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Abstract 9

Learning to discriminate between different sensory stimuli is essential for survival. In 10

rodents, the olfactory bulb, which contributes to odor discrimination via pattern 11

separation, exhibits extensive structural synaptic plasticity involving the formation and 12

removal of synaptic spines, even in adult animals. The network connectivity resulting 13

from this plasticity is still poorly understood. To gain insight into this connectivity we 14

present here a computational model for the structural plasticity of the reciprocal 15

synapses between the dominant population of excitatory principal neurons and 16

inhibitory interneurons. It incorporates the observed modulation of spine stability by 17

odor exposure. The model captures the striking experimental observation that the 18

exposure to odors does not always enhance their discriminability: while training with 19

similar odors enhanced their discriminability, training with dissimilar odors actually 20

reduced the discriminability of the training stimuli (Chu et al, 2016). Strikingly, this 21

differential learning does not require the activity-dependence of the spine stability and 22

occurs also in a model with purely random spine dynamics in which the spine density is 23

changed homogeneously, e.g., due to a global signal. However, the experimentally 24

observed odor-specific reduction in the response of principal cells as a result of extended 25

odor exposure (Kato et al. 2012) and the concurrent disinhibition of a subset of 26

principal cells arise only in the activity-dependent model. Moreover, this model predicts 27

the experimentally testable recovery of odor response through weak but not through 28

strong odor re-exposure and the forgetting of odors via exposure to interfering odors. 29

Combined with the experimental observations, the computational model provides strong 30

support for the prediction that odor exposure leads to the formation of odor-specific 31

subnetworks in the olfactory bulb. 32

Author Summary 33

A key feature of the brain is its ability to learn through the plasticity of its network. 34

The olfactory bulb in the olfactory system is a remarkable brain area whose anatomical 35

structure evolves substantially still in adult animals by establishing new synaptic 36

connections and removing existing ones. We present a computational model for this 37

process and employ it to interpret recent experimental results. By comparing the results 38

of our model with those of a random control model we identify various experimental 39

observations that lend strong support to the notion that the network of the olfactory 40
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bulb comprises learned, odor-specific subnetworks. Moreover, our model explains the 41

recent observation that the learning of odors does not always improve their 42

discriminability and provides testable predictions for the recovery of odor response after 43

repeated odor exposure and for when the learning of new odors interferes with retaining 44

the memory of familiar odors. 45
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Introduction 46

Learning and long-term memory are to a large extent implemented through the 47

plasticity of neuronal connectivity. In adult animals this plasticity is typically 48

dominated by long-term potentiation and long-term depression, which change the 49

strength of the synapses, while during development structural plasticity in the form of 50

the addition and removal of neurons as well as the formation and pruning of synapses 51

plays a central role. Strikingly, in olfaction structural plasticity appears to remain a key 52

component of learning even in adult animals. Thus, new adult-born granule-cell 53

interneurons are persistently integrated into the olfactory bulb, which is the first brain 54

region to receive sensory input from the nose, and new synapses between granule cells 55

and the principal mitral cells are formed. In parallel, granule cells undergo controlled 56

apoptosis [1, 2], the extent of which, however, has recently come under dispute ( [3], see 57

also discussion with the reviewers in [4]), and synapses are removed [5, 6]. This makes 58

the olfactory bulb an excellent system to study structural plasticity. 59

A widely assumed function of the olfactory bulb is to aid in the discrimination between 60

odors by enhancing differences in the activity patterns that they evoke [7, 8]. 61

Computational modeling has identified a number of mechanism by which this can be 62

achieved, which are not mutually exclusive. This includes a nonlinear response of the 63

neurons without any lateral interactions among the neurons [9] or with random [10] or 64

all-to-all connectivity [11]. Given the extensive plasticity of the olfactory bulb, adaptive 65

connectivity with linear or nonlinear response of the neurons has also been identified as 66

an efficient mechanism for pattern separation [6, 12–15].A common approach to probe 67

this function of the olfactory system is to test whether animals learn to discriminate 68

between two similar odors. In these tasks their correct choice may or may not be 69

associated with a reward. It has been found that certain types of perceptual learning 70

depend on the olfactory bulb [16], require adult neurogenesis [17], and are associated 71

with increased densities of the spines on granule-cell (GC) dendrites that form the 72

synapses with the mitral cells (MCs) [18]. The mechanisms controlling these plasticity 73

mechanisms are not very well understood. The survival of GCs is enhanced by odor 74

enrichment [4, 19] and by GC activity [20]. Similarly, odor enrichment increases the 75

stability of spines in bulbar regions that are activated by the enrichment odors [5, 21]. 76

Simultaneous measurements of the spine stability and the activity of the cells associated 77

with that synapse are challenging. Thus, knowledge about the response of the bulbar 78

spine dynamics to signals (like glutamate, BDNF) associated with neuronal activity is 79

somewhat limited [22, 23]. So far no direct connection between the activity of individual 80

neurons, the stability of their spines, and the circuits emerging from that plasticity has 81

been established experimentally. In fact, the organizational principle of the network of 82

mitral and granule cells is still only poorly understood, reflecting also the lack of 83

significant chemotopical organization of the bulb [24]. The overall dependence of the 84

spine stability on odor enrichment suggests that the resulting connectivity would reflect 85

the specific odors that the animal has experienced. Computational modeling predicts 86

such a structure and suggests that it could underly the observed improvement in odor 87

discrimination [1, 2, 6]. 88

In this paper we pursue two goals. Motivated by a number of experimental 89

observations [6, 18,22,23], we first put forward a phenomenological model for the 90

activity dependence of the spine dynamics that incorporates the memory of previous 91

odor exposures. We then use this model to interpret two sets of experimental 92

results [25,26], focusing particularly on the question to what extent these experiments 93

support the computational prediction that the olfactory bulb exhibits a learned, 94

odor-specific subnetwork structure. In [25] the repeated exposure to an odor over 95

multiple days has been found to lead to a reduction of the mitral cell response that is 96
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specific to that odor, i.e. the response of the mitral cell to a different odor changes only 97

little during the same time. A different set of experiments [26] revealed that repeated 98

odor exposure makes the bulbar mitral cell representations of two odors more 99

discriminable if the two odors are very similar. However, if the two odors are very 100

different from each other, the learning makes their representations actually less 101

discriminable. Moreover, while the repeated odor exposure leads to an overall reduction 102

of the mitral cell responses, individual mitral cells can exhibit an increase in activity 103

and this increase can be odor-specific, i.e. for one of two very similar odors the mitral 104

cell response can increase, while it remains low for the other odor, resembling 105

differential disinhibition. Differential inhibition is also observed. 106

We show that our model is able to capture these observations. To disentangle the role of 107

the activity-dependence of the spine dynamics we also consider a control model with 108

purely random spine dynamics in which the statistically homogeneous spine density is 109

modulated by a global signal. Somewhat surprisingly, the control model can capture the 110

learning-induced improved discrimination of similar stimuli as well as the 111

learning-induced reduced discrimination of dissimilar stimuli. However, the 112

experimentally observed disinhibition of mitral cells is extremely unlikely in such a 113

model. In combination with [25,26] our model gives therefore strong support to the 114

notion that the structural plasticity in the olfactory bulb leads to a learned, 115

odor-specific network structure in which MCs preferentially inhibit each other 116

disynaptically, if they have similar receptive fields [6, 12,14,15]. Moreover, the model 117

makes testable predictions for the recovery of MC responses after repeated odor 118

exposures, for the suppression of odor discrimination by odor exposure, and for the 119

forgetting of odor memories through interference. An earlier account of some of these 120

results is available at [27]. 121

Results 122

Formulation of the model 123

Using computational modeling we investigated the ramifications of the structural 124

plasticity of the reciprocal synapses between mitral cells (MCs) and granule cells (GCs). 125

We focused on those two cell types and did not include the processing in the glomerular 126

layer between the sensory neurons and the mitral cells. Instead, we considered the 127

glomerular activation patterns as inputs to the MCs (Fig 1A). The MCs and GCs were 128

described by firing-rate models. Reflecting the reciprocal nature of the MC-GC 129

synapses the GCs inhibited those MCs that excited them as indicated in the inset of 130

Fig 1A, which depicts a spine on a GC dendrite and an excitatory synapse (MC→GC) 131

and an inhibitory synapse (GC→MC). Since the synapses are located on the secondary 132

dendrites of the MCs, which reach across large portions of the olfactory bulb [28], we 133

allowed synapses to be formed between all MCs and all GCs without any spatial 134

limitations. We recognize that this ignores the sparse structure of the dendrites, which 135

results in a decrease in the connection probability between widely separated 136

MCs [29,30]. 137

The MC-GC synapses do exhibit some synaptic-weight plasticity. Its nature is, however, 138

still quite unclear [31,32]. Moreover, during perceptual learning the frequency of the 139

inhibitory postsynaptic currents received by the MCs from the GCs has been found to 140

increase, while their amplitude remained unchanged [18], suggesting that only the 141

number but not the strength of the synapses changed. We therefore assume all 142

connections to have the same weight and focus on the structural plasticity of the 143
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synapses. Thus, in each time step we add and remove reciprocal synapses between MCs 144

and GCs with probabilities that depend on the activity of the cells that are connected 145

by that synapse. 146
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Fig 1. Computational model. (A) Sketch of the network. All spines provide reciprocal
synapses that excite GCs (green arrow) and inhibit MCs (red bar). (B) Spine formation
is controlled by R = Mφ(G). The figure shows φ/τf for φ > 0 and φ/τr for φ < 0 (cf.
Eq. 5). (C) Disynaptic recurrent inhibition of MCs via GCs. The numbers in the right
panel indicate the strength of the effective inhibition. (D) Simplified training stimuli.
(E1, F1) MC activity before and after training, respectively. ( E2, F2) Connectivity
between MCs and GCs before and after training, respectively. Each white dot
represents a connection between an MC and a GC. (E3, F3 ) Effective recurrent
connectivity among MCs. The color represents the number of GCs that mediate the
mutual disynaptic inhibition of MCs via GCs (cf. C).

Our modeling is qualitatively motivated by a number of experimental studies. The 147

overall stability of spines has been observed to be enhanced if animals experienced an 148

enriched odor environment [5]. More precisely, across multiple days, spines in bulbar 149

areas that were activated by the enrichment odors were stabilized, while those in other 150

areas were not. Very recently, a positive correlation between the stability of individual 151

spines and the GC-activity of the dendrite on which they are located has been 152

observed [33]. Since filopodia often are precursors of spines, we also glean information 153

from experiments addressing their dynamics. The frequency of formation and removal 154

of filopodia has been found to increase with NMDA-receptor activation [22] and to 155

decrease with Mg2+-concentration. This suggests that the formation rate of spines 156

increases with the activity of the GC-dendrite on which they are forming. The 157

dynamics of filopodia that are located on spine heads are often indicative of subsequent 158

dynamics of that spine. Specifically, the amplitude and direction of the movement of the 159

spine head has been found to be correlated with the lifetime and orientation of such a 160

filopodium, respectively [23]. Moreover, the dynamics of the filopodia have been found 161

to be triggered by presynaptic glutamate release, suggesting a role of MC-activity in the 162

spine dynamics [23]. Biophysical details about the mechanisms relating the spine 163

dynamics with the temporal evolution of the neuronal activity during odor exposure are, 164

however, not well known yet. 165
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Based on these observations, we assume the formation and removal of synapses to follow 166

Poisson processes with rates that depend on the activities of the neurons connected by 167

the respective synapse (for details see Methods). We express the formation and removal 168

rates in terms of a single rate function R = Mφ(G) that depends on the activities M 169

and G of the MC and the GC, respectively, that are connected by that synapse 170

(Fig 1B). Similar to models for synaptic weight plasticity [34,35], we take this function 171

to be non-monotonic. For GC activities above a threshold G(1) a new synapse is formed, 172

while it is removed below that threshold as long as it is above a second, lower threshold, 173

G(0). For GC activities below G(0) structural change is negligible. This lower threshold 174

allows the synaptic connections of a GC to be remembered during times when the GC is 175

not activated by any odor. Connections are removed, however, on GCs that are excited, 176

but only weakly so. Since the change in the total number of synapses appears to be 177

limited in experiments [18,36], we hypothesize that there exists a homeostatic 178

mechanism that keeps the total number of synapses on a given GC within a limited 179

range. For most of our results, we employ a top-k competition mechanism, in which 180

only the k strongest synapses survive. We show that qualitatively the same results are 181

obtained with a more biophysical mechanism that is based on a limited resource (see 182

Realization of competition through competition for a limited resource and Methods). 183

Both mechanisms operate on a relatively fast time scale, as is generally needed for the 184

stability of networks with Hebbian plasticity [37]. 185

We are particularly interested in the impact of the plasticity on the ability of the 186

network to learn to discriminate between stimuli that the network is repeatedly exposed 187

to. We train the network by using a sequence of alternating stimuli A and B as sensory 188

inputs. We assess the ability of the network to discriminate between these stimuli by 189

comparing the difference in the MC activity patterns in response to the stimuli with the 190

variability of these patterns across repeated presentations of the same stimuli. The 191

firing rates themselves do not fluctuate between successive presentations. However, the 192

spike trains underlying those mean firing rates can fluctuate. Assuming Poisson-like 193

spike trains, we take the mean firing rate of an MC as a proxy for its variance (for 194

details see Methods section). To illustrate the mechanism by which the discriminability 195

is modified, we use simplified stimuli (Fig 1D), while naturalistic stimuli are used to 196

compare with experimental data (Fig 2A). 197

Plasticity induces mutual disynaptic inhibition of co-activated 198

MCs 199

To illustrate the network evolution resulting in the structural-plasticity model, we use a 200

pair of simple model stimuli A and B that excite partially overlapping sets of MCs 201

(Fig 1D). In the absence of any odors (‘air’) the input is taken to be non-zero and 202

homogeneous, reflecting the spontaneous activity of the MCs or of the neurons driving 203

their input. Initially, the MC-GC connectivity is chosen to be random (Fig 1E2). The 204

learning process reflects the effectively Hebbian character of the structural plasticity 205

rule through which connections are established between cells that fire together. If a GC 206

responds to a stimulus by integrating excitatory inputs from activated MCs, other MCs 207

that are activated but not yet connected to this GC are likely to form a connection with 208

that GC. This is reflected by the two blocks in Fig 1F2 involving GCs with indices 209

above ∼ 600. Each of these GCs is connected with either the MCs responding to 210

stimulus A (MC indices 60-110) or to stimulus B (MC indices 110-160). Conversely, if 211

two MCs respond to the same stimulus, the number of GCs they both connect to 212

increases, if the model is trained by that stimulus. Due to the reciprocal nature of these 213

synapses, this induces enhanced mutual disynaptic inhibition (Fig 1C) between these 214
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MCs. This is seen in the two blocks along the diagonal line of their effective 215

connectivity matrix, which gives the number of GCs that mediate that inhibition 216

(Fig 1F3). As a result, the training preferentially reduces the activity of initially highly 217

activated MCs (Fig 1E1, F1), consistent with observations [25,38]. 218

Training enhances or reduces stimulus discriminability 219

depending on their similarity 220

Intriguingly, in mice learning to discriminate between two odors the training enhanced 221

the discriminability of the training stimuli only if they were similar, i.e., for hard 222

discrimination tasks [26]. If the task was easy, i.e. if the stimuli were dissimilar, the 223

training actually reduced the discriminability of the training stimuli. Here 224

discriminability was measured using d’, which is given by the mean of the difference in 225

MC-activity in response to the two odors relative to the square-root of the pooled 226

variance. To provide insight into this surprising finding we employed the same training 227

protocol as in the experiment, using naturalistic stimuli that were adapted from 228

glomerular activation data of the Leon lab [39] (Fig 2A (top)) and down-sampled to 229

reduce the computational effort (Fig 2A (bottom)). These stimuli were used for the 230

easy discrimination task. As in [26], we used mixtures of the same stimuli for the hard 231

discrimination task (60% : 40% vs. 40% : 60%, see Methods). The two odors of the hard 232

task drove each MC to a very similar degree (Fig 2C). 233

Our model successfully reproduced several experimental observations of [26]. There it 234

was found that training with the easy task reduced the difference in the response of the 235

MCs to the two odors used in the task; the majority of the MCs fell below the diagonal 236

in Fig 2D1. Here the response was defined as the difference between odor-evoked 237

activity and air-evoked activity and the color of the dots in Fig 2D1,E1 denotes the 238

average response of the respective MC across the two odors before training. In contrast, 239

the difference increased with training in the hard task (Fig 2 E1). In particular, a 240

fraction of cells showed the same response to both odors before training, but 241

significantly different responses after training (Fig 2E1, dots along the y-axis). As 242

in [26], we quantified these changes by classifying MCs into responsive cells, i.e., cells 243

that showed a significant response to at least one of the two odors, and divergent cells, 244

for which the two odors evoked significantly different responses (see Methods). In the 245

easy task, not only the number of responsive cells decreased but also the number of 246

divergent cells (Fig 2D2). In the hard task the number of responsive cells also decreased. 247

The number of divergent cells, however, actually increased by a small amount (Fig 2E2). 248

Thus, both results recapitulated the experimental observations [26]. These outcomes 249

were not sensitive to the threshold θ that classified the cells (Fig S14). 250

The discriminability of two neuronal activity patterns depends not only on the 251

difference of their mean firing rates but also on the trial-to-trial variability of their spike 252

trains. The latter is not included in our firing-rate framework. It is quite common for 253

the variability to increase with the firing rate; for instance, for Poisson spike trains the 254

variance in the spike count is equal to the mean spike count, i.e. the variability increases 255

like the square-root of the mean. As a proxy for the discriminability of the response 256

patterns, we therefore defined d′i of each divergent neuron as the difference of the mean 257

activity in response to the two odors divided by the square-root of the sum of the means 258

(see Eq.(12) in the Methods). As in [26], training increased the mean 〈d′i〉 across the 259

MCs in the hard task (Fig 2E3), but it decreased 〈d′i〉 in the easy task (Fig 2D3), 260

indicating reduced discriminability. 261
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Visualization of reduction and enhancement of discriminability 262

To better understand and visualize the mechanism underlying the change in 263

discriminability, we employed simplified stimuli (Fig 3A,B). As in the case of realistic 264

stimuli, the stimuli for the hard task were mixtures of two easily discriminated stimuli. 265

Again, we first exposed the network to a set of pre-training stimuli. They set up an 266

initial connectivity that was independent of the task stimuli (Fig 3A). It affected the 267

initial response of the network to the training stimuli (Fig 3C1,D1). 268
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(B) Training stimuli for the easy task (B1) and the hard task (B2) and the resulting
connectivity matrix after training. (C) Easy task: (C1) MC Activity before training
(after pre-training). (C2) MC activity after training. (C3) Activity difference before
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In the easy task, the effective connectivity resulting from the training had only two 269

blocks, which were along the diagonal and corresponded separately to odors A and B 270

(Fig 3B1). This inhibition reduced the MC activity and with it the number of 271

responsive cells. Since most MCs responded essentially to only one of the two stimuli, 272

the response difference decreased along with the overall response (Fig 3C3, red line vs. 273

black line), decreasing the discriminability. 274

In the hard task, both stimuli activated the same set of MCs, but to a different degree, 275

reflecting the difference in the concentrations of the two components. The 276

discriminability of the stimuli was therefore not compromised if the MC activities were 277

reduced, as long as the difference in the representations of the two stimuli was 278

maintained. In fact, in that case the discriminability in terms of d’ was enhanced, since 279

we associate reduced overall activity with reduced trail-to-trial variability (cf. Eq.(12)). 280

The effective connectivity resulting from the training achieved this through the two 281

additional, off-diagonal blocks (Fig 3B2). Each MC activated by component A received 282

disynaptic inhibition from MCs that were activated by component A as well as from 283

MCs activated by component B. With increasing concentration of component A the 284

effective inhibition from the MCs activated by component A increased, while that from 285

the MCs activated by component B decreased. Thus, the overall inhibition was 286

relatively independent of the concentration of A and therefore about the same for both 287

mixtures, preserving the response difference. In fact, for a large number of MCs the 288

difference in the response even increased with training (Fig 3D3). Assuming that for a 289
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cell to be classified as divergent, this difference had to be above some threshold, the 290

number of divergent cells decreased in the easy task, while it increased in the hard task 291

(Fig 3C4,D4, cf. Fig S14C,D), as we found for the naturalistic stimuli (Fig 2D2,E2). 292

Qualitatively similar results were obtained without pre-training phase (Fig S6). 293

Odor specific adaptation 294

Repeated odor exposure was seen in [26] to lead to the response of a smaller number of 295

MCs. A change in the response amplitude through repeated exposure has already been 296

found earlier [25,40]. Specifically, it was found that the repeated exposure to an odor 297

over the course of a week substantially reduced the MC response specifically to that 298

‘familiar’ odor, but not to ‘novel’ odors, which the animal had experienced much 299

less [25]. Such a differential response could be due to a modulation of the overall gain in 300

the olfactory bulb by a signal that indicates the novelty or familiarity of the presented 301

odors. Such a signal could arise some time after odor onset, since the odor has to be 302

recognized as familiar first. A more parsimonious explanation is offered, however, by the 303

activity-dependent spine dynamics of our plasticity model (Fig.4). 304

To mimic the procedure used in [25], we established a background connectivity by 305

repeatedly exposing the network in the pre-training to two different naturalistic 306

background odors B1 and B2 in an alternating fashion (Fig.4A). In the training period 307

we included a third odor F in the odor ensemble as the ‘familiar’ odor and monitored 308

the MC response to that odor as well as to 11 other, ‘novel’ odors N1...11. For each 309

MC-odor pair we quantified the change in the network response using a change index. It 310

was defined as the response of the MC to that odor at the end of the training period 311

minus that at the end of the pre-training divided by the sum of those two activities [25]. 312

As in [25], for the majority of MC-odor pairs the change index for the familiar odor was 313

negative (Fig.4B). This reduction in response resulted from an increase in the number of 314

GCs mediating the disynaptic inhibition among the MCs responding to the familiar 315

odor (MC indices mostly between 30 and 150 in Fig.4D). 316
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Fig 4. Odor specific adaptation (cf. [25]). (A) Simulation protocol. Pre-training
with odors B1,2 established a background connectivity. During training the network
became familiar with an additional odor F . (B) The MC response to the familiar odor F
is more reduced than to the novel odors N1...11 .). (C) During pre-training connections
are predominantly added from GCs to MCs that are activated by the background odors
B1,2 (MC indices below 90 and above 200). The color indicates the change in W(mm),
i.e. in the number of GCs connecting the respective MCs. (D) During training the
number of connections of MCs responding to the familiar odor F increases, but that
corresponding to odors B1,2 decreases (cf. (C)). (E) The mean change index of the
novel odors N1...11 is correlated with their similarity to the familiar odor.

The network restructuring during the training generally also modified the MC responses 317

to other, novel odors. For MCs that responded to a novel as well as to the familiar odor 318

we compared the respective change indices. Since synapses that are not activated by the 319

familiar odor do not become stabilized by the repeated odor exposure, the response of 320

MCs to the novel odors was typically less reduced than that to the familiar odor, 321

yielding a change index below the diagonal in Fig.4B, in agreement with [25]. 322

The network restructuring during the training did not increase the inhibition for all 323

MCs. For some MCs the inhibition was actually decreased leading to a positive change 324

index (Fig.4B). Averaging across all responding MCs, the mean change index for a novel 325

odor was negatively correlated with how similar it was to the familiar odor as measured 326

in terms of the Pearson correlation of the stimuli (Fig.4E). A particularly strong 327

reduction in the inhibition occurred among many of the MCs responding to novel odor 328

N4 (marked blue in Fig.4B,D). This odor was actually identical to odor B2, which was 329

used in the pre-training, where it established mutual inhibition among MCs with indices 330

in the range 30 to 90 and above 200 (left panel of Fig.4C). During the training period, 331

which included odor F in addition to B2, many of these connections were removed 332

(Fig.4D), leading to a strikingly positive mean change index for that odor (blue circle in 333

Fig.4E). Positive change indices for familiar and particularly for novel odors were also 334

observed experimentally for quite a few MC-odor pairs in [25]. 335

PLOS 11/45

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.29.498211doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498211
http://creativecommons.org/licenses/by/4.0/


Random spine dynamics can capture divergence and 336

discrimination 337

So far we have seen that the model proposed here captured a variety of key 338

experimental findings [25, 26]. A key prediction emerging from the activity-dependence 339

of the spine dynamics is the formation of subnetworks of highly connected MCs and 340

GCs that specifically respond to one of the training odors. We therefore asked whether 341

the activity dependence is necessary to capture the experimental results and to what 342

extent the experiments therefore allow to infer the formation of an odor-specific, learned 343

network structure in the olfactory bulb. Alternatively, the spine dynamics could be 344

statistically homogeneous with a density that is controlled by a global signal reflecting, 345

e.g., a neuromodulator indicating the novelty or familiarity of an odor [41,42]. 346
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As a control model, we implemented purely random, activity-independent spine 347

dynamics, where the training with the familiar odor lead to a change in the mean 348

number of MC-GC connections. Since the experiments [25] and the simulations (4) 349

revealed a reduction in the MC-activity in response to the familiar odor, we increased 350

during the training the mean number of connections between MCs and GCs, which is 351

also consistent with an increase in the number of spines during perceptual learning [18]. 352

For the hard task using simplified stimuli (cf. Fig.3) the fraction of responsive MCs 353

decreased when the number Nconn of connections was increased, while the fraction of 354

divergent MCs increased substantially over some range of Nconn (Fig.5B, cf. Fig.2). In 355

parallel, the discriminability measured in terms of d′ increased (Fig.5C). This reflects 356

the fact that increasing the random connectivity increased the inhibition for all MCs by 357

roughly the same amount. In a linear firing-rate model this would preserve the 358

difference between the MC responses; with the saturation of the MC response used in 359

our model, the difference actually increased (Fig.5D,E). 360

Thus, the aspects considered in Fig.5 are not able to distinguish between the 361

activity-dependent and the random model. We therefore considered the results of the 362
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protocol of Fig.4 in more detail. 363

Random spine dynamics fail to induce observed disinhibition 364

As in Fig.4, we exposed the random model in the pre-training to 2 background odors, 365

added odor F as the ‘familiar’ odor to that ensemble during the training period, and 366

probed the response to additional 11 ‘novel’ odors. As expected, and in contrast to the 367

activity-dependent model, the random model showed no qualitative difference in the 368

change index distribution of the familiar and the novel odors (Fig.6D). Strikingly, even 369

though in the random model the mean change index for the familiar odor was less 370

negative than that in the activity-dependent model (〈CI〉random = −0.14 vs 371

〈CI〉 = −0.27), for none of the MC-odor pairs the change index was positive in the 372

random model. In contrast, in the activity-dependent model about 8% of the MCs had 373

a positive change index for the familiar odor (Fig.6E), which is in rough agreement with 374

the experimental findings [25]. These MCs were disinhibited by the training (Fig.6A). 375

For visualization purposes we also compared the changes in MC activity for the two 376

models using simplified stimuli. Again, while in the random model the training led to a 377

decrease in the activity of all MCs, in the activity-dependent model there were quite a 378

few moderately activated MCs that were disinhibited by the training (Fig.6C). 379

A more detailed analysis of the results of the activity-dependent model showed that the 380

disinhibition in the response of a given MC to two odors can be quite different even if 381

the two odors are very similar to each other. Considering again the mixtures used in the 382

hard task of Fig.2, we found a large number of MCs for which the difference in the 383

response to the two stimuli was significantly increased by the network restructuring. For 384

some of them the enhancement arose from differential disinhibition, wherein the MCs 385

were inhibited by both odors before training, but only by one of them after training 386

(Fig.6A). For other MCs the increased difference was due to differential inhibition. 387

While these MCs were excited by both odors before training, they responded only to 388

one of the very similar odors after training (Fig.6B). Both, differential disinhibition and 389

inhibition were observed experimentally in [26] (their Supp. Fig.S1). 390

In contrast, in the random model no disinhibition was obtained. This is illustrated for 391

one odor in Fig.6C. It also manifested itself in the change index for novel and familiar 392

odors Fig.6D (cf. Fig.4B) and the cumulative distribution of the change indices (Fig.6E) 393

Thus, the improved discrimination of pairs of very similar stimuli and the reduced 394

discrimination of dissimilar stimuli does not require the emerging connectivity to be 395

odor-specific, but only an overall increase in inhibition. The observed disinhibition, 396

however, is not consistent with random spine dynamics. But it is recapitulated with 397

activity-dependent spine stability, which leads to odor-specific network structure. Thus, 398

combined with the experimental observations of [26] our computational model supports 399

the notion that odor exposure during perceptual learning leads to a network structure 400

that reflects the presented odor. 401

Removal of spines and forgetting by intermediate-amplitude 402

re-activation 403

A key feature of our model is the non-monotonic behavior of the resilience function φ 404

(Fig.1B), which renders spines stable not only if the associated GC is strongly active, 405

but also when it is inactive. This allows previously learned connectivities to persist even 406

if the corresponding odors are not presented any more. If MCs and GCs are weakly 407
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Fig 6. Disinhibition in the activity-dependent but not in the random
model. (A) In the activity-dependent model training in the hard task with naturalistic
stimuli (cf. Fig.2) disinhibited a large fraction of MCs differentially. The activity of a
specific MC is shown in (A2). (B) In the activity-dependent model training also
inhibited many MCs differentially. (C) Training-induced change in MC activities for the
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model the change index for familiar and novel naturalistic odors was statistically the
same (cf. Fig.4B); Odor N4 is marked in blue. (E) The CDF of the change index shows
disinhibition only for the activity-dependent, but not the random model.

driven, however, the corresponding spines are removed. While the non-monotonicity of 408

the resilience function is reminiscent of models for synaptic weight plasticity [34,35], 409

there is no explicit experimental evidence for it so far for the bulbar structural plasticity. 410

To illustrate the impact of the non-monotonicity of the resilience function we used 411

simplified stimuli. During pre-training two dissimilar odors A,B were presented, which 412

resulted in a connectivity comprised of two blocks on the diagonal (Fig.7A). In a 413

subsequent training period we tested the persistence of the memory of the block 414

corresponding to odor A when the network was re-exposed to that odor, but with a 415

different amplitude (labeled A1...4 in Fig.7). When that amplitude was small, the 416

connectivity remained essentially unchanged by the training (Fig.7B1). For intermediate 417

activities, however, a fraction of the connections established in the pre-training were 418

removed since the GC activity fell into the range in which the resilience function was 419

negative (Fig.7B2,3). For large amplitudes the resulting GC activity was large enough to 420

render the resilience function positive and the connections were stable (Fig.7B4 ). 421
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Experimentally the connectivity itself is only poorly accessible. One can, however, 422

probe the predicted changes using the response of the MCs to odor A, similar to the 423

experiments in [25]. When the connections are retained during the training, the 424

response of the MCs to that odor will not change compared to their response before the 425

training. However, if intermediate stimulus amplitudes are used in the training, the 426

removal of the connections manifests itself in an increase of the mean response of the 427

MCs to odor A after the training (Fig.7C). Correspondingly, the distribution of the 428

differences between the MC activities after and before the training shifts and broadens 429

in a non-monotonic fashion when the amplitude of the stimulus used in the training is 430

increased (Fig.S2). 431

Thus, if the odor exposure experiments in [25] were to be continued with the same odor 432

but at a suitably reduced concentration, the model predicts that the MC response to 433

that odor would increase again within days rather than undergoing the slow recovery 434

over a period of 1-2 months that was observed in the absence of that odor [25]. 435

The protocol used in Fig.7 does not have a simple behavioral read-out. Moreover, it 436

relies on a change in the overall activity of the MCs. Since the input to the MCs is 437

pre-processed in the glomerular layer, which is thought to provide an overall gain 438

control of the input [43], changes in the odor concentrations may not translate directly 439

into corresponding changes in MC activation and the ensuing change in the connectivity 440

predicted by the model. We therefore considered also a slightly modified protocol using 441

mixtures composed of two dissimilar odor components. To reduce the impact of the 442

overall gain control, only the concentration of one of the two components was varied 443
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(Fig.8A). Exposing in pre-training 2 the network to two mixtures in which that 444

component had similar but large values (Fig.8A2) enhanced the discrimination between 445

these two mixtures (teal-magenta line in Fig.8G), However, due to pre-training 2 the 446

network developed strong mutual inhibition between the MCs responding to the two 447

mixture components (Fig.8E). This allowed the strong component in the training 448

stimulus (Fig.8A3) to suppress the response to the weak component completely 449

(Fig.8B). Subsequent training with the mixtures in which that component was weak, 450

removed many of those connections (Fig.8A3,F) and largely reversed that suppression 451

(Fig.8C). This enhanced the discriminability of those mixtures above its initial value 452

without any inhibition (blue-green line in Fig.8G). 453
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The removal of spines on GCs that are only intermediately activated lead also to 454

forgetting of a discrimination task by learning a subsequent discrimination task, if the 455

odors of the second task overlapped to some extent with those of the first task and 456

therefore interfered with the retention of the relevant connections (Fig.S3). Upon 457

re-exposure to the odors of the first task, the network very quickly re-learned to 458

discriminate between those odors. In fact, the relevant connectivity was re-stablished 459
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faster than it had been learned in first odor exposure (Fig.S3G). In general re-learning 460

occurred noticeably faster than the forgetting (Fig.S4). 461

Realization of competition through competition for a limited 462

resource 463

In order to keep a Hebbian model stable, different compensatory processes can be 464

imposed depending on the state of nearby synapses on the same dendrite [37]. In the 465

model that we have discussed so far we used top-k competition because of its simplicity, 466

without identifying a specific, biologically feasible mechanism. In this section, we 467

discuss one such mechanism. 468

The idea behind the competition is that within a single neuron, possibly within a single 469

dendritic branch, resources used for the formation of synapses are limited. In 470

hippocampal CA1 neurons, stimulating spines leads to the shrinking of neighboring 471

unstimulated spines [44]. A plausible explanation of this phenomenon is that some 472

resource is limited within the neuron. A computational model based on this idea has 473

reproduced the fast multiplicative scaling behavior of synapses and explained a transient 474

form of heterosynaptic plasticity [45]. Along similar lines, we assumed that the 475

formation of each synapse depletes a resource pool by a fixed amount, and the 476

formation rate is proportional to the fill-level of the resource pool. Further, we assumed 477

that the resource for a synapse is returned to the pool when the synapse is removed and 478

that the removal rate is independent of the resource pool size. We took the activation 479

function (Fig 9A, red curve) to be comprised of a formation term, which depends on the 480

fill-level of the resource pool (Fig 9A, blue curve), and a removal term, which is 481

independent of the fill-level (Fig 9A, green curve). 482

It is easy to see how the limited resource pool provides a homeostatic mechanism. For 483

low pool levels synapses are removed (open arrow in (Fig 9A)), which replenishes the 484

pool, while for high pool levels new synapses are formed (solid arrow in Fig 9A)), 485

decreasing the pool level (Fig 9B). The equilibrium pool level and with it the number of 486

synapses in the steady state is regulated by the activity of the GCs, which in turn 487

depends on the number of synapses via the activity of the MCs connected to the GCs. 488

With this biophysically plausible stabilization of the structural plasticity, our model 489

yielded results that were qualitatively similar to those obtained with the simpler, top-k 490

competition model (compare Fig 9C-F with Fig 2D,E and Fig S5 with Fig 3). 491

Discussion 492

In the rodent olfactory bulb structural plasticity in the form of the extensive formation 493

and removal of synaptic spines persists into adulthood [6] and may be a key factor in 494

establishing and maintaining the network structure of the olfactory bulb. Since it is 495

operating on timescales that are comparable to some learning processes [6, 18] it may 496

play an important role in these processes. In this study, we proposed a simple 497

Hebbian-type model to investigate this role. Our model shows that a local unsupervised 498

learning rule according to which the formation and removal of spines depends on GC 499

and MC activity is consistent with and explains a host of experimental 500

observations [18,25,26]. Among them is the intriguing observation that training can 501

have opposite impact on the discriminability of very similar and of dissimilar odor pairs. 502

As observed experimentally, in our model training enhanced the discriminability of 503

similar odors, but it reduced the discriminability of the training odors if they were quite 504
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Fig 9. Synaptic competition via a common resource pool. The training protocol is the
same protocol as in Fig 2. (A) The modified activation function φ̃(G) (red) is the
difference between the formation function (blue) and the removal function (green).
P = P0 (thick), P > P0 (dotted), P < P0 (dashed). (B) (Top) For P > P0 synapses
tend to form (solid arrow in (A)). (Bottom) For P < P0 synapses tend to be removed
even though the GC activity is the same (open arrow in (A)). (C1, 2) Responsive and
divergent cells and discriminability for the easy task (cf. Fig.2E,F). (D1,2) Responsive
and divergent cells and discriminability for the hard task (cf. Fig.2G,H). (E,F)
Differential disinhibition and inhibition (cf. Fig.6). (G) Removal of spines for training
with intermediate activities leads to an increase in MC activity (cf. Fig.7).

different from each other. In fact, for the dissimilar odors, the number of MCs that 505

responded differently to the odors decreased with learning, deteriorating the 506

performance. 507

Since a key prediction of our activity-dependent model is that upon repeated exposure 508

with relevant odors the olfactory bulb develops subnetworks associated with these odors, 509

we investigated whether the experimental results are also consistent with a model in 510

which learning modifies the inhibition in a random, statistically homogeneous fashion, 511

independent of the activity, and therefore without forming odor-specific subnetworks. 512

Surprisingly, the random model also captured the differential outcome of training with 513

similar and with dissimilar odor pairs. It failed, however, to recapitulate the observation 514

that during that learning process, which led to an overall increase in the number of 515

inhibitory connections, a sizable fraction of the MCs became more, rather than less 516

active, i.e. they were disinhibited rather than inhibited [26]. Similarly, the 517

activity-dependent, but not the random model, captured the odor-specific reduction in 518

MC activity that is observed after an animal has been familiarized with an odor, which 519

is much more pronounced for that familiar odor than for less experienced odors [25]. 520

One could imagine that the reduced response to a familiar odor is the result of an 521

inhibition-enhancing global modulatory signal that may be triggered by the recognition 522

of the odor as familiar. This would, however, not explain the significant fraction of MCs 523
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that are disinhibited in response to the familiar or the novel odor [25]. Thus, in 524

combination with [25,26] our model provides strong indirect evidence that perceptual 525

learning leads to the formation of MC-GC subnetworks comprised of MCs and GCs 526

having significantly overlapping receptive fields. 527

Moreover, the model offers a foundation for further studies of learning-related functions 528

in the olfactory bulb. For instance, in the current version of the model the novelty or 529

salience of an odor is not considered explicitly. Only implicitly it is assumed that the 530

presented odors have sufficient salience, since experiments suggest that the plastic 531

changes occur predominantly for novel or otherwise salient odors [19,46]. 532

In contrast to a previous model for structural spine plasticity [6], the model presented 533

here describes a learning mechanism that allows the network to remember previously 534

learned tasks in its connectivity. These memories are robust against subsequent learning 535

of dissimilar tasks. The learned connectivity is only erased by exposure to interfering 536

stimuli, which overlap significantly with previously learned ones. This prediction should 537

be amenable to experimental tests using sequential perceptual learning [47] with two 538

odor pairs, each comprised of two similar odors. Repeated exposure with one of the two 539

odors of the first pair will enhance the spontaneous discriminability of the odors in that 540

pair. The subsequent repeated exposure with an odor from the second pair is expected 541

not to affect the discriminability of the odors in the first pair, if the odors in the second 542

pair are dissimilar from the first pair. However, if there is a significant overlap between 543

the pairs, the second training is expected to compromise the discriminability of the first 544

pair. Note, however, that if the odors in the second pair are very similar to those in the 545

first pair, this interference is not expected. The latter aspect would differentiate this 546

forgetting from the widely observed retrieval-introduced forgetting [48]. 547

When assessing the role of structural spine plasticity in forgetting, attention has to be 548

paid to the time scales of the experiments. In recent experiments the successive 549

perceptual learning and forgetting of different odor pairs has been investigated [4]. 550

There it was found that learning a second pair of odors seven days after the training 551

with the first pair strongly interfered with the memory of the first pair, while learning 552

after 17 days did not. The experiments indicated that this interference arose from the 553

enhanced apoptosis of adult-born GCs that was triggered if the time between the 554

training periods was only seven days. Since the results of [25] suggest that significant 555

changes in the connectivity arise already within the first day of exposure, performing 556

the interference experiments on that shorter time scale may avoid complications arising 557

from the apoptosis found in [4] and may focus on the role of the structural spine 558

plasticity described by our model. 559

We discussed two fast homeostatic mechanisms that stabilize the network activity 560

despite the Hebbian-type learning rule: an abstract top-k competition and a biologically 561

plausible competition of synapses for a limited resource that operates via a sliding 562

threshold for the formation of synapses, somewhat reminiscent of the BCM-model [34]. 563

The overall behavior of both models did not depend much on which homeostatic 564

mechanism was at work. It is worth noting that the specifics of the stabilization 565

mechanism may vary across brain areas. Moreover, resource-dependent competition may 566

be too local to lead to competition across different dendrites or the whole neuron. In 567

addition, heterosynaptic plasticity may be controlled more by activity rather than a 568

limited resource [44]. For these reasons, we leave open the question of how to implement 569

the stabilization mechanism. 570

In principle, activity-dependent network restructuring could also arise from synaptic 571

weight plasticity rather than structural plasticity. Recent experiments show, however, 572

that in adult-born GCs the amplitudes of evoked IPSCs were not significantly changed 573
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after learning [18]. This suggests that changes in the inhibitory synaptic weights are not 574

likely to be the dominant mechanism for learning. At the same time, in the same 575

experiment, the frequency of the evoked IPSCs was significantly up-regulated after 576

learning, which highly suggests an increase in the number of synaptic spines [18]. 577

What aspects of olfaction might favor structural plasticity even in adult animals, despite 578

its seemingly high metabolic cost? A characteristic feature of olfaction is the high 579

dimensionality of odor space. As a consequence, the layout of the olfactory bulb does 580

not allow substantial chemotopy and MC dendrites have to reach across large portions 581

of the bulb [28,49], where they establish only a very sparse connectivity with GCs. To 582

wit, each of the about 5 million GCs connects with on the order of 50-100 of the 50,000 583

MCs [50]. Thus, only less than 1% of the possible connections are actually made. The 584

sparseness of the connectivity has recently been identified as a key factor favoring 585

structural plasticity over synaptic-weight plasticity in the context of feedforward 586

networks [51]. This may also be the reason why structural plasticity seems to be 587

essential in the adult motor system, as has been found recently [52]. 588

A characteristic feature resulting from the structural plasticity implemented in our 589

model is the emergence of MC-GC subnetworks that are specific to the learned stimuli. 590

The interaction between the excitatory MCs and the inhibitory GCs is known to drive 591

the γ-rhythms that are prominent in the olfactory bulb [53]. Since their power is 592

enhanced with task demand [54] and since the optogenetic excitation of GCs in the 593

γ-range enhances discrimination learning [55], they are presumed to play a role in odor 594

processing. The different subnetworks that are predicted by our model to emerge from 595

learning different odors are likely to generate each its own γ-rhythm with its own 596

frequency. The question then arises whether these rhythms will synchronize if the 597

bulbar network is driven by the corresponding odor mixtures. Depending on the 598

temporal window over which the bulbar output is read out in downstream brain 599

areas [56,57], the perception of such mixtures may then well vary with the degree of 600

synchrony of the different rhythms. Interestingly, the synchrony of such interacting 601

rhythms can be enhanced by uncorrelated noise and by neuronal heterogeneity via a 602

paradoxical phase response [58,59]. 603

A prominent feature of the olfactory bulb is its extensive centrifugal input via top-down 604

projections that target particularly the GCs. Our model for the structural spine 605

plasticity suggests that the GC develop receptive fields for specific odors of the training 606

set and are preferentially connected with MCs with similar receptive fields. Due to the 607

reciprocal nature of the MC-GC synapses, this implies that the activation of such a GC 608

inhibits specifically MCs with the same response profile. If the top-down connectivity 609

was able to target specific GCs, top-down inputs could modulate bulbar processing in a 610

controlled fashion by inhibiting specific MCs. Computational modeling [15] suggests 611

that the extensive adult neurogenesis of GCs observed in the bulb naturally leads to a 612

network structure that allows just that. That model predicts that non-olfactory 613

contexts that have been associated with a familiar odor allow to suppress that odor, 614

enhancing the detection and discrimination of novel odors. The spine plasticity 615

investigated here leads to a network structure that is similar to the bulbar component of 616

the network obtained in the bulbar-cortical neurogenesis model. Structural spine 617

plasticity is therefore expected to support the specific control of bulbar processing by 618

higher brain areas. 619
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Methods 620

The computational model comprises MCs and GCs (Fig 1A) that are described by the 621

firing-rate models 622

τM
dM

dt
= −M + FM

(
S − γW (mg) G

)
, (1)

τG
dG

dt
= −G + FG

((
W (mg)

)T
M − gthr

)
. (2)

Here the vectors M and G represent the firing rates of NMC MCs and NGC GCs, 623

respectively. The MCs receive sensory inputs S from the glomerular layer and 624

inhibitory input from GCs, with γ denoting the inhibitory strength. The GCs receive 625

excitation from MCs, with gthr > 0 setting a non-zero firing threshold for the GCs. 626

Reflecting the reciprocal nature of the MC-GC synapses the connectivity matrix W (gm)
627

is the transpose of W (mg). Focusing on the structural plasticity of the synapses, we do 628

not include synaptic weight plasticity, the characterization of which is still somewhat 629

incomplete [31,32]. We therefore keep the weight γ fixed and set W (mg) either to 1 or 0. 630

Initially, each row of W (mg) has Nconn non-zero entries, reflecting that each granule cell 631

connects to Nconn mitral cells. 632

Reflecting the large spread of the secondary dendrites of MCs [28], we allow synapses to 633

be formed between all MCs and all GCs without any spatial limitations. Thus, the 634

ordering of the MCs and the GCs is arbitrary. 635

The firing rates depend on the neurons’ inputs via the activation functions FM and FG 636

given in (3,4), which are taken to be sigmoidal and piecewise linear, respectively. MCs 637

within the olfactory bulb experience saturation behavior. In [60] the authors recorded 638

responses of MCs when the concentration of the odorant changed 10-fold. Among the 639

recorded cells, 38% of MCs responded linearly to stimuli, and 29% of the MCs 640

experienced saturation behavior. This saturation may be the result of saturation in the 641

inputs to the MCs or in the MCs themselves. The activity of the sensory neurons 642

saturates on a log scale when the odor concentration changes 1000-fold [61]. For the 643

concentration changes (0.6 : 0.4 mixture or pure odorant) relevant in our studies, we 644

therefore assumed that saturation occurred mostly in the MC rather than their sensory 645

inputs and took the activation functions in (1,2) to be 646

FM (x) = [tanh(x)]+, (3)

FG(x) = [(x)]+ . (4)

Based on the observations in [5, 22, 23, 33], we assume the rate of formation and removal 647

of a synapse connecting MC i and GC j to depend on the activities of those neurons. 648

As a proxy for those activities we take the steady-state solutions of Eqs.(1,2) for given 649

stimulus S. We express the formation and removal rates in terms of a single rate 650

function, 651

Rij(Mi, Gj) = Mi φ(Gj) , (5)

where Mi and Gj are the respective steady-state activities. The activation function 652

φ(Gj), 653

φ(Gj) = [Gj −G(0)]+ (Gj −G(1)) , (6)

changes sign at a threshold G(1), which controls whether a new synapse is formed or an 654

existing synapse is removed (Fig 1B), giving the structural plasticity a bidirectional 655
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dependence on the GC activity. In addition, there is a second threshold, G(0), below 656

which the structural change is negligible. Specifically, in each trial of duration ∆t, 657

which is one step in our simulation, a new synapse is formed with probability P+
ij , 658

P+
ij = 1− exp

(
−λf [Rij ]+ ∆t

)
, if W

(mg)
ij = 0. (7)

Conversely, an existing synapse is removed with probability P−ij , 659

P−ij = 1− exp
(
−λr [−Rij ]+ ∆t

)
, if W

(mg)
ij = 1 . (8)

Here, λf and λr are the formation and removal rates, respectively. 660

Since the change in the total number of synapses appears to be limited in 661

experiments [36,62], we introduce a homeostatic mechanism that limits the maximal 662

number of synapses on a given GC. For most of our results, we employ a top-k 663

(k > Nconn) competition mechanism, in which only the k synapses with the largest 664

values of Rij survive if a GC has more than k synapses. A soft top-k competition can 665

be realized by a resource-pool competition with additional assumptions, as discussed in 666

the section Realization of competition through competition for a limited resource. 667

However, other mechanisms like scaling [63] or the ABS (Artola, Bröcher and Singer) 668

rule [64] may alternatively restrict the total number of synapses. Since the stability 669

mechanism was not our focus, we mostly used the (hard) top-k competition without 670

directly specifying its biological cause. 671

Summarizing the algorithm, in each step the steady-state firing rates M and G in 672

response to a randomly chosen odor S from the training set are computed. Based on 673

the resulting formation/removal rates Rij the connectivity matrix W (mg) is updated in 674

two parts. First, we implement homeostasis by top-k competition: if any GC has more 675

than k synapses, the corresponding number with the smallest values of Rij are removed. 676

Then, in the learning step the connectivity is updated based on the Hebbian learning 677

rules (7, 8), except that synapses that were just removed in the homeostasis step are not 678

recreated in this time step. We simulate the model long enough for the connectivity to 679

reach a statistically steady state as measured by the discriminability of the training 680

odors (see Sec.Characterizing Discriminability). As initial condition we take a 681

connectivity in which each GC is randomly connected to Nconn MCs. Unless specified 682

otherwise, the model parameters are as listed in Table 1. The steady states are obtained 683

by setting τG = 0, solving Eq.(1) using ODE45 in Matlab, with G solved from Eq.(2). 684

We found that the overall behavior of the model is robust with respect to changes in its 685

parameters (Supplementary Materials). 686

Instead of the hard top-k competition the number of synapses can also be limited by a 687

resource-pool competition. To this end we replace the activation function φ(G) in (5) by 688

a function φ̃(G,P ) that also depends on the fill-level P of that resource pool (Fig 9A, 689

red curve) and assume that it is comprised of a formation term φ̃form (Fig 9A, blue 690

curve) and a removal term φ̃rem (Fig 9A, green curve), 691

φ̃(G, P ) = φ̃form(G, P )− φ̃remove(G) , (9)

which are, respectively, given by 692

φ̃form(G, P ) = (tanh (κform (G− rform)) + 1 +R0)
P

P0
, (10)

φ̃rem(G) = (tanh (κrem (G− rrem)) + 1) /2 +R0 . (11)
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The fill-level P of the resource pool depends on the current number of synapses n, 693

P = P (all) − n, where P (all) is the total amount of the resource in the cell, which was 694

assumed to have the same constant value for all GCs. Here P0 is the equilibrium size of 695

the resource pool for which no spines are formed or removed when the GC is not active. 696

Thus, for low GC-activity P eventually goes to P0 and the number of the synapses on 697

that GC goes to the initial value n = Nconn = P (all) − P0. 698

In analogy to the original model, we define the two thresholds G̃(0) < G̃(1) via 699

φ̃(G(0,1), P ) = 0. The formation of synapses on significantly active GC is controlled by 700

G̃(1). As more synapses are formed and the fill-level decreases, G̃(1) increases. This 701

makes it more difficult for synapses to form on that GC, leading to a saturation of the 702

number of its synapses. This dependence of the threshold G̃(1) is reminiscent of the 703

sliding threshold of the BCM model for synaptic-weight plasticity [34]. However, the 704

sliding is caused here by the changes in the limited resource instead of a temporal 705

average over the previous activities. The change in G̃(0) is opposite to the change in 706

G̃(1) when the size of the resource pool changes. 707

In [26], mice were exposed to the test odors only when they were on the training stage. 708

When they were back in the cage, the training odors were absent, and the activities of 709

GCs corresponding to those odors were likely to be low. In the original model, the 710

activation function φ̃(G) vanishes when G < G(0), which means synapses are neither 711

formed nor removed. Thus, the network is static. However, in the resource-pool model 712

the activation function φ̃(G) is in general non-zero when G < G(0). As a result, periods 713

of low input also lead to changes in the connectivity. We include such ‘air trials’, during 714

which only spontaneous activity is presented, after every four training trials. During air 715

trials, the GC activity is very low and synapses are formed and removed based 716

particularly on the size of the respective resource pool, pushing each pool towards P0. 717

Given the uniform input to the MCs during air trials and the dependence of spine 718

formation on MC activity (cf. (5)), the formation is biased towards MCs that receive 719

less inhibition, i.e., that have fewer connections with GCs, while the removal is biased 720

towards MCs that receive more inhibition. We find that inserting such air trials 721

increases the dynamics of the synapses and speeds up the convergence of the network 722

evolution. It may compensate for the fact that in the resource-pool model an existing 723

synapse is removed only if the activation function is negative, φ̃(G,P ) < 0, while in the 724

top-k competition model, synapses can be removed not only when φ(G) < 0, but also 725

directly by that competition. 726

The top-k mechanism and the competition via a resource pool lead to similar results. 727

We expect that this would also be the case for other mechanisms that may restrict the 728

total number of synapses, like scaling [63] or the ABS (Artola, Bröcher and Singer) 729

rule [64]. Since the stability mechanism was not our focus, we mostly used the (hard) 730

top-k competition without directly specifying its biological cause. 731

NMC 240 NGC 1000
Nconn 60 k 66
τM 1 τG 0
∆t 1
gthr 4.4 γ 5e− 4

G(0) 1 G(1) 4
λf 6 · 10−4 λr 6 · 10−3

Table 1. Parameters used in the simulations of the model (unless stated otherwise).

The additional parameters of the pool-competition model are listed in Table 2. 732
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κform 2.5 κrem 5
rform 2 rrem 1
R0 0.8 P0 20
∆t 1 γ 4.2 · 10−4

λf 1 λr 1

Table 2. Table of parameters for the resource-pool model (unless stated otherwise).

Generation of simplified stimuli and naturalistic stimuli 733

The naturalistic stimuli are based on glomerular activation data [39], which contains 2-d 734

imaging z-scores of the glomeruli responses for a variety of odorants. In our simulations, 735

we used carvone, citronellol (pre-training), ethylbenzene, heptanal (training, pure, and 736

mixture). For the novel odors employed in Figs.4,6 we used in addition limonene, 737

ethylvalerate, 2-heptanone, acetophenone, valeric acid, isoamylacetate, isoeugenol, 738

1-pentanol, p-anisaldehyde. Since in the original data, not all pixel values were available 739

for all odorants, we kept only those that were common to all of them. We then 740

downsampled the resulting 2074 data points to 240 sample points S(orig). 741

The z-score data S(orig) do not include the baseline activity of the glomeruli. Thus, a 742

z-core of 0, which represents the mean activity across the whole population, does not 743

imply that the activity was not affected by the odor presentation. To obtain a rough 744

calibration of the mean activity, we used the observation that around 60% of the MCs 745

are activated by any given strong stimulus [25]. In the absence of other information, we 746

used this as a guide to re-calibrate the 40% percentile z-score S(40%) as 0. Then, we 747

normalized the data by their maximum, resulting in 748

S̃ =
S(orig) − S(40%)

max(S(orig) − S(40%))
.

Further, MCs are activated by the airflow even without any odorants, and odor 749

representations change mostly linearly with the concentration of odorants [60]. For any 750

given mixture with concentration p of odor A and (1− p) of odor B we therefore 751

modeled the stimulus as 752

S = [p S̃(A) + (1− p) S̃(B) + S̃(air)]+ .

Here S̃(air) = 0.1 is the ‘air’ stimulus and [·]+ the rectifier, [x]+ = max(x, 0). 753

For the simplified model stimuli we used scaled Gaussian functions with different mean 754

and standard deviation as S̃(A,B) and set S̃(air) = 0.2. 755

Definition of responsive cells and divergent cells 756

We defined the response of an MC as the change in activity induced by an odor 757

compared to the activity with air as stimulus. Specifically, if a MC had activity M (A,B)
758

in response to stimuli S(A,B), and it had activity M (air) when presenting air as a 759

stimulus S(air), we defined the response to odor A,B as M
(A,B)
i −M

(air)
i . 760

The definitions of responsive and divergent cells were adapted from [26]. A cell was 761

classified as responsive, if its response to one odor in an odor pair was above a given 762

threshold θ, i.e. max(M
(A)
i −M

(air)
i ,M

(B)
i −M

(air)
i ) > θ. A cell was classified as 763

divergent, if the difference in its response to the two odors was above the same 764

threshold, |M (A)
i −M

(B)
i | > θ. Our results were robust over a range of values of the 765

threshold θ (Fig S14). 766

PLOS 24/45

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.29.498211doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498211
http://creativecommons.org/licenses/by/4.0/


Characterizing Discriminability 767

We used d-prime and the Fisher discriminant to assess the discriminability of activity 768

patterns. For each divergent neuron d-prime is given by the difference between the 769

mean activities of the neuron for the two presented odors scaled by the combined 770

variability of the activities. In our firing-rate model (1,2) the MC-activity exhibits 771

fluctuations only on the time scale of network restructuring, which is much longer than 772

the odor presentation. Assuming, as in [15], that the MC firing rates M
(A,B)
i represent 773

the mean values of independent Poisson spike trains, the variances Σ(A,B) of those spike 774

trains are given by their respective means, Σ
(A,B)
ii = M

(A,B)
i and Σ

(A,B)
ij = 0, i 6= j. 775

Thus, for each MC we have 776

d′i =

∣∣∣M (A)
i −M

(B)
i

∣∣∣√
M

(A)
i + M

(B)
i

. (12)

One way to characterize the overall discriminability of the activity patterns is then 777

given by the average 〈d′i〉 of the d-prime values across all neurons, as was done in [26]. 778

This average 〈d′i〉 may decrease when additional, less-discriminating MCs are included in 779

the ensemble. However, the information transmitted by the ensemble does not decrease. 780

We therefore used also the Fisher discriminant to measure the discriminability. In 781

general, it is given by 782

F =
(w · (M (A) −M (B)))2

wT
(
Σ(A) + Σ(B)

)
w

,

where w is an arbitrary vector, which can be interpreted as the weights with which the 783

MC activity is fed into a linear read-out neuron. The weights w that maximize F are 784

given by w(opt) = (Σ(A) + Σ(B))−1(M (A) −M (B)). The optimal Fisher discriminant 785

used to assess discriminability is then given by 786

Fopt =

NMC∑
i=1

(M
(A)
i −M (B)

i )2

M
(A)
i +M

(B)
i

. (13)

It is related to the d-prime values of the individual neurons via 787

Fopt =

NMC∑
i=1

(d′i)
2 .

Thus, Fopt always increases with the addition of MCs, reflecting the fact that even 788

poorly discriminating MCs provide some additional information about the odors. The 789

optimal read-out w(opt) puts less weight on the poorly discriminating MCs to avoid that 790

the trial-to-trial variability associated with those MCs deteriorates the overall 791

discrimination. 792
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22. Breton-Provencher V, Coté D, Saghatelyan A. Activity of the principal cells of 884

the olfactory bulb promotes a structural dynamic on the distal dendrites of 885

immature adult-born granule cells via activation of NMDA receptors. Journal of 886

Neuroscience. 2014;34(5):1748–1759. (document) 887

23. Breton-Provencher V, Bakhshetyan K, Hardy D, Bammann RR, Cavarretta F, 888

Snapyan M, et al. Principal cell activity induces spine relocation of adult-born 889

interneurons in the olfactory bulb. Nature Communications. 2016;7:12659. 890

(document) 891

24. Soucy ER, Albeanu DF, Fantana AL, Murthy VN, Meister M. Precision and 892

diversity in an odor map on the olfactory bulb. Nat Neurosci. 2009;12(2):210–220. 893

(document) 894

25. Kato HK, Chu MW, Isaacson JS, Komiyama T. Dynamic sensory representations 895

in the olfactory bulb: modulation by wakefulness and experience. Neuron. 896

2012;76(5):962–975. (document), 4 897

26. Chu MW, Li WL, Komiyama T. Balancing the robustness and efficiency of odor 898

representations during learning. Neuron. 2016;92(1):174–186. (document), 2 899

27. Meng JH, Riecke H. Structural Spine Plasticity in Olfaction: Memory and 900

Forgetting, Enhanced vs. Reduced Discriminability after Learning. bioRxiv 901

20201204411629. 2020;doi:10.1101/2020.12.04.411629. (document) 902

28. Orona E, Rainer EC, Scott JW. Dendritic and axonal organization of mitral and 903

tufted cells in the rat olfactory bulb. Journal of Comparative Neurology. 904

1984;226(3):346–356. (document) 905

29. Egger V, Urban NN. Dynamic connectivity in the mitral cell-granule cell 906

microcircuit. Sem Cell Devel Biol. 2006;17(4):424–432. (document) 907

30. Kersen DEC, Tavoni G, Balasubramanian V. Connectivity and dynamics in the 908

olfactory bulb. PLoS computational biology. 2022;18:e1009856. (document) 909

31. Gao Y, Strowbridge BW. Long-term plasticity of excitatory inputs to granule 910

cells in the rat olfactory bulb. Nature Neuroscience. 2009;12(6):731–733. 911

(document) 912

32. Chatterjee M, Perez de los Cobos Pallares F, Loebel A, Lukas M, Egger V. 913

Sniff-like patterned input results in long-term plasticity at the rat olfactory bulb 914

mitral and tufted cell to granule cell synapse. Neural Plasticity. 2016;2016. 915

(document) 916

33. Saha S, Meng JH, Riecke H, Agoranos G, Sailor KA, Lledo PM. Interneuron 917

activity-structural plasticity association is driven by context-dependent odor 918

experience. bioRxiv 20210128428612. 2021;. (document) 919

PLOS 29/45

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.29.498211doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498211
http://creativecommons.org/licenses/by/4.0/


34. Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron 920

selectivity: orientation specificity and binocular interaction in visual cortex. 921

Journal of Neuroscience. 1982;2(1):32–48. (document) 922

35. Graupner M, Brunel N. Calcium-based plasticity model explains sensitivity of 923

synaptic changes to spike pattern, rate, and dendritic location. Proceedings of the 924

National Academy of Sciences of the United States of America. 925

2012;109(10):3991–3996. (document) 926

36. Lepousez G, Nissant A, Bryant AK, Gheusi G, Greer CA, Lledo PM. Olfactory 927

learning promotes input-specific synaptic plasticity in adult-born neurons. Proc 928

Nat Acad Sci USA. 2014;111(38):13984–13989. (document) 929

37. Zenke F, Gerstner W. Hebbian plasticity requires compensatory processes on 930

multiple timescales. Philosophical Transactions of the Royal Society B: Biological 931

Sciences. 2017;372(1715):20160259. (document) 932

38. Moreno MM, Linster C, Escanilla O, Sacquet J, Didier A, Mandairon N. 933

Olfactory perceptual learning requires adult neurogenesis. Proc Nat Acad Sci 934

USA. 2009;106(42):17980. (document) 935

39. Johnson BA, Farahbod H, Saber S, Leon M. Effects of functional group position 936

on spatial representations of aliphatic odorants in the rat olfactory bulb. Journal 937

of Comparative Neurology. 2005;483(2):192–204. (document), 2 938

40. Buonviso N, Chaput M. Olfactory experience decreases responsiveness of the 939

olfactory bulb in the adult rat. Neuroscience. 2000;95:325. (document) 940

41. Linster C, Nai Q, Ennis M. Non-linear effects of noradrenergic modulation of 941

olfactory bulb function in adult rodents. J Neurophysiol. 2011;. (document) 942

42. Poe GR, Foote S, Eschenko O, Johansen JP, Bouret S, Aston-Jones G, et al. 943

Locus coeruleus: a new look at the blue spot. NATURE REVIEWS 944

NEUROSCIENCE. 2020;21(WOS:000570488300001):644–659. 945

doi:10.1038/s41583-020-0360-9. (document) 946

43. Cleland TA, Johnson BA, Leon M, Linster C. Relational representation in the 947

olfactory system. Proc Natl Acad Sci U S A. 2007;104(6):1953–1958. (document) 948

44. Oh WC, Parajuli LK, Zito K. Heterosynaptic structural plasticity on local 949

dendritic segments of hippocampal CA1 neurons. Cell Reports. 950

2015;10(2):162–169. (document) 951

45. Triesch J, Vo AD, Hafner AS. Competition for synaptic building blocks shapes 952

synaptic plasticity. Elife. 2018;7:e37836. (document) 953

46. Veyrac A, Sacquet J, Nguyen V, Marien M, Jourdan F, Didier A. Novelty 954

determines the effects of olfactory enrichment on memory and neurogenesis 955

through noradrenergic mechanisms. Neuropsychopharmacology. 956

2009;34(3):786–795. (document) 957

47. Mandairon N, Stack C, Kiselycznyk C, Linster C. Enrichment to odors improves 958

olfactory discrimination in adult rats. Behav Neurosci. 2006;120(1):173–179. 959

(document) 960

48. Anderson MC, Bjork EL, Bjork RA. Retrieval-induced forgetting: Evidence for a 961

recall-specific mechanism. Psychonomic Bulletin & Review. 2000;7(3):522–530. 962

(document) 963

PLOS 30/45

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.29.498211doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498211
http://creativecommons.org/licenses/by/4.0/


49. Urban NN. Lateral inhibition in the olfactory bulb and in olfaction. Physiology 964

& Behavior. 2002;77(4-5):607–612. (document) 965

50. Greer CA. Golgi Analyses of Dendritic Organization among Denervated 966

Olfactory-bulb Granule Cells. Journal of Comparative Neurology. 967

1987;257(3):442–452. doi:10.1002/cne.902570311. (document) 968

51. Hiratani N, Fukai T. Hebbian wiring plasticity generates efficient network 969

structures for robust inference with synaptic weight plasticity. Frontiers in Neural 970

Crcuits. 2016;10:41. (document) 971

52. Hedrick NG, Lu Z, Bushong E, Singhi S, Nguyen P, Magana Y, et al. Learning 972

binds new inputs into functional synaptic clusters via spinogenesis. Nature 973

neuroscience. 2022;. (document) 974

53. Buonviso N, Amat C, Litaudon P, Roux S, Royet JP, Farget V, et al. Rhythm 975

sequence through the olfactory bulb layers during the time window of a 976

respiratory cycle. European Journal of Neuroscience. 2003;17(9):1811–1819. 977

(document) 978

54. Beshel J, Kopell N, Kay LM. Olfactory Bulb Gamma Oscillations Are Enhanced 979

with Task Demands. Journal of Neuroscience. 2007;27(31):8358–8365. 980

doi:10.1523/JNEUROSCI.1199-07.2007. (document) 981

55. Grelat A, Benoit L, Wagner S, Moigneu C, Lledo PM, Alonso M. Adult-born 982

neurons boost odor-reward association. Proc Nat Acad Sci USA. 983

2018;115:2514–2519. doi:10.1073/pnas.1716400115. (document) 984

56. Luna VM, Schoppa NE. GABAergic circuits control input-spike coupling in the 985

piriform cortex. J Neurosci. 2008;28(35):8851–8859. (document) 986

57. Bolding KA, Franks KM. Recurrent cortical circuits implement 987

concentration-invariant odor coding. Science (New York, NY). 2018;361. 988

doi:10.1126/science.aat6904. (document) 989

58. Meng JH, Riecke H. Synchronization by uncorrelated noise: interacting rhythms 990

in interconnected oscillator networks. Scientific Reports. 2018;8:6949. 991

doi:10.1038/s41598-018-24670-y. (document) 992

59. Xu X, Riecke H. Paradoxical phase response of gamma rhythms facilitates their 993

entrainment in heterogeneous networks. PLoS Comp Bio. 2021;17(6):e1008575. 994

(document) 995

60. Khan AG, Thattai M, Bhalla US. Odor representations in the rat olfactory bulb 996

change smoothly with morphing stimuli. Neuron. 2008;57(4):571–585. (document) 997

61. Singh V, Murphy NR, Balasubramanian V, Mainland JD. Competitive binding 998

predicts nonlinear responses of olfactory receptors to complex mixtures. Proc Nat 999

Acad Sci USA. 2019;116:9598–9603. (document) 1000

62. Mandairon N, Kuczewski N, Kermen F, Forest J, Midroit M, Richard M, et al. 1001

Opposite regulation of inhibition by adult-born granule cells during implicit 1002

versus explicit olfactory learning. Elife. 2018;7:e34976. (document) 1003

63. Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for 1004

stabilizing neuronal function. Cold Spring Harbor Perspectives in Biology. 1005

2012;4(1):a005736. (document) 1006

PLOS 31/45

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.29.498211doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498211
http://creativecommons.org/licenses/by/4.0/


64. Artola A, Singer W. Long-term depression of excitatory synaptic transmission 1007

and its relationship to long-term potentiation. Trends in Neurosciences. 1008

1993;16(11):480–487. (document) 1009

PLOS 32/45

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.29.498211doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498211
http://creativecommons.org/licenses/by/4.0/


Supplementary Materials 1010

Randomized Connectivity 1011

To further illustrate that the network learned not by simply changing the number of 1012

synapses, but by developing a specific, stimulus-dependent connectivity, we assessed the 1013

performance of the network when the connections of each GC were rewired to random 1014

MCs with probability prewire while keeping the number of synapses on each GC the 1015

same. For prewire = 0 (Fig S1A), the connection was the originally learned network; for 1016

prewire = 1, the connection for each GC was totally random (Fig S1C). Indeed, for the 1017

highly similar training odors, the discriminability predominantly decreased as the 1018

randomness is increased (Fig S1D). For the network trained on the dissimilar odors 1019

(easy task), the discriminability increased, as expected, when the randomness was 1020

increased (Fig S1F). Interestingly, when Prewire was increased beyond ≈ 0.7 these 1021

trends reversed (Fig S1D, F) somewhat. 1022

𝑾(𝑚𝑔), 𝑝rewire= 0 𝑾(𝑚𝑔), 𝑝rewire= 0.5 𝑾(𝑚𝑔), 𝑝rewire= 1

𝑝rewire𝑝rewire

Fig S1. Randomly rewiring trained networks. (A to C) Connectivity matrices after
rewiring a network that was trained with the hard task (Fig 3C, bottom). Rewiring
probability prewire = 0, 0.5, 1, respectively. (D) For the hard task discriminability
predominantly decreases with increasing rewiring probability prewire. (E) Activity
differences are reduced after rewiring. (F) For the easy task discriminability
predominantly increases with increasing prewire (cf. Fig 3C, top).
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Removal of Spines for Intermediate GC Activation (cf. Fig.7) 1023

Fig S2. CDF for the increase in the MC response to odor A due to training with that
odor at a reduced amplitude 2A after the network has been pre-trained with that odor
at amplitude 2. For protocol see Fig.7.

1024
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Forgetting due to Interference 1025

Pre-Training Training Retraining5

10

15

0 100 2000

0.5

1

1.5
Non-Interfering Stimuli (Odor Pair 2)

In
pu

t

Mitral Cell Index Mitral Cell Index
0 100 2000

0.5

1

1.5

MC Index MC Index MC Index

M
C

In
de

x

MC Index MC Index MC Index

Discriminability

A

B1

B2 C2

B3 C3

15005

10

15

3000 45000

Fi
sh

er
 

D
isc

rim
in

an
t

Fi
sh

er
 

D
isc

rim
in

an
t

M
C

In
de

x

Pre-Training
Odor Pair 1

Training
Odor Pair 2

Retraining
Odor Pair 1Switch 2Switch 1

Interfering Stimuli (Odor Pair 2)
C1

Forgetting through 
Interference

In
pu

t

Pre-Training 1 Training Retraining
1500 3000 45000

Discriminability

TrialsTrials

Network structure 𝑾(𝒎𝒎), interfering stim. Network structure 𝑾(𝒎𝒎), non-interfering stim. 

Odor A
Odor B

Odor C
Odor D

Odor A
Odor B

Fig S3. Interference leads to forgetting. (A) Training protocol. (B1) Non-interfering
stimuli for odor pair 2. (B2) Connectivities after pre-training, training, and retraining,
respectively. (B3) Discriminability is retained throughout the training. (C) as (B) for
interfering stimuli. During the training the network forgets most of the previously
learned structure. Retraining recovers the previous performance.

The behavior of the model depended strongly on the similarity of the two odor pairs 1026

(Fig S3B,C). When the MCs that were activated during the training did not overlap 1027

with those activated in the pre-training, the network preserved the previously learned 1028

structure (Fig S3B2). However, if there was significant overlap, the learning of the new 1029

stimuli interfered with the previously learned structure and that odor pair was forgotten 1030

during the training (Fig S3C2, middle panel). It was re-learned by re-training 1031

(Fig S3C2, right panel). The different evolution for non-interfering and for interfering 1032

stimuli is reflected in the Fisher discriminant F (1,2), which is given by the sum over the 1033

squares of the d′i of the individual MCs in response to stimulus pair 1 and 2, 1034

respectively (see Methods). The Fisher discriminant F (1) remained high during the 1035

training with odor pair 2 if that pair was non-interfering (Fig S3B3), while it decreased 1036

if odor pair 2 was interfering (Fig S3C3). We expect that animals will spontaneously 1037

discriminate the odors in a pair only if their bulbar representations are sufficiently 1038

different, i.e., if F is sufficiently large [38]. Thus, the model predicts that at the end of 1039

the training phase of a multi-phase perceptual learning task an animal will not 1040

spontaneously discriminate any more the odors it learned during pre-training if the 1041

training odors interfere with those used in the pre-training. However, for sufficiently 1042

different odor pairs, the spontaneous discrimination should remain intact. 1043
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Rapid Relearning 1044

Repeatedly switching between odor pairs did not impair the learning ability (Fig S4). In 1045

addition, the model predicts that re-learning during re-training is faster than the initial 1046

learning during pre-training and forgetting is slower than either of the learning 1047

processes. 1048
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Fig S4. Alternating training does not impair learning ability. (A) Expanding the
training protocol of S3A to 10 phases. (B) (Top) Stimuli of odor pair 1. (Bottom)
Interfering stimuli of odor pair 2. (C) The Fisher discriminant of odor pair 1 (top) and
pair 2 (bottom). Learning (increasing Fisher discriminant) proceeds faster than
forgetting (decreasing Fisher discriminant). The numbers above the x-axis indicate the
learning phase. (D) Effective connectivity W (mm) alternates.
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Resource Pool Model 1050
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Fig S5. Results of the resource-pool model when trained with simplified stimuli. Here
γ = 1.7 · 10−3. Training with dissimilar stimuli reduces their discriminability (E),
whereas training with very similar enhances their discriminability (F) (cf. Fig.3)
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Impact of the Pre-Training 1052
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Fig S6. Training results without pre-training phase. The training starts with a random
homogeneous network (cf. Fig 3)
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Robustness of the Model 1055

To demonstrate the robustness of the model, we first assessed the impact of some 1056

modifications of the model. 1057

For the formation of the reciprocal synapses little is known about the timescales of the 1058

maturation of the excitatory synapses relative to that of the inhibitory synapses. In the 1059

main part of the paper we assumed that inhibition becomes functional at the same as 1060

the excitation. Here, we tested if the model behaves differently if inhibitory synapses 1061

mature later than the excitatory synapses. If the inhibitory synapses become only 1062

functional 2 computational time steps after the excitatory synapses, the model performs 1063

similarly (Fig S7 A-C). Since 100 timesteps in our model correspond very roughly to 1064

about 1 day training in the experiments, a lag of 2 timesteps would correspond to a lag 1065

on the order of 30 minutes. However, the performance deteriorates if the lag is increased 1066

and the model fails for lags of 10 or larger. A detailed analysis of this break-down is 1067

beyond the scope of this study. 1068

While action potentials can propagate along the secondary dendrites of MCs and can 1069

drive excitatory synapses on spines even far from the soma, the GC-driven inhibition 1070

originating from those spines is likely to affect the MC somata only within a quite 1071

limited spatial range. To assess the impact of this spatial limitation, we blocked the 1072

inhibition in half of the MC-GC pairs: while in all spines the MC→GC connections 1073

excited the GCs, only half of the MC←GC connections in those spines were effective in 1074

inhibiting the MCs. To make the total amount of inhibition comparable, we doubled the 1075

number of granule cells. With this modification, the results are similar to the original 1076

model (Fig S7 D, E). 1077
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Fig S7. Modifications with asymmetric inhibitory and excitatory synapses show
similar results in a hard task with simplified stimuli. (A - C) The results of setting
maturation of the inhibitory synapses lagged 2 timesteps. (A) The effective connectivity
after training. (B) Activity difference before and after training. (C) The cumulative
distribution function of synapse age. When the lag is 2, only a limited fraction of
connections does not inhibit MCs. (D, E) The results when the inhibitory synapses have
a geometry limitation. Organized as (A, B).

Further, we tested the influence of various parameters on the model performance. 1078

Changing the total number NGC of GCs affected the performance very little, since the 1079

number of GCs that were strongly activated and connected to specific MCs did not 1080
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change significantly, which influenced the effective connectivity W (mm) only mildly 1081

(Fig S8). Analogously, changes in the inhibitory strength γ were largely compensated by 1082

a change in the number of activated GCs (Fig S9 ). This feedback stabilizing the overall 1083

inhibition arises from the reciprocal character of the MC-GC connections: new 1084

connections increase the inhibition of the MCs, which decreases the excitation of the 1085

GC and in turn inhibits the formation of new connections. 1086
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Fig S8. The overall inhibition of the model depends only weakly on the number NGC
of GCs. (A-C) Training with simplified easy stimuli as in Fig 1D and random initial
network as in Fig 1F, but with twice as many GCs. (A) MC activity after training (cf.
Fig 1H). (B) Connectivity W (mg) after training. (C) Effective connectivity W (mm).
Compared to Fig 1J the connectivity is not quite as selective. (D) The maximal and
mean MC activity after training as a function of the number of GCs. (E) The number
of activated GCs (G > G(1)) depends only weakly on the total number of GCs. In (D,
E) the vertical dashed line marks the value used in the rest of the paper.

What does control the overall inhibition, is the threshold G(1) in the activation function 1087

φ(G) (Fig S10). Only GCs with activity larger than G(1) form more synapses and 1088

generate stronger selective inhibition. Thus, for larger G(1) fewer GCs had sufficiently 1089

large activity to sustain their synapses, which reduced the overall inhibition and 1090

increased the MC activity level. The change in overall inhibition could be associated 1091

with a change in the selectivity. To quantify this, we called a GC responsive to odor A 1092

(B), if after training its activity surpassed G(1) for odor A (B). Despite the increase in 1093

the inhibition, the number of GCs that responded to both odors remained low when 1094

decreasing G(1) (Fig S10H, red line), indicating that the selectivity depended very little 1095

on G(1). 1096

The other threshold in the activation function, G(0), affects the removal but not the 1097

formation of synapses. For low values of G(0) weakly activated GCs removed many of 1098

their synapses, particularly those connecting them to active MCs (Fig S11C, D). This 1099

lead to higher selectivity of the connectivity and with it to a weaker inhibition of the 1100

spontaneously active MCs that were not odor-driven (Fig S11B, E). It had, however, 1101
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Fig S9. The overall inhibition of the model depends only weakly on the inhibitory
strength γ. The results are organized as in Fig S8. (C) The connectivity is slightly less
selective than in Fig 1J. (D,E) The vertical dashed line indicates the value used in the

rest of the paper. (D, E) To allow a direct comparison, W (mm) and N
(high)
GC have been

re-scaled by γ
γ(orig) with γ(orig) = 5× 10−4.

little impact on the maximal MC amplitudes (Fig S11H). The removal of synapses 1102

played a larger role in retaining and forgetting connections. To assess its impact, we 1103

trained the model in a second phase with a new pair of stimuli that overlapped with the 1104

stimuli learned in phase 1 (Fig S11I). For G(0) = 0 any weak activity (0 < G < G(1)) 1105

triggered the removal of spines and lead in phase 2 to an almost complete forgetting of 1106

the connectivity learned in phase 1 (Fig S11D, K) and with it to poor discrimination of 1107

the previously learned odors (Fig S11N). However, for large G(0) the previously learned 1108

connectivity was maintained (Fig S11G, M) and with it the discriminability of the 1109

previously learned stimuli. The discrimination of the newly learned stimulus pair 2 was, 1110

however, not significantly affected by G(0) (Fig S11O). 1111

The maximal number of connections k that each GC can make had a significant impact 1112

on MC amplitudes and on the selectivity of the connections. With increasing k, each 1113

GC integrated input from more MCs, and more easily surpassed the threshold G(1). 1114

Each of these more activated GCs inhibited a larger number of MCs, increasing the 1115

overall inhibition (Fig S12C). When the maximal number of connections was larger than 1116

the number of MCs activated by one of the odors, not all connections of a GC could be 1117

made to MCs that were activated by odor A, say. The remaining connections could then 1118

be made to MCs corresponding to odor B without destabilizing the other synapses. As 1119

a result, GCs that responded to both odors emerged (Fig S12D). 1120
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Fig S10. Increasing G(1) impairs the ability to form connections between activated
MCs and GCs. (A,B,C) Results for G(1) = 1. (A) MC activity after training. (B)
Connectivity W (mg) between MCs and GCs. (C) Effective connectivity W (mm).
(D,E,G) as (A,B,C) except for G(1) = 10. Activated MCs are connected with fewer GCs
(compare E with B), resulting in weaker disynaptic inhibition (compare F with C) and
higher MC activity (compare D to A). In (F) most of the GCs cannot reach the high
threshold. As a result, the synapses that connect to strongly activated MCs are
removed faster than those connecting to weakly activated MCs. Thus, the effective
connectivity among the activated MCs is lower than the background. (G) Maximal and
mean MC activity increase with increasing G(1). The gray lines indicate the
corresponding values without inhibition from GCs (by setting γ = 0). (H) The number
of responsive GC decreases with increasing G(1). (G,H) The vertical dashed line
indicates the value used in the rest of the paper.
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Fig S11. Learning ability is not affected by G(0), but the memory is. (A-G) Phase 1.
(A) Training stimuli in phase 1. (B) MC activity after training. (C) Connectivity
W (mg). (D) Effective connectivity W (mm). (E to G) as (B to D) except for G(0) = 4.
(H) Maximal and mean MC activity after training in phase 1 as a function of G(1). (I to
M) as (A to G) but after Phase 2. (I) Interfering training stimuli. (J-M) For G(0) = 0
the network forgets the previously learned connectivity, but not for G(0) = 4. (N) The
Fisher discriminant for odor pair 1 is unaffected by G(0) in phase 1, but substantially
reduced in phase 2 for small G(0). (O) For odor pair 2 the Fisher discriminant depends
only little on G(0). The vertical dashed lines in (H,N,O) indicate the value used in the
rest of the paper.
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𝑁𝑐𝑜𝑛𝑛 = 60

𝑁𝑐𝑜𝑛𝑛
𝑁𝑐𝑜𝑛𝑛

𝑁𝑐𝑜𝑛𝑛 = 120

Fig S12. The selectivity of GCs is influenced by the number of connections each GC
makes. Easy stimuli as in Fig 1D with random initial network as in Fig 1F. The ratio of
maximal to initial number of connections is kept fixed at k/Nconn ≡ 1.1. (A, B) The
MC activity is very similar for Nconn = 60 and Nconn = 120. (C) Maximal and mean
MC activity decrease with increasing Nconn. The gray lines indicate the corresponding
values without inhibition from GCs (by setting γ = 0). (D) The selectivity of the GCs is
impaired for Nconn > 60: a population of cells emerges that respond to both odors (red
line).
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Fig S13. Increasing the number of GCs does not reduce the interference-induced
forgetting of odor pair 1 during training phase 2. Independent of the number of GCs,
the discriminability of odor pair 1, which is learned during phase 1 (black line in panel
A), is substantially reduced by the subsequent training during phase 2 (gray line in
panel A). The discriminability of odor pair 2 that is reached after training with those
odors during phase 2 also does not depend on the number of GCs. Only the learning of
odor pair 2 during the training with odor pair 1 is slightly improved in the larger
network. (G(0) = 1, cf. Fig S11N,O).
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Dependence on the Threshold θ
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Fig S14. Qualitatively, the results for the fraction of responsive and divergent cells do
not depend on the threshold θ for their classification. (A, B) Training with naturalistic
stimuli for different thresholds θ. The results in Fig 2 and Fig 9 are based on θ = 0.2.
(C, D) as (A, B) but for training with simplified stimuli. (E, F) as (A, B) but in the
resource-pool model.
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