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Early Electrophysiological Aberrations in the Hippocampus 
of the TgF344-AD Rat Model as a Potential Biomarker for 

Alzheimer’s Disease Prognosis 
 
 
Abstract 
 
The hippocampus is thought to guide navigation and has an essential contribution to learning and memory.  

Hippocampus is one of the brain regions impaired in Alzheimer’s disease (AD), a neurodegenerative disease with 

progressive memory impairments and cognitive decline. Although successful treatments for AD are still not available, 

developing new strategies to detect AD at early stages before clinical manifestation is crucial for timely interventions. 

Here, we investigated in the TgF344-AD rat model the classification of AD-transgenic rats versus Wild-type 

littermates (WT) from electrophysiological activity recorded in the hippocampus of freely moving subjects at an early, 

pre-symptomatic stage of the disease (6 months old). To this end, recorded signals were filtered in two separate 

frequency regimes namely low frequency LFP signals and high frequency spiking activity and passed to machine 

learning (ML) classifiers to identify the genotype of the rats (TG vs. WT). For the low frequency analysis, we first 

filtered the signals and extracted the power spectra in different frequency bands known to carry differential 

information in the hippocampus (delta, theta, slow- and fast-gamma) while for the high frequency analysis, we 

extracted spike-trains of neurons and calculated different distance metrics between them, including Van Rossum (VR), 

Inter Spike Interval (ISI), and Event Synchronization (ES). These measures were then used as features for 

classification with different ML classifiers. We found that both low and high frequency signals were able to classify 

the rat genotype with a high accuracy with specific signals such as the gamma band power, providing an important 

fraction of information. In addition, when we combined information from both low and high frequency the 

classification was boosted indicating that independent information is present across the two bands. The results of this 

study offer a better insight into how different regions of the hippocampus are affected in earlier stages of AD. 
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Introduction  

Alzheimer’s disease (AD) is a neurodegenerative disorder affecting millions of people each year and has become one 

of the biggest socioeconomic burdens to societies. In the United States alone, over 5.7 million Americans were living 

with AD in 2018, and estimates indicate that this amount will increase to nearly 14 million by 20501. The hallmarks 

of AD include the excessive aggregation of amyloid-β (Aβ) and tau proteins in brain areas including the hippocampus 

and adjacent mediotemporal cortex leading to progressive cognitive decline and, ultimately, dementia2. One of the 

first symptoms in AD is spatial memory impairment and wandering behavior with these symptoms occurring in over 

60% of the patients3. Regardless of the many efforts and significant progress scientists and physicians have made in 

understanding AD, its leading cause and prognosis remain uncertain2. Current treatment methods can only decelerate 

AD progression especially if used in relatively early stages of AD. However, cognitive symptoms that are the leading 

trigger for AD diagnosis appear only at later stages of the disease timeline. Therefore, it has become essential to 

develop new strategies for the detection and prognosis of AD at early stages before the clinical manifestation of the 

disease4. 

 Hippocampus is a vital brain area that is involved in numerous cognitive functions including spatial navigation, 

learning, and memory5. Over several decades, investigations of hippocampal function have focused heavily on 

neurophysiological network activity, including the gamma and theta rhythms6. It has been demonstrated that theta 

oscillations, ranging in frequency from 4 to 12 Hz, are linked to a variety of cognitive processes and have an important 

contribution to learning and memory as observed in a wide range of experiments in both humans and animals6–9. 

Gamma oscillations, on the other hand, are characterized by activity in the frequencies ranging from 30 to 100 Hz10 

and have been linked to functions such as sensory binding11, selective attention12–14, transient neuronal assembly 

formation15, and information transmission and storage16–18. Moreover, both types of oscillations, that are part of the 

low-frequency component of electrophysiological recordings called local field potentials (LFP; ~ 0 - 150 Hz), have 

been identified as critical components in the consolidation of memories and the performance of executive functions6,19–

24. Also, another type of oscillation is high-voltage spindles (HVSs). They range from 5 to 13 Hz and have a 

characteristic spike-and-wave shape which has been studied mainly in somatosensory systems25,26, and only a few 

recent studies have seriously investigated their occurrence in the basal ganglia (BG)27,28. Theta and gamma oscillations 

do not exist in isolation; instead, they interact and co-occur in several areas of the brain29. A specific type of cross-

frequency coupling (CFC), named phase-amplitude coupling (PAC), is characterized by the coupling between the 

phase of the theta and the amplitude of the gamma rhythms26. Moreover, research indicates that PAC in the 

hippocampus may play an essential role in learning and memory29. For humans, the magnitude of the coupling is 

found to be positively associated with cognitive processes29–31. Furthermore, PAC has been proposed to play a key 

functional role in learning task performance32, facilitation of inter-area communication33,34 and can serve as a memory 

buffer31. In relation to AD, there have been numerous articles suggesting that the oscillatory activity including power 

and/or coupling in theta35–37 and gamma35,38 rhythms is altered in AD patients, and consistent changes were also found 

in animal experiments using AD models39,40.  
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Beyond disturbances in the theta and gamma rhythms in the hippocampus and medial entorhinal cortex (MEC), many 

research papers also identified AD related disruptions in the activity of single neurons such as place cells and grid 

cells39–41. Place cells are neurons that selectively respond to specific location in the environment (Place field) first 

discovered by O'Keefe in CA1 region52. The activity of single neurons is characterized by discrete events called action 

potentials or spikes which are considered as the fundamental element of neuronal communication and can be extracted 

from the high-frequency component of electrophysiological recordings (> 300 Hz). One or more spikes in a sequence 

are generated whenever a single neuron is stimulated or even at rest (spontaneous activity), and a sequence of spikes 

forms what is referred to as a spike train42. It is generally accepted that the spike responses of each neuron are governed 

from two main information processing paradigms: rate coding and/or temporal coding43. Measuring the synchrony of 

two sets of spike trains has been demonstrated to carry a lot of information in several different contexts. For example, 

spike train distance metrics were used to estimate the reliability of responses across repeated presentations of the same 

stimulus and to evaluate the information flow among coupled neurons44,45. Furthermore, some recent studies reported 

the application of measuring spike train distance metrics for the classification of tactile afferents using artificial spike 

sequences46, raising the possibility that such metrics could potentially be used for the classification of AD in animal 

models. 

With the rise of machine learning (ML) and deep learning (DL), numerous applications have been implemented 

towards the detection and classification of brain diseases. Many models used high dimensional features from various 

medical imaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) for 

the prediction and diagnosis of AD. To this end, they employed classical ML methods like support vector machine 

(SVM) and k-nearest neighbor (k-NN), but also DL models such as convolutional neural networks (CNN) and 

recurrent neural networks (RNN). For example, Lee et al. 47  has proposed a new model to predict AD in which RNN 

was used considering multimodal features extracted from MRI and longitudinal cerebrospinal fluid (CSF) data. El-

Sappagh et al. 48 used ensemble ML classifiers based on Random Forest (RF) to develop an AD diagnosis and 

progression detection model on 11 MRI modalities. Venugopalan et al. 49 used different models of ML (SVM, RF, 

and k-NN) and DL models using a fusion of multiple data modalities like MRI and genetic single nucleotide 

polymorphisms (SNPs) to classify patients into AD, mild cognitive impairment (MCI), and control groups. However, 

even though the above-mentioned methods demonstrated considerable success, in their great majority, they do not 

provide insights regarding the underlying disturbances at the local neuronal network and single neuron level. 

In this study, we used a very promising rat model of AD that demonstrates all the pathophysiological hallmarks present 

in AD patients (Tg-F344-AD) and compared it with littermate wild-type (WT) controls. We put forward the hypothesis 

that local neuronal network features measured with electrophysiological recordings in the hippocampus of freely 

moving rats at an early time-point during disease progression, when amyloid plague accumulation is only at the onset 

(6 months old), can be used in combination ML-based methods to classify the rats into the two respective groups, 

namely AD and WT. Further, we were interested to identify which of these signals better classify the rats and if 

classification with a combination of signals can be advantageous. Specifically, we considered both low-frequency LFP 

signals as well as high-frequency spiking activity. To see the effect of low-frequency information in classification, we 

performed time-frequency analysis with focus on four specific LFP frequency bands (delta, theta, slow gamma, fast 
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gamma) as well as CFC measures such as PAC.  On the other hand, for the high-frequency analysis, we first used 

spike sorting algorithms to extract the spike trains of neurons and then computed different spike-train distance metrics 

such as Van Rossum (VR), Inter Spike Interval (ISI), and Event Synchronization (ES). We then used those measures 

as classification features to investigate the performance of different ML-classifiers across the two groups. We found 

that specific low and high frequency signals used with chosen ML methods could provide classification accuracies 

over 80% and that combining information from both could boost the accuracy to 100%. Our findings provide evidence 

that the disruption in local neuronal signaling in the hippocampus of an AD rat model could be used at a very early 

time-point of disease progression to classify between AD and WT rats and thus provide promise for the development 

of novel disease biomarkers for AD. 

 
MATERIALS AND METHODS 
 
Animals and ethical statement 
All procedures were in accordance with the guidelines approved by the European Ethics Committee (decree 

2010/63/EU) and were approved by the Committee on Animal Care and Use at the University of Antwerp, Belgium 

(approval number: 2019-06). Electrophysiological experiments were performed in 6-month-old TgF344-AD rats 

(N=5) and wild-type littermates (N=4). Rats were group-housed prior to head-stage implantation but housed separately 

afterward. All animals were kept on a reversed, 12h light/dark cycle, with controlled temperature (20 – 24°C) and 

humidity (40-60%) conditions. Standard food was provided ad libitum. Animals were water-deprived 24h prior to the 

habituation and acquisition of the LFP data. After the animal performed the task in the linear track, water was provided 

for 30 minutes. 

 

Fig 1. A. Graphical representation of the wireless acquisition system used to record LFP’s and neuronal activity. A head-stage was 
attached to the laminar silicon probe which was placed in the right dorsal hippocampus. The head-stage converts the analog signals 
recorded from the brain to digital signals, which were then send to the receiver hardware. The head-stage was powered by a small 
battery mounted on top of the head-stage to allow maximum freedom of movement. B. Graphical representation of the track where 
the animals freely moved during the recordings. It consisted of a circular area in the middle with a diameter of 40 cm and two 
rectangular arms of 20x60 cm. At the end of each arm, rewards were periodically provided to motivate the animals to move back 
and forth.  
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Chronic hippocampal electrophysiological measurements 

Surgical procedure 

For the implantation of the electrodes, animals were anesthetized using isoflurane (at 1.0 L/min, induction 5% and 

maintenance 2-3% isoflurane). Animals were placed in a stereotaxic frame and a craniotomy was made above the right 

dorsal hippocampus (AP -3.00, ML 2.50). A 16-channel laminar electrode (E16+R-100-S1-L6 NT, Atlas Neuro-

engineering, Belgium) with internal reference was placed into the dorsal hippocampus by penetrating the dura (Fig. 

1A). The depth of the recording sites was identified by the layer-specific local field potentials (LFP) of the 

hippocampus (DV 2.5-3.5 mm). The craniotomy was sealed with a sterile silicone gel (Kwik-Cast, WPI). Stainless 

steel screws were drilled into the skull overlaying the olfactory bulb, left hippocampus and cerebellum, of which the 

latter served as a ground electrode. Two EMG wires were stitched in the neck muscle in order to record EMG activity. 

The implant was covered in several layers of dental cement (Stoelting, Co, Dublin, Productnumber 50000,) and the 

wound was closed. Rats were allowed to recover for at least 7 days.  

Linear track acquisition 

Animals were habituated to the behavioral room and linear track (Fig. 1 B) for 1 day, after which the rats were trained 

for 5 consecutive days to walk along the linear track. Cups with sugar water at the end of the arms were used to 

motivate the animals to walk back and forth. Habituation sessions and training sessions lasted 20-30 min. The 

combined electrophysiological and behavioral acquisition was performed during two, or three consecutive days, based 

on the performance (active time) of the rats in the linear track. A wireless head stage (W2100, MultiChannel Systems, 

Germany) was connected to the laminar electrode, 15 to 30 minutes prior to start of the experiment in the linear track. 

After the habituation to the acquisition setup, animals were placed in the center of the track and the 

electrophysiological recordings were started. The movements of the animal were recorded using a camera mounted 

on the ceiling above the linear track, and the freely available Bonsai acquisition software (Bonsai — Open Ephys 

(open-ephys.org)) was used to detect the animal position over time. An acquisition session ended when the animal 

was not moving around for more than 5 minutes. 

 

Data Analysis  

Preprocessing of LFP signals 

Data was recorded from the 2 EMG channels and the laminar electrode consisting of 14 intracranial channels. The top 

three intracranial electrodes were located outside the hippocampus and were not used in our analysis. The remaining 

11 intracranial channels were used for LFP analysis and spike sorting. To prevent the effect of impedance differences 

between electrodes on LFP, the LFP power for each electrode was normalized to the power of the 0.5-1 Hz band. The 

first and last 60 sec of each recording session were excluded to eliminate possible artifacts on the neural activity 

patterns associated with handling or moving into or out of the linear track. The LFP signals were extracted from the 

broad-band signal (sampling rate = 10 kHz) using a 3rd-order Butterworth filter (MATLAB function filtfilt) with a 
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low cut-off frequency of 0.1 Hz and a high cut-off frequency of 300 Hz. After filtering the signal was downsampled 

to 1000 Hz and stored for further analysis. Out of 20 recording sessions from 9 rats (n=4 WT rat, n=5 TG rat), two of 

the samples (WT3_D1 and TG1_D2) were excluded from our further analysis because of excessive noise. 

Power spectrum analysis  

The power spectrum density (PSD) was estimated using a 2-second window size (MATLAB function pwelch). We 

computed the power between frequencies 1–100 Hz and normalized it to the power between 0.5-1 Hz as also indicated 

above. Then, the power at four individual frequency bands namely delta (1-4 Hz), theta (4-12 Hz), slow gamma (30-

50 Hz), and fast gamma (50-100 Hz) bands was used for further analysis40. 

Time-frequency analysis of power and frequency coupling  

The Chronux50 toolbox in MATLAB (function mtspecgramc) was used for the time-frequency analysis. As the 

duration of recordings for each sample was between 17 to 30 minutes, we have chosen a snippet of 15 minutes (900 

seconds) from each recording. The toolbox has parameters like window and step size, tapers which were tuned to 

obtain proper representations (window and step size = 15, taper = [5 9]).  For computing cross-frequency coupling 

between desired phase and amplitude ranges, the Buzcode toolbox51 from Buzsaki Lab was used. The modulation 

index of phase-amplitude between desired ranges was computed for all data from each rat. Each representation is the 

result of averaging across all other channels. 

Detection of sleep spindles 

In our analysis, 15 min of recordings were used for all analyses. Automatic detection of high-voltage spindles (HVSs) 

was identified in the hippocampus when rhythmic negative deflections lower than −0.3 mV occurred while 

instantaneous power between 6 Hz and 12 Hz was more than double instantaneous delta power for 2 s or longer. The 

average time-frequency spectrum was calculated within frequencies between 0-20Hz for each animal. 
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Classification Models 
The rat’s hippocampus structure is depicted in Fig. 2A. This brain region receives information from various parts of 

the brain and is believed to support information about the spatial representation of our environment52. The most cortical 

input comes from the entorhinal cortex (EC)53. Encoded information transfers from EC → to CA1 DG via the perforant 

path (synapse 1), DG → CA3 via mossy fibres (synapse 2), CA3 → CA1 via schaffer collaterals (synapse 3) 

Fig. 2. Representation of the recording and ML models. A) The relative positions of Hippocampus, entorhinal cortex (EC) and 
dentate gyrus (DG) formation are illustrated.	Fast and slow gamma oscillations reflect inputs from medial EC and CA3, 
respectively. Graphs show representative data recorded in the hippocampus of one rat. The spike sorting algorithm runs on the 
high-frequency signal (band-pass filtered between 300 and 4900 Hz) of the raw data and uses common average reference (CAR) 
filter to remove mutual noise among channels. The low-frequency signal (band-pass filtered between 0.1 and 300 Hz) of the raw 
data was analyzed using time-frequency methods to extract desired frequency bands and then perform the classification task. B) 
Graphical representation of the two ML models. In the high-frequency model, spike sorting was performed after data acquisition 
and preprocessing to obtain the units spike train responses. Next, spike train distance and synchrony metrics were calculated, 
PCA was applied for dimension reduction and finally this information was fed into the ML classifiers that distinguished TG and 
WT rats. In the low-frequency model, the primary step was to analyze the time-frequency plots and then estimate the average 
power for individual frequency bands. By obtaining the most compelling features, the classification of TG and WT rats was then 
accomplished.   
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which together they form the trisynaptic circuit54. Therefore, we have decided to do the recording from this brain 

region as an essential organ in navigation and memory. 

In Fig. 2B, the steps undertaken for the classification models are shown. We have put forward two different pipelines 

for the classification task: 1. Using Low-Frequency Signals (LFS) and 2. Using High-Frequency Signals (HFS). 

Moreover, we also combined the information from both these models to estimate the total performance of using these 

local network features for classification. In the LFS model, the average power spectrum density (PSD) is computed for 

the frequency bands of interest (delta, theta, slow gamma, fast gamma) and then the feature importance method was 

used by calculating the Mean Decrease in Impurity (MDI) to determine the effectiveness of each frequency band in 

the classification of TG and WT rats. The LFP data from each rat comprises the model input and is defined as 

𝑋	(𝑋	𝜖	ℝ!"#$%&"'!	×	*+,''$-	). The HFS model comprises of three main steps: (1) Running spike sorting algorithms 

using Tridesclous sorter55 and SpikeInterface56  toolboxes to isolate spike responses of neural activities; (2) Extracting 

spike train distance and synchrony metrics including Van Rossum (VR-d), Inter Spike Interval (ISI-d), and Event 

Synchronization (ES-d) for each TG and WT group; and (3) Applying principal component analysis (PCA) to reduce 

the dimensionality of the feature space. 

 

1.   Classification Using Low-Frequency Signals (LFS) 

Spectral Power Model  

Further analysis on the LFP signal was performed to investigate how TG and WT can be distinguished in low-

frequency features using each frequency band’s mean power.  In this case, the average power of delta (1-4 Hz), theta 

(4-12 Hz), slow gamma (30-50 Hz), and fast gamma (50-100 Hz) are extracted for every rat as shown in Fig. 3. 

Therefore, the shape of the extracted feature matrix is 𝑆./ 	× 	4  and 𝑆/0 	× 	4 where 𝑆./  (𝑆/0)	is the number of 

samples for the WT (TG) group. Also, we have analyzed a scenario in which each frequency band is removed one by 

one from the input features of the ML classifier. Consequently, the shape of each feature matrix is decreased 

to	𝑆./ 	× 	1  and 𝑆/0 	× 	1 in the final step. This removal of each frequency band is used to demonstrate how different 

hippocampal neural oscillations affect the model’s performance. Due to the small number of samples, it was not 

possible to use the commonly used approach that shuffles the data from all samples and then divides them into training, 

validation, and test sets. Instead, we have used leave-one-subject-out cross-validation (LOSO-CV). In this approach, 

the number of folds is equal to the number of recording sessions. Thus, the ML classifier is applied once for each 

sample using all other samples as a training set and the selected sample as a single-item test set. Therefore, we have 

separated each sample's spike train manually as a test set, and the training was performed using all the remaining spike 

train features. This process was continued until every recording session was used as a test set. 

Feature Importance 

The feature importance gives an abstract view about the role of each feature. Although this study aims to build a 

classifier to discriminate between TG and WT, it is also essential to quantify the importance of each input feature 

which in turn shows those frequency bands that have been changed in the AD rats. For this purpose, a random forest 

(RF) classifier was trained with all four frequency bands, and Mean Decrease in Impurity (MDI) has been used as a 
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measure for evaluating the importance of each feature. The MDI calculates each feature importance as the sum over 

the number of splits (across all trees) that include the feature, proportionally to the number of samples it splits. 

 
 

2. Classification Using High-Frequency Signals (HFS) 

Spike Sorting and Multi-unit Extraction 

Pre-processing for spike sorting included high-pass filtering with a cutoff at 300Hz and then low-pass filtering with a 

cutoff at 4900Hz. Also, common reference removal (CAR) filter was used to increase the signal-to-noise ratio. 

Then, we used the python-based package Tridesclous Sorter, an automatic spike-sorting toolbox that groups spike 

responses into separate units based on their similarity in shape and features. We have called these spiking activities 

“multi-unit,” as neuron isolation from single electrodes on a laminar probe is difficult and thus these may contain 

Table. 1 Number of units (spike-trains) extracted after the spike sorting performed on the recorded data. There were 18 
recording sessions (samples) from 8 rats (7 samples of WT rats, 11 samples of TG rats). 

Number Subject 

code 
Day Total 

Recording 

Duration 

(Sec) 

Number of units 

1 TG1 D1 1624 4 

2 TG2 D1 1488 8 

3 TG3 D1 1821 2 

4 TG4 D1 1563 2 

5 TG5 D1 1140 1 

6 TG2 D2 1720 7 

7 TG3 D2 1801 2 

8 TG4 D2 1668 3 

9 TG5 D2 1592 2 

10 TG2 D3 1801 3 

11 TG3 D3 1610 2 

12 WT4 D1 1049 2 

13 WT5 D1 1506 2 

14 WT6 D1 1417 3 

15 WT4 D2 1590 2 

16 WT5 D2 1528 3 

17 WT6 D2 1575 5 

18 WT4 D3 1416 2 
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spike responses from a few neighboring neurons. Another python-based package, and namely the Spike Interface 

toolbox has been used for manual inspection and curation of multi-units. We have defined three operators for each of 

the steps: Band-pass filter (⊛), Common average reference filter (⊕), Tridesclous Sorter (⨀). In the preprocessing 

step, band-pass and CAR filters have been applied to raw data using the Tridesclous toolbox. During the spike sorting 

step, spikes were detected based on the threshold of 4 standard deviations (SD) of the background noise. All the multi-

unit extraction was done automatically. So, the output of each recording session (𝑋) from the spike sorting section 

would be 𝑁 multi-units. Each multi-unit has 𝑁1 number of spikes. The details of the algorithm are illustrated in 

Appendix 1.  

Further, to remove artifacts such as high frequency noise present in some channels, we have also considered two 

thresholds on the number of spikes from each multi-unit: the number of spikes in each multi-unit should be higher 

than 1600 and lower than 360000 for 900 seconds of recordings. After considering this criterion, the number of 

samples was reduced to 17 and TG3_D3 was removed.  The number of multi-units extracted from each recording 

session is reported in Table. 1. In total, 53 multi-units (19 from WT, 34 from TG) were obtained. 

Calculation of metrics reflecting Temporal Coding 

In neuroscience, analyzing neural coding realizes the relationship between stimulus and neural response produced by 

the neuronal network. In temporal coding, the spike times of an individual neuron are considered to carry essential 

information. Here, to take into consideration the temporal complexity of spike sequences, we extracted different 

synchronization and distance metrics. These measures can compare two spike patterns and provide information about 

their relationship (similarity or dissimilarity). We have used three spike distance metrics to compute the spike train 

relationships among the units of each genotype group: 1-Van Rossum distance (VR-d), 2-Inter-Spike Interval distance 

(ISI-d), and 3-Event- Synchronization Distance (ES-d). VR-d is a metric for the dissimilarity of spike trains and 

measures the distance between two sets of spike trains by transforming them into continuous functions by convolving 

them with an exponential kernel57. ISI-d assesses the dissimilarity between spike trains based on instantaneous rate 

synchrony calculated by the time intervals between spikes. ES-d also measures spike synchrony albeit using a different 

approach. In contrast to ISI-d, it measures similarity instead of dissimilarity58. To calculate these metrics, isolated 

multi-units from each group of TG and WT have been concatenated to make a unified list of spike trains. The total 

number of spike trains used for each group is defined by 𝑁/0 , 𝑁./. In summary, all three spike distance metrics were 

calculated for each pair of spike trains. For more information on the mathematical description of each metric we refer 

to Appendix 2.  

Machine Learning Classifier 

Currently, the DL and ML models have a great potential to be used in hospitals and health care systems for clinical 

decision support in a variety of diseases including cancers59,60 and AD (image analysis)61,62. The number of dimensions 

in the feature space is one of the important parameters in an ML model that should be controlled to achieve reasonable 

accuracy while avoiding overfitting. In the final step of our model, we use unsupervised dimension reduction methods 

to reduce the feature dimensions. For this purpose, we applied PCA and the components carrying the highest explained 

variance were chosen. We have employed this approach for different numbers of components (1-9), and the best 
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performance was achieved by considering three components (P=3). The training and validation steps were the same 

as the method discussed in the spectral analysis section. 

Statistics 

Mean ± SEM is provided for comparing different frequency bands. Statistical testing for frequency band power, PAC, 

and spike-train metrics, assumed non-parametric distributions and thus Mann Whitney U tests were used to evaluate 

differences between experimental groups. 

Results 

Low-Frequency Signal (LFS) Analysis 

Several studies have shown that gamma oscillations are commonly disrupted in AD39–41. More specifically, fast 

gamma oscillations were shown to be diminished in the hippocampal CA1 region of a knock-in mouse AD model as 

well as the TgF344-AD rat model39,40,63–65. To evaluate if gamma and potentially other rhythms are impaired at an 

early stage in the hippocampus of TgF344-AD rats relative to WT controls, we computed the average PSD for different 

rhythms and specifically delta (1-4 Hz), theta (4-12 Hz), slow gamma (30-50 Hz) and fast gamma (50-100 Hz) (see 

Materials and Methods). In Figure 3, the average PSD for each pair of these bands is illustrated per recording session 

(WT: blue circles, TG: red circles). In addition, the diagonal panels show a univariate distribution that represents the 

marginal distribution of the data in each band (Fig.3). This illustration allows the comparison across the TG and WT 

groups for each pair of the four frequency bands to identify the ones that can reasonably discriminate between them. 

The results showed no apparent difference among TG and WT rats when the delta and theta frequency bands were 

considered with the samples of the two groups close to each other and a high degree of overlap between the 

distributions. On the contrary, when the slow and fast gamma oscillations were considered, it was immediately 

apparent that the separation between the distributions of PSD values across the two groups was substantial, promising 

higher discriminability in feature space and a better classification performance.  

To better understand in which frequency bands differences occurred between the two groups, we plotted the power 

spectra, time-frequency plots, and normalized-power bar plots along with statistical analysis (Fig. 4). We found no 

significant differences in the average normalized power for delta and theta oscillations that were very similar across 

both groups (Delta; WT: 1.29 ± 0.03; TG: 1.09 ± 0.08;	𝑝 > 0.01, Fig. 4 Theta; WT: 1.39 ± 0.19; TG: 1.2 ± 1.2; 𝑝 >

0.01, Mann- Whitney U test, n = 7 WT and n = 11 TG recording sessions).  Inversely, for both slow (30–50 Hz) and 

fast (50–100 Hz) gamma oscillations a significant reduction in average PSD observed (Slow gamma; WT: 0.13± 

0.008; TG: 0.075 ± 0.008; 𝑝 > 0.01, Fig. 4 Fast gamma; WT: 0.048± 0.0024; TG: 0.023± 0.0026; 𝑝 > 0.01, Mann- 

Whitney U test, n = 7 WT and n = 11 TG recording sessions). 
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Fig. 3. Pairwise comparison of the normalized power in delta (1-4 Hz), theta (4-12 Hz), slow gamma (30-50 Hz), and fast gamma 
(50-100 Hz) for  TgF344-AD (TG) and Wildtype (WT) groups.  Each point represents the average PSD of a single sample in the 
specified band. The diagonal plots are the univariate distributions that show the amount of overlap between the distribution of two 
groups in individual frequency bands. The other plots compare WT and TG for specified frequency bands. Blue/Red points are 
recording session (samples) of WT (n = 7) /TG (n = 11), respectively.  

 
Previous studies used electrophysiology recording in the same rat model have indicated an attenuation in the theta 

phase – gamma amplitude coupling (PAC) in the hippocampus of 8-9 months old animals65,66. To investigate if PAC, 

which plays an essential role in memory formation29, shows attenuation already at an earlier time point during disease 

progression, we assessed PAC across the WT and AD groups at 6 months of age. To this end, we calculated the 

modulation index (MI) capable of detecting cross-frequency coupling between two different frequency ranges of 

interest in a single signal as previously described by Tort et al.32. Example results from two TG and two WT rats are 

shown in Figure 5. The PAC spectrograms (Fig. 5B) revealed that large amplitude slow and fast gamma oscillations 

occur in the peak to falling phase of theta oscillations in WT; however, slow gamma oscillations seem to be attenuated 

in TG. Therefore, we have decided to compute the MI for fast and slow gamma among all samples (Fig. 5C). The 

analysis revealed no significant MI difference for fast gamma oscillation (Fig. 5C fast gamma; WT: 0.000342 ± 2.8 

´10-5; TG: 0.00037 ± 7 ´10-5; Mann- Whitney U test, n = 7 WT and n = 11 TG recording sessions); however, slow 

gamma coupling was significantly attenuated in TG (Fig. 5C slow gamma; WT: 0.00026 ± 4 ´10-5; TG: 0.000155 ± 

1.7 ´10-5; Mann- Whitney U test p >	0.01, n = 7 WT and n = 11 TG recording sessions). 
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Fig. 4. Comparison of the power spectral density (PSD) (A), time-frequency plots (B), and average PSD of 4 different frequency 
bands (Delta:1-4 Hz; Theta: 4-12 Hz; Slow Gamma: 30-50 Hz; Fast Gamma: 50-100 Hz) (C). (A) From left to right average mean 
PSD of the delta, theta, slow gamma, and fast gamma in WT rats (n = 7 recording session) and TG (n = 11 recording session). (B) 
The time-frequency spectra for for WT (upper panels) and TG rats (lower panels) for different frequencies of interest. (C) 
Normalized power for WT and TG rat in the frequency bands of interest. WT = wildtype, TG = TgF344-AD 

 

Synchronous oscillations in various frequency ranges have been recorded in several nuclei of the basal BG and are 

thought to be an information processing mechanism. HVSs are 5–13 Hz spike-and-wave oscillations, which are 

commonly recorded in rats, and which have been reported in some recent studies where their occurrence in the BG 

has been investigated67. This distinct oscillatory pattern was present in the cortical area of TgF344-AD in previous 

studies and very rare in WT rats68,69. However, their occurrence rate was not investigated in the hippocampus of the 

AD rat model in the earlier stage of AD. HVSs are commonly characterized by an increase in their instantaneous 

power spectral density values; this must be incorporated into any HVS detection algorithm. The continuous wavelet 

transforms (CWT), and discrete wavelet transform (DWT) has been effectively applied for the detection of HVS-like 

nonstationary features such as sleep spindles and spike-wave discharges. We have investigated the alternations of 

HVSs in both time and frequency domains. The average time-frequency analysis of the two groups indicates no 

significant difference (Fig. 6A). We have further our analysis to make statistical inferences by calculating the HVS 

incidence metric (number of events/duration). Our results indicate there was no significant difference between the two 

groups in the occurrence rate of HVSs (Fig. 6B; WT: 2.7 ± 0.8; TG: 2.5 ± 0.6; Mann- Whitney U test, n = 7 WT and 

n = 11 TG recording sessions).  
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Fig. 5. Slow gamma coupling was diminished in the hippocampal CA1 of 6 months old TgF344-AD rats. spectrograms of phase-
amplitude coupling in the hippocampus were represented for two TG and WT rats by computing the modulation index to measure 
the coupling between desired frequency ranges. A) Comodulograms showing the phase and power of 0-100Hz frequency  for two 
representative TgF344-AD (TG) rats (top row) two representative wildtype (WT) rats (bottom row). Modulation index values were 
coded by color and plotted according to theta and gamma frequency. The dotted lines denote 30 and 50 Hz borders between theta, 
slow gamma, and fast gamma oscillations. B) Comodulogram showing the phase of the theta band (5-12 Hz) in regard to the power 
in the 0-140Hz frequency band C) Modulation Index was computed for coupling of slow (30-50 Hz) and fast gamma (50-100 Hz) 
oscillations with theta rhythms on all recording sessions (WT: n = 7, TG: n = 11). Each black point represents each recording 
session of both groups. TG rats exhibited a significant decrease in slow gamma modulation index compared to WT (∗ 𝑝 < 0.01). 
 
 

Subsequently, we proceeded to use ML classifiers (see Materials and Methods) to estimate their performance and 

ability to identify the rats from the WT and TG groups. To investigate how each frequency band affects the model’s 

accuracy, we first trained the ML classifiers with all frequency bands included. In Fig. 7A, the total accuracy among 

all samples is shown while Fig. 7B-C presents the performance separately in each group. To estimate the importance 

of each band, the fast gamma, slow gamma, theta, and delta oscillations have been removed one by one and their 

effects on the classification accuracy were calculated (Fig. 7D). When all frequency bands were used as input of the 

classifiers (RF, k-NN and SVM) the model performance was as expected maximum. However, the discrimination 

performance dropped significantly after eliminating fast and slow gamma oscillations indicating their importance in 

the classification of WT and AD rats. 

Given that the number of samples from each rat was slightly different, the above-mentioned classification results could 

be susceptible to bias against rats with a low number of samples. Therefore, as a control, the results of the LFS 

classification task were reproduced with a selection of an unbiased sample (one sample from each subject) to ensure 

that the same results could be achieved. These results are available in the supplementary information (Fig S1, S2, S3). 
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Fig. 6. High-voltage spindles (HVSs) in the cortex of aged wild-type (WT) and TgF344-AD rats. A) Average time-frequency plots 
with a duration of 15 min of the hippocampus from WT and TG rats (WT: n = 7, TG: n = 11).  Large negative deflections in the LFP 
and prominent bouts of high-power activity between 6 and 9 Hz in the spectrogram are HVS events. B) Comparison of HVS 
incidence rate between TG and WT rat models.   
 
 
High-Frequency Signal (HFS) Analysis 
Signals such as the spectral power in different frequency bands and phase-amplitude coupling, which we used in the 

LFS analysis, provide straightforward, measurable quantities that are also associated with specific cognitive 

mechanisms that are relatively well understood. In the case of HFS, the average firing rate of neurons is one of the 

quantities that is similarly straightforward to calculate and interpret. However, although the firing rate is a quantity 

that has been extensively used in neuroscience, its use is in most cases coupled with a stimulus (or task) and it is 

usually the stimulus response function that provides information about the underlying mechanisms and/or aberrations 

due to pathology. On the other hand, in the case of activity during relatively free behavior such as the one the rats in 

our study performed, it is very difficult to draw conclusions based on the firing rate alone. The huge variability in the 

base firing rates, which depend on cell types, brain areas or specific layers within them, as well as variability caused 

by the behavior itself, make the evaluation of spike trains based on the firing rate problematic and difficult to 

understand. To this end, spike train distance metrics have been developed that provide a powerful alternative approach 

to evaluate spiking activity in more general conditions. Moreover, depending on the spike-trains distance metric used, 

we can deduce information whether changes depend on underlying principles of neural coding such as rate or temporal 

codes. Here, we used three different spike-train distance metrics: VR-d, a parametric distance based on the temporal 

structure of a pair of spike trains, ISI-d, a parameter-free spike distance metric that extracts information from inter-

spike intervals by evaluating the ratio of instantaneous firing rates, and ES-d, a complementary measure that is 

sensitive to spike coincidences. Given that these metrics depend on different characteristics extracted from the spike 

trains, the performance of each metric in the classification task can provide information about the underlying 

mechanisms being disrupted in AD. 
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Fig. 7. Classification accuracy of LFS model with three ML classifiers: k-nearest neighbors (k-NN), Support vector machine 
(SVM), and Random Forest (RF). Frequency bands: Fast Gamma (FG), Slow Gamma (SG), Theta (T), and Delta (D). (A) the 
overall accuracy. (B) the classification accuracy only for TG rats. (C) the classification accuracy only for WT rats. From left to 
right in each section, the frequency bands are removed from the classifier’s input one by one to see their effects on the accuracy. 
(D) the results of feature importance analysis.  The MDI for each frequency band is calculated which shows the importance of slow 
and fast gamma oscillations.  
 

In Fig. 8 A and B, the spike distances among all spike patterns calculated in the TG and WT groups are shown. It is 

immediately obvious that the patterns for each metric show differences and similarities across the two groups. VR-d 

is a parametric spike train distance which is based on the temporal structure of two pairs of spike trains. In Fig 8 (left 

panels), we can observe that the VR distance between WT multi-units is generally small. However, the distance 

between TG multi-units is not consistent, and some spike trains have considerable distance from the others. ISI-d is a 

parameter-free spike distance metric that extracts information from inter-spike intervals by evaluating the ratio of 

instantaneous firing rates. In Fig. 8 (middle panels), the ISI distances among both TG and WT spike trains demonstrate 

similar values and variability and thus it is not immediately obvious if this metric can provide information for 

classification. A major weakness of ISI-d is the fact that it is not well suited to track synchrony changes based on spike 

coincidences. On the contrary, ES-d is a complementary metric that is sensitive to spike coincidences while sharing 

the fundamental advantages of ISI-d. In Fig 8 (right panels), like ISI-d, the values and variability across the two groups 

are similar and thus it is difficult to judge any difference between the two groups.  

As indicated in the Materials and Methods, dimensionality reduction via PCA was subsequently performed and the 

three components explaining the highest variability were used as features for further analysis. In Figure 9, the results 

of the PCA are presented in 3D feature space (Fig. 9). Using this representation, it becomes easier to observe that in 

the case of VR-d the data points of the WT group are very close to each other forming a cluster that is separated from 

the datapoints of the AD group. Thus, VR-d is a promising metric for classification. For the other two metrics, ISI-d 

and ES-d, the data points of the two groups are intermixed and thus it is more difficult to predict the results of 

classification. 
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Fig. 8.   The spike distance metrics for individual spike responses in  (A) TG and  (B) WT groups. From left to right, van Rossum 
distance (VR-d), inter-spike interval distance (ISI-d) and event synchronization distance (ES-d). The blue color shows more 
similarity, and the yellow color indicates how far the two spike trains are.  

 

 
Fig. 9. The feature space of each distance metric in 3D space. The red and blue dots represent TG and WT rats respectively. Each 
figure is the result of the application of  PCA algorithm on the matrix of spike train distances (Fig. 7). Three prinicipal components 
from each spike distance matrix were considered as the inputs of the classifiers. 

 

Using the features extracted from PCA analysis we then proceeded to using classifiers and namely SVM, k-NN, and 

RF to classify the two groups of rats based on HFS (Fig. 10). Note that for k-NN, different values of 𝑘 from 3 to 13 

have been tested to evaluate the model. However, we have only reported the result of 𝑘 = 5 as the best result.  The 
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classification results were compatible with the observed separation of groups in the feature space (Fig. 9) with the 

features based on the VR-d providing the highest total classification accuracy for all classifiers while the ISI-d had 

the lowest total performance (Fig. 10A). Notably, when the performance for each group was plotted separately (Fig. 

10 B-C) a slightly different behavior across groups was observed. For the WT group VR-d showed clearly the highest 

accuracy reaching 100% for SVM and k-NN classifiers while ISI-d performed very poorly; ES-d had intermediate 

performance. For the TG group, on the other hand, the maximum classification accuracy was in general less but 

comparable for each metric. 

 

 
Fig. 10. Classification accuracy for three different classifiers: RF, SVM, k-NN. LOSO-CV was used for training and testing 
individual classifiers.  (A)  the total performance for the classification of  TG and WT samples is presented. The classification 
performance for (B) TG rats and  (C) for  WT rats separately.   
 

Concatenation of HFS and LFS Analysis 
As we reported in the previous sections, we have used two types of analysis to extract features from low and high-

frequency signals respectively. Because each analysis extracts features with distinct characteristics, the LFS and HFS 

models do not share information. Therefore, it is possible to combine LFS and HFS information by stacking these 

models. The simplest form of stacking can be described as an ensemble learning technique where the predictions of 

multiple classifiers (referred as level-one classifiers) are used as new features to train a meta-classifier70. Fig. 11A 

shows how LFS and HSF models have been stacked as level-one classifiers and logistic regression as meta-classifier. 

The predictions of level-one models (𝑃2, 𝑃3) are stacked and used as input to train the final prediction's meta-classifier. 

To stack models, the best model of HFS (RF model using VR-d features) and the best model of LFS (RF model) were 

chosen. The meta-model is often a simple model, providing a smooth interpretation of the predictions made by the 

base models. As a result, linear models are often used as the meta-model, such as linear regression for regression tasks 

(predicting a numeric value) and logistic regression for classification tasks (predicting a class label). Although this is 

common, it is not required.  Logistic regression is a statistical technique used to estimate the probability of a discrete 
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outcome given an input variable. Also, it is best thought of as linear regression modified for classification problems71. 

The major distinction between linear and logistic regression is that the range of logistic regression is limited to values 

between 0 and 1. Table 1 provides the classification performance of the proposed ML method. According to the 

Classification results, we have achieved 80.23% and 94.44%, respectively, using high and low-frequency features. 

However, using the combination of high and low-frequency features using stacking models, the accuracy was 100%, 

and the feature space of two classes was easily separable with a single line (Fig. 11B). 

 

 
 
Fig. 11. A) Stacking model pipeline is represented. 𝑃! is the probabilistic prediction of the LFS model and 𝑃" is the average 
prediction of each mouse's spike train using the HFS model. Next, 𝑃! and 𝑃" are used as input of meta-model (logistic regression). 
B) The feature space of meta-model for classification. The red and blue dots represent TG and WT rats respectively. 
 

 
Table 1. Comparison of the classification models 
 

Total WT TG Model 
94.44%  100%  90.9%  LFS (RF) 
80.23%  85.71%  90%  HFS (RF - VR-d) 
100%  100%  100%  Stacked 

 
 
Discussion 

Alzheimer’s disease is characterized by the progressive accumulation of amyloid-β plagues and neurofibrillary tau 

tangles in the brain and is gradually leading to cognitive decline through multiple stages starting with mild memory 

loss, increasing deficits in daily life activities, loss of executive functions, and eventually dementia72,73. To date, no 

therapies exist able to stop or decelerate this devastating condition, while diagnosis is possible only years after the 

onset of pathophysiological events, presenting a major challenge towards developing successful therapeutic 

approaches. Thus, current efforts are focusing in identifying early disease biomarkers able to provide prognostic 

features that will allow patient identification at early time points. 

In this study, we recorded electrophysiological signals (LFPs and neuronal spiking activity) from the hippocampus of 

freely moving TgF344-AD rats and WT littermates, at an early phase of disease progression. Previous studies that 

characterized in detail the pathophysiology of this animal model, have indicated its great potential over other murine 
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models, because it gradually expresses all hallmarks of AD in humans including the rarely observed (in murine 

models) spontaneous accumulation of endogenous hyperphosphorylated tau (pTau) and neurodegeneration74,75. Very 

importantly, the relatively slow disease progression dynamics in this model that simulate different stages of AD in 

humans, offer remarkable opportunities for identifying novel AD biomarkers, understanding the underlying 

mechanisms of pathology and cognitive decline, and testing new therapeutic approaches. At the period we performed 

our recordings (6 months old rats), only mild Aβ accumulation is observed in the cortex and hippocampus, cognitive 

deficits are by and large absent, and thus this time-point is accepted to simulate the early pre-symptomatic phase of 

AD in humans. We hypothesized, that subtle changes in electrophysiological activity in the hippocampus, could be 

potentially used to classify individual rats across the two genotypes, AD and WT. 

The hippocampus, an area amongst the first to be affected in Alzheimer’s patients and strongly implicated in learning 

and memory processes, has been consistently shown to exhibit abnormal morphology and function in AD patients, 

with a remarkable reduction in volume as well as aberrant activation during cognitive tasks68,69,76,77. Consistent with 

these clinical observations, pre-clinical and translational research in transgenic animal models of AD pathology have 

repeatedly shown hippocampal dysfunctions and in particular abnormalities in oscillatory brain rhythms. 

Accumulating evidence suggests that disturbances in synaptic and neuronal function are leading to impairments of 

coordinated activity at early pre-symptomatic stages of the disease with major targets the brain networks that support  

memory and cognition73,78. Aberrations in the activity of these brain circuits range from subtle changes in oscillatory 

rhythms to more profound alterations that are reflected in EEG signals at later stages of the disease. Such impairments 

in brain rhythms, considered to underlie compromised hippocampal-dependent cognitive function, were also shown 

in pre-clinical animal models of AD before the onset of behavioral deficits79–81. 

To identify potential early aberrations in electrophysiological signals in the hippocampus of our TgF344-AD rat 

model, we first performed analysis of the low frequency signals (LFPs). Two different frequency ranges of gamma 

oscillations thought to be generated in the hippocampus were analyzed: slow gamma (25–50 Hz) and fast gamma (50–

100 Hz)24,82–84. We found that both the slow as well as the fast gamma oscillations were reduced in the AD rats in 

comparison to WTs (Fig. 4). This is consistent with findings in which gamma oscillations were found to be disrupted 

in AD patients38, in mice39,40, but also in some previous experiments in the same transgenic rat model, albeit performed 

at a slightly later stage of disease progression (8-9 months of age)65,66. Noteworthy, those studies reported significant 

decreases in the slow gamma power, while in our study – performed at an earlier AD stage - we, in addition, observed 

strong decreases in the fast gamma oscillations. We speculate that this difference could potentially relate to 

compensation processes that get activated at these slightly later stages and are resulting in cognitive resilience that is 

persistent until much later time points85,86. On the other hand, our analysis of HVSs indicates no significant difference 

between the HVSs occurrence rate between two groups. Earlier studies have shown that HVSs would increase during 

the AD in the cortical region of TgF344-AD rats68,69. These spindles can reach the hippocampus by the neocortical-

entorhinal cortex path87. Therefore, our assumption would be although these spindles have become widespread in the 

cortical region in the previous studies, they still have not reached the hippocampus in the earlier stages of AD. 
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In the hippocampus, gamma oscillations are nested within the slower theta oscillations with this co-modulation being 

proposed as a mechanism that recruits cell assemblies throughout the theta cycle88. The coupling between the phase 

of the theta with the amplitude of gamma oscillations has been demonstrated to support cognitive processes and 

memory formation in humans31, monkeys 29, and rodents32,83,89. To probe potential changes in these coupling in the 

TgF344-AD rat model we performed analysis of cross-frequency coupling (Fig. 5). We found a significant reduction 

of the modulation index in the theta phase with slow gamma but not the fast gamma amplitude in the AD rats. Low-

frequency gamma is associated with gamma locking and signal transfer in the hippocampus from CA3 ® CA1 (Fig. 

2A)24. Previous research in TgF344-AD has found a reduced fidelity in the activity of place cells recorded from the 

hippocampus CA2/3 while place cells recorded from CA1 showed persistent fidelity until much later stages of the 

disease90. Thus, the reduced theta-phase slow gamma amplitude coupling we observe could stem from such early 

aberrations in the CA3 circuit. On the other hand, the absence of changes in theta-phase to fast gamma amplitude 

coupling, which relates to the signal transfer from MEC ® CA1, indicates that this part of the circuit is able to function 

in a relatively normal fashion in the earlier stages of AD, although some synaptic deficits were found in vitro91. 

Using the information and insights we obtained from the frequency band power analysis, we performed classification 

using combinations of the power in different frequency bands in our effort to understand the contribution of each band 

on classification accuracy. As expected from visualizing the pairwise combinations of the PSD values for different 

frequency bands (Fig. 3), our results indicated that the best accuracy is achieved when average power in the gamma 

band is one of the classifier’s inputs while if only theta and delta band information is used, classification is close to 

chance levels. Comparing the performance of different ML classifiers, we observed that their performance was similar 

on average, with the random forest achieving the highest total classification (Fig. 7). The importance of gamma band 

activity in classification across the groups is in line with previous findings39,40,63–65,81,92 suggesting that gamma 

oscillations are essential in spatial memory and get disrupted during early stages of AD. Moreover, this finding 

provides support to suggestions that gamma frequency entrainment or reactivation have positive effects and can be 

developed towards potential treatments for AD 93,94.  

Having established that low frequency electrophysiology signals carry important information for classification, we 

then performed analysis of the high frequency signals by performing spike sorting to extract the spike trains of activity 

from different cells. Then, we calculated three spike-train distance metrics (VR-d, ISI-d, ES-d) across pairs of units 

in the TG and WT animals and used this as features for classification of the genotype. We found that VR-d provided 

the highest classification performance with over 80% total accuracy while the ISI-d and ES-d performance was on 

average close to chance levels. Interestingly, the ISI-d performance was dissociated between the two genotype groups 

showing high classification performance in TG animals but low in WT. In our experiments, we have recorded data 

from the hippocampus CA1 and CA3 regions 95–97 while the rats were freely moving in a linear track. We thus 

conjecture that aberrations in spike-trains driving the classification are related at least in part to place cell activity. 

Many recent studies have shown disruption of place cells activity in AD 39,40,90. A study by Galloway and colleagues, 

explicitly studied place cell activity in the hippocampus of TgF344-AD rats between 12 and 20 months of age 90. They 

found age related reductions in the fidelity of place cell firing in CA2/3 but not CA1. These subfields of hippocampus 

are part of the well-known trisynaptic loop which includes the dentate gyrus, CA3 and CA, with each of these 
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subserving a different function98. The pyramidal neurons of CA3 exhibit burst activity and project to the CA1 

pyramidal neurons via the Schaffer Collaterals. Noteworthy, the synapses of these CA3 neurons on CA1 dendrites are 

highly modifiable and very dynamic 99. In addition, approximately one third of synaptic connections in CA1 are 

received directly from the layer III of entorhinal cortex via the perforant pathway in contrast to CA2 and CA3 neurons, 

which receive direct projections from entorhinal cortex layer II 100,101. Given that previous studies have already shown 

that CA1 place cells are able to demonstrate normal place fields in the absence of CA3 input, albeit not without inputs 

from the layer III of the entorhinal cortex102,103, it would be perhaps possible to normalize hippocampal activity in AD 

by stimulating these layer III projections from the entorhinal cortex to CA1. 

To further understand if the aberrations in hippocampal spiking activity are providing the same (or additional) 

information for classification as the low frequency signals, we decided to perform a concatenation of the HFS and 

LFS analyses into a combined ML model. We found that stacking information from the two analyses, boosted the 

classification to 100% accuracy. This could indicate that although a lot of information in these frequency ranges may 

be shared (e.g., due to the phase locking of spiking to the theta and/or gamma rhythms), additional independent 

information can help the accurate classification. Thus, our analysis is consistent with previous findings indicating that 

that connectivity between CA3 and CA1 subfields of the hippocampus is disrupted due to aberrations in CA3 activity 

while CA1 seems resilient.  

In conclusion, the results of this paper indicate that with a combination of ML models, feature extraction methods 

based on similarities and distances in the neural responses (high-frequency components of the neuronal data) and time-

frequency analysis of LFP signal (low-frequency components of the neuronal data) recorded from the rat’s 

hippocampus, we can classify healthy and AD rats at an early, pre-symptomatic stage of Alzheimer’s disease. These 

promising findings provide a clear indication that information from a combination of signals and electrophysiological 

measurements, could accelerate diagnosis of AD and assist scientists in the development of more effective therapies. 
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Appendix 1 
 
The algorithm for spike sorting and multi-unit classification model 
 
Input: LFP signals from each rat 

• 𝑪: Number of electrode channels  
• 𝑷𝒏𝒕𝒔: Number of time points or the during of signal  
• 𝑿𝒔: Input data to spike sorter       
• 𝒇: Band pass filter                                                              # shape: (𝑷𝒏𝒕𝒔, 𝑪) 
• 𝑵: Number of multi-units found by spike sorters  
• 𝑵𝒔: Number of spikes in each founded multi-unit 
• 𝑷: Number of PCA components  
• 𝒍𝒂𝒃𝒆𝒍𝒂𝒄𝒕𝒖𝒂𝒍 	 ∈ {𝟎, 𝟏}: The class label of each multi-unit (TG or WT)  
• 𝒍𝒂𝒃𝒆𝒍𝒑𝒓𝒆𝒅	𝒑𝒓𝒐𝒃	 	 ∈ [𝟎	𝟏]: The probability of predicted class for each sample 

Output: 
• 𝒍𝒂𝒃𝒆𝒍𝒑𝒓𝒆𝒅	 	 ∈ {𝟎, 𝟏}: The predicted class for each multi-unit 

 
Operators:  

• ⊛: Band-pass filter operator 
• ⊕: Common reference removal  
• ⊖: Down sample 
• ⨀: Spike sorter (Tridesclous) 
• ∥: Concatenation 
• 𝓕: Spike train distance metrics (VR, ISI, and ES distance) 
• 𝚨: Mean PSD of the delta, theta, slow gamma and fast gamma 
• 𝖕: Principle component analysis with 𝑷 components 
• 𝓜: ML classifiers (RF, SVM, and k-NN) 

 
HFS Procedure: 
 
# Preprocessing 
 
𝑿 = 𝒇	 ⊛ 𝑿	                                                                                  # shape: (𝑷𝒏𝒕𝒔, 𝑪)                                                       
𝑿 =	⊕ (𝑿)                                                                                    # shape: (𝑷𝒏𝒕𝒔, 𝑪) 
 
# Spike Sorting 
 
𝑵			 = 	⨀(𝑿)                                                  Number of multi-units extracted from each rat LFP Data 
𝑵𝑻𝑮	, 𝑵𝑾𝑻                                                      Number of multi-units for each group of WT and TG 
 
# Feature Extraction 
 
𝑵𝑻𝑮 ×𝑵𝑻𝑮, 𝑵𝑾𝑻 ×𝑵𝑾𝑻 = 	𝓕(𝑵𝑻𝑮	, 𝑵𝑾𝑻)	                        Spike train feature distance metrics 
𝑵𝑻𝑮 × 𝟑,𝑵𝑾𝑻 × 𝟑 = 𝖕(𝑵𝑻𝑮	, 𝑵𝑾𝑻)	                                   Principle component analysis 
 
 
# ML Classifiers  
 
𝒍𝒂𝒃𝒆𝒍𝒑𝒓𝒆𝒅	 = 	𝓜(𝑵𝑻𝑮 × 𝟑,𝑵𝑾𝑻 × 𝟑, 𝒍𝒂𝒃𝒆𝒍𝒂𝒄𝒕𝒖𝒂𝒍)            Classification using ML models 
                                                                                              and leave one out cross validation  
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LFS Procedure: 
 
# Preprocessing 
 
𝑿 = 𝒇	 ⊛ 𝑿	                                                                    # shape: (𝑷𝒏𝒕𝒔, 𝑪)                                                       
𝑿 =	⊖ (𝑿)                                                                      # shape: (𝑷𝒏𝒕𝒔, 𝑪) 
 
# Feature Extraction 
 
𝑵𝑻𝑮 × 𝟒,𝑵𝑾𝑻 × 𝟒 = 	𝑨(𝑵𝑻𝑮	, 𝑵𝑾𝑻)	                             Extraction of average frequency band of each rat 
 
 
# ML Classifiers  
 
𝒍𝒂𝒃𝒆𝒍𝒑𝒓𝒆𝒅	 = 	𝓜(𝑵𝑻𝑮 × 𝟒,𝑵𝑾𝑻 × 𝟒, 𝒍𝒂𝒃𝒆𝒍𝒂𝒄𝒕𝒖𝒂𝒍)       Classification using ML models 
 
 
 
Stacking Procedure: 
 
# Level one Classifiers  
 
𝒍𝒂𝒃𝒆𝒍𝒑𝒓𝒆𝒅	𝒑𝒓𝒐𝒃	𝑯𝑭𝑺 =	𝓜𝑯𝑭𝑺(𝑵𝑻𝑮 × 𝟑,𝑵𝑾𝑻 × 𝟑, 𝒍𝒂𝒃𝒆𝒍𝒂𝒄𝒕𝒖𝒂𝒍)       Classification using ML models 
𝒍𝒂𝒃𝒆𝒍𝒑𝒓𝒆𝒅	𝒑𝒓𝒐𝒃	𝑳𝑭𝑺 =	𝓜𝑳𝑭𝑺(𝑵𝑻𝑮 × 𝟒,𝑵𝑾𝑻 × 𝟒, 𝒍𝒂𝒃𝒆𝒍𝒂𝒄𝒕𝒖𝒂𝒍)        Classification using ML models 
 
# Concatenation 
𝑿 = 𝒍𝒂𝒃𝒆𝒍𝒑𝒓𝒆𝒅	𝒑𝒓𝒐𝒃	𝑯𝑭𝑺 ∥ 	 𝒍𝒂𝒃𝒆𝒍𝒑𝒓𝒆𝒅	𝒑𝒓𝒐𝒃	𝑳𝑭𝑺                                   # shape: (𝟐, 𝑪)   
 
 
# Level two Classifier 
 
𝒍𝒂𝒃𝒆𝒍𝒑𝒓𝒆𝒅	 = 	𝓜(𝑿, 𝒍𝒂𝒃𝒆𝒍𝒂𝒄𝒕𝒖𝒂𝒍)       Classification using ML models 
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Appendix 2 
The mathematical description of individual metrics. 
 
Van Rossum distance (VRd): 
 
The Van Rossum metric estimates the distance of two spike trains and has been proved to be a reliable metric as the 
distance between multiple responses to the same stimulus is usually smaller than the distance between responses to 
the other stimuli. The discrete spike trains x and y are transformed into continuous functions through convolving each 
spike 𝑡G	with an exponential kernel 𝐻(𝑡) = exp	( !

H!
). 𝜏I  is the time constant and H is the Heaviside step function. 

After proper tradeoff, 𝜏I = 0.05 was selected. From the resulted waveforms 𝑥(𝑡) and 𝑦(𝑡), the VRd, 𝐷𝑉𝑅 can be 
calculated as: [33] 
 

𝐷IL(𝜏I) = 	
1
𝜏I
	_[𝑥(𝑡) − 𝑦(𝑡)]3	𝑑𝑡 

 
Inter spike interval distance (ISI-distance): 
 
The ISI- distance, DI, measures the immediate rate difference between spikes. It is based on a time-resolved profile 
that defines a dissimilarity value for each instance. We assign t, the time of the previous spike to each moment to 
obtain this feature:  
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The Event-Synchronization distance (ESd): 
 
The Event-Synchronization distance is based on the event relative timing. In this article, the event is defined by a 
spike in the spike patterns. The spikes 𝑡𝑖 and 𝑡𝑗 in the separate spike trains are synchronous only if their time difference 
is less than the delay time 𝜏𝑖𝑗, which is obtained by:  
 

𝜏"Y =
mint𝑡"W2 − 𝑡" , 	𝑡" − 𝑡"X2, 𝑡YW2 − 𝑡Y , 	𝑡Y − 𝑡YX2u
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𝐽"Y =	{
1						0 < 	 𝑡"# −	𝑡Y' 	≤ 	 𝜏"Y
0.5																										𝑡"# =	 𝑡Y'

0																								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
 

DZ[\]^X_`] = 1−
c(m|n) + c(n|m)

�NaN]
 

 
 
Mean Decrease Impurity (MDI): 
Gini importance measures the importance of variable X in predicting variable Y in the random forest for all nodes 

averaged over all	𝑁/	trees in the forest 104. This measure is also called Mean Decrease Impurity, here denoted by 

𝐼𝑛𝑐𝑁𝑜𝑑𝑒𝑃𝑢𝑟𝑖𝑡𝑦: 

IncNodePurity	(𝑋#) =
1
𝑁/

m 
/

m  
!∈/:d(1&)Ve%

𝑝(𝑡)Δ𝑖(𝑠! , 𝑡, 𝑡- , 𝑡f) 

 

where 𝑣(𝑠!) is the variable used in split 𝑠!and Δ𝑖(𝑠! , 𝑡, 𝑡- , 𝑡f) is the impurity decrease of a binary split 𝑠!	dividing node 

𝑡 into a left node 𝑡- and a right node  𝑡f: 

Δ𝑖(𝑠! , 𝑡, 𝑡- , 𝑡f) = 𝑖(𝑡) −
𝑁!'
𝑁!

⋅ 𝑖(𝑡-) −
𝑁!(
𝑁!

⋅ 𝑖(𝑡f) 

where 𝑁 is the sample size, 𝑝(𝑡) = U&
U

  the proportion of samples reaching t, and 𝑝(𝑡-) =
U&'
U
		and 𝑝(𝑡f) =

U&(
U
		are the 

proportion of samples reaching the left node 𝑡- and the right node 𝑡f respectively.       
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Supplemental	Information		

	

Figure S1. Pairwise comparison of the normalized power in delta (1-4 Hz), theta (4-12 Hz), slow gamma (30-50 Hz), and fast 
gamma (50-100 Hz) for  TgF344-AD (TG) and Wildtype (WT) groups.  Each point represents the average PSD of a single sample 
in the specified band. The diagonal plots are the univariate distributions that show the amount of overlap between the distribution 
of two groups in individual frequency bands. The other plots compare WT and TG for specified frequency bands. Blue/Red points 
are recording session (samples) of WT (n = 3) /TG (n = 3), respectively (TG1, TG2, TG3, WT4, WT5, WT6). 
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Figure S2. Classification accuracy of LFS model with three ML classifiers: k-nearest neighbors (k-NN), Support vector machine 
(SVM), and Random Forest (RF) for 6 rats from both groups of TgF344-AD and WT (TG1, TG2, TG3, WT4, WT5, WT6). 
Frequency bands: Fast Gamma (FG), Slow Gamma (SG), Theta (T), and Delta (D). (A) the overall accuracy. (B) the classification 
accuracy only for TG rats. (C) the classification accuracy only for WT rats. From left to right in each section, the frequency bands 
are removed from the classifier’s input one by one to see their effects on the accuracy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S3. The feature space of VR-d by considering 6 rats from both groups of TgF344-AD and WT (TG1, TG2, TG3, WT4, 
WT5, WT6) in 3D space. The red and blue dots represent TG and WT rats respectively. Each figure is the result of the application 
of  PCA algorithm on the matrix of spike train distances (Fig. 7). Three prinicipal components from each spike distance matrix 
were considered as the inputs of the classifiers.  
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