based on the differential analysis,
we defined three states between tumour and normal,
namely positive, negative or unchanged, for each
gene and layer (Fig. 1¢, Table 1, Methods section).
To perform biologically meaningful clustering, we
labelled each gene based on the regulatory layer
where that gene is first “changed” in the tumour
sample compared to the normal sample to bundle
those following the same broad regulatory biology.
We do this by following the central dogma of
biology*, i.e. genetic information proceeds from
DNA, to mRNA, and eventually protein (Fig. 1c).
Since this is an ordered series of three 3-state
transitions between the layers, there are 27 (3°)
possible “flows”. For example, if a gene is
hypermethylated, has a decrease in mRNA
expression, and displays a decrease in protein
expression, we can likely conclude dysregulation
first occurred on the DNA methylation layer,
adding this gene to the Methylation-Driven
Suppression (MDS) cluster. While there are 27
possible flows, we define three granularities of
clustering based on how many regulatory layers a
user considers (Methods, Table 1). Throughout the
paper, we use Grouping 2 with ten clusters defined
by at maximum two changes, ensuring that for
ccRCC genes are measured on the protein layer or
on both the mRNA and DNA methylation layers
(Fig. 1c, Table 1). We term the process above
“Signature Regulatory Clustering" (SiRCle).

We performed ORA on the SiRCle clusters
and found that each cluster was enriched for a clear
biological signature important in c¢cRCC and
consolidated the functional enrichment results we
observed across each layer when independently
analysed (Fig. 2a, Supplementary Table 3).
Strikingly, we found clear biological signatures for
both, SiRCle clusters regulated on one layer and
SiRCle clusters regulated on multiple layers (Fig.
1c¢). We found that hypomethylation (Methylation-
Driven enhancement (MDE)) and enhanced
transcription (7Transcription and Processing Driven
Enhancement (TPDE)) are associated with the
hypoxic response, oxidative stress response and
angiogenesis (Fig. 2a), key players in ccRCC
tumour*. These terms were not revealed in the top
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Fig. 1, a, Spearman correlation comparing the change between tumour and normal samples for mMRNA expression and
DNA methylation, and mRNA expression and protein expression. b, Numbers of enriched Gene Ontology (GO) terms
when comparing Tumour versus Normal (TvN) for each data type, indicating shared terms by overlapping regions in the

Venn diagram.

“Down regulated” corresponds to GO terms enriched in genes that are decreased in tumour samples,

whilst “Up regulated” is for GO terms enriched in genes increased in tumour samples. ¢, Alluvial plot depicting the flows
used to define SiRCle clusters. The plot is read from the left to the right, in line with the flow of information in a biological
system. Each data type has been labelled as a layer, with one of three states defined for each layer based on the results
for differential analysis between tumour versus normal in that data type. On the regulation driver we collapse the flows
to include at most two regulation drivers, this we denote as “Grouping 2”, collapses are done on the later stage, for
example, for TPDS+TMDE we have potential changes on all three layers, thus the first is collapsed. Direct flows
correspond to relationships that follow the central dogma of biology, for example the flow followed in MDS. Overlaps in
the Venn diagram are coloured according to the relationships in the alluvial plot that they capture, note not all

relationships are presented in the Venn diagram.

terms when we performed ORA on each layer
independently (Supplementary Fig. 1c-d).

In line with previous findings'****” we
observed an increase in immune response
pathways, and show these genes are likely regulated
by DNA hypomethylation (MDE, Fig. 2a) or
enhanced transcription (TPDE, Fig. 2a). Clark et.
al. described a high correlation between mRNA and
protein expression of immune signatures'*,
supporting our finding that the regulation occurs at
the transcriptional layer. We were also able to
distinguish between immune response genes likely

regulated by hypomethylation from those likely
regulated by enhanced transcription.

We observed that genes in two SiRCle
clusters are involved in distinct metabolic rewiring,
with metabolic processes such as lipid and amino
acid metabolism likely regulated by transcriptional
suppression (Transcriptional and Processing-
Driven Suppression (TPDS)), whilst mitochondrial
respiration and nucleotide metabolism are likely
downregulated by translational suppression of the
proteins  (Tramslation  and  translational-
modification-Driven Suppression (TMDS), Fig.
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2a). Genes regulated by translational suppression
appear to be involved in mitochondrial metabolism,
mitochondrial translation and mitochondrial
morphology (TMDS, Fig. 2a). Transcriptionally
repressed genes were enriched for kidney
development, hinting toward a loss of cellular
identity in cancer cells (TPDS, Fig. 2a). Using
SiRCle clustering we were able to determine the
layer at which a gene’s dysregulation occurs and
find clusters corresponding to distinct biological
processes that may underly tumour pathology.

Transcription factors as drivers of genes in
SiRCle clusters

A subset of SiRCle clusters contain genes that
change their state at the transcriptional
(TPDE/TPDS) and/or the methylation layer
(MDE/MDS), suggesting that they are regulated by
transcription or epigenetic factors. Indeed, a
specific TF may drive such changes in gene
expression as TF’s can act to enhance/repress gene
transcription and DNA methylation changes can
alter the TF’s ability to bind to the DNA*, We used
validated  TF-to-target  interactions  from
DoRothEA® to identify what TFs were statistically
associated with each SiRCle cluster. We use
Fischer’s Exact Test (FET) to measure association
between a TF and SiRCle clusters by testing if a TF
targets more genes in a single cluster relative to
background chance (all SiRCle clusters). This
analysis only recovered TFs significantly
associated with SiRCle clusters that are either up-
or down-regulated at the methylation and
transcriptional layers (Fig. 2b, Supplementary
Fig. 2a-b Supplementary Table 4). The
stratification provided via SiRCle clustering helps
distil the data from which regulatory logic can be
inferred.

Given that HIF1 drives angiogenesis in
ccRCC tumours*’, we were unsurprised to find
HIF1 TFs target genes in TPDE and MDE as both
these clusters were enriched for angiogenesis
related GO terms (Fig. 2a-b, Supplementary Fig.
2a, Supplementary. Table 4). We found that both
HIF1A and EPASI (also known as HIFIB) had a
significant increase in protein expression and were
significantly associated with SiRCle clusters with
an increase in mRNA and protein expression
(TPDE, MDE). Given DoRothEA is not tissue
specific we sought to confirm that the HIF TFs bind
to the target genes in ccRCC by using ChIP-seq data
from HIF1A and EPASI in kidney cancer cell lines
(see Methods). We found evidence of HIF1A
binding at the transcription start site (TSS) of genes
in both TPDE (SERPINEI, CDKNIA and CA9),
and MDE (VEGFA, EGFR and SLC241) (Fig. 2c,

Supplementary Fig. 2d). Similarly, we found
evidence of EPAS1 binding at the TSS of
SERPINE] and CA9 in the TPDE cluster,
confirming both HIFs ability to bind to target genes
in ccRCC cell lines (Supplementary Fig. 2e). TF
enrichment in SiRCle clusters elucidates changes to
TF activity that affect transcriptional regulation at
both the transcriptional and methylation layers.

c¢cRCC characteristic metabolic changes are
detected on distinct layers

Metabolic rewiring plays a crucial role in ccRCC
and hence we sought to investigate the
dysregulation of genes involved in metabolic
rewiring in ccRCC to understand the layer at which
the metabolic pathways are altered. In order to do
so, we performed Gene Set Enrichment Analysis
(GSEA) using metabolic signatures from Gaude et.
al’®, herein referred to as metabolic signatures, to
identify pathways with coordinated protein changes
in tumour versus normal. The protein layer was
chosen for GSEA to capture changes in pathways’
enzyme activity, and then coupled with SiRCle
cluster annotations to relate gene changes to the
initial layer of dysregulation (Supplementary
Table 5). We found the majority of enzymes
involved in glycolysis (70%) were increased
comparing tumours versus normal, fitting with the
previously established upregulation of glycolysis in
ccRCC3. Interestingly we find that some glycolytic
enzymes are hypomethylated and upregulated on
both the mRNA and protein layers (SiRCle cluster
MDE, Fig. 3a and Supplementary Fig. 3a). From
the TF analysis we noticed that HIF1A targets in
MDE included several glycolytic enzymes, and we
also found HI1F1A binding at the transcription start
site of glycolytic genes in kidney cancer cell line
ChIP-seq data (Supplementary Fig. 3c¢).

We next sought to dissect the role of
mitochondrial dysfunction in ccRCC, including the
suppression of mitochondrial electron transport
chain (ETC), since this has been previously
confirmed® to play a role in c¢ccRCC, yet how
metabolic enzymes are regulated remains unclear.
We found that electron transport chain complexes
were depleted in the tumour samples with the
decreased expression of enzymes likely regulated at
the translational layer (SiRCle cluster TMDS, Fig.
3d). The translation-driven downregulation affects
almost all enzymes of the TCA cycle (SiRCle
cluster TMDS, Fig. 3a and Supplementary Fig.
3d). In addition to these primary metabolic rewiring
steps, there are many secondary pathways altered in
ccRCC8. By coupling SiRCle annotations with
GSEA we found that the suppression of cysteine
methionine and glutathione (GSH) metabolism’
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Fig. 2 a, Emapplot visualisation of the over representation analysis (ORA) performed on each SiRCle cluster resulted
in biological pathways that are altered comparing tumour versus normal. Pathways were plotted if p-adjusted value
(p-adj) < 0.05 and the gene ratio was greater than 5%. The dot size corresponds to the number of genes found in the
cluster that are part of the biological pathway. The colour of the dot shows the p.adj of the ORA. The connecting lines
(grey) show that the biological pathways have genes in common. b, Transcription factor (TF) factor network of TFs from
manually curated repositories (DoRothEA) that may drive genes in the cluster Transcription and Processing Driven
Enhancement (TPDE). The dot size corresponds to the number of genes targeted by the TF. The colour of the dot
shows the p.adj. The connecting lines (grey) shows the number of common genes the connected TFs regulate. c,
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many different TF’s are predicted to regulate the gene's expression. d, HIF1A ChlP-seq peaks (RCC4, GSM3417827)
binding at the transcription start site of SERPINE1, CDKN1A and CA9.
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occur on the transcriptional layer (SiRCle cluster
TPDS, Fig. 3a and Supplementary Fig. 3e, f).
Similarly, serine biosynthesis, which is important to
fuel GSH biosynthesis also occurs on the
transcriptional layer. In accordance with the ORA
results (Fig. 2a), we found that other amino acids’
metabolic pathways such as tryptophan, valine,
leucine and isoleucine are downregulated either by
translational or transcriptional suppression (SiRCle
clusters TPDS and TMDS, Fig.3d-f).

To understand the impact of the enzyme

expression on the metabolic profile, we used
metabolomics data from 84 ccRCC patients with
paired tumour and adjacent tissue samples’ and
performed differential metabolomics analysis to
identify the metabolites significantly changing
between tumour and adjacent tissue. To consolidate
the metabolite levels with enzyme information, we
manually assigned significant metabolite changes
to the pathways identified from the protein layer
GSEA (Fig. 3a). We observed a “split” of
glycolysis as previously described by Hakimi et al’,
whereby metabolites upstream of GADPH are
accumulated, and the downstream metabolites are
depleted, despite the majority of glycolytic
enzymes being upregulated on the protein layer
(Fig.  3a, Supplementary  Fig. 3b-c,
Supplementary Table 5). A similar split is
observed in the TCA cycle, where citrate and
succinate are increased despite the decreased
enzyme’s protein expression, whilst fumarate and
malate are depleted in line with the decreased
enzyme’s protein expression (Fig. 3a).
Overall, we show that SiRCle clustering can
elucidate the layer where metabolic changes in
ccRCC are orchestrated, highlighting points of
intervention for targeting metabolism as anticancer
strategy.

Functional differences between late and
early-stage tumours show limited agreement
across layers

The  previous sections explored
dysregulation in tumour samples across a
heterogeneous cohort of ccRCC patients. However,
it has been reported that tumour stage is an
important determinant of prognosis and treatment
response’’. We thus sought to identify the
regulatory differences between patients with stage I
and stage IV tumours by performing differential
analysis on each layer, between tumour versus
normal, for each patient group independently
(Supplementary Table 6). Using the significant
genes from each analysis, we performed ORA on
each layer. On the protein and mRNA layers, we

found that similar biological terms were enriched
across the two patient’s groups, whilst on the
methylation layer there were far more terms
enriched in the stage IV samples. The main
differences between the top associated GO terms
were an association with extra cellular matrix terms
in stage IV samples (Supplementary Fig. 4a).

It is unsurprising that the tumour versus
normal comparisons yielded similar results despite
being run on patients with different stage tumours
as the majority of variation in the dataset was
accounted for by the sample type. Hence, we next
tested for differences in tumour profiles between
stage IV and stage I samples (Supplementary
Table 6). When comparing stage IV versus stage I
tumours we found few changes on the protein layer,
but aberrant changes on the DNA methylation and
mRNA layers (Supplementary Fig. 4b). As
tumours progress, the dynamic adaptability of
metabolism plays a crucial role to ensure cell
growth’!, and therefore, we tested for coordinated
changes across metabolic signatures between using
the differences between stage IV and stage 1
tumours. We found minimal shared enrichment of
pathways between layers, with only N-Glycan
Biosynthesis positively enriched on both the protein
and mRNA layers, none shared on the mRNA and
methylation layers, and Cyclic Nucleotides
Metabolism, Glycolysis and Gluconeogenesis,
Carbonic Acid Metabolism, shared between the
negatively enriched protein layer and positively
enriched methylation layer (Supplementary Fig.
4c). While we find significantly changing
metabolic pathways within each layer, functional
information is not readily captured across layers
rendering the results challenging to interpret.

Novel integrated statistical test to identify
changes between patient cohorts

Given the independently performed
differential analyses were unable to extract shared
functions when comparing patient’s with stage I
versus stage IV tumours, we posited that integrating
across the layers prior to performing differential
analysis and biological enrichment may better
capture the biological signal. We opted to use a
variational autoencoder (VAE) to learn gene-wise
relationships across the three data layers
(Supplementary Fig. 5a). Akin to matrix
factorisation methods, a VAE finds a projection of
data that centres on variance. However, unlike
linear methods, such as PCA, a VAE does this using
a neural network and can thus capture non-linear
relationships.
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Fig. 3 a, Metabolic changes of glycolysis, tricarbolic acid (TCA) cycle and serine, glycine and cysteine biosynthesis in
ccRCC comparing tumour versus normal. Metabolic enzymes are written in bold and if they have been detected, they

are labelled with coloured circles depending to the SiRCle

cluster they are part of. Metabolic change of detected

metabolites is labelled with plus for a positive and minus for a negative log2FC. For the three main metabolic sections
are based on the SiRCle cluster the majority of metabolic enzymes are part of and are summarised in pie charts. b-d,
Volcano plots are based on the metabolic pathways defined by Gaude et. al®® and the number of proteins detected of
the pathway are reported. Proteins that are unique for the metabolic pathways are displayed in circles and proteins that
are part of multiple metabolic pathways are displayed in diamond. The colour code is based on the SiRCle cluster the
protein is part of and is summarised in the pie chart. GSEA was performed using the protein statistic. Here we plot
oxidative phosphorylation (b), valine, leucine and isoleucine metabolism (¢) and tryptophan metabolism (d), all reported

a GSEA p.adj of 0.001518315.

In short, there are two parts of a VAE, 1) an
encoding function that transforms data to a
compressed representation, and 2) a decoding
function that recreates the input from the

compressed representation. The encoding and
decoding functions are shared once the parameters
have been learnt from the training data, while an
encoded value is specific to a given datapoint. For
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example, the compressed representation of data
point x;, is given by: z; = q9(2|xip) = Ui +
op O €, where z;, is the latent representation
produced by the model conditioned on x;;, g is the

encoding function, €; is stochastic noise and part of
regularisation, y;, is the encoded mean and oy, is

the encoded variance. Note, x;,, refers to a feature

vector of a gene, denoted by index i for a specific
patient p. The feature vector is the normalised
values across the data layers (Supplementary Fig.
5a).

The encoding and decoding functions are
“learnt” by minimising an objective lower bound
over a dataset, by iteratively updating parameters
over a number of epochs. For our purposes, the
objective is to minimise the difference between
input and output as per mean squared error and
maximise the similarity between the latent space
and a gaussian normal distribution via mean
maximum discrepancy (see Methods for specifics).

Given the relatively low signal produced by
stage, extracting regulatory variations may be
obstructed by the noise in the dataset when
considering all regulatory relationships at once. As
such, instead of learning a dataset-wide
representation, we used genes from each SiRCle
cluster to learn a representation that defines a given
regulatory flow. As such, there is an encoding
function qg(z|x) for each SiRCle cluster.

As we can now calculate an integrated
(encoded) value for each gene, for each patient, we
can define a gene’s integrated difference as a gene’s
mean encoding difference between two sets of
patients, e.g. patients with stage [V tumours versus
stage I tumours (Supplementary Fig. 5a).

Mathematically we define this below,
where z refers to the latent encoding given a
particular data point, which corresponds to a
patients’ gene value across the layers. Gene index i
is held constant as the mean difference is calculated
between patients sets, for example patients with a
stage IV tumour may be in set S, and those with a

stage I tumours are in set G.
S| 1G]

1 1 _ _
D(zisl|zig) = mz Zjs — mz Zig = Zis — Zig
s=1 g=1

For biological interpretation, we can
correlate the integrated difference to a biological
reference such as the mean difference between the
two patient sets on the protein layer. For example,
in the MDE SiRCle cluster, we see that the stage [V
versus stage | integrated difference correlates to the
difference on the protein and mRNA layers
between these patient sets (Supplementary Fig.
5b, Supplementary Table 7).

Using our integrated value for each gene,
we next perform a Mann-Whitney U test to identify
genes with a significant integrated difference
between patients with early (stage [, N=45) and late
(stage IV, N=10) stage tumours, old (N=56) and
young (N=7) patients, and patients with a BAP1
(N=13) mutation or PBRM1 mutation (N=33)
(Supplementary Fig. Sb). In the following
sections, we demonstrate that VAE integration
prior to performing analyses enables us to identify
changes across the regulatory layers that were not
found when performing differential analyses
independently on each data type.

Metabolic alterations in tumour stage and
patients age impact on ccRCC’s metabolic
fingerprint

While there were few shared metabolic
pathways in the layer-specific analyses, an
integrative model may improve our ability to
understand metabolic differences between ccRCC
patient’s groups. As metabolic profiles alter not
only during tumour progression’!, but also during
ageing®?, we performed two comparisons using the
integrated values between 1) patients with stage I
and stage [V tumours and 2) old and young patients.
For each comparison, we performed GSEA using
the metabolic signatures to identify pathways with
coordinated integrated differences between two
groups (Fig. 3). We define regulation as “up” if the
integrated value increases, and as “down” if the
integrated value decreases. Given the integrated
value is positively correlated with the mRNA or
protein layers, it carries biological meaning yet e.g.
“up” regulation of the integrated value of a specific
gene does not necessarily equal the same increase
in mRNA or protein (Supplementary Fig. Sb,
Supplementary Table 7). In line with previous
observations', oxidative phosphorylation was up
regulated when comparing stage IV with stage I
(Fig. 4a, Supplementary Table 7), yet we are now
able to understand on what layer the enzyme
expression is defined and observed that oxidative
phosphorylation enzymes are likely altered on the
translational layer. Reassuringly, oxidative
phosphorylation was also a significant pathway in
the stage IV versus stage | tumour protein layer
GSEA analysis, but not on the mRNA layer,
matching our TMDS label and showing that trivial
single-layer relationships are captured by the VAE
approach (Supplementary Table 6). Surprisingly,
the coordinated change observed in oxidative
phosphorylation was not observed for enzymes of
the mitochondrial TCA cycle, with only some
enzymes such as IDHI, FH and PCK! up in stage
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Fig. 4, Metabolic pathways based on gene expression are defined by Gaude et. al° with p.adj values corresponding to
the GSEA results after ranking the genes in each SiRCle cluster using the VAE integrated rank. Metabolite pathways
based on metabolites are defined by Hakimi et. al’. a, Comparison of the VAE integrated rank of stage IV and stage |
patients for oxidative phosphorylation for genes within the Translation and post-transcriptional Modification Driven
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Suppression (TMDS) SiRCle cluster. b, Comparison of the VAE integrated rank of stage 1V with stage | patients for TCA
cycle genes colour coded for the SiRCle clusters the gene belongs to. ¢, Comparison of the Log2FC of tumour versus
normal (TvN) of late stage (Il & IV) with early stage (I & Il) patients for TCA cycle metabolites. d, Comparison of the VAE
integrated value of stage IV with stage | patients for genes corresponding to the methionine metabolism pathway colour
coded for the SiRCle clusters the gene belongs to. e, Comparison of the Log2FC (TvN) of late stage (lll & IV) with early
stage (I & Il) patients for “cysteine, methionine SAM, taurine metabolism” metabolites. f, BHMT survival curve based on
(http://gepia2.cancer-pku.cn/) using quantile default cut-offs of 25%, 0.75%. VAE integrated rank alongside protein
Log2FC (TvN) for stage | with stage IV patients. g, Comparison of the Log2FC (TvN) of late stage (lll & IV) with early
stage (I & Il) patients for metabolites of the dipeptide group.

IV compared to stage I (Fig. 4b). Interestingly,
citrate and cis-aconitate metabolite levels were
depleted in late-stage compared to early-stage
patients, whilst the downstream metabolites
remained unchanged over the stages and have
decreased protein expression in the tumour tissue
(Fig. 4c). Oxidative phosphorylation showed a
more variable, albeit similar trend in old patients
when compared to young patients (Supplementary
Fig. 6a, Supplementary Table 7). Conversely,
TCA cycle enzymes were significantly up in old
patients compared to young patients when
performing GSEA and accordingly, metabolite
levels were increased for succinate, fumarate, and
malate in old patients (Supplementary Fig. 6b,
Fig. 6¢). Noteworthy, the majority of old patients
do not present late-stage tumours (old patients:
stage [ = 27 (41%), stage 11 = 9 (14%), stage 11l =
24 (36%), stage IV= 6 (9%); young patients: stage
1=7(78%), stage 2 =1 (11%), stage 3 =1 (11%)
Supplementary Table 1).

A novel finding from Hakimi et. al. was
that metabolites involved in methionine
metabolism are altered between different tumour
stages in ccRCC’. We sought to build on this by
investigating whether the changes in methionine
metabolism could be traced back to a regulatory
change. We found that enzymes of the methionine
metabolism are predominantly up on the
transcriptional layer when comparing stage IV vs
stage 1 (Fig. 4d-e, Supplementary Table 3,
Supplementary Fig. 4b). BHMT, SLC4342 and
SLC3A1, were down in stage IV patients, while all
other enzymes were up (Fig. 4d). We observed an
overall accumulation of metabolites within this
pathway in the late-stage patients, indicating
methionine depletion is less severe in late-stage
patients (Fig. 4e). It was surprising that despite the
fact that BHMT is down in stage IV patients,
metabolite levels are unaffected; this hinted
towards a different role of BHMT in late-stage
tumours (Fig. 4d-e). Given BHMT is a proximal
tubule-specific protein and SLC3A1 is a kidney
amino acid transporter mainly found in proximal
tubule of the kidney, a loss of expression of BHMT
and SLC3A1 may promote a loss of cellular identity
in stage [V tumours, which in turn is detrimental for
the patient’s survival (Fig. 4f and Supplementary

Fig. 6f). Furthermore, it has been recently discussed
that enzymes involved in methionine metabolism
play a role in ccRCC patients’ survival®>. We also
found the methionine pathway to be affected when
comparing old with young patients. In old patients
all enzymes were consistently up, which is in line

with  the  increased  metabolite  levels
(Supplementary  Fig. 6d-e).  Methionine
upregulation could increase the methylation

potential and hence alter the DNA methylation
landscape within a tumour. Finally, the most altered
metabolic pathway from the differential metabolite
analysis when comparing old versus young patients
were dipeptides (Fig. 4g). Dipeptides are a nutrient
signalling mechanism that is required for chronic
myeloid leukaemia stem cell activity in vivo®* and
have recently been proposed as novel cancer
biomarkers®. However, given dipeptides are
produced from polypeptides by dipeptidyl
peptidase enzymes, which is a class containing
many enzymes, it is difficult to connect specific
enzymes, and thus layers of regulation, to this
observation.

Together these results showcased the
importance of taking patients’ information into
account when analysing and interpreting the data
and that VAE integration enables the comparison of
small patient groups whilst considering differences
across the methylation, mRNA and protein layers.

Genes distinguishing patient subpopulations
associate with distinct immune cell types and
define patient’s survival

Investigating regulatory changes across a
tissue only provides an overview of changes
occurring within the numerous cell types that make
up the tissue. However, given the challenges
associated with epigenetic profiling at the single-
cell level, it remains a cost-effective, and reliable
approach. Moreover, broad changes in regulatory
patterns may indicate a change in the composition
of cell types within a tissue. Given that immune
response plays a critical role in ¢ccRCC and is
associated with specific mutational patterns*, we
sought to assess whether perturbations across
regulatory layers between patient subpopulations
are associated with specific cell types. We used
scRNA-seq data from eight patients with advanced
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renal cell carcinoma from the multiregional study
of Krishna et al., which identified 31 cell types*’.
Again, we divided SiRCle clusters (MDE, TPDE,
TMDE, MDS, TPDS and TMDS) into up and down
subsets of genes based on the gene’s VAE
integrated difference between two patient groups,
and then tested if these genes are overrepresented in
a specific cell type.

Focusing on comparing stage IV versus
stage I, we found that the broad cell types identified
by Clark et al'¥, are recovered, namely, CDSA+
Proliferating and Exhausted (CDS8+ inflamed),
CD45- PAX8+ renal epithelium (CD8- Inflamed),
CD45- Vascular Endothelium (VEGFA) (Fig. 5a).
Moreover, it becomes clear that some SiRCle
clusters are associated with specific cell types (Fig.
5a).

We found genes up in stage [V patients and
regulated on the transcriptional layer (TPDE) that
are enriched in CD8A+ proliferating cells (Fig. 5a-
b and Supplementary Fig. 6a). This is in line with
previous studies, which observed an overall
increase in CD8+ T-cell in tumour-infiltrated
immune cells in ccRCC compared to normal renal
tissue®. Specifically, we saw enrichment of
TRIP13, which has previously been associated with
CD8+ T-cells” and genome instability®.
Reassuringly, we detected TRIPI3 as part of the
TPDE up cluster and CD8+ enriched cell type and
found that its expression is highly altered between
stage I and stage IV patients and implicated in
patient’s survival (Fig. 5c).

The CD45 PAXS8+ renal epithelium cell
type is specific for ccRCC™, hence we posited that
genes within this group would be changed as the
tumour progressed and lost its renal identity. Genes
in CD45 PAXS8+ renal epithelium were mainly
further repressed in stage IV patients on the
methylation and transcriptional layers (MDS down,
TPDS down); however, we also saw recovery of
expression in stage IV tumours on the
transcriptional layer (TPDS up) (Fig Sa-b and
Supplementary Fig. 6b-d). While extracellular
terms were also observed in the differential
analysis, these were only identified as top terms on
the mRNA layer; given we observed the genes in
TPDS, the changes are likely to translate to the
protein layer (Supplementary Fig. 4¢). Metabolic
enzyme BHMT is further repressed in late-stage
patients (TPDS) further confirming its importance
in the renal epithelium and that loss of expression
may be associated with loss of cellular identity
resulting in poor survival (Fig. 4f). Moreover,
several mitochondrial enzymes up in stage IV
patients (TPDS) are also associated with the renal
epithelium, supporting evidence of complex

metabolic rewiring in late stage renal tumours.
Indeed, we found both FH and SUCLGI are
associated with survival, indicating in late stage
tumours, there is some recovery of these important
enzymes (Fig. Sd-e).

Previous work has shown that the immune
response plays a critical role in ccRCC and that
germline mutations can affect ccRCC patients’
outcomes'?. In addition to VHL mutations, PBRM
and BAPI facilitate the development of ccRCC!'?,
however with differing outcomes where BAPI
mutations are associated with a poor prognosis
whilst PBRM1 mutations result in less aggressive
cancers*’. Thus, we wanted to test if the differences
in the regulatory profiles between PBRM1 versus
BAPI patients could explain the different patient
outcomes. Hence, we used our VAE integrative
comparison approach to identify genes with
regulatory perturbations between patients with a
PBRM1 mutation compared with patients with a
BAPI mutation. We found genes changing
significantly between the patients across all
regulatory layers, and term the comparison PBRM 1
versus BAPI (Supplementary Table 7).
Interestingly, we found similar cell types enriched
in TPDE up when comparing PBRM1 with BAPI
patients as in the TPDE down group from stage IV
vs stage | patients (Fig. Sa,f), fitting with the
association between BAPI having a generally
poorer outcome*?. TPDE and MDE down enrich
for Tumour Associated Macrophages (TAMs) cell
types, with the classically immunosuppressive cell
cluster (TAM HLAhi), showing higher expression
in BAPI (TPDE down) in both SiRCle clusters
(Fig. Sb, 5f). In line with Clark et. al.’s finding that
PBRM1 mutations associate with an angiogenesis
immune population'¥, we observed an enrichment
of genes up in PBRMI in CD45- Vascular
Endothelium, which is connected to genes up in the
SiRCle clusters MDE, TPDE, and TMDE (Fig. 5f
and Supplementary Fig. 6e). Indeed, the latter
included EPASI, also known as HIF2A4, and is an
established prognostic marker in renal cancer with
low expression correlating with poor prognosis®
(Fig. S5b, Supplementary Fig. 6e). Another known
gene important in angiogenesis, FLTI, is also
connected to the CD45- Vascular Endothelium and
higher in PRBMI mutations (Fig. 5b,
Supplementary Fig. 6f). FLT! is up in TPDE and
low expression of FLTI is associated with poor
prognosis (Fig. 5g). Interestingly, in our TF
analysis earlier, we identified that FLTI was
targeted by EPAS1, meaning that the increased
expression of EPAS1 could be regulating the
increased expression of FLTI; however, this would
need to be confirmed in ccRCC patients as in cell

12


https://doi.org/10.1101/2022.07.02.498058
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.02.498058; this version posted July 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

a Stage IV vs Stage | Odds ratio c TRIP13, TPDE (+), CD8A+ Proliferating
V—T%‘—ﬁ 5 10 Overall Suvival TRIP13 _ TRIP13
"CD45- PAX8+ renal epithelium = 1.0fr. HR1=64e-05] —= = 20 b
“CD8A+ Proliferating 'gO 8 p( a g En)_N 1S 15
*CD4+ Naive g L s
“CD8A+ Exhausted #0.61 h S =< 40
= CD45- Vascular Endothelium =0.4- - TRIP3| - S5
n - TAM ISGint 8 0.9 etz | £ £ 3 o5
[ | ~TAM ISGhi B -4 | o125, 5 2 5
-CD4+ Proliferating 0-0.0{logankpszer0s TRIPIY @ = 00
LA -CD45- Myofibroblast 0 50M 1(t)f(]) 150 = |St v
QR A onths age
SRR
WRRR Q;\@ QR
b Fraction of ceIIs- ° .,’ Mean Iog1p gene + high survival with gene *n<0.01
within group 2040 60 80100 expression 005 1 - low survival with gene
| Stage IV vs Stage | [ PBRM1 vs BAP1 |
TPDE () MDS (-) TPDS(-)  TPDS (#) TPDE (-) TPDE (+) TMDE (+) cglejlrlﬂ
Ambiguous— ° - o - - oo s oo et <t Ry e R
Ambiguous/Dead | . .- 61
BeellH -« - o - |- - . o - ° o O - . . . ° . . | 2.7k
CD4+Activated IEGH © - o - - |- - - ° o - o Co : e - = 8.0k
CD4+ Effectorq o - o - - f- - - ° ° s Co : ° - @ 3.3k
CD4+ Naive4_ -~ - = - |- - - ° o - L. P R I 10.1k
CD4+ Proliferating{ 0 @ @ © Of - - : Q-lte - > - -]~ =« : o - - F35
D4+ Treg_ o - o - -|- - B 1 P . . B B . . B . o - . - @42
CD8A+ Exhausted_ o - . . . . . . . . B . . . . . . . . . ° . . . [ 7.9
CD8A+ Exhausted IEG-{ © - @ - - Co : : . R IR e - @3
CD8A+ NK_llke_ o + o - . . - . - . . o ° . . . . . . B . ° . . - 10.1k
CD8A+ Proliferating{ © o @ = o~ - - : S ° R K — o - — 158k
CD8A+ Tissue-resident o - o - - R : N . DS IR : R : 10.7k
CD14+ Monocyte—{ = - = - C : | o - c @0 o0 |- o S =
CD14+/CD16+ Monocyte © - o - oo : S o - o @00 |- o s - [ 8.0k
CD45- Myofibroblast{_- - © - - : |- o - o - - - -]o - @ -|lo @O - 0 [3ik
CD45- PAX8+ renal epithelium—_=_- = - - 0o ol0 - 0 o Q|- =@ @ ° e O - O -Jo o o - - 7.6k
CD45- Vascular Endothelium— - - o - I 1 EE ~ o - . —  _|©@ 0o o @ @- @O - o [i6sk
CD45- ccRCC CA9+— 0 o O = —O o : ol — @ O [° ° 0o~ Rk
Conventional NK+ - -« - co . coo : N K = 7.2
MastH - - - ® o ° . 242
Megakaryocyte— . . - - . 17
NKHSP+- o - o - - . - . e - L I 5.3k
TAM HLANH = - @ - - - o0-lco00o0oeO - - |- = 1.2
TAM HLAInt =~ 0 — [+ 0000 - - | - —ETe3k
TAMISGhiq = - O - - - O - o Q0 0 olO0 o« ©QO|lo@O O |288
TAMISGint4 - - o - - e ©+ o o o oo o - o ofl: @ o o @27k
TAM/TCR (Ambiguos)+ © -« 8 - - 0 - o OO o0 o0 o o e . I 2.8k
cDC1H ° o o ° o - - QO - 0 -]o o 482
DC24 o - O - - . 0-|l o Q0O o ° I 6.0k
pDC- - o - o o (@) O o - - o ° 139
T kT %1 %1 %7 I+*I+*I+*I+*I+*l+*l+*l+*l+*l+kl+*l T I+*I T T %1 %1 T *I+*I+*l I+*I *l+*l+*l+*l+*l
@q@ @'Q“ @\ fi@@k Q:Q@B@ g@\“{b&@@o@\% :@:@q’ ‘LQ%LQQ Qg_a@ & @:\@b & @1@2 Q@\ Q@ @1’)
S
(Q/Q,Q. <</ ‘L‘& ()0'\‘ ‘o "\‘ Q‘@ %‘ } V:\‘?gi)o\ < QS’ G\‘ @ QQ‘ Q '\\’Aé \b‘ \}@%
d FH, TPDS (+) CD45- PAX8+ renal epithelium f PBRM1 vs BAP1 Odds ratio
Overall Survival @ [T =+, 0
5 - . - ) 10
‘_;’1'0 : p(HR)=0.00045 r_:\: 3 o s 00 _ -TAM HLAhi
£0.84" u>_| 2| ° w £ [ | -TAM/TCR (Ambiguos)
55al = S-05 -TAM HLAint
206] ™ Sl 5= -cDC2
50-4'n(high)=1zs' 5 Bo £ 5-10 -CD45- Vascular Endothelium
5 0.2-{low=i29 W) ® L2 -TAM ISGint
ao_o_f;'z‘?;ﬁk’;f&‘&m %_1 ) ((le 5-15 I -CD45- PAX8+ renal epithelium
0 50 100 180 = | v = | v -CD45- Myofibroblast
- St -TAM ISGhi
Months Stage age N \ \\ 13
\x%% X\ X%, Q \
SUCLG1, TPDS (+) CD45- PAX8+ renal epithelium AR Q/\Q
Overall Survival o g FLT OveraII Survival
— .0- >, =] **% = *kk — K — =
® VT% . P(HR)=2.1e-05 = < 0.0 1.0 p(AR)=1.76-05
208 . 2. £ 08] a,
w =S .
3064 <1 g0 2061
0.4 b - 0 c =10 041
Q n(high)=129 - Q S 3 @ V" | nhigh)=129 =
= (0.2 n(low=129 © -1 = 2415 o 0.2 {nllow=129
& | Hrnan-oss  sucler = o g7l & Y-4 | Hrinigh}=0.39 L
0.0 Logrank p=8.3e-06 _ . % o E o 0,0 {Loorenk 83205 _ FLTY
0 50 100 150 £ I v - v 0 40 80 120
Months Stage Stage Months

Fig. 5, Boxplots show the integrated VAE rank for each patient in a subpopulation, alongside the protein log2FC between
tumour versus normal (TvN) for that same group of patients. Survival plots were plotted using GEPIA2
(http://gepia2.cancer-pku.cn/). Differentially Expressed (DE) in the single cell clusters are genes that were significant (p
< 0.05) in a one versus rest comparison and had a log2FC > 1.0 for a given cell type.a, Significant enrichment (odds
ratio), using the Fischer's Exact test of SiRCle clusters subset into (+) for significant (p <0.05) changes with stage IV >
stage |, and (-) stage IV < stage I. b, Top 5 genes by expression in a specific cell type for SiRCle subsets along with
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summarised survival information from the Protein Atlas (https://www.proteinatlas.org/). Grey blocks highlight cell types

discussed in the results. Similarly, with bold gene names. ¢, Survival and boxplots for TRIP13, which is in the Transcription
and Processing Driven Enhancement (TPDE) (+) SiRCle cluster and CD8+ proliferating. d, Survival and boxplots for FH,
which is in the Transcription and Processing Driven Suppression (TPDS) (+) SiRCle cluster and DE in CD45- PAX8+
renal epithelium. e, Survival and boxplots for SUCLG1 which is in the TPDS (+) SiRCle cluster and DE in CD45- PAX8+
renal epithelium. f, Significant enrichment (odds ratio), using the Fischer's Exact test of SiRCle clusters subset into (+)
for significant (p <0.05) VAE integrated changes with PBRM1 > BAP1, and (-) PBRM1 < BAP1. g, Survival plot for FLT1

from PBRM1 vs BAP1 comparison.

lines we did not observe EPASI1 binding sites at
FLTI.

Our results suggest that while single-cell
multi-omic data is not readily available, or remains
too costly, we can retrospectively look for the
enrichment of genes with shared regulatory
behaviour in scRNA-seq data to predict the likely
cell types that will be affected in a given population
and the layer of dysregulation behind the gene’s
changes. This additional information provided by
the SiRCle analysis can thus inform future multi-
omic experimental decisions at the single cell level
to further understand disease pathology.

Discussion

Here we present SiRCle, a method for integrating
DNA methylation, RNA-seq and proteomics data to
extract support for what layer or layers (DNA
methylation, transcription and/or translation) genes
are regulated and/or perturbed between patient
subsets with different phenotypic traits (Fig. 6).
While SiRCle extends to any cancer, we applied it
to clear cell renal cell carcinoma (ccRCC) patients.
ccRCC is a particularly heterogeneous cancer with
cascades of mutations and complex remodelling of
the tumour microenvironment that affect several
regulatory networks®, hence we expect many
regulatory relationships to hinge on joint
consideration of multiple data modalities.

Across a cohort of ccRCC patients, we
show modest correlation between data at different
layers as well as limited agreement among
biological terms extracted from each layer in
isolation. This observation underscores the
challenges of analyses applied to individual omics
since some of the gene changes observed at the
epigenetic or transcriptional layer may not be
translated into protein changes. We thus grouped
genes based on regulatory “flows” based on
differences (between control and disease) at each
layer; we found the majority of genes exhibit states
counter to the generalisation that increased DNA
methylation at the gene represses transcription,
which in turn decreases translation of the gene
product within the condition, or (conversely) that
reduced methylation at the gene activates
transcription, which in turn increases translation of
its product. While the extent of dissonance
highlights the importance of considering multiple

layers of regulation, we found that by grouping
them by cross-layer “flows” instead elicited distinct
biological terms, e.g. metabolism and immune
response, subsuming the function extracted from
each layer in isolation. The advantage of SiRCle
clustering is that by considering all possibilities of
regulation, we can pinpoint the likely layer at which
genes are dysregulated in disease.

In addition to consolidating biological
function across the layers, SiRCle clustering
captured relationships from adjunct data, such as
TF relationships and metabolic changes. We found
TF’s targets fell predominantly in clusters regulated
on the layer of transcription or methylation and
were able to distinguish HIF TF targets that
increased via transcription, from those that
increased via hypomethylation. The advantage of
performing the regulatory clustering prior to the TF
analysis is that we can exclude TFs that are
predicted to drive genes in clusters regulated at the
layer of translation (e.g. TMDE, TMDS), given TFs
work at the layer of transcription.

Coupling SiRCle annotations  with
metabolic activity, we were able to establish a more
detailed view of how changes in regulation
correspond to changes in metabolic pathways. We
found that glycolysis was regulated on the
methylation layer (MDE), whilst the TCA cycle and
oxidative  phosphorylation = were regulated
translationally (TMDS). We noticed that glycolytic
enzymes are upregulated in the context of ccRCC,
suggesting hypomethylation increases DNA
accessibility*®, potentially improving the capacity
for HIFIA to bind and upregulate glycolytic
enzyme transcription and eventual translation.
Hakimi et. al. showed that metabolites of the
glycolysis pathway split at the level of GAPDH,
whereby metabolites upstream of this enzyme are
accumulated, and the ones downstream are
depleted’. We found that this is not in line with the
enzyme expression, yet this counterintuitive finding
could be explained by the fact that the catalytic
function of many enzymes is altered by post-
translational modifications such as phosphorylation
(e.g. PGKI1®" and PKM®) or oxidation (e.g.
GAPDH®). In fact, it has been shown for the
CPTAC patient cohort that PGKI and PKM have
increased phosphorylation when comparing tumour
versus normal'*. Moreover, glycolytic flux towards

14


https://www.proteinatlas.org/
https://doi.org/10.1101/2022.07.02.498058
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.02.498058; this version posted July 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Figure 6
| Pre-processing | | SiRCle
Datasets (1)DE/DA/DCpG  (2)Alignto genes  (3) SiRCle clustering
Patient samples T and N samples W TN Cluster genes using logical Biological
- _ Log,FC p.adi rules based on central dogma  cluster  enrichment  TF analysis
S =) . L N | OO HIF{A~_
;‘; — g !’. o 2 > 20— <O P
5 | ‘w* 5 3 o Target
! i enes
Beta diff RNA Protein Group SiRCle cluster n O g
< U, : —  @swRoestaisties f **********
2 s 5' : @ SiRCle statistics Gene Integrated
> 5| 62,80 )

E 2 “ Patient samples * Learn joint omics dataset level stats GSEA

_ Log2FC (RNA) 2 B e [_Paﬁems = IF(TM3 = s
= =3 Ol = <
S E_ : § — + > —)§ > -> % %,T > 5 §> 8
S T Tt ~ g3 5l = %
e g ﬂo | = g EL <

Patient stage Integrated diff

" Log2FC (Protein)

Fig. 6, Overview of SiRCle (Signature Regulatory Clustering).

lactate in ccRCC is inhibited by FBP1%, yet FBP1
is not mutated in this patient cohort.

Until this point, we investigated changes
across the whole ccRCC cohort, however, there are
distinct subpopulations of patients, with differing
prognoses, for example, those with stage I or stage
IV tumours. We sought to investigate the regulatory
differences between patient subpopulations,
however, when we analysed each layer
independently there was limited overlap between
the mRNA and protein layers. Thus, to find
regulatory differences between patient
subpopulations (e.g. age, stage, mutation), we
developed a novel integration approach using a
VAE to learn a single key feature from the DNA
methylation, RNA, and protein layers for each
SiRCle cluster. By integrating across the layers
prior to performing statistical analyses we found
significant differences in genes important for
survival when comparing early and late stage
patients and showed that the VAE results in
biologically = meaningful integrated values.
Moreover, we showed that our integrative approach
can be used to perform GSEA between patients’
groups.

SiRCle allowed us to identify key
differences between patients’ subpopulations in
terms of metabolic rewiring and the different cell
types. Interestingly, oxidative phosphorylation was
less suppressed in late stage and older patients,
despite old patients being distributed across
multiple cancer stages. We also observed that
within the TCA cycle intermediates, citrate and
aconitate were depleted in late-stage tumours,
despite the increased expression of the enzymes
involved in their biosynthesis. Whether this result
indicates a further functional regulation of the TCA
at the post-translational layer, as for instance PDH

phosphorylation, which in turn controls citrate
biosynthesis, needs to be further investigated. In
addition, we observed an increase in succinate in
late-stage patients and this finding could indicate
that these tumours may be more hypoxic,
considering the role of succinate as marker of low
oxygen in tissue®. The increase in succinate could
also be due to the need to generate NADH, where
the TCA cycle fuels into succinate and the heme
biosynthesis pathway as previously described®. In
line with this, HMOXI1 is upregulated, likely via
hypomethylation, and the metabolites heme and
bilirubin are also accumulated (Fig. 3a). As
discussed by Hakimi et al, the TCA cycle could be
fuelled via glutamate which fuels into citrate via
reductive carboxylation’. Lastly, in line with the
enzyme expression, serine levels are depleted
(Fig. 3a). While similarities in metabolic profiles
between the old and late-stage patients were
identified, we also found differences in methionine
metabolism. Indeed, we found that BHMT and
SLC3A1 are further repressed in late-stage patients
yet show increased expression in old patients.
Importantly, high expression of these genes is
crucial for patient survival. We also found BHMT
was specifically expressed in CD45- PAX8+ renal
epithelium cells pointing to a complex interplay
between metabolic rewiring and cellular identity
that indicates BHMT could be used as marker of
cellular differentiation.

Checking the occurrence of specific
mutations, which can have an impact of patient
outcome'?, we uncover that genes highly expressed
in patients with BAP1 mutations are selectively
expressed in tumour-associated macrophages, and
indeed are negatively associated with patient
survival. Interestingly, we found that the TF
EPASI, also known as HIF2A, could regulate the
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expression of genes enhanced in PBRM1-mutated
tumours. However, further studies are needed to
investigate the link between BAPl1 and
EPASI1/HIF2A. Given the expense and technical
challenges with single cell multi-omics data, we
expect the capability to retrospectively examine
SiRCle cluster activity in scRNA-seq data to be of
value for understanding gene dysregulation in the
context of heterogenous cancers.

While we have focussed on ccRCC, with
the increasing efforts to measure the proteome of
cancer cohorts and other diseases the SiRCle
method will be broadly applicable to investigating
other datasets. Using SiRCle researchers can extend
known relationships, find regulators and drivers of
gene clusters, and extract genes that differ between
patient cohorts in many different cancer types.

Methods

RNA-seq. Downloaded the data from TCGA hg38
gene expression and clinical patient data from the
CPTAC kidney study. Six samples were removed
due to low correlation (p < 0.75) were removed
(Supplementary Table 1)

Clinical. Mutation data were downloaded for the
patients from the RNA-seq dataset using TCGA’s
GDC client (https://gdc.cancer.gov/access-
data/gdc-data-transfer-tool, version 1.6.1) and
scidat (https://github.com/ArianeMora/scidat,v
version 1.0.3). The mutation data were merged with
the clinical information from CPTAC patients
along with the CIMP-status Chr-stability supp-
download file also from the CPTAC study. Patient
age was grouped into three categories (<42 =
young, 42 = middle, and >58 = old), based on
information pertaining to pre-post menopause,
instance rate and age of onset from sporadic as
compared with inherited mutations®>=3767,

Proteomics. Data were downloaded from the
CPTAC data portal on 14" of April 2021
(https://pdc.cancer.gov/study-summary/S050).

11,355 proteins were measured for 201 samples.
Missing protein data were imputed using DreamAl
ensemble method®® (https://github.com/WangLab-
MSSM/DreamAl)  Samples exhibited a high
correlation (~96%) post imputation, with tumour
and normal samples clustering distinctly, and as
such no protein samples were removed. The
supplied protein names were mapped to hgnc
symbols using biomart mappings (scibiomart,
1.0.2, https://github.com/ArianeMora/scibiomart),
and for those without direct mappings (211 protein
names) were mapped using the external synonym.

Afterwards, 11 protein names remained unmapped,
namely APOBEC3A B, ELOA3D, FLJ44635,
GAGE2D, GPR75-ASB3, KIAA0754, KIAA1107,
LOC110384692, PALM2, WRB-SH3BGR and
ZNF664-RFLNA.

DNA Methylation. Tumour DNA methylation files
were downloaded from the CPTAC portal, under
metadata (https://cptac-data-
portal.georgetown.edu/study-summary/S050),
methylation samples annotated as not ccRCC by the
CPTAC authors were omitted from our analyses
(C3L_00011, C3L_00010, C3L 00097,
C3L_00096, C3L_00004, C3L _00079), leaving
104 c¢cRCC tumour methylation samples. These
were merged by reading in each file before merging
on CpG ids and retaining the Beta values for each
CpG. Correlation between samples was computed
with three tumour samples identified as outliers
with low correlation p < 0.75 namely C3L-
01882, C3L-01885, and C3L-01281, which were
removed. Using the provided GencodeV12
annotation (Hg37) unannotated Loci were removed
leaving 586,055 Loci. To ensure compatibility with
the Protein and RNA-seq data that use Hg38 gene
identifiers, we mapped the transcript IDs (Hg37)
obtained from the DNA methylation data to
ensembl gene IDs shared in both versions (Hg37 &
Hg38). For transcripts without a direct mapping, we
sought to map on the “external gene name”,
“hgnc_symbol”, and “external_synonym” from the
column “GencodeCompV 12 Name” to identify the
Hg38 ensembl ID. Only 38,352 CpGs remained
unassigned, corresponding to 7,910 unique genes
“GencodeBasicV12_ Name”, which were removed.
The remaining 547,703 CpGs were used for
subsequent analyses and annotated to 27037 unique
Hg38 ensembl IDs. Normal DNA methylation data
were downloaded from the TCGA data portal, by
selecting TCGA-KIRC patients, and solid tissue
normal m450 DNA methylation beta values (level
3 files), the subsequent manifest file and clinical
data were provided as input to scidat. Using scidat
the CpG beta value files and patient mutation data
were downloaded. TCGA CpG data were merged
on the CpG identifier (composite element
reference) with the gene annotated CPTAC DNA
methylation data, giving 268,355 CpGs across the
two datasets with 151 normal samples from TCGA
and 100 tumour samples from CPTAC.

Dataset generation. Dataset summaries: RNA-seq
(66 normal and 173 tumour samples), Protein data
(81 normal & 103 tumour samples), and CpG
samples (151 normal & 100 tumour samples). PCA
of samples in each dataset shows a clear distinction
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between normal and tumour  samples
(Supplementary Fig. 1b).
Differential analysis. Differential expression

analysis on RNA-seq data was performed using
DEseq2® (version 1.32.0), using condition ID
(tumour) as the factor. Genes were excluded if there
were less than 10 samples with at least 10 counts in
a gene resulting in 25,655 genes for DE analysis.
Differential abundance analysis on proteomics data
was performed using limma’ (version 3.48.3).
Only the condition (i.e. Tumour or Normal) was
used in the design matrix. Imfit with eBayes was
used and the p values were corrected using the FDR
method. For the methylation data (268,355), CpGs
with low (mean CpG value < 0.05) or high mean
methylation (> 0.95) were removed prior to
performing the differential test, resulting in
195,195, and 187,770 CpGs. CpG M values,

_ beta -
M= lng 1-beta
ImFit eBayes and p values were adjusted using the
FDR method.

!, were used as input to limma’s

SiRCle (Signature Regulatory Clustering).
SiRCle requires a single DNA methylation value to
be assigned to a gene. After performing the CpG
analysis using limma, CpGs were filtered in order
to map only one CpG to a given gene. This was
done by grouping the CpG data by annotated genes.
In detail, if there were less than three significant
(p < 0.05) CpGs, then the CpG with the greatest
absolute change was selected. If there were more

than 3 CpGs (with p < 0.05), we tested if the
majority (> 60%) of CpGs agreed in the “direction
of change” (positive or negative) and if not all CpGs
were omitted. Otherwise, the CpG with the highest
methylation difference was chosen.

Next, we performed the SiRCle clustering
on the filtered CpG data, DE results from DEseq2
(RNA-seq Data) and the output from limma’s
abundance analysis (Proteomics Data). The datasets
were merged using the background method:
(P&M)|(P&R)|(M&R) meaning a gene was retained
if it was changed significantly (p < 0.05) in at
least two of the three input datasets (RNA-seq,
Proteomics, DNA methylation). Next, regulatory
clusters were assigned using the cut-offs of adjusted
p values < 0.05, and mRNA |log,FC| > 1.0,
protein |log,FC| > 0.5 and |DNA methylation
beta difference| > 0.1. The regulatory labels from
grouping method 2 were chosen (Table 1,
Supplementary Table 2). ORA was performed on
each of the clusters using the background as defined
by the background method (meaning all genes with
p <0.05 in at least two datasets). One point to note
is that the state unchanged includes unmeasured;
for example, a protein may be changed, but not
detected, owing to technical limitations. Similarly,
as we are using DNA methylation array data, a
gene’s initial point of dysregulation may be at the
methylation layer, yet not probed. Given the choice
of filtering is specific to the biological question and
technical setup, our package enables users to pre-
filter and remove undetected genes at each layer.

Table 1: Regulatory labels from the different grouping methods.

Methylation RNA-seq Proteomics Regulation Regulation Regulation
Groupingl Grouping2 Grouping3
Hypermethylation DOWN DOWN MDS MDS MDS
Hypermethylation uP DOWN TPDE+TMDS TPDE+TMDS TMDS
Hypermethylation UpP UP TPDE TPDE TPDE
Hypermethylation DOWN UP MDS+TMDE TMDE TMDE
Hypermethylation No Change UP TPDE+TMDE TMDE TMDE
Hypermethylation No Change DOWN TPDE+TMDS TMDS TMDS
Hypermethylation UpP No Change TPDE+TMDS TPDE+TMDS TMDS
Hypermethylation DOWN No Change MDS+TMDE MDS+TMDE TMDE
Hypermethylation No Change No Change MDS-ncRNA MDS ncRNA MDS ncRNA
Hypomethylation DOWN DOWN TPDS TPDS TPDS
Hypomethylation UpP DOWN MDE+TMDS TMDS TMDS
Hypomethylation UpP UP MDE MDE MDE
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Hypomethylation DOWN uUP TPDS+TMDE TPDS+TMDE TMDE
Hypomethylation No Change UP TPDS+TMDE TMDE TMDE
Hypomethylation No Change DOWN TPDS+TMDS TMDS TMDS
Hypomethylation UpP No Change MDE+TMDS MDE+TMDS TMDS
Hypomethylation DOWN No Change TPDS+TMDE TPDS+TMDE TMDE
Hypomethylation No Change No Change MDS+ncRNA MDE_ncRNA MDE_ncRNA
No Change DOWN uUP TPDS+TMDE TPDS+TMDE TMDE

No Change uUP DOWN TPDE+TMDS TPDE+TMDS TMDS

No Change DOWN DOWN TPDS TPDS TPDS

No Change uUP UP TPDE TPDE TPDE

No Change No Change UP TMDE TMDE TMDE

No Change No Change DOWN TMDS TMDS TMDS

No Change UpP No Change TPDE+TMDS TPDE+TMDS TMDS

No Change DOWN No Change TPDS+TMDE TPDS+TMDE TMDE

No Change No Change No Change No Change No Change No Change

TF in each regulatory cluster. TFs were identified
in each regulatory cluster using the TF database
from DoRothEA* (level A relationships).
Relationships were retained only where the TF and
the target had a significant (p < 0.05) change on the
protein (TF) and mRNA (target) level, and the
direction of change agreed with the direction of
mode of regulation (MOR). For example, if the TF
acts to enhance the gene target, the protein level of
the TF should be positive and in turn the RNA level
should also be positive. sciMoTF (version 0.1.1,
https://github.com/ArianeMora/scimotf) was used
to identify and visualise TFs that were enriched in
clusters. Fisher's Exact Test (FET) with Benjamini
Hochberg (BH) correction was used, whilst the
background consisted of all identified TFs in other
regulatory clusters.

ChIP HIF1A validation. ChIP-seq peaks from
HIF1A (GSM3417826, GSM3417827,
GSM2723878) and EPASI (GSM3417828,
GSM3417829, GSE120887) were downloaded
using ChipAtlas’ with a threshold of 50 (i.e. for
peaks to be present they must have a Q value < 1E-
05). These peaks were used to check whether
HIF1A peaks did indeed occur at the TSS of the
TPDE genes in patient derived renal cell carcinoma
cell lines. IGV jupyter’ was used to view the peaks.

Variational autoencoders to compress patient’s
genes’ features. A variational autoencoder (VAE)
is a generative machine learning method that can be

used to learn to create a latent (i.e. compressed)
representation of data. We choose a uniform
gaussian as the prior distribution for the latent
variables. The conditional distribution of the latent
variables given the input data is given by the
encoding qg(z|x), and the conditional distribution
of the data given the latent variables is represented
by the decoding function pg(x|z).Where the
parameters, 8, and ¢, include the weights and
biases of the neural network that are learnt during
training, via optimising with respect to an objective
function. The objective function is used to 1) ensure
the latent distribution approximates a standard
gaussian by minimising the distance via mean
maximum Dy p, 2) ensure the decoded data point
is as close to the input as possible via mean squared
error (MSE) i.e. we have a good generative model.

Dump(qellpe) =
Epy (204 [k(z,2")] - 2Eqo(2)pg(2n) [k(z,z")] +
Eqq()00(2) [k (2 2)]™

Above, the distance between the learnt distribution
and the expected distribution is computed via the
distance between distributions gg and pg using a
kernel function, £. In our implementation we use a
gaussian kernel, following the implementation from
Zhao et. al™.

n
1 \2
MSE = HZ(xip - X)
1
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MSE is used to calculate the mean difference
between the input data point, x;;, and the decoded
value, x;,,". Where x;,is a set of features belonging
to one patient, p, and one gene, i. Features selected
as input were: protein levels, mRNA levels, protein,
mRNA and methylation tumour versus normal
difference, equating to a vector of seven features.
Given the differing ranges of each feature, the data
are scaled w.r.t gene i for a given data type prior to
calculating the difference between tumour and
normal. For example, we normalise y;,, as follows:
y is the value for e.g. mRNA, i is the gene index,
and p is the patient index, where min and max are
calculated across all patients for gene i, omitting
any missing data.

Yip = Yimin

Yip normalised Yirax — Vimin
Prior to selecting the training set, genes with any
feature with a z-score greater than two are
considered outliers and omitted from the training
set, however, are still input into the trained model.
Our formulation lends to using the integrated value,
Zip, as input to statistical functions such as Mann
Whitney U, or a t-test. As an example, we show the
formulation of the t-statistic on using integrated
values, z;;,, as defined in the results section. The test
statistic for the difference between two patient
groups, S and G, is thus defined as follows:

ti =
2 2
Sis | Sig
Ns| - Nyg|

Significance is determined via two-sided null
hypothesis, namely, that there is no difference
between the means of the encoded values for
patients belonging to group S and group G. In the
non-parametric case, we use Mann Whitney U,
where the null hypothesis that there is an equal
chance that a patient from S, is greater than a patient
from G and vice versa, as calculated by ranking
each patient via their encoding.

Creating the integrated dataset for the ccRCC
case study. To identify genes that changed
significantly across the three data types between
patient groups we developed an integration package
using a VAE (formalised above) to first integrate
the data, reducing the features across patients to a
single data point then perform statistics across two
groups of patients. For the CPTAC dataset missing
normal data were substituted with the mean normal
value from patients with matching clinical
information (stage and age group). Since

methylation values weren’t matched, we use only
the tumour methylation difference minus the
average normal methylation from the TCGA
patients. Only patients with matching protein and
RNA normal and tumour data were used for
training (59 cases). Data (genes by patients) from
each SiRCle cluster were used to train a VAE (train-
test split = 75:25), with 1 internal layer (5 nodes),
and a single latent node, using a maximum mean
discrepancy parameter of 0.25, mean squared error
loss, rectified linear unit activation functions, Adam
optimiser, batch size of 16, maximum epochs of
100 with early stopping after three epochs of no
improvement in loss. These configurations were
constant for all VAEs, and we end up with 10
trained VAEs corresponding to the 10 SiRCle
clusters.

Statistics on the integrated dataset. To determine
genes that changed significantly between the
groups of patients across the levels of information,
we tested each gene using Wilcoxon rank sum test
(given MDS TMDE, TPDS TMDE, MDE,
MDE TMDS, TMDS, TPDE TMDS were not
normally distributed) on three comparisons: 1) old
(56) vs young (7), and 3) BAP1 (13) mutations vs
PBRMI1 (33) mutations, Stage 4 (10) vs Stage 1
(45) (Supplementary Table 1, Supplementary
Fig. 1a). P-values were corrected using BH FDR on
all genes within each cluster.

Before returning the values to the user the
direction of the VAE integrated value with that of
protein Log2FC, or RNA Log2FC (Supplementary
Fig. Sa). To quantify the integrated change, termed
“Integrated difference”, we computed the
“distance” condition 1 (e.g. late stage) patients’
mean VAE value from condition 0 (e.g. early stage)
mean VAE value (subtracting the value from
condition O from condition 1 in an absolute sense).
Note this is defined earlier.

We used a fGSEA
(https://github.com/ctlab/fgsea) test to identify
coordinated changes in metabolic signatures®, we
use the integrated difference as the statistic
provided to f{GSEA and use 10,000 permutations.

Single cell analysis. Gene counts, and cell
annotations, and UMAP coordinates, were
downloaded from Krishna et al.¥. The single cell
data were used to quantify the “co-expression” and
“cell-types” of the genes changing between Stage
IV and Stage I patients and BAP1 vs PBRMI1
patient groups. We divide genes into the “positive”
and “negative” groups by selecting genes
significant (p < 0.05) and either a positive change
(> 0) between the two populations or negative (<0).
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We then test which of these genes are differentially
expressed between the 31 cell types using the
“scanpy.tl.rank gene groups” (as annotated by
Krishna et al.*’), one vs rest test, method=t-test.
Using the returned p.adj and log, FC for each gene,
we determined the genes associated with each cell
type by selecting genes with a p.adj < 0.05 and a
log,FC > 0.5 for that cell type. Finally, using the
SiRCle integrated difference gene sets and the cell
type gene groups, we tested for enrichment in each
cell type for SiRCle Stage IV-Stage I and PBRM1-
BAPI set using a Fisher's exact test, correcting p-
values using BH FDR correction. The top 5 genes
are presented in Fig. 5a as per odds ratio value. For
heatmap and scatterplot visualisations genes are z-
score normalised. Finally, using the Protein Atlas
(https://www.proteinatlas.org/) we check the
prognostic status of each of the genes and plot these
using GEPIA2 (http://gepia2.cancer-pku.cn/) using
the default quantile cut-offs (0.25, 0.75).

Metabolomics profile comparing early and late
stage. Median normalised metabolomic profiling
data of 138 matched clear cell renal cell carcinoma
(ccRCC) and normal tissue pairs was downloaded
from the supplementary table 2 of Hakimi et al.”.
Tumour samples were normalised to their matching
normal tissue sample based on the matching index
by calculating the fold change. Next, we performed
differential metabolite analysis (DMA) comparing
late stage (Stage 3 and 4) versus early stage (stage
1 and 2) and old (Age at surgery >58) versus young
(Age at surgery <42) patients. Mann-Whitney U
test (wilcox.test in R) was used to calculate the p-
value and corrected wusing BH. Unnamed
metabolites were removed, and metabolic pathways
assigned using published pathway information’.

Data availability. Data generated as part of this
study are available as supplementary tables or via
the Github,
https://github.com/ArianeMora/SiRCle_multiomic
s_integration, where information to download all
raw data from the respective studies is available. If
there are any additional information required for
reanalysis of the data reported in this paper contact
(christina.schmidt] @outlook.de and
ariane.mora@gmail.com).

Code availability. The SiRCle method described in
this manuscript is available as a Python package on
GitHub  (https://github.com/ArianeMora/scircm),
along with source code
(https://github.com/ArianeMora/SiRCle multiomi

cs_integration). Installation instructions and
documentation are available at

https://arianemora.github.io/SiRCle_multiomics_i
ntegration/. If there are any additional information
required for reanalysis or code adaptations, please
post an issue on the GitHub.
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Supplementary Fig. 1, a, Case annotations based on mutation, tumour stage and patients age. b, Principal
Component Analysis (PCA) shows the largest source of variation in all datasets across patient samples is the
Sample Type while patient annotations don’t account for the top two principal components. Note where an annotation
is defined on the tumour level, for example stage or mutation, that annotation is also used to colour the normal
sample from the same patient. ¢, The top 10 gene ontology terms from over representation analysis for each data
layer are visualised. Where two dots appear on the same line, it means they were both top terms for that data layer.
This only occurs for the up regulated terms, i.e. the terms that were associated with an increase on the protein or
mRNA layers. Data layer refers to the data layer on which the differential analysis was run, and TvN cut-off denotes
the cut-off used when selecting genes for ORA. d, as in c, except with the bottom terms.
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Supplementary Fig. 2, a,c-d Transcription factor (TF) network of TFs from manually curated repositories
(DoRothEA) that may drive genes in the cluster Methylation Driven Enhancement (MDE) (a), MDE+ Translation and
post-translational Modification Driven Suppression (TMDS) (c¢) and Transcription and Processing Driven
Suppression (TPDS) (d) . The dot size corresponds to the number of genes of the cluster that are targeted by the
TF. The colour of the dot shows the p-adjusted value (p.adj). The connecting lines (grey) shows the number of
common genes the connected TFs regulates. b, Wordcloud including the TF targets with shared TF binding in the
MDE cluster, with the size corresponding to how many different TF’s are predicted to regulate the genes expression.
e, HIF1A binding for genes in RCC cell in the MDE cluster. f, HIF1A and EPAS1/HIF2A binding for genes in the
TPDE cluster.
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Supplementary Fig. 3, Volcano plots are based on the metabolic signatures and the number of proteins detected
of the pathway are reported. Proteins that are unique for the metabolic pathways are displayed in circles and proteins
that are part of multiple metabolic pathways are displayed in diamond. The colour code depends on the SiRCle
cluster the protein is part of and is summarised in the pie chart. The protein Log2FC is calculated between tumour
versus normal. a, Volcano plot of glycolysis and gluconeogenesis. b, Transcription factor (TF) factor network of TFs
from manually curated repositories (DoRothEA*) that drive glycolytic enzymes in the cluster Methylation Driven
Enhancement, MDE and Transcription and Processing Driven Enhancement, TPDE. ¢, HIF1A ChlIP-seq peaks
binding sites at glycolytic enzyme TSS’s. d, Volcano plot of the citric acid cycle. e, Volcano plot of methionine
metabolism. f, Volcano plot of glycine, serine and threonine metabolism.
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Supplementary Fig. 4, a, Top 10 gene ontology (GO) terms from over representation analysis (ORA) for each data
layer are visualised for stage | tumour vs normal and stage IV tumour versus normal (TvN) on the same plot. Where
two dots appear on the same line, it means they were both top terms for that data layer or in both stage | and stage
IV TvN comparisons. Data layer refers to the data layer on which the differential analysis was run and the state, for
example increased or decreased in tumour (Up and Down respectively), and TvN cut-off denotes the TvN cut-off
used when selecting genes for ORA. b, Top 10 GO terms from ORA for each data layer are visualised for stage IV
tumour vs stage | tumour. ¢, overlap between all significantly enriched GO terms and metabolic pathways using
gene set enrichment analysis (GSEA) with the test statistic from the differential analysis for a given layer used as
input. An overlap indicates that a pathway or term was significantly changed in both data layers. “Up regulated”
refers to a positive enrichment score whilst “Down regulated” refers to a negative enrichment score for protein and
mRNA layers, whilst the opposite for the DNA methylation layer.
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Supplementary Fig. 5, a, Overview of SiRCle integration using a variational autoencoder (VAE) and statistics on
the VAE dimension. b, Dispersion between biological features and the integrated difference in the Methylation Driven
Enhancement (MDE) SiRCle cluster. The integrated difference is the difference between patients of two groups,
similarly, the integrated p.adj is the adjusted p-value from the integrated difference between two patient groups (e.g.

stage IV vs stage |). Each point represents a gene, and the difference is the mean difference between the groups.
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Supplementary Fig. 6, Metabolic signatures based on gene expression are defined by Gaude et. al*® with p.adj
values corresponding to the GSEA results after ranking the genes in each SiRCle cluster using the VAE integrated
rank. Metabolite pathways based on metabolites are defined by Hakimi et. al”. a, Comparison of the VAE integrated
rank of old with young patients for oxidative phosphorylation genes that are part of the Translation and post-
transcriptional Modification Driven Suppression (TMDS) SiRCle cluster. b, Comparison of the VAE integrated rank
of old with young patients for TCA cycle genes colour coded for the SiRCle clusters they are part of. ¢, Comparison
of the log2FC tumour versus normal (TvN) of old with young patients for TCA cycle metabolites. d, Comparison of
the VAE integrated rank of old with young for genes corresponding to the methionine metabolism pathway; colour
coded for the SiRCle clusters they are part of. e, Comparison of the log2FC TvN of old with young patients for
“cysteine, methionine SAM, taurine metabolism” metabolites. f, SLC3A7 survival curve based on
(http://gepia2.cancer-pku.cn/) using quantile default cut offs of 25%, 0.75%. Integrated difference and protein log2FC
difference are comparing stage | with stage IV patients.
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Supplementary Fig. 7, UMAP plots use the UMAP cell coordinates and cell annotations from Krishna et. a7 .While
the gene expression is the mean gene expression for the genes identified as enriched in any cell type and the given
SiRCle cluster subset into (+) for significant (p <0.05) changes with stage IV > stage |, PBRM1 > BAP1, and (-) stage
IV < stage |, PBRM1 < BAP1. Boxplots show the integrated VAE value for each patient with either a BAP1 or PBRM1
mutation, alongside the protein and RNA Log2FC, and methylation beta difference between tumour and normal for
that same group of patients. Boxplot titles include the SiRCle cluster and the cell type(s) it is enriched in. Survival
plots were plotted using GEPIA2 (http://gepia2.cancer-pku.cn/) using quantile default cut-offs of 25%, 0.75%.

a, UMAP plots for TPDE (+). b, UMAP plots for stage IV vs stage |, Methylation Driven Suppression, MDS (-),
Transcription and Processing Driven Suppression, TPDS (-) and TPDS (+), enriched in CD45- PAX8+ renal
epithelium. ¢, UMAP plots for PBRM1 vs BAP1 Transcription and Processing Driven Enhancement, TPDE (-). d,
UMAP plots for PBRM1 vs BAP1 Translation and post-transcriptional Modification Driven Enhancement, TMDE (+).
e, Survival EPAS1/HIF2A. f, EPAS1/HIF2A VAE integrated difference alongside tumour vs normal summaries for
patients with either BAP1 or PBRM1 mutations. g, FLT1 VAE integrated difference alongside tumour vs normal
summaries for patients with either BAP1 or PBRM1 mutations.
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Supplementary Tables

Table 1: Clinical information of patients from each study

Sheet 1:
Sheet 2:

Summary of CPTAC and TCGA patients and their demographics
Sample IDs removed based on QC

Table 2: DE results for each dataset

Sheet 1:
Sheet 2:
Sheet 3:
Sheet 4:
Sheet 5:
Sheet 6:
Sheet 7:
Sheet 8:
Sheet 9:

Protein DA for TVvN

RNA DE for TvN

DNA methylation DCpG for TvN

Protein enrichment (ORA for UP genes)
Protein enrichment (ORA for DOWN genes)
RNA enrichment (ORA for UP genes)

RNA enrichment (ORA for DOWN genes)
CpG enrichment (ORA for UP genes)

CpG enrichment (ORA for DOWN genes)

Table 3: Results from the SiRCle clusters

Sheet 1:

RCM output, which includes the mRNA, protein, & DNA methylation Log2FC’s along

with the cluster assigned.

Sheet 2:

ORA outputs for each cluster

Table 4: TF analysis output

Sheet 1:

Transcription factor output table

Table 5: Metabolomics data for tumour vs normal

Sheet 1:
Sheet 2:
Sheet 3:
Sheet 1:
Sheet 2:

clinical information for metabolomics patients
TvN differential expression results

GSEA on protein TvN for metabolic pathways
comparison of Stage IV vs Stage |
comparison of young vs old

Table 6: ORA and GSEA on Stage I and Stage IV samples

Sheet 1:
Sheet 2:
Sheet 3:
Sheet 4:
Sheet 5:
Sheet 6:
Sheet 7:
Sheet 8:
Sheet 9:

Protein DA for Stage I TVvN

RNA DE for Stage I TvN

DCpG for Stage I TvN

DE analysis for Stage IV TvN

DA analysis for Stage IV TvN

DCpG analysis for Stage IV TvN

DE analysis for Stage IV Tumour v Stage I Tumour
DA analysis for Stage IV Tumour v Stage I Tumour
DCpG analysis for Stage IV Tumour v Stage I Tumour

Sheet 10: ORA UP for TvN Stage I and Stage [V

Sheet 11: ORA DOWN for TvN Stage I and Stage [V

Sheet 12: ORA UP for Stage IV v Stage [ tumour

Sheet 13: ORA DOWN for Stage IV v Stage I tumour

Sheet 14: GSEA on metabolic pathways Stage IV v Stage I tumour Positive NES
Sheet 15: GSEA on metabolic pathways Stage IV v Stage I tumour Negative NES

Table 7: Integrated dataset for patients

Sheet 1:
Sheet 2:
Sheet 3:
Sheet 4:

genes X patients with integrated value
comparison of Stage IV vs Stage |
comparison of young vs old
comparison of BAP1 vs PBRM1
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Table 8: GSEA results for comparisons
— Sheet 1: GSEA on metabolic pathways Stage IV vs Stage 1
— Sheet 2: GSEA on metabolic pathways of young vs old
— Sheet 3: GSEA on metabolic pathways of BAP1 vs PBRM1

Table 9: Single cell output of enriched groups
— Sheet 1: comparison of Stage IV vs Stage 1
— Sheet 2: comparison of BAP1 vs PBRM1
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