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Abstract Recent work in cell culture models, animal models, and human patients

indicates that cancers with acquired resistance to a drug can become simultaneously

dependent upon the presence of that drug for survival. This drug dependence offers a
potential avenue for improving treatments aimed at slowing resistance, yet relatively

little is known about the frequency with which drug dependence arises, the mecha-

nisms underlying that dependence, and how drug schedules might be tuned to opti-

mally exploit drug dependence. In this work, we address these open questions using

a combination of laboratory evolution, in vitro experiments, and simple mathematical

models. First, we used laboratory evolution to select more than 100 resistant BRAF
mutant melanoma cell lines with acquired resistance to BRAF, MEK, or ERK inhibitors.

We found that nearly half of these lines exhibit drug dependence, and the dependency

response is associated with EGFR-driven senescence induction, but not apoptosis, fol-

lowing drug withdrawal. Then, using melanoma populations with evolved resistance

to the BRAF inhibitor PLX4720, we showed that drug dependence can be leveraged to

dramatically reduce population growth when treatment strategies include optimally

chosen drug-free “holidays". On short timescales, the duration of these holidays de-

pends sensitively on the composition of the population, but for sufficiently long treat-

ments it depends only on a single dimensionless parameter (γ) that describes how the

growth rates of each cell type depend on the different treatment environments. Ex-

periments confirm that the optimal holiday duration changes in time–with holidays of

different durations leading to optimized treatments on different timescales. Further-

more, we find that the presence of “non-dependent” resistant cells does not change

the optimal treatment schedule but leads to a net increase in population size. Finally,

we show that even in the absence of detailed information about the composition and

growth characteristics of cellular clones within a population, a simple adaptive ther-

apy protocol can produce near-optimal outcomes using only measurements of total

population size, at least when these measurements are sufficiently frequent. As a

whole, these results may provide a stepping-stone toward the eventual development

of evolution-inspired treatment strategies for drug dependent cancers.
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INTRODUCTION
The advent of targeted therapies has allowed for improved outcomes in oncology.

However, even the most successful targeted drugs are not often curative, especially

for patients with metastatic cancers who ultimately progress with drug resistant dis-

ease (1, 2, 3, 4). Despite tremendous progress, our most successful cancer treatment

strategies often fail to explicitly account for cellular heterogeneity and disease evolu-

tion. Recently, though, as metastatic drug resistance continues to evade our best clin-

ical practices, there has been a movement toward evolution-informed therapies (5, 6,

7, 8). These therapies aim to treat cancers (and other diseases such as those caused

by pathogenic bacteria, viruses, fungi, and parasites) as heterogeneous, ecologically

diverse, evolving populations. For example, recent laboratory work in cancer and bac-

teria aims to take advantage of drug sensitivities that evolve as a result of the original

treatment, a phenomenon known as “collateral sensitivity” (9, 10, 11, 12, 13, 14, 15,

16, 17, 18). More ecologically-inspired therapies take advantage of the competition

for resources between distinct clonal populations, hypothesizing that more treatable

clones may win-out in a competition for shared resources at a particular drug con-

centration (6, 19, 20, 21). Evolutionary game theory has also been leveraged to quan-

tify how distinct clonal populations interact and develop treatments that take advan-

tage of the “game” the population is playing (22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32).

Other evolution-based strategies model evolution on fitness landscapes (33, 34, 35)

or attempt to exploit drug combinations (36, 37, 38, 39, 40) or incorporate evolution-

ary consequences of spatial structure (41, 42, 43, 44, 45, 46, 47, 48) or dynamic envi-

ronments (49, 50, 51, 52, 53, 54, 55, 56, 57) to shape evolutionary trajectories. Still,

evolution-based therapies in cancer are in their infancy, as the vast majority of the ex-

isting literature consists of purely theoretical studies or clinical studies that rely largely

on biological intuition (58, 59, 60, 61, 62).

Meanwhile, drug dependent (sometimes called “drug addicted") cancers, in which

a population of drug resistant cells grows faster in the presence of a drug thanwithout

it, have been identified in cell culture, animal models and human patients (63, 64, 65,

66, 67, 68, 69, 70), most often in the context of targeted therapies. While candidate

mechanisms underlying drug addiction have been proposed (71, 72), it is not yet clear

how an evolution-inspired therapy might optimally treat a cancer cell population that

includes drug dependent cells.

In this work, we take an important step toward answering this question by investi-

gating how intermittent therapeutic strategies, or drug holidays, may be optimally ad-

ministered to mixed populations of cancer cells comprised of drug sensitive and drug

resistant-dependent populations in cell culture. First, we use laboratory evolution to

show that approximately half of drug resistant cells lines selected by BRAF-MEK-ERK

pathway inhibitors are also drug dependent, and this dependence is associated with

EGFR-driven senescence induction following drug withdrawal. Then, using a combina-

tion of proliferation assays and simple mathematical models, we show that the size of

the total cell population can be dramatically reduced by intermixing drug treatments

with optimally chosen drug holidays. On short timescales, the optimal time in holi-

day depends sensitively on the composition of the population–the ratio of sensitive to

resistant cells–but on longer scales depends on a single dimensionless parameter (γ)

that describes how the growth rates of each cell type depend on treatment environ-

ment (with or without drug). Using melanoma populations with evolved resistance to

the BRAF inhibitor PLX4720, we show experimentally that the optimal holiday duration

changes in time–with different holiday durations optimizing population growth on dif-

ferent timescales. Furthermore, we find that the presence of “non-addicted” resistant
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cells does not change the optimal treatment schedule but leads to a net increase in

population size. These results suggest that for a range of treatment durations, a de-

tailed knowledge of population composition is required to design optimal holidays.

However, we show that in the absence of information about composition, a simple

adaptive therapy protocol can produce near-optimal outcomes using only measure-

ments of total population size, at least when these measurements are sufficiently fre-

quent.

RESULTS
A subset of BRAFi-resistant, BRAFmutantmelanoma cell lines exhibit depen-

dence on the selecting drug. Approximately 50 percent of melanomas harbor onco-

genic BRAF mutations, and these tumors are highly responsive to inhibitors of the

BRAF-MEK-ERK pathway. This responsiveness, and the eventual development of ac-

quired resistance, can be effectively modeled in BRAF mutant melanoma cell culture

models, which typically exhibit exquisite sensitivity followed by long-term acquired

resistance to BRAF-MEK-ERK pathway inhibitors. To characterize drug dependent re-

sistance in laboratory populations, we experimentally selected (and STR profiled) a col-

lection of BRAF mutantmelanoma cell lines by exposing populations to one of three in-

hibitors (the BRAF inhibitor PLX4720, the MEK inhibitor AZD6244, or the ERK inhibitor

VX-11E) and generating multiple pooled or clonal resistant cell lines (Materials and

Methods). To characterize the response of these cell lines to drug, we plated them

at low densities both in the presence and absence of the selecting drug (PLX4720,

AZD6244 or VX-11E) and assessed growth by quantifying colony area. As expected,

we found that parental cell lines could give rise to resistant progeny exhibiting one

of two opposing responses to drug: 1) non-dependent resistance, in which resistant

cells lines were more viable in drug-free (DMSO) environments than in the presence

of drug, and 2) drug dependent resistance, in which resistant cells were more viable

in the presence of drug (Fig 1A, Table S1).

To quantify these phenotypic responses, we treated both parental and resistant

cells with a 10-fold dilution series of PLX4720 and assayed cell viability after 3 days

(Materials and Methods). While the non-dependent resistant line, a derivative of A375

(left panel), was able to survive and grow in higher doses of PLX4720 than its sensi-

tive parental counterpart, it showed no advantage in growth in drug versus DMSO

(Fig 1). Conversely, the dependent line, a derivative SK-MEL-28 (right panel), showed

both a dramatic increase in growth and survival as the PLX4720 dose was increased

as well as the ability to survive in higher doses than the corresponding parental line

(Fig 1). Overall, we found that slightly less than half (45.4 percent) of all resistant cell

lines were classified as drug dependent (percent change < -0.1) (Fig 1C and Table S1).

Certain cell lines (e.g. SK-MEL-28 and SK-MEL-5) nearly always gave rise to dependent

resistant cell lines, while others (A375) rarely did (Fig 1D). Additionally, inhibitors of

‘lower’ nodes of the BRAF-MEK-ERK pathway appeared to be slightly more likely to

produce dependency upon resistance (Fig 1D). We also observed that cell lines with a

dependency on one inhibitor in the pathway, such as PLX4720, also often displayed

dependency on inhibitors of the other nodes, albeit with less resistance (Fig 1E).

Thedependency response is associatedwith senescence andquiescence, not
apoptosis. To investigate the mechanism of the observed drug resistance, we with-

drew PLX4720 from one resistant non-dependent line (derived from A375) and two

resistant dependent lines (derived from SK-MEL-5 and derived from SK-MEL-28) and

measured the induction of markers of two terminal forms of growth inhibition asso-

ciated with drug dependence: senescence (PAI-1) and apoptosis (cleaved PARP). We
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C)

B)

FIG 1 A subset of BRAF-MEK-ERKi-resistant BRAF-mutant melanoma cell lines develop dependency on the
selecting inhibitor. A) The indicated cell lines were plated at a low density in normal culture conditions. Twenty-four

hours later, they were treated with DMSO or 3 µM PLX4720 (RAFi) as indicated for 14 days. Resulting colonies were

fixed and stained. B) A375 parental and resistant (non-dependent, left panel) or SK-MEL-28 parental and resistant

(dependent, right panel) cell lines were treated with a 10-fold dilution series of PLX4720 and viability relative to DMSO

treated control was determined. C) Clonal BRAF-MEK-ERKi-resistant cell lines were screened for dependency, charac-

terized by greater colony formation in PLX4720 than in DMSO. D) As in C), but separated by cell line and selecting drug.

E) SK-MEL-5 parental or SK-MEL-5 PLX4720-resistant clone 1 cell line were plated at a low density in normal culture

conditions. Twenty-four hours later, they were treated with DMSO, 3 µM PLX4720 (RAFi), 3 µM AZD6244 (MEKi) or 3

µM VX-11E (ERKi) as indicated for 14 days. Resulting colonies were fixed and stained.
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FIG 2 Dependent cell lines exhibit evidence of senescence upon drug withdrawal and dependency can be
blocked by knockdown of senescence pathway genes. A) A375, SK-MEL-5 and SK-MEL-28 PLX4720-resistant lines

were treatedwith PLX4720withdrawal for the indicated time and immunoblotted for PAI-1, total and cleaved PARP and

α-tubulin as a loading control. B) A375, SK-MEL-5 and SK-MEL-28 PLX4720-resistant lines were treated with PLX4720

withdrawal for 3 days and stained for annexin V and 7AAD as a measure of apoptosis. Data is normalized to cells

treated with PLX4720. C) A375 and SK-MEL-28 PLX4720-resistant lines were treated with DMSO or PLX4720 for 3

days and cell cycle analysis was performed as described in the Material and Methods. The percent of total cells

in each phase is shown. D) A375, SK-MEL-5 and SK-MEL-28 PLX4720-resistant lines were plated at low density and

treated with PLX4720 or DMSO the following day. After 14 days, cells were stained for SA β-galactasidase activity

as described in Materials and Methods. E) A375, SK-MEL-5 and SK-MEL-28 PLX4720-resistant lines were treated with

PLX4720 withdrawal for the indicated time and immunoblotted for p16, p53 and α-tubulin as a loading control. F) SK-

MEL-28 PLX-resistant lines expressing sgControl or sgCDKN2A and SK-MEL-5 PLX-resistant lines expressing sgControl

or sgTP53 were plated at low density and treated according to the schematic (left panel). On day 7 and 12, cells were

fixed and stained. G) SK-MEL-28 and SK-MEL-5 PLX-resistant lines expressing sgControl, sgCDKN2A, sgCDKN1A or

sgTP53 were treated and stained for SA β-galactasidase activity as in D).
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found that while we never observed significant expression of cleaved PARP, both of

the resistant dependent lines strongly induced PAI-1 expression by 48 hours post drug

withdrawal (Fig 2A). Using Annexin V staining as an additional measure of apopto-

sis, we observed less apoptosis in the resistant non-dependent cells upon drug with-

drawal, concurrent with their increased growth rate off drug. However, we observed

no significant change in Annexin V staining in the resistant dependent cells on drug

withdrawal (Fig 2B). In agreement with these results, we observed an increase in G1

phase cells and a decrease in S and G2 phase cells on drug withdrawal in the resis-

tant dependent cells with the opposite result in resistant non-dependent cells (Fig 2C).

Additionally, resistant dependent cells showed an increase in senescence associated

β-galactasidase (SA β-gal) activity on drug withdrawal while resistant non-dependent

cells did not (Fig 2D). We next wished to establish whether the observed dependency

related senescence was occurring by the p53 or Rb pathway (73). To investigate this,

wewithdrew PLX4720 from the cell types described above and immunoblotted for p53

or p16 (Rb pathway) expression. We found that while the resistant non-dependent

cells displayed no detectable expression of either protein, the resistant dependent

cell line, SK-MEL-5, began to express p53 at 48 hours with no expression of p16 and

SK-MEL-28 began to express p16 at 48 hours while actually displaying a decrease in

p53 expression (Fig 2E). This cell line has been shown to have a p53 mutation, indicat-

ing that p53 could be having a senescence suppressive function in this case(74). These

results indicate that resistant dependent cells might employ different mechanisms to

induce senescence on drug withdrawal.

Blocking senescence partially prevents the dependency phenotype. We next

askedwhether dependency could beblockedbyblocking senescence orwhether other

mechanisms played a partial role in the dependency phenotype. To address this, we

knocked out either CDKN2A (p16) in the resistant SK-MEL-28 cells that had previously

been shown to employ the Rb arm of the senescence pathway or TP53 (p53) in the

resistant SK-MEL-5 cells that had been shown to employ the p53 arm of the senes-

cence pathway (Figure S1A). We were surprised to observe that even in these knock-

out cells, 7 days of drug withdrawal still was capable of inducing dependency (Fig 2F,

top panels). However, when drug was reintroduced for 5 additional days after the

drug withdrawal, the knockout, but not the control, cells were able to grow out (Fig 2F,

bottom panels). The change in growth rate between the drug withdrawal and drug re-

addition periods is shown in Figures S1B-C. These results indicate that dependent cells

preferentially utilize senescence on drugwithdrawal, but that the dependent response

is robust enough to employ quiescence when senescence pathways are blocked. In

agreement with these hypothesis, we found no evidence of increased SA β-gal activity

on drug withdrawal when either p16 (SK-MEL-28 resistant) or p53 (SK-MEL-5 resistant)

was knocked out as compared to the increase in the control cells (Fig 2G), while the

knockouts did not significantly change the proportion of cells in each phase of the cell

cycle (Figure S1D).

In dependent cell lines, overexpressed EGFR drives increased phospho-ERK
and senescence on drug withdrawal. We next wished to establish the upstream

signaling events that lead to increased p53 or p16 expression and senescence induc-

tion upon PLX4720 withdrawal in resistant dependent cell lines. Previous groups have

shown a link between drug scheduling benefits and increases in phosphorylated ERK

on drug withdrawal(66, 65, 71, 72). To examine whether this was occurring and to bet-

ter establish themechanisms leading to dependency, we screened a panel of resistant

non-dependent and dependent cell lines for phospho-ERK when cultured in PLX4720

and when PLX4720 had been withdrawn for 72 hours. We observed a much larger in-
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FIG 3 Dependent, but not non-dependent resistant cell lines upregulate EGFR upon resistance and have an
increase of phospho-ERK on drugwithdrawal. A) The indicated cells lines (R, PLX4720-resistant; c, clone, dependent
cell lines highlighted in red) were treated with PLX4720 or DMSO for 4 hours and then immunoblotted for phospho-

ERK and ERK. B) The indicated cell lines, dependent cell lines highlighted in red, were immunoblotted for EGFR. C)

The immunoblot in B) was quantified and the percent change in EGFR expression relative to parental cell line was

calculated. D) A375 PLX-resistant clone 4 was plated at low density and treated with DMSO, 3 µM PLX, 3 µM gefitinib

and the combination the following day for 14 days. The resultant colonies were fixed and stained. E) SK-MEL-28 PLX-

resistant clone 1 was treated with DMSO, 3 µM PLX or 3 µM gefitinib for 4 hours and immunoblotted for phospho-ERK

and ERK. The same line was treated with the same conditions for three days and immunoblotted for PAI-1.

crease in phospho-ERK among dependent lines than non-dependent lines (Fig 3A and

S2A). Given the established role of EGFR in driving ERK reactivation in the setting of

BRAF inhibition, we next hypothesized that increases in EGFR expression could be driv-

ing both the resistance and dependency associated increase in phospho-ERK. Indeed,

we found large increases in EGFR expression between parental and resistant depen-

dent lines, but not between parental and resistant non-dependent lines (Fig 3B and

S2B). There was a strong relationship between EGFR induction and drug dependence

in resistant cell lines (Fig 3C). Additionally, we could block loss of cell growth, increases

in phospho-ERK and PAI-1 on PLX4720 withdrawal with the addition of the EGFR in-

hibitor, gefitinib (Fig 3D-E and S2C). Conversely, the combination of PLX4720 and gefi-

tinib re-sensitized the resistant cells to PLX4720, indicating that increased EGFR ex-

pression leads to both resistance and dependency (Fig 3E).

Drug holidays can minimize growth when resistance is drug dependent. The
poor growth of drug dependent resistant cells in drug-free environments suggests

that population growth may be minimized by incorporating drug-free "holidays“ into

treatment schedules (70, 65). However, it is not clear how to design an optimal drug

holiday regimen, which may depend on both the initial properties of the population

(e.g. the ratio of sensitive to resistant cells) as well as the growth characteristics of

different subpopulations. To investigate this question, we seeded a growth experi-

ment with a mixed population of approximately 2 × 104 cells comprised of 90 percent

drug resistant cells–loosely similar to what one might find in a progressing tumor that

has become dominated by resistant cells. In one population (SK-MEL-28), the resis-

tant cells exhibited drug-dependence, while in the other population (A375), the re-

sistant cells were not drug dependent. We then measured population size in each

population after 9 days exposure to one of 3 different treatment protocols: 1) DMSO
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only each day, 2) inhibitor (PLX4720 at 1 µM) only each day, or 3) an (arbitrary) peri-

odic schedule consisting of drug treatments and drug holidays in a 2-1 temporal ratio.

We found that in each population, the periodic dosing schedule outperformed either

the drug-free or the drug-only treatments, but not both. Specifically, population size

was minimized by drug-free treatment in the populations containing drug dependent

(SK-MEL-28) resistant subpopulations and by drug-only treatment in the populations

with non-dependent resistant subpopulations (Figure 4A-B). The relative ordering of

the treatments is perhaps not surprising, given that the initial populations were domi-

nated by drug resistant cells that favor either drug (drug dependent resistant) or non-

drug environments (non-dependent resistance), but it raises the question of whether

a more judiciously chosen treatment schedule may lead to reduced growth.

To answer this question, we considered a simple mathematical model of expo-

nentially growing subpopulations (sensitive and resistant cells) whose growth rates

depend on the environment (with or without drug; see SI). On long timescales, we

expect static treatments to eventually select for the subpopulation with the highest

growth rate in that environment. However, in the presence of time-dependent treat-

ments that switch between drug and no-drug epochs, it may be possible to maintain

a heterogeneous population of both cell types–each one suboptimal in one environ-

ment, optimal in the other–that leads to reduced growth of the total population. In-

deed, in the limiting case where cells do not interact, it is straightforward to show that

a treatment strategy will maintain co-existing populations of both cell types when the

drug treatments comprise a fraction (fd ) of the total treatment time T ,

fd =
1

1 + γ
(1)

where γ ≡ k1d−k2d
k20−k10 is a dimensionless parameter that depends only on the growth char-

acteristics (k i d ) of the different subpopulations and k i d is the per capita growth rate of

population i in drug concentration d. This simplemodel suggests that we canmaintain

population heterogeneity by incorporating drug-free epochs when γ > 0–that is, when

sensitive cells grow faster than resistant cells without drug, while resistant cells grow

faster than sensitive cells with drug. In the long-term limit (T → ∞), this treatment

strategy yields a constant ratio of the different cell types, independent of the initial

composition of the population. In addition, the growth of this heterogeneous popu-

lation is optimal–that is, it is smaller than growth in either static with-drug or static

drug-free environments–if

k j d1 − k j 0 > 0

k i0 − k i d1 > 0
(2)

Equation 2 says that one cell type (j ) must grow faster with drug than without, while

the other cell type (i ) must grow faster without drug than with–the precise conditions

that define drug dependent resistance. In summary, in this simple model, one can

maintain heterogeneity as long as sensitive cells are favored during drug-free epochs

and resistant cells are favored during with-drug epochs. But that heterogeneity leads

to minimal growth only when the resistant cells grow faster with drug than without

(that is, when they are drug dependent).

Equation 1, along with experimentally measured growth rates of parental and re-

sistant lineswith andwithout drug, predicts an optimal schedulewith fd = 0.29 (holiday

71 percent of the time) for the SK-MEL-28 (drug dependent) population and fd = 1

(drug-only) for the A375 (non-dependent) population. Based on these predictions,

we experimentally tested two additional treatment schedules: 4) an optimal sched-

ule with fd ≈ 0.29 (2.6 days of drug exposure) where the holiday was applied at the
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end of the treatment, and 5) an optimal schedule with fd ≈ 0.29 (2.6 days of drug expo-
sure) where the holiday was applied over two different windows during the treatment.

Consistent with predictions of the model, these schedules (4 and 5) outperformed

other treatments in the populations with drug dependent resistance (SK-MEL-28), but

were outperformed by the drug-only treatment (treatment 2) in the populations with

non-dependent resistance (Figure 4A-B). We found no significant difference between

schedules 4-5, consistent with the fact that schedules should depend only on fd (not

the specific timing of the holidays) when subpopulations are acting approximately in-

dependently.

The optimal schedule is dependent on the treatment length On sufficiently

long time horizons, we expect that the optimal treatment will not depend on the ini-

tial composition of the tumor. However, many real-world applications are likely to

involve finite-time treatments where these asymptotic results are not valid. Under

these conditions, it is straightforward to show (see SI) that growth of the population

will be minimized when

fd =
1

1 + γ
+
1

T
log

(
n01 (k10 − k1d1 )
n02 (k2d1 − k20)

)
(3)

Equation 3 reduces to Equation 1 when T → ∞. However, on shorter time horizons,

the two terms in Equation 3 may be comparable in size, and the optimal treatment

will therefore depend on the total treatment duration T (Fig 4C). To test this predic-

tion experimentally, we plated amixed population of 105 cells comprised of 25 percent

resistant-dependent SK-MEL-28 cells. The cells were treatedwith one of five schedules

with drug holidays ranging from 0 (static with-drug treatment) to 100 percent (static

drug-free treatment). The treatments schedules were broken into 5 day blocks so

that the cells could be counted every 5 days for an indeterminate length of time and

remain on schedule. Based on results of the model (Fig 4D), we hypothesized that the

treatment performing optimally would vary over time, with static drug treatmentsmin-

imizing growth at early times while treatments with increasing drug holidays (asymp-

totically approaching the long-time optimal of approximately 45 percent drug holiday)

minimize growth on longer timescales.

Indeed, experiments confirmed that growth was initially (e.g. days 5 and 10) min-

imized in the static drug (PLX4720) treatment (Fig 4E). However, by day 15, the treat-

ment with 25 percent holiday was optimal, while the treatment with 50 percent drug

holiday–whichmost closely corresponds to the long-timeoptimal–led tominimal growth

by day 30. These results underscore the notion that the optimal strategy for drug

holidays will initially vary over time–a phenomenon tied to the transient behavior of

the population as it approaches a steady state composition–but for sufficiently long

treatment periods approaches an optimal that is determined by the dimensionless

parameter γ (and is therefore independent of the initial population composition).

The addition of non-dependent resistant cells does not change the optimal
treatment schedule. Because parental melanoma lines may give rise to both drug

dependent and non-dependent resistant lineages, we next asked how the optimal

treatment schedule would be impacted by the presence of both resistant types. To

answer this question, we treated two differentmixed populations containing drug sen-

sitive, drug dependent resistant, and non-dependent resistant derivatives of UACC-62

with one of three treatments: 1) static drug-free treatment, 2) static treatment with

PLX4720), or 3) a model-inspred (approximately) optimal treatment with fd = 0.45

(55 percent of time in drug holiday). We chose UACC-62 cells for these studies sim-

ply because it is a line that gives rise to both resistant-dependent and resistant non-

dependent cells (Fig 1D). The twomixed populationswere comprised of approximately
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FIG 4 Scheduling drug exposure can optimize growth inhibition in cell lines that display dependency. A) A
schematic of 5 different drug schedules: 1) drug-free (DMSO) every day; 2) drug (1 µMPLX4720) every day; 3) arbitrary

periodic schedule with epochs of drug andDMSO in a 2-1 temporal ratio; 4)model-inspired schedule with drug applied

29 percent of the time (up front); and 5) model-inspired schedule with drug applied 29 percent of the time but split

into two epochs. B) Left panel: 2,000 SK-MEL-28 parental and 18,000 SK-MEL-28 PLX4720-resistant cells were plated in

triplicate in 10 cm plates and treated according to the schematic in A, DMSO (0% PLX) or 1 µM PLX4720 (100% PLX) 24

hours later. On the ninth day, cells were trypsinized and counted. Right panel: 2,000 A375 parental and 18,000 A375

PLX4720-resistant cells were plated in triplicate per schedule and treated according to the schematic in A, DMSO (0%

PLX) or 1 µM PLX4720 (100% PLX) 24 hours later. On the ninth day, cells were trypsinized and counted. C) Empirically

constrained simulations show the optimal fraction of time exposed to drug as the ratio of sensitive to drug dependent

cells and total treatment time is varied. D) Algorithm predicted optimal percent drug holiday (percent time in DMSO)

as total treatment time increases. Optimal asymptote is represented with a dashed line. E) A mixture of 2,500 SK-

MEL-28 parental and 7,500 SK-MEL-28 PLX4720-resistant cells were plated in triplicate and treated with the indicated

schedule 24 hours later. Cells were trypsinized and counted every 5 days. The algorithm predicted optimal (‘winning’)

schedule is indicated along the x-axis and time points that conform to predicted values are indicated with an asterisk.
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FIG 5 In a mix of sensitive, resistant non-dependent and resistant dependent cells, the fraction of depen-
dent cells dictates the degree of benefit achieved by scheduling. A) Using empirically constrained simulations, we

plot the total population count as the fraction of non-dependent resistant cells is varied from 0% to 100% of the resis-

tant population. B) A mixture of 100 UACC-62 PLX4720-resistant clone 4 (resistant non-dependent), 44,000 UACC-62

PLX4720-resistant clone 3 and 5,500 UACC-62 parental cells or a mixture of 5,000 UACC-62 PLX4720-resistant clone 4

(resistant non-dependent), 40,000 UACC-62 PLX4720-resistant clone 3 and 5,000 UACC-62 parental cells were plated

in triplicate and treated with the indicated schedules 24 hours later. Cells were trypsinized and counted on day 9.

constant ratios of drug sensitive to drug dependent resistant cells, but one popula-

tion initially contained 0.2 percent non-dependent resistant cells and the other 10 per-

cent non-dependent resistant cells. In both populations, the model inspired therapy–

which contains drug holidays calculated without knowledge of the non-dependent

populations–significantly outperformed the static therapies (Fig 5B). As one might in-

tuitively expect, however, the population sizes are much larger in populations that

started with more non-dependent resistant cells, consistent with predictions of the

model (Fig 5A). This result highlights a more general principle: in many cases of inter-

est, non-dependent (“traditional") resistant cells grow at similar rates in the presence

and absence of drug, at least over a range of drug concentrations. The presence of

these non-dependent resistant cells is therefore not expected to alter the choice of

optimal therapy (e.g. fr ), but it can significantly limit the utility of such therapy in cases

where these cells grow faster than the average growth rate of the drug-holiday opti-

mized population of sensitive and drug dependent cells.

Adaptive therapy based on total population size can approximate optimal
holiday schedules While it is possible in the laboratory setting tomeasure the growth

rates of each cell type with and without drug, in the clinical setting, such detailed char-

acterization is not typically possible. Therefore, we attempted to develop an adaptive

therapy method approximating the optimal holiday schedule in the absence of de-

tailed growth rate information about the individual subpopulations (see Fig 6A, Meth-

ods). Briefly, we began by administering drug for one treatment window, followed by

removal of the drug for one treatment window. The growth rates of each treatment

window were recorded and the treatment that led to a lower growth rate was then

continued. This treatment protocol was continued until the growth rate of the popu-

lation surpasses that of the opposite treatment type, as recorded by the most recent

treatment window of that type. At that time the treatment is switched. This process

was continued until the treatment ended.

We tested the performance of this approach computationally using our empiri-

cally measured growth rates from the previous experiments (Fig 6B). The success of

this blind adaptive therapy treatment depends heavily on the frequency with which

one could accurately measure total population growth. The simulations revealed that

as the time between growth measurements shrinks, the blind adaptive therapy ap-

proaches the true optimal therapy schedule. In addition, the performance of the blind

adaptive therapy schedule approaches that of the true optimal.

To test this approach experimentally, we established a mixed population com-
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FIG 6 Optimal scheduling can be approximated with a mixed cell population of unknown growth rates.
A) A cartoon schematic of the blind adaptive therapy algorithm. B) Top panel: Using empirically measured growth

rates, we simulate the fraction of time spent exposed to drug following the blind adaptive therapy (solid red line) and

compare it to the true optimal (dotted black line), as a function of how frequently population-level growth rates can

be measured. Bottom panel: The same simulations as above, however instead of fraction of time spent in drug, the

final cell count of the population (red solid line for blind therapy) is compared to what is projected from the optimal

schedule (black dotted line). C) Results of the blind adaptive therapy experiment. Cell counts over time were recorded

and the shaded red region highlights the period of time during which drug was applied. D) Growth rates for each

schedule at the indicated time points. The growth rate of parental SK-MEL-28 cells in DMSO (blue solid line) and

PLX4720 (blue dashed line) is indicated. Arrows indicate time points when the treatment condition was changed due

to the measurement. The growth rate of PLX-resistant pooled SK-MEL-28 cells in PLX4720 (red solid line) and DMSO

(red dashed line) is indicated. Red region highlights the period of time drug was applied. E) The PLX4720 GI50 values of

the ending cell populations in E) as compared to the PLX4720 GI50 values of the indicated knownmixtures of parental

and resistant SK-MEL-28 cells.
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prised of sensitive and resistant dependent SK-MEL-28 cells and exposed replicate

populations to oneof four drug schedules: 1) static no-drug schedule, 2) static PLX4720

(constant drug) schedule, 3) the optimal schedule (fr = 0.6, 40 percent drug holiday)

based onmeasured growth rates of the different cell populations, and 4) the adaptive

schedule described above. Treatments were applied in 4-day blocks for a total of 48

days. As predicted by the model, the optimal therapy (treatment 3) performed consid-

erably better than the static with or without drug therapies. In addition, the adaptive

therapy and the calculated optimal schedule performed almost identically over the

course of 48 days (Fig 6C-D). The adaptive schedule achieves the goal of maintaining

an average growth rate between the maximum and minimum growth rates for each

cell type. In order to determine if we had achieved the goal of maintaining population

heterogeneity, we took the final cell population from each schedule and measured

the GI50 of each population to PLX4720 (Fig 6E). As a benchmark, we compared these

GI50 values to those of freshly made mixes of 100% sensitive, 50% sensitive/50% re-

sistant and 100% resistant populations. We found that the populations treated with

0% PLX4720 (100% PLX4720) exhibited GI50 values similar to those of fully sensitive

(resistant) populations, consistent with the prediction that static therapies eventually

lead to homogeneous populations (Fig 6E, blue and red bars). By contrast, populations

treated with the optimal schedule exhibited GI50 values similar to, but slightly smaller

than, those of an equally mixed population of 50% sensitive/50% resistant cells (Fig 6E,

gray bars). Together, these results suggest it may be possible to reach near-optimal

adaptive therapy treatment outcomes with incomplete population dynamics informa-

tion.

DISCUSSION
Our work complements a broad set of recent studies ranging from purely theoreti-

cal evolutionary therapy to clinical trials which have attempted to harness intermit-

tent drug treatment schedules. Importantly, it demonstrates that while drug holidays

can improve tumor growth control, they must be designed and implemented using

strategies like the adaptive treatment regimen described here which account for the

evolutionary dynamics of cells within the tumor harboring different drug response

and dependency characteristics. The lack of these elements may be at least partially

responsible for the failure of recent trials incorporating drug holidays. Further, this

work also raises a number of new questions for future research. For example, hav-

ing established that drug dependence varies dramatically with the choice of selecting

inhibitor and cell line, it is clear that the genetic or cell state features of a tumor may

make drug dependencemore or less likely. Defining themechanistic and evolutionary

forces that lead to drug dependence, particularly across distinct cancers and targeted

therapies, is an important step before treatment holidays can be optimally harnessed

in the clinic. Finally, the notion that pharmacological manipulation of cell signaling

or senescence may encourage the development of drug dependence is intriguing, as

such therapeutic strategies have the potential to maximize the therapeutic value of

adaptive drug holiday schedules.

It is also important to address several limitations in our approach. For example,

we ignore the role of the host, specific resistance mutations, and ecological interac-

tions within the tumor. The assumptions dramatically simplify the model, and though

it provides a parsimonious description of these experiments, it also has features (e.g.

independence of specific temporal ordering of treatments) that would likely break-

down when intercellular interactions are included. In addition, these drug holiday ex-

periments take place 1) in large populations where demographic stochasticity plays
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a minimal role and 2) on short timescales were additional evolutionary adaptation is

likely negligible. Incorporating stochastic events, such as extinction and mutation, will

likely extend the scope of the models and may uncover additional dynamics.

Yet even in this well controlled laboratory setting, calculating an accurate opti-

mal schedule is challenging, and it is notable that such a simple mathematical model

captures the main qualitative features of the dynamics. These simplifications make it

impossible to use our model is not directly applicable in the clinic. Instead, our work

is meant as a launching point in understanding how one might optimally treat a popu-

lation containing drug dependent cells. Our results are significant because they show

that optimization is possible, given a robust experimental setup and proper treatment

of the underlying variables. Our hope is that future work might address these chal-

lenges and extend these basic principles for optimal scheduling to realistic clinical sce-

narios. In the long run, holiday-based schedules are a promising therapeutic avenue

that may eventually lead to improved treatment outcomes for a subset of patients

with drug dependent metastatic disease.
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MATERIALS AND METHODS
Cell lines A375, Colo679, UACC-62 and Malme-3M cells were grown in RPMI 1640

(Life Technologies Corporation, Carlsbad, CA) supplemented with 10% fetal bovine

serum (Sigma-Aldrich Corporation, St. Louis, MO) and 1% penicillin/streptomycin (Life

Technologies Corporation). SK-MEL-28 and SK-MEL-5 cells were cultured in Dulbecco’s

modified Eagle’smedium (DMEM) (Life Technologies Corporation)with 10% fetal bovine

serum and 1% penicillin/streptomycin. Malme-3M and SK-MEL-28 cell lines were ob-

tained from L. Garraway (Harvard University, Dana-Farber Cancer Institute). All other

cell lines were purchased from the American Type Culture Collection. All lines were

submitted to STR profiling by the Duke University DNA Analysis Facility to confirm their

authenticity.

Chemicals All inhibitors were purchased from Selleck Chemicals (Houston, TX)

and prepared at 100 mM stock solutions in DMSO.

GI50 assay Wherever GI50 values of specific inhibitors are indicated, they were de-

termined as follows. Cells were trypsinized and seeded at 5,000 cells/well in 96-well

plates in normal tissue culture conditions. After a 24-hour incubation, diluent (typi-

cally DMSO) or concentrated 10-fold dilutions of the indicated inhibitors (at 1:1000)

were added to the cells to yield a highest concentration of 40 µM (VX-11E) or 200

µM (all other inhibitors). After a three-day incubation with the treatment, cell viabil-

ity was assessed with the CellTiter-Glo luminescent viability assay (Promega Corpora-

tion, Durham, NC) according to manufacturer’s instructions. Growth inhibition was

calculated as a percentage of diluent-treated cells and GI50 values were determined

to correspond to the inhibitor concentration that resulted in half-maximal growth in-

hibition.

Immunoblotting In order tomeasure protein levels in whole cell lysates, aliquots

of cell extracts prepared in RIPA lysis buffer (FORMULATION (Sigma-Aldrich)) were sub-

mitted to SDS-PAGE. After electrophoretic transfer to PDMF, filters were blocked in

5% BSA and probed overnight at 4°C with the following primary antibodies and di-

lutions: p16 (1:200, #554079 BD Biosciences, San Jose, CA), p53 (1:200, #VMA00019

Thermo Fisher), phospho-Akt (Serine 473; 1:1000, #4058 Cell Signaling Technology,

Danvers, MA), AKT (1:1000, #4691 Cell Signaling Technology), phospho-ERK (1:1000,

#9101 Cell Signaling Technology), ERK (1:1000, #4695 Cell Signaling Technology), EGFR

(1:1000, #2232 Cell Signaling Technology), PAI-1 (1:500, #11907 Cell Signaling Technol-

ogy), PARP (1:1000, #9542 Cell Signaling Technology), vinculin (1:500; #4650 Cell Sig-

naling Technology), α-tubulin (1:1000, #2125 Cell Signaling Technology) and β-actin

(1:1000, #4970 Cell Signaling Technology). After washing in TBS-T, filters were incu-

bated for 1 hour at room temperature with alkaline phosphatase-coupled goat anti-

rabbit antibodies anddevelopedwithWestern Lightning Plus (Perkin Elmer, Inc., Waltham,

MA) according to manufacturer directions.

Lentivirus preparationandDNAconstructs All expression cloneswere prepared
in lentiviral form as previously described (75). In brief, vectors were packaged in 293T

cells with an overnight incubation with Fugene (Promega Corporation), psPAX2 and

pVSV-G. The virus-containing media was collected after 48 and 72 hours and filtered

with a 0.45 µm filter and stored at -80°C until use with 16 µg/mL polybrene (Sigma-

Aldrich). The sgRNA constructs used are listed in Table S2.

In vitro adaptionof inhibitor resistant cells PLX4720-, AZD6244- or VX-11E-resistant
cell lines were produced by one of two methods as previously described (75). Briefly,

parental cells were either exposed to escalating doses of inhibitor until logarithmic

growth resumed or exposed to a high dose (3 µM) of inhibitor and the resultant resis-

tant cloneswere expanded and cultured. Parental cell lineswere cultured concurrently
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with DMSO. Resistant cell lines were maintained in routine culture with the addition

of 3 µM inhibitor. All resistant and DMSO parental control lines were submitted to

STR profiling by the Duke University DNA Analysis Facility upon the acquisition of re-

sistance in order to confirm their authenticity.

Clonogenic growth assay To measure the ability of cell lines to form colonies

froma single cell, clonogenic growth assayswere performedas previously described (76).

Briefly, 100 cells were seeded per well in 6 or 12-well tissue culture plates in normal

growth media. After 24 hours, the indicated treatments were added and the assay

was incubated for 14 days with the addition of fresh media and inhibitors after 7 days.

Cells were fixed and stained with 0.5% (w/v) crystal violet in 6.0% (v/v) glutaraldehyde

(Thermo Fisher Scientific, Waltham, MA).

AnnexinVapoptosis assay The induction of apoptosiswas quantified as described
previously (Martz et al., 2014). Briefly, cells were plated in triplicate at 200,000 cells per

well in six-well plates. The following day, the growthmedia was removed and replaced

with fresh media containing the indicated dose of drug or diluent (typically DMSO). Af-

ter a 72-hour incubation in drug, cells were washed in PBS twice and resuspended in

a buffer composed of 10 mMHEPES, 140 mMNaCl and 2.5 mM CaCl2 (BD Biosciences,

San Jose, CA). Apoptosis was quantified using allophycocyanin-conjugated Annexin V

and viability was assessedwith 7-Amino-actinomycin D (BDBioscience). Gatingwas de-

fined using untreated/unstained cells and treatments were evaluated at 20,000 counts

using BD FACSVantage SE.

Cell cycle analysis In order to analysis the progression of cells through the cell

cycle, cells were plated in triplicate at 200,000 cells per well in six-well plates. The fol-

lowing day, the growth media was removed and replaced with fresh media containing

the indicated dose of drug or diluent (typically DMSO). After a 72-hour incubation in

drug, cells were trypsinized and counted. 1x106 cells were washed twice with PBS

and then fixed in 70% ethanol. The cells were washed twice in PBS and stained with

a solution of 50 µg/µL RNase A, 20 µg/µL propidium iodine, 0.05% TritonX-100 in PBS

(Sigma-Aldrich). DNA content of the cell population was determined and quantified by

flow cytrometry. Gating was defined using untreated/unstained cells and treatments

were evaluated at 20,000 counts using BD FACSVantage SE.

Senescence-associated β -galactasidase assay In order to determine the effect

of treatment on the induction of senescence, cells were plated in triplicate in 6-well

plates at a density that would achieve 80-90% confluency at 10 days of growth, typ-

ically between 1,000 and 50,000 cells. After 24 hours of culture, the growth media

was removed and replaces with fresh media containing the indicated drug or diluent.

After 10 days of treatment, media was removed and the cells were stained with the

kit, Senescence β-Galactosidase Staining Kit (Cell Signaling Technology), according to

manufacturer’s instructions. Bright field images were taken at 100X magnification at

five random locations in each well. Representative images are shown.

Growth rate calculation To calculate growth rates, cell populations were used at

low passage number with measured drug resistance. Cells were plated in triplicate in

10 cm plates at 3,000 cells per plate in normal growth media. The following day, cells

were treatedwith drug or diluent. Six days later, the cells were liftedwith 0.25% trypsin

(Life Technologies) and counted using a Z2 Coulter Particle Count and Size Analyzer

(Beckman Coulter, Pasadena, CA). Growth rates (µ) were calculated from the number

of cells plated (N0) and the number counted (N) according to the formula:

lnN = lnN0 + µt
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where t is the elapsed time, or 168 hours.

Drug scheduling assay To test the effects on cell number by a drug schedule,

the following was performed. Immediately after growth rates were measured, the in-

dicated number of cells were plated in growth media with no drug in 15 cm plates.

The following day, the indicated drug schedule was added to the cells. Cells were

trypsinized and counted at the end of each completed schedule and replated as in-

dicated. All drug schedules were establish based on the interval between counts, for

example, if cells were treated with 75% drug and counted every four days, they would

be treated with drug for three days and diluent for one day, counted, and replated for

the duration of the experiment. If a portion of cells was discarded before replating,

growth rates (µ) were calculated over the period from the number of cells plated at

the beginning of the period (N0) and the number counted at the end of the period (N)

according to the formula:

lnN = lnN0 + µt

where t is the period length in hours. These growth rateswere then used to project

total cell number as if no cells had been discarded. After the initial plating, which was

always into diluent only, cells were replated directly into the treatment determined by

their schedule.

Statistics All results are shown as means±SD. In order to compare groups, un-

less noted otherwise, P values were determined using unpaired, two-tailed Student’s

t tests.

“Blind” adaptive therapy algorithm To begin, administer drug for some time∆T

and record the growth rate during that period. This period is followed by the removal

of drug for the same∆T and the drug-free (or ’holiday’) growth rate is recorded. Admin-

ister the condition with the smaller growth rate and record the growth rate for each

∆T that passes. Decision point: if the growth rate for the most recent ∆T surpasses

that of the opposite condition, switch the treatment to the opposite condition for the

next time window. Repeat this process for the rest of the treatment time continually

recording new values for the population growth in drug and during treatment holiday

and switching between treatments as they become optimal.
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