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Abstract 

Clear cell renal cell carcinoma (ccRCC) tumours 
develop and progress via complex remodelling of 
the kidney epigenome, transcriptome, proteome, 
and metabolome. Given the subsequent tumour and 
inter-patient heterogeneity, drug-based treatments 
report limited success, calling for multi-omics 
studies to extract regulatory relationships, and 
ultimately, to develop targeted therapies. However, 
current methods are unable to extract nonlinear 
multi-omics perturbations.  
Here, we present SiRCle (Signature Regulatory 
Clustering), a novel method to integrate DNA 
methylation, RNA-seq and proteomics data. 
Applying SiRCle to a case study of ccRCC, we 
disentangle the layer (DNA methylation, 
transcription and/or translation) where dys-
regulation first occurs and find the primary 
biological processes altered. Next, we detect 
regulatory differences between patient subsets by 
using a variational autoencoder to integrate omics’ 
data followed by statistical comparisons on the 
integrated space. In ccRCC patients, SiRCle allows 
to identify metabolic enzymes and cell-type-
specific markers associated with survival along 
with the likely molecular driver behind the gene’s 
perturbations. 
Integration | multi-omics | regulation | machine learning | 
variational autoencoder | clear cell renal cell carcinoma 
 
 
 
 
 

Introduction 

Clear Cell Renal Cell Carcinoma (ccRCC) is the 
most prevalent form of kidney cancer and accounts 
for 70% of renal malignancies1. It is now 
established that most ccRCC cases are driven by the 
loss of the Von Hippel-Lindau (VHL) tumour 
suppressor gene, in turn leading to the activation of 
the transcription factor (TF) Hypoxia-Inducible 
Factors (HIFs)2. Although the activation of the HIF 
pathway is considered to be a driving event in VHL 
mutant ccRCCs, VHL mutations alone are 
insufficient for ccRCC formation and cooperating 
mutations such as PBRM1, BAP1, KDM5C and 
SETD2 are necessary for full transformation3. 
Hence, ccRCC transformation and progression 
have been reported to affect multiple regulatory 
layers, beyond transcription,  including the 
epigenome, via changes in DNA methylation of 
CpG islands4, the proteome, via alterations in the 
mammalian target of rapamycin (mTOR) pathway3 
that in turn affects protein synthesis5, and the 
metabolome, whose dysregulation is considered a 
hallmark of ccRCC6–8.  

Due to the complexity of gene regulation in 
ccRCC, molecular analyses for patient stratification 
and drug treatment based exclusively on genomic 
or transcriptomics analysis have been 
unsuccessful9. For example, protein expression via 
(post-) translational regulation is altered in cancer10 
and there is a lack of correlation between 
transcriptome and proteome11. Hence, it is difficult 
to predict pathway activity such as TFs driving 
disease states from transcriptomics data alone, 
suggesting that data from distinct regulatory layers 
need to be analysed jointly. Furthermore, patient’s 
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responses to different RCC treatments can be 
dependent on the mutational and methylation 
landscape of the patients12. To overcome these 
issues, consortia such as CPTAC (Clinical 
Proteomic Tumor Analysis Consortium) are 
leading efforts to produce multi-omics datasets with 
various patient demographics13. Clark et. al. 
reported the first extensive dataset of ccRCC 
patients that included tumour and normal RNA-seq 
and proteomics data, and tumour DNA methylation 
data14. Using largely correlative analyses, Clark et. 
al proposed a stratification of ccRCC patients for 
personalised therapeutic interventions based on the 
differential RNA and protein profiles of the 
patients, along with the copy number variation and 
phosphoproteome14. However, it remains unclear if 
in ccRCC a gene of interest is regulated at the level 
of DNA-methylation, transcription or translation, 
and at what regulatory level (henceforth “layer”) 
dictates the cellular phenotype of ccRCC. 
Addressing this question is vital to identify 
determinants that explain disease states and to 
subsequently develop effective anticancer 
therapies. 

Data integration has become a core 
component of multi-omic analyses but remains a 
challenge owing to dataset heterogeneity, noise, 
and non-linearities between genetic and epigenetic 
interactions15. Many approaches exist to integrate 
bulk multi-omic assays to understand cancer 
genomics; they are typically based on standard 
statistical methods, clustering, or linear matrix 
factorisations to integrate different biological 
data16,17. Recently, deep learning methods, such as 
Variational Autoencoders (VAEs)18, have been 
applied to detect non-linear patterns across patients 
in single genomic data types in cancer patients19,20. 
VAEs have been used for differential analysis, 
cancer subtype identification, data integration21,22, 
and survival analysis23, involving both bulk19 and 
single cell24 data, and on a variety of assays 
(ATAC21, mRNA19,25,26, DNA methylation26).  

VAEs present a machine learning approach 
to extract latent features that summarise variation 
across the dataset27. Recent research suggests that 
latent embeddings can be used to identify co-
regulated gene groups28; however, such analyses 
have yet to be adapted for application on cancer or 
patient data.  Other integration methods enable 
biological signals to be extracted along latent 
embeddings, typically in the forms of correlative or 
linear relationships29–34, statistics on these bulk-
cancer embeddings are not often performed. Yet, 
this is becoming increasingly important as it has 
been shown that patient’s demographics such as 
age35–37, gender38,39 and ethnicity40 alter the gene 

expression profile in ccRCC as in many other 
tumour types. Furthermore, it is important to 
stratify patients on stage41, and mutational profile42 
since these factors are known to affect survival. To 
date, studies involving GWAS data suggest 
principal component analysis (PCA) embedding 
statistics enable complex relationships to be 
identified, opening an avenue for multi-omic 
patient changes to be extracted43,44. 

Here we present “Signature Regulatory 
Clustering'' (SiRCle), a method for integrating 
DNA methylation, mRNA, and protein data at the 
gene level to deconvolute the association between 
dysregulation within and across possible regulatory 
layers (DNA methylation, transcription and/or 
translation), which is available as a Python 
package. Using SiRCle, we disentangled the 
regulatory layer behind metabolic rewiring in 
ccRCC and showed that glycolysis is regulated by 
DNA hypomethylation, whilst mitochondrial 
enzymes and respiratory chain complexes are 
translationally suppressed. Moreover, we identified 
that HIF1A was likely driving expression changes 
in glycolytic enzymes. We also explored the 
heterogeneity between ccRCC patient 
subpopulations to identify cell-type specific 
markers associated with patients’ survival along 
with the likely regulatory layer behind the 
differences in gene expression. We found that 
downregulation of proximal renal tubule genes and 
hence loss of cellular identity is implicated with 
stage IV patients’ survival. Here, we demonstrate 
how we can use SiRCle to uncover drivers across 
regulatory layers that may explain distinct cohorts 
of ccRCC, but we anticipate other cancers and data 
types can be analysed similarly. 
 
Results 
Functional effects of ccRCC are regulatory 
layer dependent 
ccRCC is a heterogeneous cancer with 
transformation and progression linked to 
widespread dysregulation of biological processes. 
To understand how cellular processes are affected, 
analyses must extend across regulatory layers and 
therefore incorporate multiple omics’ datatypes. 
Recently, Clark et. al. and the CPTAC consortium, 
investigated the impact of genomic alterations on 
protein regulation and created revised subtypes 
based on their integrated analyses14. As part of their 
study, Clark et. al. generated protein, RNA, and 
DNA methylation measurements from 110 patients 
with ccRCC14. We sought extend their work by 
investigating the compounding effects of 
dysregulation by following gene changes from the 
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DNA methylation via the mRNA to protein layers 
to unravel the regulatory layer of each gene. Since 
no DNA methylation samples from normal tissue 
were available, we coupled the CPTAC data with 
tumour adjacent normal (herein normal) DNA 
methylation data from 151 patients in TCGA45 (see 
Supplementary Table 1 for sample annotations 
and Methods for quality controls). The CPTAC 
cohort is demographically homogenous, but 
includes cases across four stages of ccRCC and 
multiple mutational patterns (Supplementary 
Table 1, Supplementary Fig. 1a). Data types are 
herein denoted “data layer” as they correspond to 
distinct layers of regulation (DNA methylation beta 
values, normalised mRNA expression and 
normalised protein expression). PCA established 
that the primary source of variation in a data layer 
(in isolation) is the sample type (tumour versus 
normal) with neither of the top two components 
explaining tumour stage, age, presence of a BAP1 
or PBRM1 mutation (Supplementary Fig. 1b). 

We identified genes changing significantly 
between tumour and normal by performing 
differential analysis tests for each data layer and 
found widespread changes, most notably on the 
mRNA layer (Methods, Supplementary Table 1). 
While there is minimal negative correlation 
between gene changes on the DNA methylation and 
mRNA layers, the mRNA and protein layers are 
strongly correlated (Fig. 1a). We found 689 
significant genes shared across the mRNA and 
protein layers and 461 significant genes between all 
three layers (see Methods for thresholds).  

Given the small number of significant 
genes shared across layers, yet comprehensive 
changes within each layer, we sought to determine 
whether the affected genes shared biological 
function. To do this, we performed Over 
Representation Analysis (ORA) of Gene Ontology 
(GO) terms on significant genes from each 
differential analysis, sub-setting genes by direction 
of change. We observed both unique and shared 
biological functions between the layers, with more 
similar functions enriched across layers for 
upregulated than downregulated genes (Fig. 1b). 
Hypermethylated genes were most enriched for 
terms associated with development, while repressed 
genes were most associated with transporter 
activity (mRNA layer) and mitochondrial processes 
(protein layer) (Supplementary Fig. 1c-d, 
Supplementary Table 2). In line with the findings 
from the original study14, immune response terms 
showed the most significant enrichment across all 
data layers for genes upregulated on the protein and 
mRNA layers (Supplementary Fig. 1c-d, 
Supplementary Table 2).  

Following the flow of information extracts 
clusters that drive specific cellular 
phenotype in ccRCC patients 
Given the lack of correlation between the data 
layers and the heterogeneity of functional 
enrichment resulting from them, we posited if 
grouping genes by their pattern across layers, prior 
to performing ORA would facilitate biological 
interpretation. Based on the differential analysis, 
we defined three states between tumour and normal, 
namely positive, negative or unchanged, for each 
gene and layer (Fig. 1c, Table 1, Methods section). 
To perform biologically meaningful clustering, we 
labelled each gene based on the regulatory layer 
where that gene is first “changed” in the tumour 
sample compared to the normal sample to bundle 
those following the same broad regulatory biology. 
We do this by following the central dogma of 
biology46, i.e. genetic information proceeds from 
DNA, to mRNA, and eventually protein (Fig. 1c). 
Since this is an ordered series of three 3-state 
transitions between the layers, there are 27 (33) 
possible “flows”. For example, if a gene is 
hypermethylated, has a decrease in mRNA 
expression, and displays a decrease in protein 
expression, we can likely conclude dysregulation 
first occurred on the DNA methylation layer, 
adding this gene to the Methylation-Driven 
Suppression (MDS) cluster. While there are 27 
possible flows, we define three granularities of 
clustering based on how many regulatory layers a 
user considers (Methods, Table 1).  Throughout the 
paper, we use Grouping 2 with ten clusters defined 
by at maximum two changes, ensuring that for 
ccRCC genes are measured on the protein layer or 
on both the mRNA and DNA methylation layers 
(Fig. 1c, Table 1). We term the process above 
“Signature Regulatory Clustering'' (SiRCle).  

We performed ORA on the SiRCle clusters 
and found that each cluster was enriched for a clear 
biological signature important in ccRCC and 
consolidated the functional enrichment results we 
observed across each layer when independently 
analysed (Fig. 2a, Supplementary Table 3). 
Strikingly, we found clear biological signatures for 
both, SiRCle clusters regulated on one layer and 
SiRCle clusters regulated on multiple layers (Fig. 
1c). We found that hypomethylation (Methylation-
Driven enhancement (MDE)) and enhanced 
transcription (Transcription and Processing Driven 
Enhancement (TPDE)) are associated with the 
hypoxic response, oxidative stress response and  
angiogenesis (Fig. 2a), key players in ccRCC 
tumour42. These terms were not revealed in the top 
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terms when we performed ORA on each layer 
independently (Supplementary Fig. 1c-d).  

In line with previous findings14,42,47 we 
observed an increase in immune response 
pathways, and show these genes are likely regulated 
by DNA hypomethylation (MDE, Fig. 2a) or 
enhanced transcription (TPDE, Fig. 2a). Clark et. 
al. described a high correlation between mRNA and 
protein expression of immune signatures14, 
supporting our finding that the regulation occurs at 
the transcriptional layer. We were also able to 
distinguish between immune response genes likely 

regulated by hypomethylation from those likely 
regulated by enhanced transcription.  

We observed that genes in two SiRCle 
clusters are involved in distinct metabolic rewiring, 
with metabolic processes such as lipid and amino 
acid metabolism likely regulated by transcriptional 
suppression (Transcriptional and Processing-
Driven Suppression (TPDS)), whilst mitochondrial 
respiration and nucleotide metabolism are likely 
downregulated by translational suppression of the 
proteins (Translation and translational-
modification-Driven Suppression (TMDS), Fig. 

Fig. 1, a, Spearman correlation comparing the change between tumour and normal samples for mRNA expression and 
DNA methylation, and mRNA expression and protein expression. b, Numbers of enriched Gene Ontology (GO) terms 
when comparing Tumour versus Normal (TvN) for each data type, indicating shared terms by overlapping regions in the 
Venn diagram.  “Down regulated” corresponds to GO terms enriched in genes that are decreased in tumour samples, 
whilst “Up regulated” is for GO terms enriched in genes increased in tumour samples. c, Alluvial plot depicting the flows 
used to define SiRCle clusters. The plot is read from the left to the right, in line with the flow of information in a biological 
system. Each data type has been labelled as a layer, with one of three states defined for each layer based on the results 
for differential analysis between tumour versus normal in that data type. On the regulation driver we collapse the flows 
to include at most two regulation drivers, this we denote as “Grouping 2”, collapses are done on the later stage, for 
example, for TPDS+TMDE we have potential changes on all three layers, thus the first is collapsed. Direct flows 
correspond to relationships that follow the central dogma of biology, for example the flow followed in MDS. Overlaps in 
the Venn diagram are coloured according to the relationships in the alluvial plot that they capture, note not all 
relationships are presented in the Venn diagram. 
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2a). Genes regulated by translational suppression 
appear to be involved in mitochondrial metabolism, 
mitochondrial translation and mitochondrial 
morphology (TMDS, Fig. 2a). Transcriptionally 
repressed genes were enriched for kidney 
development, hinting toward a loss of cellular 
identity in cancer cells (TPDS, Fig. 2a).  Using 
SiRCle clustering we were able to determine the 
layer at which a gene’s dysregulation occurs and 
find clusters corresponding to distinct biological 
processes that may underly tumour pathology.   

 
Transcription factors as drivers of genes in 
SiRCle clusters 
A subset of SiRCle clusters contain genes that 
change their state at the transcriptional 
(TPDE/TPDS) and/or the methylation layer 
(MDE/MDS), suggesting that they are regulated by 
transcription or epigenetic factors. Indeed, a 
specific TF may drive such changes in gene 
expression as TF’s can act to enhance/repress gene 
transcription and DNA methylation changes can 
alter the TF’s ability to bind to the DNA48. We used 
validated TF-to-target interactions from 
DoRothEA49 to identify what TFs were statistically 
associated with each SiRCle cluster. We use 
Fischer’s Exact Test (FET) to measure association 
between a TF and SiRCle clusters by testing if a TF 
targets more genes in a single cluster relative to 
background chance (all SiRCle clusters). This 
analysis only recovered TFs significantly 
associated with SiRCle clusters that are either up- 
or down-regulated at the methylation and 
transcriptional layers (Fig. 2b, Supplementary 
Fig. 2a-b Supplementary Table 4). The 
stratification provided via SiRCle clustering helps 
distil the data from which regulatory logic can be 
inferred.  

Given that HIF1 drives angiogenesis in 
ccRCC tumours42,  we were unsurprised to find 
HIF1 TFs target genes in TPDE and MDE as both 
these clusters were enriched for angiogenesis 
related GO terms (Fig. 2a-b, Supplementary Fig. 
2a, Supplementary. Table 4). We found that both 
HIF1A and EPAS1 (also known as HIF1B) had a 
significant increase in protein expression and were 
significantly associated with SiRCle clusters with 
an increase in mRNA and protein expression 
(TPDE, MDE). Given DoRothEA is not tissue 
specific we sought to confirm that the HIF TFs bind 
to the target genes in ccRCC by using ChIP-seq data 
from HIF1A and EPAS1 in kidney cancer cell lines 
(see Methods). We found evidence of HIF1A 
binding at the transcription start site (TSS) of genes 
in both TPDE (SERPINE1, CDKN1A and CA9), 
and MDE (VEGFA, EGFR and SLC2A1) (Fig. 2c, 

Supplementary Fig. 2d). Similarly, we found 
evidence of EPAS1 binding at the TSS of 
SERPINE1 and CA9 in the TPDE cluster, 
confirming both HIFs ability to bind to target genes 
in ccRCC cell lines (Supplementary Fig. 2e). TF 
enrichment in SiRCle clusters elucidates changes to 
TF activity that affect transcriptional regulation at 
both the transcriptional and methylation layers. 
 
ccRCC characteristic metabolic changes are 
detected on distinct layers 
Metabolic rewiring plays a crucial role in ccRCC 
and hence we sought to investigate the 
dysregulation of genes involved in metabolic 
rewiring in ccRCC to understand the layer at which 
the metabolic pathways are altered. In order to do 
so, we performed Gene Set Enrichment Analysis 
(GSEA) using metabolic signatures from Gaude et. 
al50,  herein referred to as metabolic signatures, to 
identify pathways with coordinated protein changes 
in tumour  versus  normal. The protein layer was 
chosen for GSEA to capture changes in pathways’ 
enzyme activity, and then coupled with SiRCle 
cluster annotations to relate gene changes to the 
initial layer of dysregulation (Supplementary 
Table 5). We found the majority of enzymes 
involved in glycolysis (70%) were increased 
comparing tumours versus normal, fitting with the 
previously established upregulation of glycolysis in 
ccRCC8. Interestingly we find that some glycolytic 
enzymes are hypomethylated and upregulated on 
both the mRNA and protein layers (SiRCle cluster 
MDE, Fig. 3a and Supplementary Fig. 3a). From 
the TF analysis we noticed that H1F1A targets in 
MDE included several glycolytic enzymes, and we 
also found H1F1A binding at the transcription start 
site of glycolytic genes in kidney cancer cell line 
ChIP-seq data (Supplementary Fig. 3c).  

We next sought to dissect the role of 
mitochondrial dysfunction in ccRCC, including the 
suppression of mitochondrial electron transport 
chain (ETC), since this has been previously 
confirmed8 to play a role in ccRCC, yet how 
metabolic enzymes are regulated remains unclear. 
We found that electron transport chain complexes 
were depleted in the tumour samples with the 
decreased expression of enzymes likely regulated at 
the translational layer (SiRCle cluster TMDS, Fig. 
3d). The translation-driven downregulation affects 
almost all enzymes of the TCA cycle (SiRCle 
cluster TMDS, Fig. 3a and Supplementary Fig. 
3d). In addition to these primary metabolic rewiring 
steps, there are many secondary pathways altered in 
ccRCC8. By coupling SiRCle annotations with 
GSEA we  found  that  the  suppression  of  cysteine 
methionine   and   glutathione   (GSH)   metabolism7 
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Fig. 2 a, Emapplot visualisation of the over representation analysis (ORA) performed on each SiRCle cluster resulted 
in biological pathways that are altered comparing tumour versus normal. Pathways were plotted if p-adjusted value 
(p.adj) < 0.05 and the gene ratio was greater than 5%. The dot size corresponds to the number of genes found in the 
cluster that are part of the biological pathway. The colour of the dot shows the p.adj of the ORA. The connecting lines 
(grey) show that the biological pathways have genes in common. b, Transcription factor (TF) factor network of TFs from 
manually curated repositories (DoRothEA) that may drive genes in the cluster Transcription and Processing Driven 
Enhancement (TPDE). The dot size corresponds to the number of genes targeted by the TF. The colour of the dot 
shows the p.adj. The connecting lines (grey) shows the number of common genes the connected TFs regulate. c, 
Wordcloud including the TF targets with shared TF binding in the TPDE cluster, with the size corresponding to how 
many different TF’s are predicted to regulate the gene's expression. d, HIF1A ChIP-seq peaks (RCC4, GSM3417827) 
binding at the transcription start site of SERPINE1, CDKN1A and CA9. 
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occur on the transcriptional layer (SiRCle cluster 
TPDS, Fig. 3a and Supplementary Fig. 3e, f). 
Similarly, serine biosynthesis, which is important to 
fuel GSH biosynthesis also occurs on the 
transcriptional layer. In accordance with the ORA 
results (Fig. 2a), we found that other amino acids’ 
metabolic pathways such as tryptophan, valine, 
leucine and isoleucine are downregulated either by 
translational or transcriptional suppression (SiRCle 
clusters TPDS and TMDS, Fig.3d-f). 

To understand the impact of the enzyme 
expression on the metabolic profile, we used 
metabolomics data from 84 ccRCC patients with 
paired tumour and adjacent tissue samples7 and 
performed differential metabolomics analysis to 
identify the metabolites significantly changing 
between tumour and adjacent tissue. To consolidate 
the metabolite levels with enzyme information, we 
manually assigned significant metabolite changes 
to the pathways identified from the protein layer 
GSEA (Fig. 3a). We observed a “split” of 
glycolysis as previously described by Hakimi et al7, 
whereby metabolites upstream of GADPH are 
accumulated, and the downstream metabolites are 
depleted, despite the majority of glycolytic 
enzymes being upregulated on the protein layer 
(Fig. 3a, Supplementary Fig. 3b-c, 
Supplementary Table 5). A similar split is 
observed in the TCA cycle, where citrate and 
succinate are increased despite the decreased 
enzyme’s protein expression, whilst fumarate and 
malate are depleted in line with the decreased 
enzyme’s protein expression (Fig. 3a).  
Overall, we show that SiRCle clustering can 
elucidate the layer where metabolic changes in 
ccRCC are orchestrated, highlighting points of 
intervention for targeting metabolism as anticancer 
strategy. 
 
Functional differences between late and 
early-stage tumours show limited agreement 
across layers 

The previous sections explored 
dysregulation in tumour samples across a 
heterogeneous cohort of ccRCC patients. However, 
it has been reported that tumour stage is an 
important determinant of prognosis and treatment 
response41. We thus sought to identify the 
regulatory differences between patients with stage I 
and stage IV tumours by performing differential 
analysis on each layer, between tumour versus 
normal, for each patient group independently 
(Supplementary Table 6). Using the significant 
genes from each analysis, we performed ORA on 
each layer. On the protein and mRNA layers, we 

found that similar biological terms were enriched 
across the two patient’s groups, whilst on the 
methylation layer there were far more terms 
enriched in the stage IV samples. The main 
differences between the top associated GO terms 
were an association with extra cellular matrix terms 
in stage IV samples (Supplementary Fig. 4a).  

It is unsurprising that the tumour versus 
normal comparisons yielded similar results despite 
being run on patients with different stage tumours 
as the majority of variation in the dataset was 
accounted for by the sample type. Hence, we next 
tested for differences in tumour profiles between 
stage IV and stage I samples (Supplementary 
Table 6). When comparing stage IV versus stage I 
tumours we found few changes on the protein layer, 
but aberrant changes on the DNA methylation and 
mRNA layers (Supplementary Fig. 4b). As 
tumours progress, the dynamic adaptability of 
metabolism plays a crucial role to ensure cell 
growth51, and therefore, we tested for coordinated 
changes across metabolic signatures between using 
the differences between stage IV and stage I 
tumours. We found minimal shared enrichment of 
pathways between layers, with only N-Glycan 
Biosynthesis positively enriched on both the protein 
and mRNA layers, none shared on the mRNA and 
methylation layers, and Cyclic Nucleotides 
Metabolism, Glycolysis and Gluconeogenesis, 
Carbonic Acid Metabolism, shared between the 
negatively enriched protein layer and positively 
enriched methylation layer (Supplementary Fig. 
4c). While we find significantly changing 
metabolic pathways within each layer, functional 
information is not readily captured across layers 
rendering the results challenging to interpret.  

 
Novel integrated statistical test to identify 
changes between patient cohorts 

Given the independently performed 
differential analyses were unable to extract shared 
functions when comparing patient’s with stage I 
versus stage IV tumours, we posited that integrating 
across the layers prior to performing differential 
analysis and biological enrichment may better 
capture the biological signal. We opted to use a 
variational autoencoder (VAE) to learn gene-wise 
relationships across the three data layers 
(Supplementary Fig. 5a). Akin to matrix 
factorisation methods, a VAE finds a projection of 
data that centres on variance. However, unlike 
linear methods, such as PCA, a VAE does this using 
a neural network and can thus capture non-linear 
relationships. 
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In short, there are two parts of a VAE, 1) an 
encoding function that transforms data to a 
compressed representation, and 2) a decoding 
function that recreates the input from the 

compressed representation. The encoding and 
decoding functions are shared once the parameters 
have been learnt from the training data, while an 
encoded value is specific to a given datapoint. For 

Fig. 3 a, Metabolic changes of glycolysis, tricarbolic acid (TCA) cycle and serine, glycine and cysteine biosynthesis in 
ccRCC comparing tumour versus normal. Metabolic enzymes are written in bold and if they have been detected, they 
are labelled with coloured circles depending to the SiRCle cluster they are part of. Metabolic change of detected 
metabolites is labelled with plus for a positive and minus for a negative log2FC. For the three main metabolic sections 
are based on the SiRCle cluster the majority of metabolic enzymes are part of and are summarised in pie charts. b-d, 
Volcano plots are based on the metabolic pathways defined by Gaude et. al50 and the number of proteins detected of 
the pathway are reported. Proteins that are unique for the metabolic pathways are displayed in circles and proteins that 
are part of multiple metabolic pathways are displayed in diamond. The colour code is based on the SiRCle cluster the 
protein is part of and is summarised in the pie chart. GSEA was performed using the protein statistic. Here we plot 
oxidative phosphorylation (b), valine, leucine and isoleucine metabolism (c) and tryptophan metabolism (d), all reported 
a GSEA p.adj of 0.001518315. 
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example, the compressed representation of data 
point 𝑥𝑥𝑖𝑖𝑖𝑖 is given by: 𝑧𝑧𝑖𝑖𝑖𝑖  ≅ 𝑞𝑞𝜃𝜃�𝑧𝑧�𝑥𝑥𝑖𝑖𝑖𝑖� ≅ 𝜇𝜇𝑖𝑖𝑖𝑖 +
𝜎𝜎𝑖𝑖𝑖𝑖 ⊙ 𝜖𝜖𝑙𝑙 , where 𝑧𝑧𝑖𝑖𝑖𝑖 is the latent representation 
produced by the model conditioned on 𝑥𝑥𝑖𝑖𝑖𝑖, 𝑞𝑞𝜃𝜃 is the 
encoding function, 𝜖𝜖𝑙𝑙 is stochastic noise and part of 
regularisation, 𝜇𝜇𝑖𝑖𝑖𝑖 is the encoded mean and 𝜎𝜎𝑖𝑖𝑖𝑖 is 
the encoded variance. Note, 𝑥𝑥𝑖𝑖𝑖𝑖 refers to a feature 
vector of a gene, denoted by index 𝑖𝑖 for a specific 
patient 𝑝𝑝. The feature vector is the normalised 
values across the data layers (Supplementary Fig. 
5a). 

The encoding and decoding functions are 
“learnt” by minimising an objective lower bound 
over a dataset, by iteratively updating parameters 
over a number of epochs. For our purposes, the 
objective is to minimise the difference between 
input and output as per mean squared error and 
maximise the similarity between the latent space 
and a gaussian normal distribution via mean 
maximum discrepancy (see Methods for specifics). 

Given the relatively low signal produced by 
stage, extracting regulatory variations may be 
obstructed by the noise in the dataset when 
considering all regulatory relationships at once. As 
such, instead of learning a dataset-wide 
representation, we used genes from each SiRCle 
cluster to learn a representation that defines a given 
regulatory flow. As such, there is an encoding 
function 𝑞𝑞𝜃𝜃(𝑧𝑧|𝑥𝑥) for each SiRCle cluster.  

As we can now calculate an integrated 
(encoded) value for each gene, for each patient, we 
can define a gene’s integrated difference as a gene’s 
mean encoding difference between two sets of 
patients, e.g. patients with stage IV tumours versus 
stage I tumours (Supplementary Fig. 5a). 

Mathematically we define this below, 
where z refers to the latent encoding given a 
particular data point, which corresponds to a 
patients’ gene value across the layers. Gene index 𝑖𝑖 
is held constant as the mean difference is calculated 
between patients sets, for example patients with a 
stage IV tumour may be in set S, and those with a 
stage I tumours are in set G. 

𝐷𝐷(𝑧𝑧𝑖𝑖𝑖𝑖||𝑧𝑧𝑖𝑖𝑖𝑖)  =
1

|𝑆𝑆|�𝑧𝑧𝑖𝑖𝑖𝑖 −
1

|𝐺𝐺| �𝑧𝑧𝑖𝑖𝑖𝑖

|𝐺𝐺|

𝑔𝑔=1

|𝑆𝑆|

𝑠𝑠=1

 =  𝑧𝑧𝑖̅𝑖𝑖𝑖 − 𝑧𝑧𝑖̅𝑖𝑖𝑖    

For biological interpretation, we can 
correlate the integrated difference to a biological 
reference such as the mean difference between the 
two patient sets on the protein layer. For example, 
in the MDE SiRCle cluster, we see that the stage IV 
versus stage I integrated difference correlates to the 
difference on the protein and mRNA layers 
between these patient sets (Supplementary Fig. 
5b, Supplementary Table 7). 

 Using our integrated value for each gene, 
we next perform a Mann-Whitney U test to identify 
genes with a significant integrated difference 
between patients with early (stage I, N=45) and late 
(stage IV, N=10) stage tumours, old (N=56) and 
young (N=7) patients, and patients with a BAP1 
(N=13) mutation or PBRM1 mutation (N=33) 
(Supplementary Fig. 5b). In the following 
sections, we demonstrate that VAE integration 
prior to performing analyses enables us to identify 
changes across the regulatory layers that were not 
found when performing differential analyses 
independently on each data type. 
 
Metabolic alterations in tumour stage and 
patients age impact on ccRCC’s metabolic 
fingerprint 

While there were few shared metabolic 
pathways in the layer-specific analyses, an 
integrative model may improve our ability to 
understand metabolic differences between ccRCC 
patient’s groups. As metabolic profiles alter not 
only during tumour progression51, but also during 
ageing52, we performed two comparisons using the 
integrated values between 1) patients with stage I 
and stage IV tumours and 2) old and young patients. 
For each comparison, we performed GSEA using 
the metabolic signatures to identify pathways with 
coordinated integrated differences between two 
groups (Fig. 3). We define regulation as “up” if the 
integrated value increases, and as “down” if the 
integrated value decreases. Given the integrated 
value is positively correlated with the mRNA or 
protein layers, it carries biological meaning yet e.g. 
“up” regulation of the integrated value of a specific 
gene does not necessarily equal the same increase 
in mRNA or protein (Supplementary Fig. 5b, 
Supplementary Table 7). In line with previous 
observations14, oxidative phosphorylation was up 
regulated when comparing stage IV with stage I 
(Fig. 4a, Supplementary Table 7), yet we are now 
able to understand on what layer the enzyme 
expression is defined and observed that oxidative 
phosphorylation enzymes are likely altered on the 
translational layer. Reassuringly, oxidative 
phosphorylation was also a significant pathway in 
the stage IV versus stage I tumour protein layer 
GSEA analysis, but not on the mRNA layer, 
matching our TMDS label and showing that trivial 
single-layer relationships are captured by the VAE 
approach (Supplementary Table 6). Surprisingly, 
the coordinated change observed in oxidative 
phosphorylation was not observed for enzymes of 
the mitochondrial TCA cycle, with only some 
enzymes such as IDH1, FH and PCK1  up in  stage  
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Fig. 4, Metabolic pathways based on gene expression are defined by Gaude et. al50 with p.adj values corresponding to 
the GSEA results after ranking the genes in each SiRCle cluster using the VAE integrated rank. Metabolite pathways 
based on metabolites are defined by Hakimi et. al7. a, Comparison of the VAE integrated rank of stage IV and stage I 
patients for oxidative phosphorylation for genes within the Translation and post-transcriptional Modification Driven 
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IV compared to stage I (Fig. 4b). Interestingly, 
citrate and cis-aconitate metabolite levels were 
depleted in late-stage compared to early-stage 
patients, whilst the downstream metabolites 
remained unchanged over the stages and have 
decreased protein expression in the tumour tissue 
(Fig. 4c). Oxidative phosphorylation showed a 
more variable, albeit similar trend in old patients 
when compared to young patients (Supplementary 
Fig. 6a, Supplementary Table 7). Conversely, 
TCA cycle enzymes were significantly up in old 
patients compared to young patients when 
performing GSEA and accordingly, metabolite 
levels were increased for succinate, fumarate, and 
malate in old patients (Supplementary Fig. 6b, 
Fig. 6c). Noteworthy, the majority of old patients 
do not present late-stage tumours (old patients: 
stage I = 27 (41%), stage II = 9 (14%), stage III = 
24 (36%), stage IV= 6 (9%); young patients: stage 
I = 7 (78%), stage 2 = 1 (11%), stage 3 = 1 (11%) 
Supplementary Table 1). 

A novel finding from Hakimi et. al. was 
that metabolites involved in methionine 
metabolism are altered between different tumour 
stages in ccRCC7. We sought to build on this by 
investigating whether the changes in methionine 
metabolism could be traced back to a regulatory 
change.  We found that enzymes of the methionine 
metabolism are predominantly up on the 
transcriptional layer when comparing stage IV vs 
stage I (Fig. 4d-e, Supplementary Table 3, 
Supplementary Fig. 4b). BHMT, SLC43A2 and 
SLC3A1, were down in stage IV patients, while all 
other enzymes were up (Fig. 4d). We observed an 
overall accumulation of metabolites within this 
pathway in the late-stage patients, indicating 
methionine depletion is less severe in late-stage 
patients (Fig. 4e). It was surprising that despite the 
fact that BHMT is down in stage IV patients, 
metabolite levels are unaffected; this hinted 
towards a different role of BHMT in late-stage 
tumours (Fig. 4d-e). Given BHMT is a proximal 
tubule-specific protein and SLC3A1 is a kidney 
amino acid transporter mainly found in proximal 
tubule of the kidney, a loss of expression of BHMT 
and SLC3A1 may promote a loss of cellular identity 
in stage IV tumours, which in turn is detrimental for 
the patient’s survival (Fig. 4f and Supplementary 

Fig. 6f). Furthermore, it has been recently discussed 
that enzymes involved in methionine metabolism 
play a role in ccRCC patients’ survival53. We also 
found the methionine pathway to be affected when 
comparing old with young patients. In old patients 
all enzymes were consistently up, which is in line 
with the increased metabolite levels 
(Supplementary Fig. 6d-e). Methionine 
upregulation could increase the methylation 
potential and hence alter the DNA methylation 
landscape within a tumour. Finally, the most altered 
metabolic pathway from the differential metabolite 
analysis when comparing old versus young patients 
were dipeptides (Fig. 4g). Dipeptides are a nutrient 
signalling mechanism that is required for chronic 
myeloid leukaemia stem cell activity in vivo54 and 
have recently been proposed as novel cancer 
biomarkers55. However, given dipeptides are 
produced from polypeptides by dipeptidyl 
peptidase enzymes, which is a class containing 
many enzymes, it is difficult to connect specific 
enzymes, and thus layers of regulation, to this 
observation.  
 Together these results showcased the 
importance of taking patients’ information into 
account when analysing and interpreting the data 
and that VAE integration enables the comparison of 
small patient groups whilst considering differences 
across the methylation, mRNA and protein layers. 
 
Genes distinguishing patient subpopulations 
associate with distinct immune cell types and 
define patient’s survival 

Investigating regulatory changes across a 
tissue only provides an overview of changes 
occurring within the numerous cell types that make 
up the tissue. However, given the challenges 
associated with epigenetic profiling at the single-
cell level, it remains a cost-effective, and reliable 
approach. Moreover, broad changes in regulatory 
patterns may indicate a change in the composition 
of cell types within a tissue. Given that immune 
response plays a critical role in ccRCC and is 
associated with specific mutational patterns42, we 
sought to assess whether perturbations across 
regulatory layers between patient subpopulations 
are associated with specific cell types. We used 
scRNA-seq data from eight patients with advanced 

Suppression (TMDS) SiRCle cluster. b, Comparison of the VAE integrated rank of stage IV with stage I patients for TCA 
cycle genes colour coded for the SiRCle clusters the gene belongs to. c, Comparison of the Log2FC of tumour versus 
normal (TvN) of late stage (III & IV) with early stage (I & II) patients for TCA cycle metabolites. d, Comparison of the VAE 
integrated value of stage IV with stage I patients for genes corresponding to the methionine metabolism pathway colour 
coded for the SiRCle clusters the gene belongs to. e, Comparison of the Log2FC (TvN) of late stage (III & IV) with early 
stage (I & II) patients for “cysteine, methionine SAM, taurine metabolism” metabolites. f, BHMT survival curve based on 
(http://gepia2.cancer-pku.cn/) using quantile default cut-offs of 25%, 0.75%. VAE integrated rank alongside protein 
Log2FC (TvN) for stage I with stage IV patients. g, Comparison of the Log2FC (TvN) of late stage (III & IV) with early 
stage (I & II) patients for metabolites of the dipeptide group. 
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renal cell carcinoma from the multiregional study 
of Krishna et al., which identified 31 cell types47. 
Again, we divided SiRCle clusters (MDE, TPDE, 
TMDE, MDS, TPDS and TMDS) into up and down 
subsets of genes based on the gene’s VAE 
integrated difference between two patient groups, 
and then tested if these genes are overrepresented in 
a specific cell type.  

Focusing on comparing stage IV versus 
stage I, we found that the broad cell types identified 
by Clark et al14,  are recovered, namely, CD8A+ 
Proliferating and Exhausted (CD8+ inflamed), 
CD45- PAX8+ renal epithelium (CD8- Inflamed), 
CD45- Vascular Endothelium (VEGFA) (Fig. 5a). 
Moreover, it becomes clear that some SiRCle 
clusters are associated with specific cell types (Fig. 
5a). 

We found genes up in stage IV patients and 
regulated on the transcriptional layer (TPDE) that 
are enriched in CD8A+ proliferating cells (Fig. 5a-
b and Supplementary Fig. 6a). This is in line with 
previous studies, which observed an overall 
increase in CD8+ T-cell in tumour-infiltrated 
immune cells in ccRCC compared to normal renal 
tissue56. Specifically, we saw enrichment of 
TRIP13, which has previously been associated with 
CD8+ T-cells57 and genome instability58. 
Reassuringly, we detected TRIP13 as part of the 
TPDE up cluster and CD8+ enriched cell type and 
found that its expression is highly altered between 
stage I and stage IV patients and implicated in 
patient’s survival (Fig. 5c). 

The CD45 PAX8+ renal epithelium cell 
type is specific for ccRCC59, hence we posited that 
genes within this group would be changed as the 
tumour progressed and lost its renal identity. Genes 
in CD45 PAX8+ renal epithelium were mainly 
further repressed in stage IV patients on the 
methylation and transcriptional layers (MDS down, 
TPDS down); however, we also saw recovery of 
expression in stage IV tumours on the 
transcriptional layer (TPDS up) (Fig 5a-b and 
Supplementary Fig. 6b-d). While extracellular 
terms were also observed in the differential 
analysis, these were only identified as top terms on 
the mRNA layer; given we observed the genes in 
TPDS, the changes are likely to translate to the 
protein layer (Supplementary Fig. 4c). Metabolic 
enzyme BHMT is further repressed in late-stage 
patients (TPDS) further confirming its importance 
in the renal epithelium and that loss of expression 
may be associated with loss of cellular identity 
resulting in poor survival (Fig. 4f). Moreover, 
several mitochondrial enzymes up in stage IV 
patients (TPDS) are also associated with the renal 
epithelium, supporting evidence of complex 

metabolic rewiring in late stage renal tumours. 
Indeed, we found both FH and SUCLG1 are 
associated with survival, indicating in late stage 
tumours, there is some recovery of these important 
enzymes (Fig. 5d-e).  

Previous work has shown that the immune 
response plays a critical role in ccRCC and  that 
germline mutations can affect ccRCC patients’ 
outcomes12. In addition to VHL mutations, PBRM1 
and BAP1 facilitate the development of ccRCC12, 
however with differing outcomes where BAP1 
mutations are associated with a poor prognosis 
whilst PBRM1 mutations result in less aggressive 
cancers42. Thus, we wanted to test if the differences 
in the regulatory profiles between PBRM1 versus 
BAP1 patients could explain the different patient 
outcomes. Hence, we used our VAE integrative 
comparison approach to identify genes with 
regulatory perturbations between patients with a 
PBRM1 mutation compared with patients with a 
BAP1 mutation. We found genes changing 
significantly between the patients across all 
regulatory layers, and term the comparison PBRM1 
versus BAP1 (Supplementary Table 7).  
Interestingly, we found similar cell types enriched 
in TPDE up when comparing PBRM1 with BAP1 
patients as in the TPDE down group from stage IV 
vs stage I patients (Fig. 5a,f), fitting with the 
association between BAP1 having a generally 
poorer outcome42.  TPDE and MDE down enrich 
for Tumour Associated Macrophages (TAMs) cell 
types, with the classically immunosuppressive cell 
cluster (TAM HLAhi), showing higher expression 
in BAP1 (TPDE down) in both SiRCle clusters 
(Fig. 5b, 5f). In line with Clark et. al.’s finding that 
PBRM1 mutations associate with an angiogenesis 
immune population14, we observed an enrichment 
of genes up in PBRM1 in CD45- Vascular 
Endothelium, which is connected to genes up in the 
SiRCle clusters MDE, TPDE, and TMDE (Fig. 5f 
and Supplementary Fig. 6e). Indeed, the latter 
included EPAS1, also known as HIF2A, and is an 
established prognostic marker in renal cancer with 
low expression correlating with poor prognosis60 
(Fig. 5b, Supplementary Fig. 6e). Another known 
gene important in angiogenesis, FLT1, is also 
connected to the CD45- Vascular Endothelium and 
higher in PRBM1 mutations (Fig. 5b, 
Supplementary Fig. 6f). FLT1 is up in TPDE and 
low expression of FLT1 is associated with poor 
prognosis (Fig. 5g). Interestingly, in our TF 
analysis earlier, we identified that FLT1 was 
targeted by EPAS1, meaning that the increased 
expression of EPAS1 could be regulating the 
increased expression of FLT1; however, this would 
need to be confirmed in ccRCC patients as in cell  
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Fig. 5, Boxplots show the integrated VAE rank for each patient in a subpopulation, alongside the protein log2FC between 
tumour versus normal (TvN) for that same group of patients. Survival plots were plotted using GEPIA2 
(http://gepia2.cancer-pku.cn/). Differentially Expressed (DE) in the single cell clusters are genes that were significant (p 
< 0.05) in a one versus rest comparison and had a log2FC > 1.0 for a given cell type.a, Significant enrichment (odds 
ratio), using the Fischer’s Exact test of SiRCle clusters subset into (+) for significant (p <0.05) changes with stage IV > 
stage I, and (-) stage IV < stage I. b, Top 5 genes by expression in a specific cell type for SiRCle subsets along with 
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lines we did not observe EPAS1 binding sites at 
FLT1.  

Our results suggest that while single-cell 
multi-omic data is not readily available, or remains 
too costly, we can retrospectively look for the 
enrichment of genes with shared regulatory 
behaviour in scRNA-seq data to predict the likely 
cell types that will be affected in a given population 
and the layer of dysregulation behind the gene’s 
changes. This additional information provided by 
the SiRCle analysis can thus inform future multi-
omic experimental decisions at the single cell level 
to further understand disease pathology.  
 
Discussion 
Here we present SiRCle, a method for integrating 
DNA methylation, RNA-seq and proteomics data to 
extract support for what layer or layers (DNA 
methylation, transcription and/or translation) genes 
are regulated and/or perturbed between patient 
subsets with different phenotypic traits (Fig. 6). 
While SiRCle extends to any cancer, we applied it 
to clear cell renal cell carcinoma (ccRCC) patients. 
ccRCC is a particularly heterogeneous cancer with 
cascades of mutations and complex remodelling of 
the tumour microenvironment that affect several 
regulatory networks3, hence we expect many 
regulatory relationships to hinge on joint 
consideration of multiple data modalities. 

Across a cohort of ccRCC patients, we 
show modest correlation between data at different 
layers as well as limited agreement among 
biological terms extracted from each layer in 
isolation. This observation underscores the 
challenges of analyses applied to individual omics 
since some of the gene changes observed at the 
epigenetic or transcriptional layer may not be 
translated into protein changes. We thus grouped 
genes based on regulatory “flows” based on 
differences (between control and disease) at each 
layer; we found the majority of genes exhibit states 
counter to the generalisation that increased DNA 
methylation at the gene represses transcription, 
which in turn decreases translation of the gene 
product within the condition, or (conversely) that 
reduced methylation at the gene activates 
transcription, which in turn increases translation of 
its product. While the extent of dissonance 
highlights the importance of considering multiple 

layers of regulation, we found that by grouping 
them by cross-layer “flows” instead elicited distinct 
biological terms, e.g. metabolism and immune 
response, subsuming the function extracted from 
each layer in isolation. The advantage of SiRCle 
clustering is that by considering all possibilities of 
regulation, we can pinpoint the likely layer at which 
genes are dysregulated in disease. 

In addition to consolidating biological 
function across the layers, SiRCle clustering 
captured relationships from adjunct data, such as 
TF relationships and metabolic changes. We found 
TF’s targets fell predominantly in clusters regulated 
on the layer of transcription or methylation and 
were able to distinguish HIF TF targets that 
increased via transcription, from those that 
increased via hypomethylation. The advantage of 
performing the regulatory clustering prior to the TF 
analysis is that we can exclude TFs that are 
predicted to drive genes in clusters regulated at the 
layer of translation (e.g. TMDE, TMDS), given TFs 
work at the layer of transcription.  

Coupling SiRCle annotations with 
metabolic activity, we were able to establish a more 
detailed view of how changes in regulation 
correspond to changes in metabolic pathways. We 
found that glycolysis was regulated on the 
methylation layer (MDE), whilst the TCA cycle and 
oxidative phosphorylation were regulated 
translationally (TMDS). We noticed that glycolytic 
enzymes are upregulated in the context of ccRCC, 
suggesting hypomethylation increases DNA 
accessibility48, potentially improving the capacity 
for H1F1A to bind and upregulate glycolytic 
enzyme transcription and eventual translation. 
Hakimi et. al. showed that metabolites of the 
glycolysis pathway split at the level of GAPDH, 
whereby metabolites upstream of this enzyme are 
accumulated, and the ones downstream are 
depleted7. We found that this is not in line with the 
enzyme expression, yet this counterintuitive finding 
could be explained by the fact that the catalytic 
function of many enzymes is altered by post-
translational modifications such as phosphorylation 
(e.g.  PGK161  and PKM62) or oxidation (e.g. 
GAPDH63). In fact, it has been shown for the 
CPTAC patient cohort that PGK1 and PKM have 
increased phosphorylation when comparing tumour 
versus normal14. Moreover, glycolytic flux towards 

summarised survival information from the Protein Atlas (https://www.proteinatlas.org/). Grey blocks highlight cell types 
discussed in the results. Similarly, with bold gene names. c, Survival and boxplots for TRIP13, which is in the Transcription 
and Processing Driven Enhancement (TPDE) (+) SiRCle cluster and CD8+ proliferating. d, Survival and boxplots for FH, 
which is in the Transcription and Processing Driven Suppression (TPDS) (+) SiRCle cluster and DE in CD45- PAX8+ 
renal epithelium. e, Survival and boxplots for SUCLG1 which is in the TPDS (+) SiRCle cluster and DE in CD45- PAX8+ 
renal epithelium. f, Significant enrichment (odds ratio), using the Fischer’s Exact test of SiRCle clusters subset into (+) 
for significant (p <0.05) VAE integrated changes with PBRM1 > BAP1, and (-) PBRM1 < BAP1. g, Survival plot for FLT1 
from PBRM1 vs BAP1 comparison. 
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lactate in ccRCC is inhibited by FBP164,  yet FBP1  
is not mutated in this patient cohort.   

Until this point, we investigated changes 
across the whole ccRCC cohort, however, there are 
distinct subpopulations of patients, with differing 
prognoses, for example, those with stage I or stage 
IV tumours. We sought to investigate the regulatory 
differences between patient subpopulations, 
however, when we analysed each layer 
independently there was limited overlap between 
the mRNA and protein layers. Thus, to find 
regulatory differences between patient 
subpopulations (e.g. age, stage, mutation), we 
developed a novel integration approach using a 
VAE to learn a single key feature from the DNA 
methylation, RNA, and protein layers for each 
SiRCle cluster. By integrating across the layers 
prior to performing statistical analyses we found 
significant differences in genes important for 
survival when comparing early and late stage 
patients and showed that the VAE results in 
biologically meaningful integrated values. 
Moreover, we showed that our integrative approach 
can be used to perform GSEA between patients’ 
groups. 

SiRCle allowed us to identify key 
differences between patients’ subpopulations in 
terms of metabolic rewiring and the different cell 
types. Interestingly, oxidative phosphorylation was 
less suppressed in late stage and older patients, 
despite old patients being distributed across 
multiple cancer stages. We also observed that 
within the TCA cycle intermediates, citrate and 
aconitate were depleted in late-stage tumours, 
despite the increased expression of the enzymes 
involved in their biosynthesis. Whether this result 
indicates a further functional regulation of the TCA 
at the post-translational layer, as for instance PDH 

phosphorylation, which in turn controls citrate 
biosynthesis, needs to be further investigated. In 
addition, we observed an increase in succinate in 
late-stage patients and this finding could indicate 
that these tumours may be more hypoxic, 
considering the role of succinate as marker of low 
oxygen in tissue65. The increase in succinate could 
also be due to the need to generate NADH, where 
the TCA cycle fuels into succinate and the heme 
biosynthesis pathway as previously described66. In 
line with this, HMOX1 is upregulated, likely via 
hypomethylation, and the metabolites heme and 
bilirubin are also accumulated (Fig. 3a). As 
discussed by Hakimi et al, the TCA cycle could be 
fuelled via glutamate which fuels into citrate via 
reductive carboxylation7. Lastly, in line with the 
enzyme expression, serine levels are depleted 
(Fig. 3a). While similarities in metabolic profiles 
between the old and late-stage patients were 
identified, we also found differences in methionine 
metabolism. Indeed, we found that BHMT and 
SLC3A1 are further repressed in late-stage patients 
yet show increased expression in old patients. 
Importantly, high expression of these genes is 
crucial for patient survival. We also found BHMT 
was specifically expressed in CD45- PAX8+ renal 
epithelium cells pointing to a complex interplay 
between metabolic rewiring and cellular identity 
that indicates BHMT could be used as marker of 
cellular differentiation. 

Checking the occurrence of specific 
mutations, which can have an impact of patient 
outcome12, we uncover that genes highly expressed 
in patients with BAP1 mutations are selectively 
expressed in tumour-associated macrophages, and 
indeed are negatively associated with patient 
survival. Interestingly, we found that the TF 
EPAS1, also known as HIF2A, could regulate the 

Fig. 6, Overview of SiRCle (Signature Regulatory Clustering). 
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expression of genes enhanced in PBRM1-mutated 
tumours. However, further studies are needed to 
investigate the link between BAP1 and 
EPAS1/HIF2A. Given the expense and technical 
challenges with single cell multi-omics data, we 
expect the capability to retrospectively examine 
SiRCle cluster activity in scRNA-seq data to be of 
value for understanding gene dysregulation in the 
context of heterogenous cancers. 

While we have focussed on ccRCC, with 
the increasing efforts to measure the proteome of 
cancer cohorts and other diseases the SiRCle 
method will be broadly applicable to investigating 
other datasets. Using SiRCle researchers can extend 
known relationships, find regulators and drivers of 
gene clusters, and extract genes that differ between 
patient cohorts in many different cancer types. 
 
Methods 
RNA-seq. Downloaded the data from TCGA hg38 
gene expression and clinical patient data from the 
CPTAC kidney study. Six samples were removed 
due to low correlation (ρ <  0.75) were removed 
(Supplementary Table 1) 
 
Clinical. Mutation data were downloaded for the 
patients from the RNA-seq dataset using TCGA’s 
GDC client (https://gdc.cancer.gov/access-
data/gdc-data-transfer-tool, version 1.6.1) and 
scidat (https://github.com/ArianeMora/scidat,v 
version 1.0.3). The mutation data were merged with 
the clinical information from CPTAC patients 
along with the CIMP-status_Chr-stability_supp-
download file also from the CPTAC study. Patient 
age was grouped into three categories (<42 = 
young, 42 = middle, and >58 = old), based on 
information pertaining to pre-post menopause, 
instance rate and age of onset from sporadic as 
compared with inherited mutations35–37,67. 
  
Proteomics. Data were downloaded from the 
CPTAC data portal on 14th of April 2021 
(https://pdc.cancer.gov/study-summary/S050). 
11,355 proteins were measured for 201 samples. 
Missing protein data were imputed using DreamAI 
ensemble method68 (https://github.com/WangLab-
MSSM/DreamAI)  Samples exhibited a high 
correlation (~96%) post imputation, with tumour 
and normal samples clustering distinctly, and as 
such no protein samples were removed. The 
supplied protein names were mapped to hgnc 
symbols using biomart mappings (scibiomart, 
1.0.2, https://github.com/ArianeMora/scibiomart), 
and for those without direct mappings (211 protein 
names) were mapped using the external_synonym. 

Afterwards, 11 protein names remained unmapped, 
namely APOBEC3A_B, ELOA3D, FLJ44635, 
GAGE2D, GPR75-ASB3, KIAA0754, KIAA1107, 
LOC110384692, PALM2, WRB-SH3BGR and 
ZNF664-RFLNA. 
  
DNA Methylation. Tumour DNA methylation files 
were downloaded from the CPTAC portal, under 
metadata (https://cptac-data-
portal.georgetown.edu/study-summary/S050), 
methylation samples annotated as not ccRCC by the 
CPTAC authors were omitted from our analyses 
(C3L_00011, C3L_00010, C3L_00097, 
C3L_00096, C3L_00004, C3L_00079), leaving 
104 ccRCC tumour methylation samples. These 
were merged by reading in each file before merging 
on CpG ids and retaining the Beta values for each 
CpG. Correlation between samples was computed 
with three tumour samples identified as outliers 
with low correlation  ρ <  0.75 namely C3L-
01882, C3L-01885, and C3L-01281, which were 
removed. Using the provided GencodeV12 
annotation (Hg37) unannotated Loci were removed 
leaving 586,055 Loci. To ensure compatibility with 
the Protein and RNA-seq data that use Hg38 gene 
identifiers, we mapped the transcript IDs (Hg37) 
obtained from the DNA methylation data to 
ensembl gene IDs shared in both versions (Hg37 & 
Hg38). For transcripts without a direct mapping, we 
sought to map on the “external_gene_name”, 
“hgnc_symbol”, and “external_synonym” from the 
column “GencodeCompV12_Name” to identify the 
Hg38 ensembl ID. Only 38,352 CpGs remained 
unassigned, corresponding to 7,910 unique genes 
“GencodeBasicV12_Name”, which were removed. 
The remaining 547,703 CpGs were used for 
subsequent analyses and annotated to 27037 unique 
Hg38 ensembl IDs. Normal DNA methylation data 
were downloaded from the TCGA data portal, by 
selecting TCGA-KIRC patients, and solid tissue 
normal m450 DNA methylation beta values (level 
3 files), the subsequent manifest file and clinical 
data were provided as input to scidat. Using scidat 
the CpG beta value files and patient mutation data 
were downloaded. TCGA CpG data were merged 
on the CpG identifier (composite element 
reference) with the gene annotated CPTAC DNA 
methylation data, giving 268,355 CpGs across the 
two datasets with 151 normal samples from TCGA 
and 100 tumour samples from CPTAC. 
  
Dataset generation. Dataset summaries: RNA-seq 
(66 normal and 173 tumour samples), Protein data 
(81 normal & 103 tumour samples), and CpG 
samples (151 normal & 100 tumour samples). PCA 
of samples in each dataset shows a clear distinction 
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between normal and tumour samples 
(Supplementary Fig. 1b).  

  
Differential analysis. Differential expression 
analysis on RNA-seq data was performed using 
DEseq269 (version 1.32.0), using condition ID 
(tumour) as the factor. Genes were excluded if there 
were less than 10 samples with at least 10 counts in 
a gene resulting in 25,655 genes for DE analysis. 
Differential abundance analysis on proteomics data 
was performed using limma70 (version 3.48.3). 
Only the condition (i.e. Tumour or Normal) was 
used in the design matrix. lmfit with eBayes was 
used and the p values were corrected using the FDR 
method. For the methylation data (268,355), CpGs 
with low (mean CpG value < 0.05) or high mean 
methylation (> 0.95) were removed prior to 
performing the differential test, resulting in 
195,195, and 187,770 CpGs. CpG M values, 
𝑀𝑀 = 𝑙𝑙𝑙𝑙𝑙𝑙2

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
1−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

71, were used as input to limma’s 
lmFit eBayes and p values were adjusted using the 
FDR method.  

  
SiRCle (Signature Regulatory Clustering). 
SiRCle requires a single DNA methylation value to 
be assigned to a gene. After performing the CpG 
analysis using limma, CpGs were filtered in order 
to map only one CpG to a given gene. This was 
done by grouping the CpG data by annotated genes. 
In detail, if there were less than three significant 
(𝑝𝑝 <  0.05) CpGs, then the CpG with the greatest 
absolute change was selected. If there were more 

than 3 CpGs (with 𝑝𝑝 <  0.05), we tested if the 
majority (> 60%) of CpGs agreed in the “direction 
of change” (positive or negative) and if not all CpGs 
were omitted. Otherwise, the CpG with the highest 
methylation difference was chosen. 

Next, we performed the SiRCle clustering 
on the filtered CpG data, DE results from DEseq2 
(RNA-seq Data) and the output from limma’s 
abundance analysis (Proteomics Data). The datasets 
were merged using the background method: 
(P&M)|(P&R)|(M&R) meaning a gene was retained 
if it was changed significantly (𝑝𝑝 <  0.05) in at 
least two of the three input datasets (RNA-seq, 
Proteomics, DNA methylation). Next, regulatory 
clusters were assigned using the cut-offs of adjusted 
p values < 0.05, and mRNA |𝑙𝑙𝑙𝑙𝑙𝑙2𝐹𝐹𝐹𝐹|  >  1.0, 
protein |𝑙𝑙𝑙𝑙𝑙𝑙2𝐹𝐹𝐹𝐹|  >  0.5 and |DNA methylation 
beta difference| > 0.1. The regulatory labels from 
grouping method 2 were chosen (Table 1, 
Supplementary Table 2). ORA was performed on 
each of the clusters using the background as defined 
by the background method (meaning all genes with 
p < 0.05 in at least two datasets). One point to note 
is that the state unchanged includes unmeasured; 
for example, a protein may be changed, but not 
detected, owing to technical limitations. Similarly, 
as we are using DNA methylation array data, a 
gene’s initial point of dysregulation may be at the 
methylation layer, yet not probed. Given the choice 
of filtering is specific to the biological question and 
technical setup, our package enables users to pre-
filter and remove undetected genes at each layer. 

  

Table 1: Regulatory labels from the different grouping methods. 

Methylation 
  

RNA-seq 
  

Proteomics 
  

Regulation 
Grouping1 

Regulation 
Grouping2 

Regulation 
Grouping3 

Hypermethylation DOWN DOWN MDS MDS MDS 

Hypermethylation UP DOWN TPDE+TMDS TPDE+TMDS TMDS 

Hypermethylation UP UP TPDE TPDE TPDE 

Hypermethylation DOWN UP MDS+TMDE TMDE TMDE 

Hypermethylation No Change UP TPDE+TMDE TMDE TMDE 

Hypermethylation No Change DOWN TPDE+TMDS TMDS TMDS 

Hypermethylation UP No Change TPDE+TMDS TPDE+TMDS TMDS 

Hypermethylation DOWN No Change MDS+TMDE MDS+TMDE TMDE 

Hypermethylation No Change No Change MDS-ncRNA MDS_ncRNA MDS_ncRNA 

Hypomethylation DOWN DOWN TPDS TPDS TPDS 

Hypomethylation UP DOWN MDE+TMDS TMDS TMDS 

Hypomethylation UP UP MDE MDE MDE 
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Hypomethylation DOWN UP TPDS+TMDE TPDS+TMDE TMDE 

Hypomethylation No Change UP TPDS+TMDE TMDE TMDE 

Hypomethylation No Change DOWN TPDS+TMDS TMDS TMDS 

Hypomethylation UP No Change MDE+TMDS MDE+TMDS TMDS 

Hypomethylation DOWN No Change TPDS+TMDE TPDS+TMDE TMDE 

Hypomethylation No Change No Change MDS+ncRNA MDE_ncRNA MDE_ncRNA 

No Change DOWN UP TPDS+TMDE TPDS+TMDE TMDE 

No Change UP DOWN TPDE+TMDS TPDE+TMDS TMDS 

No Change DOWN DOWN TPDS TPDS TPDS 

No Change UP UP TPDE TPDE TPDE 

No Change No Change UP TMDE TMDE TMDE 

No Change No Change DOWN TMDS TMDS TMDS 

No Change UP No Change TPDE+TMDS TPDE+TMDS TMDS 

No Change DOWN No Change TPDS+TMDE TPDS+TMDE TMDE 

No Change No Change No Change No Change No Change No Change 

TF in each regulatory cluster. TFs were identified 
in each regulatory cluster using the TF database 
from DoRothEA49 (level A relationships). 
Relationships were retained only where the TF and 
the target had a significant (p < 0.05) change on the 
protein (TF) and mRNA (target) level, and the 
direction of change agreed with the direction of 
mode of regulation (MOR). For example, if the TF 
acts to enhance the gene target, the protein level of 
the TF should be positive and in turn the RNA level 
should also be positive. sciMoTF (version 0.1.1, 
https://github.com/ArianeMora/scimotf) was used 
to identify and visualise TFs that were enriched in 
clusters. Fisher's Exact Test (FET) with Benjamini 
Hochberg (BH) correction was used, whilst the 
background consisted of all identified TFs in other 
regulatory clusters. 
 
ChIP HIF1A validation. ChIP-seq peaks from 
HIF1A (GSM3417826, GSM3417827, 
GSM2723878) and EPAS1 (GSM3417828, 
GSM3417829, GSE120887) were downloaded 
using ChipAtlas72 with a threshold of 50 (i.e. for 
peaks to be present they must have a Q value < 1E-
05). These peaks were used to check whether 
HIF1A peaks did indeed occur at the TSS of the 
TPDE genes in patient derived renal cell carcinoma 
cell lines. IGV jupyter73 was used to view the peaks. 

 
Variational autoencoders to compress patient’s 
genes’ features. A variational autoencoder (VAE) 
is a generative machine learning method that can be 

used to learn to create a latent (i.e. compressed) 
representation of data. We choose a uniform 
gaussian as the prior distribution for the latent 
variables. The conditional distribution of the latent 
variables given the input data is given by the 
encoding 𝑞𝑞𝜃𝜃(𝑧𝑧|𝑥𝑥), and the conditional distribution 
of the data given the latent variables is represented 
by the decoding function 𝑝𝑝𝜙𝜙(𝑥𝑥|𝑧𝑧).Where the 
parameters, 𝜃𝜃, and 𝜙𝜙, include the weights and 
biases of the neural network that are learnt during 
training, via optimising with respect to an objective 
function. The objective function is used to 1) ensure 
the latent distribution approximates a standard 
gaussian by minimising the distance via mean 
maximum 𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀, 2) ensure the decoded data point 
is as close to the input as possible via mean squared 
error (MSE) i.e. we have a good generative model.    

𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀(𝑞𝑞𝜃𝜃||𝑝𝑝𝜙𝜙) =
𝔼𝔼𝑝𝑝𝜙𝜙(𝑧𝑧),𝑝𝑝𝜙𝜙(𝑧𝑧’)[𝑘𝑘(𝑧𝑧, 𝑧𝑧′)] –  2𝔼𝔼𝑞𝑞𝜃𝜃(𝑧𝑧),𝑝𝑝𝜙𝜙(𝑧𝑧′)[𝑘𝑘(𝑧𝑧, 𝑧𝑧′)]  +
  𝔼𝔼𝑞𝑞𝜃𝜃(𝑧𝑧),𝑞𝑞𝜃𝜃(𝑧𝑧’)[𝑘𝑘(𝑧𝑧, 𝑧𝑧′)]74 

Above, the distance between the learnt distribution 
and the expected distribution is computed via the 
distance between distributions 𝑞𝑞𝜃𝜃 and 𝑝𝑝𝜙𝜙 using a 
kernel function, k. In our implementation we use a 
gaussian kernel, following the implementation from 
Zhao et. al74.  

MSE =
1
n
��𝑥𝑥𝑖𝑖𝑖𝑖 − x��2
n

i
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MSE is used to calculate the mean difference 
between the input data point, 𝑥𝑥𝑖𝑖𝑖𝑖, and the decoded 
value, 𝑥𝑥𝑖𝑖𝑖𝑖′. Where 𝑥𝑥𝑖𝑖𝑖𝑖is a set of features belonging 
to one patient, p, and one gene, i. Features selected 
as input were: protein levels, mRNA levels, protein, 
mRNA and methylation tumour versus normal 
difference, equating to a vector of seven features. 
Given the differing ranges of each feature, the data 
are scaled w.r.t gene i for a given data type prior to 
calculating the difference between tumour and 
normal. For example, we normalise 𝑦𝑦𝑖𝑖𝑖𝑖 as follows: 
y is the value for e.g. mRNA, i is the gene index, 
and p is the patient index, where min and max are 
calculated across all patients for gene i, omitting 
any missing data. 

𝑦𝑦𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑦𝑦𝑖𝑖𝑖𝑖  −  𝑦𝑦𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 
𝑦𝑦𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  −  𝑦𝑦𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 

 

Prior to selecting the training set, genes with any 
feature with a z-score greater than two are 
considered outliers and omitted from the training 
set, however, are still input into the trained model.  
Our formulation lends to using the integrated value, 
𝑧𝑧𝑖𝑖𝑖𝑖, as input to statistical functions such as Mann 
Whitney U, or a t-test. As an example, we show the 
formulation of the t-statistic on using integrated 
values, 𝑧𝑧𝑖𝑖𝑖𝑖, as defined in the results section. The test 
statistic for the difference between two patient 
groups, S and G, is thus defined as follows: 

𝑡𝑡𝑖𝑖 =
𝑧𝑧�𝑖𝑖𝑖𝑖 − 𝑧𝑧�𝑖𝑖𝑖𝑖

� 𝑠𝑠𝑖𝑖𝑖𝑖2
𝑛𝑛|𝑆𝑆|

+ 𝑠𝑠𝑖𝑖𝑖𝑖2
𝑛𝑛|𝐺𝐺|

 

Significance is determined via two-sided null 
hypothesis, namely, that there is no difference 
between the means of the encoded values for 
patients belonging to group S and group G. In the 
non-parametric case, we use Mann Whitney U, 
where the null hypothesis that there is an equal 
chance that a patient from S, is greater than a patient 
from G and vice versa, as calculated by ranking 
each patient via their encoding.  
 
Creating the integrated dataset for the ccRCC 
case study. To identify genes that changed 
significantly across the three data types between 
patient groups we developed an integration package 
using a VAE (formalised above) to first integrate 
the data, reducing the features across patients to a 
single data point then perform statistics across two 
groups of patients. For the CPTAC dataset missing 
normal data were substituted with the mean normal 
value from patients with matching clinical 
information (stage and age group). Since 

methylation values weren’t matched, we use only 
the tumour methylation difference minus the 
average normal methylation from the TCGA 
patients. Only patients with matching protein and 
RNA normal and tumour data were used for 
training (59 cases). Data (genes by patients) from 
each SiRCle cluster were used to train a VAE (train-
test split = 75:25), with 1 internal layer (5 nodes), 
and a single latent node, using a maximum mean 
discrepancy parameter of 0.25, mean squared error 
loss, rectified linear unit activation functions, Adam 
optimiser, batch size of 16, maximum epochs of 
100 with early stopping after three epochs of no 
improvement in loss. These configurations were 
constant for all VAEs, and we end up with 10 
trained VAEs corresponding to the 10 SiRCle 
clusters.  

 
Statistics on the integrated dataset. To determine 
genes that changed significantly between the 
groups of patients across the levels of information, 
we tested each gene using Wilcoxon rank sum test 
(given MDS_TMDE, TPDS_TMDE, MDE, 
MDE_TMDS, TMDS, TPDE_TMDS were not 
normally distributed) on three comparisons: 1) old 
(56) vs young (7), and 3) BAP1 (13) mutations vs 
PBRM1 (33) mutations, Stage 4 (10) vs Stage 1 
(45) (Supplementary Table 1, Supplementary 
Fig. 1a). P-values were corrected using BH FDR on 
all genes within each cluster.  

Before returning the values to the user the 
direction of the VAE integrated value with that of 
protein Log2FC, or RNA Log2FC (Supplementary 
Fig. 5a). To quantify the integrated change, termed 
“Integrated difference”, we computed the 
“distance” condition 1 (e.g. late stage) patients’ 
mean VAE value from condition 0 (e.g. early stage) 
mean VAE value (subtracting the value from 
condition 0 from condition 1 in an absolute sense). 
Note this is defined earlier. 

We used a fGSEA 
(https://github.com/ctlab/fgsea) test to identify 
coordinated changes in metabolic signatures50, we 
use the integrated difference as the statistic 
provided to fGSEA and use 10,000 permutations. 

 
Single cell analysis. Gene counts, and cell 
annotations, and UMAP coordinates, were 
downloaded from Krishna et al.43. The single cell 
data were used to quantify the “co-expression” and 
“cell-types” of the genes changing between Stage 
IV and Stage I patients and BAP1 vs PBRM1 
patient groups. We divide genes into the “positive” 
and “negative” groups by selecting genes 
significant (p < 0.05) and either a positive change 
(> 0) between the two populations or negative (<0). 
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We then test which of these genes are differentially 
expressed between the 31 cell types using the 
“scanpy.t1.rank_gene_groups” (as annotated by 
Krishna et al.47), one vs rest test, method=t-test. 
Using the returned p.adj and 𝑙𝑙𝑙𝑙𝑙𝑙2𝐹𝐹𝐶𝐶 for each gene, 
we determined the genes associated with each cell 
type by selecting genes with a p.adj < 0.05 and a 
𝑙𝑙𝑙𝑙𝑙𝑙2𝐹𝐹𝐹𝐹 >  0.5 for that cell type.  Finally, using the 
SiRCle integrated difference gene sets and the cell 
type gene groups, we tested for enrichment in each 
cell type for SiRCle Stage IV-Stage I and PBRM1-
BAP1 set using a Fisher's exact test, correcting p-
values using BH FDR correction. The top 5 genes 
are presented in Fig. 5a as per odds ratio value. For 
heatmap and scatterplot visualisations genes are z-
score normalised. Finally, using the Protein Atlas 
(https://www.proteinatlas.org/) we check the 
prognostic status of each of the genes and plot these 
using GEPIA2 (http://gepia2.cancer-pku.cn/) using 
the default quantile cut-offs (0.25, 0.75). 
 
Metabolomics profile comparing early and late 
stage. Median normalised metabolomic profiling 
data of 138 matched clear cell renal cell carcinoma 
(ccRCC) and normal tissue pairs was downloaded 
from the supplementary table 2 of Hakimi et al.7. 
Tumour samples were normalised to their matching 
normal tissue sample based on the matching index 
by calculating the fold change. Next, we performed 
differential metabolite analysis (DMA) comparing 
late stage (Stage 3 and 4) versus early stage (stage 
1 and 2) and old (Age at surgery >58) versus young 
(Age at surgery <42) patients. Mann-Whitney U 
test (wilcox.test in R) was used to calculate the p-
value and corrected using BH. Unnamed 
metabolites were removed, and metabolic pathways 
assigned using published pathway information7. 
 
Data availability. Data generated as part of this 
study are available as supplementary tables or via 
the Github, 
https://github.com/ArianeMora/SiRCle_multiomic
s_integration, where information to download all 
raw data from the respective studies is available. If 
there are any additional information required for 
reanalysis of the data reported in this paper contact 
(christina.schmidt1@outlook.de and 
ariane.mora@gmail.com). 
 
Code availability. The SiRCle method described in 
this manuscript is available as a Python package on 
GitHub (https://github.com/ArianeMora/scircm), 
along with source code 
(https://github.com/ArianeMora/SiRCle_multiomi
cs_integration). Installation instructions and 
documentation are available at 

https://arianemora.github.io/SiRCle_multiomics_i
ntegration/. If there are any additional information 
required for reanalysis or code adaptations, please 
post an issue on the GitHub. 
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Supplementary information 
Supplementary Figures 

  

 

Supplementary Fig. 1, a, Case annotations based on mutation, tumour stage and patients age. b, Principal 
Component Analysis (PCA) shows the largest source of variation in all datasets across patient samples is the 
Sample Type while patient annotations don’t account for the top two principal components. Note where an annotation 
is defined on the tumour level, for example stage or mutation, that annotation is also used to colour the normal 
sample from the same patient. c, The top 10 gene ontology terms from over representation analysis for each data 
layer are visualised. Where two dots appear on the same line, it means they were both top terms for that data layer. 
This only occurs for the up regulated terms, i.e. the terms that were associated with an increase on the protein or 
mRNA layers. Data layer refers to the data layer on which the differential analysis was run, and TvN cut-off denotes 
the cut-off used when selecting genes for ORA. d, as in c, except with the bottom terms. 
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Supplementary Fig. 2, a,c-d Transcription factor (TF) network of TFs from manually curated repositories 
(DoRothEA) that may drive genes in the cluster Methylation Driven Enhancement (MDE) (a), MDE+ Translation and 
post-translational Modification Driven Suppression (TMDS) (c) and Transcription and Processing Driven 
Suppression (TPDS) (d) . The dot size corresponds to the number of genes of the cluster that are targeted by the 
TF. The colour of the dot shows the p-adjusted value (p.adj). The connecting lines (grey) shows the number of 
common genes the connected TFs regulates. b, Wordcloud including the TF targets with shared TF binding in the 
MDE cluster, with the size corresponding to how many different TF’s are predicted to regulate the genes expression. 
e, HIF1A binding for genes in RCC cell in the MDE cluster. f, HIF1A and EPAS1/HIF2A binding for genes in the 
TPDE cluster. 
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Supplementary Fig. 3, Volcano plots are based on the metabolic signatures and the number of proteins detected 
of the pathway are reported. Proteins that are unique for the metabolic pathways are displayed in circles and proteins 
that are part of multiple metabolic pathways are displayed in diamond. The colour code depends on the SiRCle 
cluster the protein is part of and is summarised in the pie chart. The protein Log2FC is calculated between tumour 
versus normal. a, Volcano plot of glycolysis and gluconeogenesis. b, Transcription factor (TF) factor network of TFs 
from manually curated repositories (DoRothEA49) that drive glycolytic enzymes in the cluster Methylation Driven 
Enhancement, MDE and Transcription and Processing Driven Enhancement, TPDE. c, HIF1A ChIP-seq peaks 
binding sites at glycolytic enzyme TSS’s. d, Volcano plot of the citric acid cycle. e, Volcano plot of methionine 
metabolism. f, Volcano plot of glycine, serine and threonine metabolism. 
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Supplementary Fig. 4, a, Top 10 gene ontology (GO) terms from over representation analysis (ORA) for each data 
layer are visualised for stage I tumour vs normal and stage IV tumour versus normal (TvN) on the same plot. Where 
two dots appear on the same line, it means they were both top terms for that data layer or in both stage I and stage 
IV TvN comparisons. Data layer refers to the data layer on which the differential analysis was run and the state, for 
example increased or decreased in tumour (Up and Down respectively), and TvN cut-off denotes the TvN cut-off 
used when selecting genes for ORA. b, Top 10 GO terms from ORA for each data layer are visualised for stage IV 
tumour vs stage I tumour. c, overlap between all significantly enriched GO terms and metabolic pathways using 
gene set enrichment analysis (GSEA) with the test statistic from the differential analysis for a given layer used as 
input. An overlap indicates that a pathway or term was significantly changed in both data layers. “Up regulated” 
refers to a positive enrichment score whilst “Down regulated” refers to a negative enrichment score for protein and 
mRNA layers, whilst the opposite for the DNA methylation layer. 
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Supplementary Fig. 5, a, Overview of SiRCle integration using a variational autoencoder (VAE) and statistics on 
the VAE dimension. b, Dispersion between biological features and the integrated difference in the Methylation Driven 
Enhancement (MDE) SiRCle cluster. The integrated difference is the difference between patients of two groups, 
similarly, the integrated p.adj is the adjusted p-value from the integrated difference between two patient groups (e.g. 
stage IV vs stage I). Each point represents a gene, and the difference is the mean difference between the groups.  
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Supplementary Fig. 6, Metabolic signatures based on gene expression are defined by Gaude et. al50 with p.adj 
values corresponding to the GSEA results after ranking the genes in each SiRCle cluster using the VAE integrated 
rank. Metabolite pathways based on metabolites are defined by Hakimi et. al7. a, Comparison of the VAE integrated 
rank of old with young patients for oxidative phosphorylation genes that are part of the Translation and post-
transcriptional Modification Driven Suppression (TMDS) SiRCle cluster. b, Comparison of the VAE integrated rank 
of old with young patients for TCA cycle genes colour coded for the SiRCle clusters they are part of. c, Comparison 
of the log2FC tumour versus normal (TvN) of old with young patients for TCA cycle metabolites. d, Comparison of 
the VAE integrated rank of old with young for genes corresponding to the methionine metabolism pathway; colour 
coded for the SiRCle clusters they are part of. e, Comparison of the log2FC TvN of old with young patients for 
“cysteine, methionine SAM, taurine metabolism” metabolites. f, SLC3A1 survival curve based on 
(http://gepia2.cancer-pku.cn/) using quantile default cut offs of 25%, 0.75%. Integrated difference and protein log2FC 
difference are comparing stage I with stage IV patients. 
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Supplementary Fig. 7, UMAP plots use the UMAP cell coordinates and cell annotations from Krishna et. al47 .While 
the gene expression is the mean gene expression for the genes identified as enriched in any cell type and the given 
SiRCle cluster subset into (+) for significant (p <0.05) changes with stage IV > stage I, PBRM1 > BAP1, and (-) stage 
IV < stage I, PBRM1 < BAP1. Boxplots show the integrated VAE value for each patient with either a BAP1 or PBRM1 
mutation, alongside the protein and RNA Log2FC, and methylation beta difference between tumour and normal for 
that same group of patients. Boxplot titles include the SiRCle cluster and the cell type(s) it is enriched in.  Survival 
plots were plotted using GEPIA2 (http://gepia2.cancer-pku.cn/) using quantile default cut-offs of 25%, 0.75%.  
a, UMAP plots for TPDE (+). b, UMAP plots for stage IV vs stage I, Methylation Driven Suppression, MDS (-), 
Transcription and Processing Driven Suppression, TPDS (-) and TPDS (+), enriched in CD45- PAX8+ renal 
epithelium. c, UMAP plots for PBRM1 vs BAP1 Transcription and Processing Driven Enhancement, TPDE (-). d, 
UMAP plots for PBRM1 vs BAP1 Translation and post-transcriptional Modification Driven Enhancement, TMDE (+). 
e, Survival EPAS1/HIF2A. f, EPAS1/HIF2A VAE integrated difference alongside tumour vs normal summaries for 
patients with either BAP1 or PBRM1 mutations. g, FLT1 VAE integrated difference alongside tumour vs normal 
summaries for patients with either BAP1 or PBRM1 mutations. 
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Supplementary Tables 
 
Table 1: Clinical information of patients from each study 

- Sheet 1: Summary of CPTAC and TCGA patients and their demographics 
- Sheet 2: Sample IDs removed based on QC 

 
Table 2: DE results for each dataset 

- Sheet 1: Protein DA for TvN 
- Sheet 2: RNA DE for TvN  
- Sheet 3: DNA methylation DCpG for TvN 
- Sheet 4: Protein enrichment (ORA for UP genes) 
- Sheet 5: Protein enrichment (ORA for DOWN genes) 
- Sheet 6: RNA enrichment (ORA for UP genes) 
- Sheet 7: RNA enrichment (ORA for DOWN genes) 
- Sheet 8: CpG enrichment (ORA for UP genes) 
- Sheet 9: CpG enrichment (ORA for DOWN genes) 

 
Table 3: Results from the SiRCle clusters 

- Sheet 1: RCM output, which includes the mRNA, protein, & DNA methylation Log2FC’s along 
with the cluster assigned. 

- Sheet 2: ORA outputs for each cluster 
 
Table 4: TF analysis output 

- Sheet 1: Transcription factor output table 
 
Table 5: Metabolomics data for tumour vs normal 

- Sheet 1: clinical information for metabolomics patients 
- Sheet 2: TvN differential expression results 
- Sheet 3: GSEA on protein TvN for metabolic pathways 
- Sheet 1: comparison of Stage IV vs Stage I 
- Sheet 2: comparison of young vs old 

 
Table 6: ORA and GSEA on Stage I and Stage IV samples  

− Sheet 1: Protein DA for Stage I TvN 
− Sheet 2: RNA DE for Stage I TvN 
− Sheet 3: DCpG for Stage I TvN 
− Sheet 4: DE analysis for Stage IV TvN 
− Sheet 5: DA analysis for Stage IV TvN 
− Sheet 6: DCpG analysis for Stage IV TvN 
− Sheet 7: DE analysis for Stage IV Tumour v Stage I Tumour 
− Sheet 8: DA analysis for Stage IV Tumour v Stage I Tumour 
− Sheet 9: DCpG analysis for Stage IV Tumour v Stage I Tumour 
− Sheet 10: ORA UP for TvN Stage I and Stage IV 
− Sheet 11: ORA DOWN for TvN Stage I and Stage IV 
− Sheet 12: ORA UP for Stage IV v Stage I tumour 
− Sheet 13: ORA DOWN for Stage IV v Stage I tumour 
− Sheet 14: GSEA on metabolic pathways Stage IV v Stage I tumour Positive NES 
− Sheet 15: GSEA on metabolic pathways Stage IV v Stage I tumour Negative NES 

 
Table 7: Integrated dataset for patients 

− Sheet 1: genes x patients with integrated value 
− Sheet 2: comparison of Stage IV vs Stage I 
− Sheet 3: comparison of young vs old 
− Sheet 4: comparison of BAP1 vs PBRM1 
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Table 8: GSEA results for comparisons  

− Sheet 1: GSEA on metabolic pathways Stage IV vs Stage I 
− Sheet 2: GSEA on metabolic pathways of young vs old 
− Sheet 3: GSEA on metabolic pathways of BAP1 vs PBRM1 

 
Table 9: Single cell output of enriched groups 

− Sheet 1: comparison of Stage IV vs Stage I 
− Sheet 2: comparison of BAP1 vs PBRM1 
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