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Abstract 

Listening in a noisy environment is challenging, but many previous studies have 
demonstrated that comprehension of speech can be substantially improved by looking 
at the talker’s face. We recently developed a deep neural network (DNN) based system 
that generates movies of a talking face from speech audio and a single face image. In 
this study, we aimed to quantify the benefits that such a system can bring to speech 
comprehension, especially in noise. The target speech audio was masked with signal to 
noise ratios of -9, -6, -3, and 0 dB and was presented to subjects in three audio-visual 
(AV) stimulus conditions: 1) synthesized AV: audio with the synthesized talking face 
movie; 2) natural AV: audio with the original movie from the corpus; and 3) audio-only: 
audio with a static image of the talker. Subjects were asked to type the sentences they 
heard in each trial and keyword recognition was quantified for each condition. Overall, 
performance in the synthesized AV condition fell approximately halfway between the 
other two conditions, showing a marked improvement over the audio-only control but 
still falling short of the natural AV condition. Every subject showed some benefit from 
the synthetic AV stimulus. The results of this study support the idea that a DNN-based 
model that generates a talking face from speech audio can meaningfully enhance 
comprehension in noisy environments, and has the potential to be used as a “visual 
hearing aid.” 
 
Keywords: deep neural network, speech intelligibility, audiovisual integration, speech in 
noise 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497610doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497610
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 

Speech in quiet environments can usually be easily understood. However, listening 
effort is increased and comprehension eventually suffers when a speech signal of 
interest is degraded, either by the presence of additional talkers and other 
environmental noise or hearing loss, with the combination presenting particular difficulty. 
Successful listening under such circumstances, often described as the Cocktail Party 
Problem (Cherry, 1953), involves segregating sound sources and selectively attending 
the target (McDermott, 2009; Shinn-Cunningham & Best, 2008).  
 
Natural speech, however, is not only an acoustic signal. Listening in noisy situations is 
aided by a number of factors, principal among them being visual speech cues provided 
by viewing the talker’s face (Bernstein & Grant, 2009; Erber, 1969; Sumby & Pollack, 
1954). However, there are numerous listening situations in which visual speech cues 
are not available, such as phone calls and podcasts. The COVID-19 pandemic has 
introduced additional challenges to audio-visual speech perception, with the advent of 
widespread mask-wearing and video-conferencing in which often one or several 
participants do not turn on their cameras. 
 
As a result of these challenging listening scenarios, there is interest in how artificial 
visual cues may aid listening. Recent work has suggested that a temporally coherent 
non-speech stimulus offers little or no aid in segregating concurrent acoustic stimuli. 
Strand J et al (2020) used a modulated visual circle presented coherently with speech 
and found that the circle did not help reducing effort or improving subjects’ speech 
comprehension. A similar study (Yuan, Lleo, Daniel, White, & Oh, 2021) used a 3-
dimentional modulating sphere rather than a 2D circle and found a small improvement 
which was significant only at a signal-to-noise ratio (SNR) of -1dB. Results have been 
uninspiring for other modalities as well— Riecke et al (2019) presented subjects with 
tactile stimuli which were coherent with the speech audio envelope. Although they 
observed an enhanced cortical tracking of the speech in EEG, there was no 
improvement in word recognition performance. 
 
In contrast to simple artificial stimuli, the audio-visual benefit of natural speech stimuli is 
substantial (Bernstein & Grant, 2009; Erber, 1969; Sumby & Pollack, 1954), as well as 
being robust to asynchrony with the acoustic speech (Grant & Greenberg, 2001) and 
degradation in spatial frequency (Munhall, Kroos, Jozan, & Vatikiotis-Bateson, 2004). 
Thus, in listening situations where comprehension would benefit from visual face cues, 
but none are present, creating a synthetic face that matches the acoustic signal holds 
promise for assisting listening. 
 
Deep neural networks (DNN) provide an exciting opportunity for synthetically generated 
visual listening aids but efforts to create such systems predate DNNs’ widespread use. 
For example, statistical machine learning (ML) methods such as Hidden Markov models 
(HMM) have been used previously to generate moving mouth animations from either 
text or speech audio (Al Moubayed, De Smet, & Van Hamme, 2008; Hofer, Yamagishi, 
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& Shimodaira, 2008; Masuko, Kobayashi, Tamura, Masubuchi, & Tokuda, 1998; 
Schabus, Pucher, & Hofer, 2013; Tamura, Masuko, Kobayashi, & Tokuda, 1998). Other 
ML methods such as QR factorization (Lucero, Baigorri, & Munhall, 2006) and artificial 
neural networks (ANN) (Massaro, Beskow, Cohen, Fry, & Rodgriguez, 1999) have also 
been used for similar purposes. A data-driven talking head product named Baldi 
(Massaro & Palmer Jr, 1998) used the output of a phoneme recognizer to animate a 
three-dimensional avatar head. The system was originally designed for language 
learning and has shown benefit for word recognition for children and multilingual 
learning (Ouni, Cohen, & Massaro, 2005). The SynFace project (Beskow, Granström, & 
Spens, 2002; Beskow, Karlsson, Kewley, & Salvi, 2004) was designed as a telephone 
aid before the advent of smartphones. SynFace used recurrent neural networks (RNN) 
mixed with HMMs to animate the face, tongue, and teeth of an avatar from acoustical 
input signal. Improvement was shown in a word-recognition task with SYNFACE added 
to audio compared with an audio-only condition (Salvi, Beskow, Al Moubayed, & 
Granström, 2009). The system offered some improvement in listeners with hearing loss, 
but it was highly variable across listeners.  
 
In recent years, deep learning methods have seen wide adoption in audio-visual 
synthesis. There have been many studies that use DNN approaches to build audio-to-
visual models, aiming to help people with speech intelligence. Some of the studies 
predicted the canonical face animation by predicting the facial landmarks with long 
short-term memory (LSTM) network (Eskimez, Maddox, Xu, & Duan, 2018). Chen et al 
proposed a two-stage system that first converts the speech audio to face landmarks and 
then maps the landmarks to a reference face image (Chen, Li, Maddox, Duan, & Xu, 
2018; Chen, Maddox, Duan, & Xu, 2019). Others focused on generating realistic mouth 
or facial movement video using convolutional neural networks (CNN) (Jamaludin, 
Chung, & Zisserman, 2019), LSTM (Pham, Wang, & Pavlovic, 2017; Suwajanakorn, 
Seitz, & Kemelmacher-Shlizerman, 2017), recurrent adversarial networks (Song, Zhu, Li, 
Wang, & Qi, 2018), or generative adversarial networks (GAN) (Vougioukas, Petridis, & 
Pantic, 2019).  
 
Although there are numerous published audio-to-visual DNN models, they generally 
only assess how realistic the generated face animations are based on quantitative 
metrics or subjective quality ratings. Little has been done to investigate the 
comprehension benefit for human listeners especially in difficult listening environments. 
In one recent exception, Varano et al. (2022) showed a GAN model (Vougioukas, 
Petridis, & Pantic, 2020) that can improve speech comprehension in noisy environments.  
 
The new DNN model we used in this study (Eskimez, Maddox, Xu, & Duan, 2020) is 
able to generate realistic talking face videos from pure acoustical signals and a single 
seed image of a face. The face can be anyone and does not necessarily need be the 
person who speaks the audio. The model is also designed for real-time processing with 
very little delay, making it potentially useful for the purpose of communicating over 
telephone or online meetings with no camera feed. In this study, we investigated if this 
model specific offers improved speech intelligibility in the presence of background noise. 
The performance of speech intelligence with three audio-visual (AV) conditions across 
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four different SNRs was compared. We found generally that speech in noise paired with 
the model-synthesized talking face video showed significantly better speech 
comprehension than the audio-only control condition, especially in worse SNRs.  

Materials and Methods 

In this study participants performed speech-in-noise comprehension tasks in three 
audio-visual (AV) conditions: 1) Audio-only, 2) Synthesized AV and 3) Natural AV. The 
target audio was drawn from an open set corpus and was masked with speech from two 
other talkers at four signal-to-noise ratios (SNRs) in each condition. Participants were 
asked to replicate the sentence they heard by typing it at a prompt, and the 
performance was scored based on the percent of keywords correctly reported. 
 
Subjects 
 
The experiment was conducted under the protocol approved by University of Rochester 
Research Subjects Review Board. Every subject gave written informed consent before 
the experiment. Subjects were paid for the time in the lab. 
 
Ten subjects (four male and six female) aged between 19 to 40 (mean 27.5) were 
included in this study. Subjects underwent an audiometric screen and were confirmed to 
have audiometric thresholds of 20 dB HL or better at octave frequencies from 500 Hz to 
8000 Hz before the experiment. All subjects reported normal or corrected-to-normal 
vision and English as their primary language. No subjects were excluded. 
 
Stimulus Materials 
 
The end-to-end DNN-based model developed by Eskimez et al. (2020) was used to 
generate the synthesized face video. The model takes one audio file and a single image 
of face as the input. The output video is a cropped talking face with 25 frames / s and 
128 by 128 pixels that includes only the facial area of the talker (as shown in Figure 1). 
Please refer to the Eskimez et al (2020) article for detailed description about the model. 
The model depends only on 136 ms of audio from the “future,” and thus can be run in 
near real-time with a 136 ms lag. It can be modified to have a shorter lag at the cost of 
some quality. 
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Figure 1. DNN-based model that generates synthesized talking face movie from a pure audio and a single image of face. 

 
The stimuli in this study were selected from the Speech Test Video Corpus (STeVi) 
(Sensimetrics, 2014), which contains audio and videos of four native English narrators 
(two male and two female) speaking sentences. Each utterance includes three to five 
keywords. For example, one utterance is “his PLANS MEANT TAKING a BIG RISK”, 
where the uppercase words are predetermined to be the keywords.  
 
To study the synthetic video’s effect on speech comprehension in noise, we mixed the 
target audio from the STeVi corpus with two streams of audio maskers with SNRs of -9, 
-6, -3, and 0 dB. The maskers were selected from two audiobooks, The Alchemyst read 
by a male narrator (Scott, 2007) and A Wrinkle in Time read by a female narrator 
(L’Engle, 2012). The audiobooks were processed by automatically cutting out the 
silence period that was longer than 0.5 s using tools developed by our lab previously 
(Maddox & Lee, 2018; Polonenko & Maddox, 2021). The SNR refers to the ratio of the 
intensity of the target audio to the intensity of the combined maskers. Each masker was 
presented at 60 dB SPL, meaning the level of the summed maskers was 63 dB on 
every trial. The level of the target ranged from 51 to 63 dB SPL, corresponding to SNRs 
from -9 to 0 dB. 
 
AV Conditions 
 
The three AV conditions and the four SNRs of noise conditions were randomly paired 
and presented to the subjects (see Figure 2). The three AV conditions were determined 
entirely by the visual stimulus—the only acoustic manipulation in the experiment was 
SNR. 
 

1) Audio-only condition: The audio from the corpus that mixed with maskers were presented. The 

visual stimulus was a static image of the narrator to indicate the narrator’s identity. A small red 

square on the right was also shown to inform the audio-only condition without any moving 

video followed (Figure 2a). The image was a screenshot taken from the original video of the 

corpus. 
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2) Natural AV: The original video from the corpus recording was presented in the center of the 

screen with 29.97 frames / s, its native framerate (Figure 2b). The target audio was also recorded 

within the video. 

 
3) Synthesized AV: The talking face video synthesized using the target speech was presented. An 

image of the actual talker was used as the seed, so that the talker identity matched in all trials. 

Note that none of the audio or video used in this experiment was present in the model’s training 

set (Eskimez et al., 2020). In this condition, the videos were played at 25 frames / s which is the 

default output of the model (Figure 2c). 

 

 
 
Figure 2. Visual and audio stimuli presented to subjects. (a) Audio-only condition: A static image of the narrator was shown to 
indicate the narrator’s identity and a small red square on the right was also shown to inform the audio-only condition without any 
moving video followed. (b) Natural AV condition: The original video from the corpus recording was presented. (c) Synthesized AV 
condition: The talking face video synthesized using the target speech was presented. (d) Audio signal: target sentences (upper) and 
two streams of maskers (lower). 

 
The model synthesizes only the narrator’s face. Therefore, to match the size of faces in 
all conditions, we increased the synthesized video (whose native resolution is only 128 
by 128 pixels). We also reduced the size of original video from the corpus respectively, 
so that the matched synthesized face would not look like pixelated. The angle of the 
faces subtended is around 6.2° from subjects’ eyes.  
 
Each trial began with a 2 second pause on the first frame of the video to help the 
subject figure out which AV condition and which voice to listen to for that trial. 
 
Procedure 
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Subjects were seated in a sound-isolating booth in front of a 24-inch BenQ monitor with 
a refresh rate of 144 Hz and viewing distance of around 60 cm. The audio stimuli were 
played through Etymotic Research ER-2 insert earphones via and RME Babyface Pro 
sound card. A standard keyboard was given to the subjects to type their response in the 
experiment. 
 
An acclimation session was first presented for the subjects to get familiar with the voice 
and match the voices and the faces of the four narrators from the corpus. Three 
nonsense utterances were played that said by each narrator. Fake names were given to 
each narrator to facilitate remembering them (“Anna”, “Bella”, “Charles” and “David”). 
This step was necessary so that subjects could distinguish the target voice from the 
masker talkers in low SNR conditions. 
 
A 12-trial training session next allowed subjects to become familiar with each AV 
condition and understand how to respond correctly. Subjects were asked to type in the 
sentence they heard word by word after each trial. For each of the three AV conditions, 
there were two trials of clean target audio (without any background noise) and then two 
trials of audio in noise with the SNRs of 0 and -3 dB. The accuracy for the training 
session was estimated automatically after each trial. The responses in each trial were 
considered as correct if the sequence of letters of the entered keywords were no less 
than 80% correct, and the correctness was presented to the subjects immediately after 
they submitted their responses (N.B.: automatic evaluation was used only for training; 
manual evaluation is described in the next section). This ratio was calculated by the 
SequenceMatcher class of the difflib python library, as in Fiscella, Cappelloni, and 
Maddox (2022). To pass the training session, subjects needed to report all keywords 
correctly for the clean trials, and at least one keyword for the 0 dB and -3 dB noise 
conditions. A second chance to pass the training would be given if subjects could not 
pass on their first try.  
 
Subjects could proceed to the actual experiment after passing the training session. The 
12 stimulus conditions (three AV conditions paired with 4 SNRs) were presented in a 
completely random order. Each trial presented a unique target sentence. There were 15 
trials within each combination of AV and SNR condition. A total of 180 trials were 
presented to the subjects. Subjects were given breaks with a minimum duration of 30 
seconds at 25, 50, and 75 percent completion of the experiment. Responses were 
recorded and then exported to an excel file for later evaluation. 
 
Data Analysis 
 
Subjects’ performance was scored manually by counting the correct keywords based on 
Smayda et al.’s (2016) criteria and previously used by our lab (Fiscella et al., 2022). 
Responses were considered correct if the typos did not change the meaning of the word 
or if the words were homophones. Note that this manual scoring was performed offline, 
and the automated scoring described previously was only used in the training session 
so feedback could be immediate. The percent correct scores from each of the 12 
conditions were calculated for each subject and were averaged over subjects. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.497610doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.497610
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
A generalized linear mixed-effects model was constructed using glmer function from the 
lme4 (Bates, Mächler, Bolker, & Walker, 2014) package in R. The model was fitted with 
a random effect on the subjects. The fixed effects included SNR as a continuous 
variable, the AV condition as a categorical variable, and the interaction of these two 
variables (see the formula below). The correctness of each word was treated as a 
binomial (logit) outcome.  
 

����������� ~ ��
 � �� ��������� � ��
 � �� ��������� � �1 | �������� 
 

Results 

The generalized linear regression model showed that in the range of SNRs tested, the 
performance was correlated to the SNR (p < 0.001), with significantly different intercepts 
for each AV condition. Among the three AV conditions, the order of the performance is 
Natural AV > Synthesized AV > Audio-only (p<0.001). These results also concluded that 
as the SNR increases, the performance increases in each AV condition, as expected. 
There was also an interaction of AV condition and SNR, which reflects the fact that the 
slope for each AV condition over SNR also differed from each other, with the Audio-only 
condition showing the largest changes over SNR and Natural AV the smallest (Table 1). 
 

Variables  Coefficient estimate Std. Error  p-value 
Intercept (Audio-only) 0.440 0.833  0.59778 
Synthesized AV 0.520 0.128  5.17*10-5*** 
Natural AV 1.011 0.139  3.55*10-13*** 
SNR (Audio-only) 0.329 0.017  <2*10-16*** 
Synthesized AV * SNR -0.083 0.023  0.00027*** 
Natural AV * SNR -0.136 0.024  1.25*10-8*** 
Table 1. Generalized linear mixed regression model summary. Each row represents the coefficient term with their log odds 
estimate, the standard error, and the p-values. *p<0.05, **p<0.01, ***p<0.001. 

 
The average keyword recognition performance in each AV condition and SNR is shown 
in Figure 3. We performed a post hoc pairwise t-test to compare the performance of 
each AV condition within each SNR condition. The performance of Synthesized AV 
outperformed Audio-only condition significantly, and closed half of the gap between 
Natural AV and Audio-only conditions at low SNRs (-9, -6, and -3 dB). Improvements of 
20.2%, 21.9%, and 16.3% for Synthesized AV versus the Audio-only condition at -9, -6, 
and -3 dB of SNR were found, respectively (p<0.05, Holm-Bonferroni corrected). The 
Natural AV outperformed the Audio-only condition significantly at all of the SNRs, as 
expected. There was not a significant difference between Synthesized AV and Natural 
AV at the higher SNRs of -3 and 0 dB.  
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Figure 3. The grand mean performance (percent correct) across subjects of each AV condition (colored lines) and SNR 
(bars represent ±1 SEM). Brackets indicate significant differences between AV conditions at each SNR (*p<0.05, **p<0.01, 
***p<0.001). The bracket at 0 dB indicates a significant difference only between Natural AV and Audio-only. 
 
Plotting individual subjects’ performance reveals that they all received some benefit 
from the Synthesized AV condition compared to Audio-only, and some subjects even 
showed higher accuracies in the Synthesized AV condition than the Natural AV at high 
SNRs (Figure 4). The distribution of the performance differences between Synthesized 
AV and Audio-only from all SNR conditions across all subjects are shown in Figure 5. 
The kernel density estimate (KDE) curve is highest around a 20 percent improvement, 
and the large majority of points are positive (i.e., to the right of the line at 0 percent).  
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Figure 4. Individual performances (percent correct) from all of the ten subjects.  
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Figure 5. Distribution of the benefit from Synthesized AV. The blue bars are the histogram of the performance (percent correct) 
difference between the synthesized AV and audio-only condition, taken across all subjects for all SNRs (10 subject * 4 SNR = 40 
points). The black curve is the kernel density estimate (KDE) and the short black straight lines indicate individual values. All values 
to the right of 0 indicate a performance benefit of the synthetic face over the Audio-only control. 

 
 

Discussion 

Listeners’ performance on the experimental task showed that the synthesized face 
significantly improves speech comprehension compared to when only acoustical signals 
are present. The benefit was greatest when listening in low SNRs, with performance in 
the synthetic face condition falling approximately halfway between the audio-only and 
natural AV conditions. In the highest SNR (0 dB), performance with the synthesized 
face was comparable with that of the natural AV condition. Individual results also 
showed that every subject received some benefit from the model-synthesized face 
compared to audio-only. The fitted generalized linear model confirmed a significant 
relationship between the subject performance and the stimulus AV and SNR conditions 
as well as their interaction.  
 
This study demonstrates that in the absence of a natural visual stimulus, speech 
comprehension can be enhanced by a synthesized, realistic talking face that is 
generated purely from the acoustical signal using a DNN-based model. This result is 
consistent with the recently submitted preprint by Varano et al (2022), where they 
showed that a GAN model improves speech comprehension in noise both for human 
and an AI speech recognition system, although they also found the natural face 
performed better than the model-generated face. That study tested speech 
comprehension in only one SNR (-8.82 dB) with speech-weighted noise as the 
background noise. Here, we go beyond that result by testing comprehension in different 
SNR conditions and using real speech as the background noise.  
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The synthetic faces in both this study and in Varano et al. (2022) provided a benefit 
approximately half as large as the natural face did. We believe these benefits stem from 
realistic faces and especially accurate mouth and articulator shapes. Previous studies 
using basic visual stimuli such as circles or spheres that dilate coherently with the audio 
provide no or very small improvements (Strand et al., 2020; Yuan et al., 2021; Yuan, 
Wayland, & Oh, 2020). In a pilot we ran preceding this study, we used a cartoonish face 
whose mouth moved coherently but showed little differentiation in its articulation of 
different sounds. That system also provided no improvement over the audio-only 
condition. Therefore, we believe that the difference between the improvement offered by 
the natural and synthetic faces is likely due to small imperfections and inaccuracies yet 
to be corrected. These imperfections may mean that the synthetic face is 1) not 
providing some information that a natural face would, 2) providing incorrect information 
which leads to errors, or 3) interrupting the binding between the audio and visual signals, 
meaning that some visual information is present but not integrated (or some 
combination of those factors). New systems that emphasize accuracy of articulation in 
addition to realism of the face will correct these errors, providing further benefit. 
 
Since the DNN model we employed was designed to run in real time, it has the potential 
to be considered a “visual hearing aid”. Older systems such as SynFace (Salvi et al., 
2009) and Baldi (Massaro & Palmer Jr, 1998) used a phonetic recognizer to first identify 
a phoneme and then project its articulation to the motion of the 3D head. Different from 
those systems, our end-to-end model did not include any audio pre- or post-processing 
or make use of metadata like word- or phoneme-level transcripts during training. It thus 
was language-agnostic and provides good synchrony. Our model also generates 
images realistic enough to avoid the “uncanny valley” due to being trained with a GAN 
approach. The model was also trained with speech in several different noise conditions, 
meaning the model retains some ability to generate talking faces even if the speech 
audio is noisy. With these advantages, the developed DNN model may be useful for 
listening to speech in a wide variety of listening conditions when a talker’s face is not 
available. 
 
Despite the promising results, some limitations should be noted. First, we recruited only 
English speakers and presented them with utterances only in English. Although the 
DNN model was trained on English data, it has the ability to generate talking faces in 
other languages too. Future work should analyze how well this model works with other 
languages. Second, in addition to the moving lips and faces that provide the visual 
speech cues, non-verbal gestures and other spontaneous movements (blinking, for 
example) also have an impact on normal communication (Cassell, McNeill, & 
McCullough, 1999; Dargue, Phillips, & Sweller, 2021; Goldin-Meadow, 1999). A model 
that takes the head movement into account has been developed (Chen et al., 2020) that 
allows a potential future investigation on what impact of such model can bring in speech 
comprehension.  Emotional expression of the talking face is another influential factor in 
speech. Changing the emotional expression of the face can lead to changes of the 
meaning of that utterance (Alpert, Kurtzberg, & Friedhoff, 1963). Another recent DNN-
based model is capable of generating talking faces with a categorical emotion input that 
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can be the same as or different from the emotion conveyed in the speech audio 
(Eskimez, Zhang, & Duan, 2021). It will be interesting to see if such a model can 
improve speech comprehension more than only neutral faces. Third, we tested the 
system only in people with typical hearing thresholds. The benefit for people with 
hearing loss is not known but is of great importance. Successful deployment of a 
system such as this one will depend on working closely with potential users. With DNN 
techniques being rapidly developed, face-synthesis models like ours can be (and will 
need to be) improved, with the eventual goal of providing a benefit comparable to 
natural faces. 
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