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Abstract 5
Learning to discriminate between different sensory stimuli is essential for survival. In 10
rodents, the olfactory bulb, which contributes to odor discrimination via pattern 1
separation, exhibits extensive structural synaptic plasticity involving the formation and 1
removal of synaptic spines, even in adult animals. The network connectivity resulting 13
from this plasticity is still poorly understood. To gain insight into this connectivity we 1
present here a computational model for the structural plasticity of the reciprocal 15
synapses between the dominant population of excitatory principal neurons and 16
inhibitory interneurons. It incorporates the observed modulation of spine stability by 17
odor exposure. The model captures the striking experimental observation that the 18
exposure to odors does not always enhance their discriminability: while training with 19
similar odors enhanced their discriminability, training with dissimilar odors actually 20
reduced the discriminability of the training stimuli (Chu et al, 2016). Strikingly, this 21

differential learning does not require the activity-dependence of the spine stability and =
occurs also in a model with purely random spine dynamics in which the spine density is 2

changed homogeneously, e.g., due to a global signal. However, the experimentally 2
observed odor-specific reduction in the response of principal cells as a result of extended s
odor exposure (Kato et al. 2012) and the concurrent disinhibition of a subset of 2
principal cells arise only in the activity-dependent model. Moreover, this model predicts
the experimentally testable recovery of odor response through weak but not through 2
strong odor re-exposure and the forgetting of odors via exposure to interfering odors. 20
Combined with the experimental observations, the computational model provides strong
support for the prediction that odor exposure leads to the formation of odor-specific 3
subnetworks in the olfactory bulb. »
Author Summary »
A key feature of the brain is its ability to learn through the plasticity of its network. 3
The olfactory bulb in the olfactory system is a remarkable brain area whose anatomical 3
structure evolves substantially still in adult animals by establishing new synaptic 3
connections and removing existing ones. We present a computational model for this 3
process and employ it to interpret recent experimental results. By comparing the results  ss
of our model with those of a random control model we identify various experimental 30
observations that lend strong support to the notion that the network of the olfactory 40
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bulb comprises learned, odor-specific subnetworks. Moreover, our model explains the a
recent observation that the learning of odors does not always improve their a2
discriminability and provides testable predictions for the recovery of odor response after 4
repeated odor exposure and for when the learning of new odors interferes with retaining
the memory of familiar odors. s
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Introduction 5
Learning and long-term memory are to a large extent implemented through the a7
plasticity of neuronal connectivity. In adult animals this plasticity is typically a8
dominated by long-term potentiation and long-term depression, which change the 29

strength of the synapses, while during development structural plasticity in the form of s
the addition and removal of neurons as well as the formation and pruning of synapses 51
plays a central role. Strikingly, in olfaction structural plasticity appears to remain a key s
component of learning even in adult animals. Thus, new adult-born granule-cell 53
interneurons are persistently integrated into the olfactory bulb, which is the first brain s
region to receive sensory input from the nose, and new synapses between granule cells 55
and the principal mitral cells are formed. In parallel, granule cells undergo controlled 56
apoptosis |1L[2], the extent of which, however, has recently come under dispute ( [3], see s
also discussion with the reviewers in [4]), and synapses are removed [5,/6]. This makes s

the olfactory bulb an excellent system to study structural plasticity. 50
A widely assumed function of the olfactory bulb is to aid in the discrimination between
odors by enhancing differences in the activity patterns that they evoke [7,8]. 61
Computational modeling has identified a number of mechanism by which this can be 62
achieved, which are not mutually exclusive. This includes a nonlinear response of the 63

neurons without any lateral interactions among the neurons [9] or with random [10] or e
all-to-all connectivity |11]. Given the extensive plasticity of the olfactory bulb, adaptive &
connectivity with linear or nonlinear response of the neurons has also been identified as s
an efficient mechanism for pattern separation [6,|12H15].A common approach to probe 67

this function of the olfactory system is to test whether animals learn to discriminate 68
between two similar odors. In these tasks their correct choice may or may not be 69
associated with a reward. It has been found that certain types of perceptual learning 70
depend on the olfactory bulb [16], require adult neurogenesis [17], and are associated n
with increased densities of the spines on granule-cell (GC) dendrites that form the 7
synapses with the mitral cells (MCs) [18]. The mechanisms controlling these plasticity
mechanisms are not very well understood. The survival of GCs is enhanced by odor 7
enrichment [41|{19] and by GC activity [20]. Similarly, odor enrichment increases the 75
stability of spines in bulbar regions that are activated by the enrichment odors [5,/21]. 7

Simultaneous measurements of the spine stability and the activity of the cells associated 7
with that synapse are challenging. Thus, knowledge about the response of the bulbar 78
spine dynamics to signals (like glutamate, BDNF) associated with neuronal activity is 7
somewhat limited [22[23]. So far no direct connection between the activity of individual s
neurons, the stability of their spines, and the circuits emerging from that plasticity has =
been established experimentally. In fact, the organizational principle of the network of &

mitral and granule cells is still only poorly understood, reflecting also the lack of 8
significant chemotopical organization of the bulb [24]. The overall dependence of the 8
spine stability on odor enrichment suggests that the resulting connectivity would reflect s
the specific odors that the animal has experienced. Computational modeling predicts 8
such a structure and suggests that it could underly the observed improvement in odor &
discrimination [1}/2,/6]. 8
In this paper we pursue two goals. Motivated by a number of experimental 80
observations [6[18}22,/23], we first put forward a phenomenological model for the 9
activity dependence of the spine dynamics that incorporates the memory of previous o1
odor exposures. We then use this model to interpret two sets of experimental 0
results [25]26], focusing particularly on the question to what extent these experiments o
support the computational prediction that the olfactory bulb exhibits a learned, o
odor-specific subnetwork structure. In [25] the repeated exposure to an odor over %
multiple days has been found to lead to a reduction of the mitral cell response that is 9
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specific to that odor, i.e. the response of the mitral cell to a different odor changes only o
little during the same time. A different set of experiments [26] revealed that repeated %

odor exposure makes the bulbar mitral cell representations of two odors more 9
discriminable if the two odors are very similar. However, if the two odors are very 100
different from each other, the learning makes their representations actually less 101
discriminable. Moreover, while the repeated odor exposure leads to an overall reduction 10
of the mitral cell responses, individual mitral cells can exhibit an increase in activity 103
and this increase can be odor-specific, i.e. for one of two very similar odors the mitral 10
cell response can increase, while it remains low for the other odor, resembling 105
differential disinhibition. Differential inhibition is also observed. 106

We show that our model is able to capture these observations. To disentangle the role of 107
the activity-dependence of the spine dynamics we also consider a control model with 108
purely random spine dynamics in which the statistically homogeneous spine density is 10
modulated by a global signal. Somewhat surprisingly, the control model can capture the 10

learning-induced improved discrimination of similar stimuli as well as the m
learning-induced reduced discrimination of dissimilar stimuli. However, the 112
experimentally observed disinhibition of mitral cells is extremely unlikely in such a 13
model. In combination with [25,26] our model gives therefore strong support to the 114
notion that the structural plasticity in the olfactory bulb leads to a learned, 115
odor-specific network structure in which MCs preferentially inhibit each other 116
disynaptically, if they have similar receptive fields [6L[12}14L/15]. Moreover, the model 17
makes testable predictions for the recovery of MC responses after repeated odor 118
exposures, for the suppression of odor discrimination by odor exposure, and for the 119
forgetting of odor memories through interference. An earlier account of some of these 120
results is available at [27]. 121
Results 122
Formulation of the model 123
Using computational modeling we investigated the ramifications of the structural 124

plasticity of the reciprocal synapses between mitral cells (MCs) and granule cells (GCs). s
We focused on those two cell types and did not include the processing in the glomerular 12

layer between the sensory neurons and the mitral cells. Instead, we considered the 127
glomerular activation patterns as inputs to the MCs (Fig ) The MCs and GCs were 12
described by firing-rate models. Reflecting the reciprocal nature of the MC-GC 129

synapses the GCs inhibited those MCs that excited them as indicated in the inset of 130
Fig , which depicts a spine on a GC dendrite and an excitatory synapse (MC—GC) 1=
and an inhibitory synapse (GC—MC). Since the synapses are located on the secondary 12
dendrites of the MCs, which reach across large portions of the olfactory bulb [2§], we 133

allowed synapses to be formed between all MCs and all GCs without any spatial 134
limitations. We recognize that this ignores the sparse structure of the dendrites, which 13
results in a decrease in the connection probability between widely separated 136
MCs [29,30] 137
The MC-GC synapses do exhibit some synaptic-weight plasticity. Its nature is, however, 1
still quite unclear [31,[32]. Moreover, during perceptual learning the frequency of the 139
inhibitory postsynaptic currents received by the MCs from the GCs has been found to 10
increase, while their amplitude remained unchanged [18], suggesting that only the 141
number but not the strength of the synapses changed. We therefore assume all 142
connections to have the same weight and focus on the structural plasticity of the 143
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synapses. Thus, in each time step we add and remove reciprocal synapses between MCs 14
and GCs with probabilities that depend on the activity of the cells that are connected 14

by that synapse. 146
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Fig 1. Computational model. (A) Sketch of the network. All spines provide reciprocal
synapses that excite GCs (green arrow) and inhibit MCs (red bar). (B) Spine formation
is controlled by R = M¢(G). The figure shows ¢/7; for ¢ > 0 and ¢/7, for ¢ < 0 (cf.
Eq. [f). (C) Disynaptic recurrent inhibition of MCs via GCs. The numbers in the right
panel indicate the strength of the effective inhibition. (D) Simplified training stimuli.
(E1, F1) MC activity before and after training, respectively. ( Es, Fa) Connectivity
between MCs and GCs before and after training, respectively. Each white dot
represents a connection between an MC and a GC. (Es, F3 ) Effective recurrent
connectivity among MCs. The color represents the number of GCs that mediate the
mutual disynaptic inhibition of MCs via GCs (cf. C).

Our modeling is qualitatively motivated by a number of experimental studies. The 147
overall stability of spines has been observed to be enhanced if animals experienced an 14
enriched odor environment . More precisely, across multiple days, spines in bulbar 149

areas that were activated by the enrichment odors were stabilized, while those in other s
areas were not. Very recently, a positive correlation between the stability of individual 1=
spines and the GC-activity of the dendrite on which they are located has been 152
observed . Since filopodia often are precursors of spines, we also glean information s
from experiments addressing their dynamics. The frequency of formation and removal 15

of filopodia has been found to increase with NMDA-receptor activation and to 155
decrease with Mg®T-concentration. This suggests that the formation rate of spines 156
increases with the activity of the GC-dendrite on which they are forming. The 157

dynamics of filopodia that are located on spine heads are often indicative of subsequent  1ss
dynamics of that spine. Specifically, the amplitude and direction of the movement of the 150
spine head has been found to be correlated with the lifetime and orientation of such a 10
filopodium, respectively . Moreover, the dynamics of the filopodia have been found 1a
to be triggered by presynaptic glutamate release, suggesting a role of MC-activity in the 1

spine dynamics . Biophysical details about the mechanisms relating the spine 163
dynamics with the temporal evolution of the neuronal activity during odor exposure are, 16
however, not well known yet. 165
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Based on these observations, we assume the formation and removal of synapses to follow 16
Poisson processes with rates that depend on the activities of the neurons connected by 167
the respective synapse (for details see . We express the formation and removal 168
rates in terms of a single rate function R = M¢(G) that depends on the activities M 169
and G of the MC and the GC, respectively, that are connected by that synapse 170
(Fig ) Similar to models for synaptic weight plasticity [34}35], we take this function 1n
to be non-monotonic. For GC activities above a threshold G a new synapse is formed, 17
while it is removed below that threshold as long as it is above a second, lower threshold, 173
G, For GC activities below G(© structural change is negligible. This lower threshold 17
allows the synaptic connections of a GC to be remembered during times when the GC is s
not activated by any odor. Connections are removed, however, on GCs that are excited, 1

but only weakly so. Since the change in the total number of synapses appears to be 177
limited in experiments [18,[36], we hypothesize that there exists a homeostatic 178
mechanism that keeps the total number of synapses on a given GC within a limited 179
range. For most of our results, we employ a top-k competition mechanism, in which 180
only the k strongest synapses survive. We show that qualitatively the same results are 1
obtained with a more biophysical mechanism that is based on a limited resource (see 182
[Realization of competition through competition for a limited resource| and [Methods). 1
Both mechanisms operate on a relatively fast time scale, as is generally needed for the 1
stability of networks with Hebbian plasticity [37]. 185
We are particularly interested in the impact of the plasticity on the ability of the 186

network to learn to discriminate between stimuli that the network is repeatedly exposed 1s7
to. We train the network by using a sequence of alternating stimuli A and B as sensory s

inputs. We assess the ability of the network to discriminate between these stimuli by 189
comparing the difference in the MC activity patterns in response to the stimuli with the 100
variability of these patterns across repeated presentations of the same stimuli. The 101
firing rates themselves do not fluctuate between successive presentations. However, the 10
spike trains underlying those mean firing rates can fluctuate. Assuming Poisson-like 103
spike trains, we take the mean firing rate of an MC as a proxy for its variance (for 104
details see Methods section). To illustrate the mechanism by which the discriminability 1o
is modified, we use simplified stimuli (Fig ), while naturalistic stimuli are used to 196
compare with experimental data (Fig ) 107
Plasticity induces mutual disynaptic inhibition of co-activated 108
MCs 199
To illustrate the network evolution resulting in the structural-plasticity model, we use a 20
pair of simple model stimuli A and B that excite partially overlapping sets of MCs 201
(Fig[ID). In the absence of any odors (‘air’) the input is taken to be non-zero and 202

homogeneous, reflecting the spontaneous activity of the MCs or of the neurons driving 203
their input. Initially, the MC-GC connectivity is chosen to be random (Fig[lE2). The 2
learning process reflects the effectively Hebbian character of the structural plasticity 205
rule through which connections are established between cells that fire together. If a GC 206
responds to a stimulus by integrating excitatory inputs from activated MCs, other MCs 207
that are activated but not yet connected to this GC are likely to form a connection with s

that GC. This is reflected by the two blocks in Fig [ involving GCs with indices 200
above ~ 600. Each of these GCs is connected with either the MCs responding to 210
stimulus A (MC indices 60-110) or to stimulus B (MC indices 110-160). Conversely, if  ou
two MCs respond to the same stimulus, the number of GCs they both connect to 212

increases, if the model is trained by that stimulus. Due to the reciprocal nature of these a3
synapses, this induces enhanced mutual disynaptic inhibition (Fig ) between these 214
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MCs. This is seen in the two blocks along the diagonal line of their effective 215
connectivity matrix, which gives the number of GCs that mediate that inhibition 216
(Fig 3). As a result, the training preferentially reduces the activity of initially highly 2
activated MCs (Fig[lE;, F1), consistent with observations [25]38]. 218
Training enhances or reduces stimulus discriminability 219
depending on their similarity 20

Intriguingly, in mice learning to discriminate between two odors the training enhanced 2z

the discriminability of the training stimuli only if they were similar, i.e., for hard 22
discrimination tasks [26]. If the task was easy, i.e. if the stimuli were dissimilar, the Eo
training actually reduced the discriminability of the training stimuli. Here 224
discriminability was measured using d’, which is given by the mean of the difference in 22
MC-activity in response to the two odors relative to the square-root of the pooled 26
variance. To provide insight into this surprising finding we employed the same training 2
protocol as in the experiment, using naturalistic stimuli that were adapted from 28

glomerular activation data of the Leon lab [39] (Fig (top)) and down-sampled to 229
reduce the computational effort (Fig[2JA (bottom)). These stimuli were used for the 230
easy discrimination task. As in [26], we used mixtures of the same stimuli for the hard on
discrimination task (60% : 40% wvs. 40% : 60%, see Methods). The two odors of the hard 2
task drove each MC to a very similar degree (Fig 2IC). 233

Our model successfully reproduced several experimental observations of [26]. There it 2.
was found that training with the easy task reduced the difference in the response of the s
MCs to the two odors used in the task; the majority of the MCs fell below the diagonal 23

in Fig[2ID;. Here the response was defined as the difference between odor-evoked 237
activity and air-evoked activity and the color of the dots in Fig[2D1,E; denotes the 238
average response of the respective MC across the two odors before training. In contrast, 23
the difference increased with training in the hard task (Fig[2|E1). In particular, a 240
fraction of cells showed the same response to both odors before training, but 201
significantly different responses after training (Fig|2[E;, dots along the y-axis). As 22

in [26], we quantified these changes by classifying MCs into responsive cells, i.e., cells 23
that showed a significant response to at least one of the two odors, and divergent cells, 2
for which the two odors evoked significantly different responses (see . In the s
easy task, not only the number of responsive cells decreased but also the number of 26
divergent cells (Fig[2Ds). In the hard task the number of responsive cells also decreased. 2«
The number of divergent cells, however, actually increased by a small amount (Fig[2[E3). s

Thus, both results recapitulated the experimental observations [26]. These outcomes 249
were not sensitive to the threshold 6 that classified the cells (Fig[S14]). 250
The discriminability of two neuronal activity patterns depends not only on the 251

difference of their mean firing rates but also on the trial-to-trial variability of their spike 25
trains. The latter is not included in our firing-rate framework. It is quite common for s
the variability to increase with the firing rate; for instance, for Poisson spike trains the s
variance in the spike count is equal to the mean spike count, i.e. the variability increases 255
like the square-root of the mean. As a proxy for the discriminability of the response 256
patterns, we therefore defined d} of each divergent neuron as the difference of the mean 2
activity in response to the two odors divided by the square-root of the sum of the means  2ss
(see Eq.(12) in the Methods). As in [26], training increased the mean (d}) across the 250
MCs in the hard task (Fig[2[Es), but it decreased (d}) in the easy task (Fig[2Ds), 260
indicating reduced discriminability. 261
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Fig 2. Easy and hard discrimination task using naturalistic stimuli. (A) Odors
employed in the training. Top: Glomerular activation patterns (cf. ) Bottom:
Activation patterns down-sampled to 240 points, serving as stimuli S(). MCs are sorted
based on the difference in activation by the stimuli of odor pair 1. (B) Computational
protocol. (C) Activity of each MC for the two stimuli used in the easy (black) and hard
(red) task. (Dq,E;) Difference in the response to the two stimuli for each MC before and
after training for the easy and the hard task, respectively. Color of the dots represents
the mean response |[M™) + M®) — 20 (@)| /2 before training. (Dg,Ey) Temporal
evolution of the number of responsive MCs and divergent MCs during the training in
the easy task and hard task, respectively (cf. [26]). (D3,E3) Temporal evolution of (d;)
for the easy task and the hard task, respectively. Parameters as in Table [I] except for
y=17-10"%

Visualization of reduction and enhancement of discriminability

To better understand and visualize the mechanism underlying the change in 263
discriminability, we employed simplified stimuli (Fig ,B). As in the case of realistic = 264
stimuli, the stimuli for the hard task were mixtures of two easily discriminated stimuli. 26

Again, we first exposed the network to a set of pre-training stimuli. They set up an 266
initial connectivity that was independent of the task stimuli (Fig ) It affected the 267
initial response of the network to the training stimuli (Fig[3(C;,D1). 268
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Fig 3. Visualization of the differential learning outcome for easy and hard
tasks. (A) Stimuli for pre-training and effective connectivity matrix after pre-training.
(B) Training stimuli for the easy task (Bj) and the hard task (Bsy) and the resulting
connectivity matrix after training. (C) Easy task: (C1) MC Activity before training
(after pre-training). (Cg) MC activity after training. (Cs) Activity difference before
(black) and after training (red). (C4) Temporal evolution of the discriminability during
training. (D) As (C) but for hard task.

In the easy task, the effective connectivity resulting from the training had only two 269
blocks, which were along the diagonal and corresponded separately to odors A and B 270
(Fig|3B1). This inhibition reduced the MC activity and with it the number of m

responsive cells. Since most MCs responded essentially to only one of the two stimuli,
the response difference decreased along with the overall response (Fig|3[Cs, red line vs.
black line), decreasing the discriminability. 274

In the hard task, both stimuli activated the same set of MCs, but to a different degree, a5

reflecting the difference in the concentrations of the two components. The 276
discriminability of the stimuli was therefore not compromised if the MC activities were — on
reduced, as long as the difference in the representations of the two stimuli was 278

maintained. In fact, in that case the discriminability in terms of d” was enhanced, since 219
we associate reduced overall activity with reduced trail-to-trial variability (cf. Eq.(12)). 2w

The effective connectivity resulting from the training achieved this through the two 21
additional, off-diagonal blocks (Fig|3B2). Each MC activated by component A received 2
disynaptic inhibition from MCs that were activated by component A as well as from 283
MCs activated by component B. With increasing concentration of component A the 284
effective inhibition from the MCs activated by component A increased, while that from 2
the MCs activated by component B decreased. Thus, the overall inhibition was 286
relatively independent of the concentration of A and therefore about the same for both 27
mixtures, preserving the response difference. In fact, for a large number of MCs the 288

difference in the response even increased with training (Fig[3[Ds). Assuming that for a 2



https://doi.org/10.1101/2022.06.29.498211
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.29.498211; this version posted July 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

SUBMISSION

cell to be classified as divergent, this difference had to be above some threshold, the 200
number of divergent cells decreased in the easy task, while it increased in the hard task 2

(Fig[3C4,Dy, cf. Fig ,D), as we found for the naturalistic stimuli (Fig ,Eg). 202
S6)

Qualitatively similar results were obtained without pre-training phase (Fig . 203

Odor specific adaptation 200

Repeated odor exposure was seen in [26] to lead to the response of a smaller number of 205
MCs. A change in the response amplitude through repeated exposure has already been 20
found earlier [25],40]. Specifically, it was found that the repeated exposure to an odor 207
over the course of a week substantially reduced the MC response specifically to that 208
‘familiar’ odor, but not to ‘novel’ odors, which the animal had experienced much 209
less |25]. Such a differential response could be due to a modulation of the overall gain in s
the olfactory bulb by a signal that indicates the novelty or familiarity of the presented sm

odors. Such a signal could arise some time after odor onset, since the odor has to be 302
recognized as familiar first. A more parsimonious explanation is offered, however, by the 303
activity-dependent spine dynamics of our plasticity model (Fig. 304
To mimic the procedure used in [25], we established a background connectivity by 305
repeatedly exposing the network in the pre-training to two different naturalistic 306

background odors B; and Bs in an alternating fashion (Fig[JA). In the training period  sor
we included a third odor F' in the odor ensemble as the ‘familiar’ odor and monitored s
the MC response to that odor as well as to 11 other, ‘novel’ odors Ny 1. For each 300
MC-odor pair we quantified the change in the network response using a change index. It s
was defined as the response of the MC to that odor at the end of the training period 31
minus that at the end of the pre-training divided by the sum of those two activities [25]. a2
As in [25], for the majority of MC-odor pairs the change index for the familiar odor was a3
negative (Fig). This reduction in response resulted from an increase in the number of 3.
GCs mediating the disynaptic inhibition among the MCs responding to the familiar 315
odor (MC indices mostly between 30 and 150 in FigfdD). 316
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Fig 4. Odor specific adaptation (cf. [25]). (A) Simulation protocol. Pre-training
with odors Bj 5 established a background connectivity. During training the network
became familiar with an additional odor F'. (B) The MC response to the familiar odor F’
is more reduced than to the novel odors Ni_ 11 .). (C) During pre-training connections
are predominantly added from GCs to MCs that are activated by the background odors
B2 (MC indices below 90 and above 200). The color indicates the change in W (™)
i.e. in the number of GCs connecting the respective MCs. (D) During training the
number of connections of MCs responding to the familiar odor F' increases, but that
corresponding to odors B o decreases (cf. (C)). (E) The mean change index of the
novel odors Ny, 17 is correlated with their similarity to the familiar odor.

The network restructuring during the training generally also modified the MC responses a7
to other, novel odors. For MCs that responded to a novel as well as to the familiar odor s
we compared the respective change indices. Since synapses that are not activated by the s
familiar odor do not become stabilized by the repeated odor exposure, the response of 30

MCs to the novel odors was typically less reduced than that to the familiar odor, 31
yielding a change index below the diagonal in Fig[B, in agreement with [25]. 322
The network restructuring during the training did not increase the inhibition for all 33

MCs. For some MCs the inhibition was actually decreased leading to a positive change 32
index (Fig). Averaging across all responding MCs, the mean change index for a novel s
odor was negatively correlated with how similar it was to the familiar odor as measured s
in terms of the Pearson correlation of the stimuli (Fig). A particularly strong 327
reduction in the inhibition occurred among many of the MCs responding to novel odor s
N, (marked blue in Fig{dB,D). This odor was actually identical to odor Bs, which was 32
used in the pre-training, where it established mutual inhibition among MCs with indices s
in the range 30 to 90 and above 200 (left panel of Fig). During the training period, 3
which included odor F' in addition to Bs, many of these connections were removed 33
(FigldD), leading to a strikingly positive mean change index for that odor (blue circle in 33
Fig. Positive change indices for familiar and particularly for novel odors were also 33
observed experimentally for quite a few MC-odor pairs in [25]. 33

11 f45]


https://doi.org/10.1101/2022.06.29.498211
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.29.498211; this version posted July 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

SUBMISSION

Random spine dynamics can capture divergence and 336
discrimination 537
So far we have seen that the model proposed here captured a variety of key 338
experimental findings [25[26]. A key prediction emerging from the activity-dependence s
of the spine dynamics is the formation of subnetworks of highly connected MCs and 340
GCs that specifically respond to one of the training odors. We therefore asked whether sa
the activity dependence is necessary to capture the experimental results and to what 32
extent the experiments therefore allow to infer the formation of an odor-specific, learned 3
network structure in the olfactory bulb. Alternatively, the spine dynamics could be 344
statistically homogeneous with a density that is controlled by a global signal reflecting, 34
e.g., a neuromodulator indicating the novelty or familiarity of an odor [41}/42]. 346
B C
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Fig 5. Random network model can capture enhanced differentiability, A)
Random addition of connections during training. (B) Increased connectivity decreases
fraction of responsive cells but can increase that of divergent cells (cf. Figl2H). (C
Discriminability of the odors in the hard task increases with increasing Neopn. (D,E)
The difference in MC response does not decrease with increasing Neopy, (cf. Fig).

As a control model, we implemented purely random, activity-independent spine 37
dynamics, where the training with the familiar odor lead to a change in the mean 38
number of MC-GC connections. Since the experiments [25] and the simulations 349

revealed a reduction in the MC-activity in response to the familiar odor, we increased 0
during the training the mean number of connections between MCs and GCs, which is s
also consistent with an increase in the number of spines during perceptual learning [18]. 35

For the hard task using simplified stimuli (cf. Fig the fraction of responsive MCs 353
decreased when the number N,.,,, of connections was increased, while the fraction of 354
divergent MCs increased substantially over some range of Neopny (FigdB, cf. Fig. In 3
parallel, the discriminability measured in terms of d’ increased (Fig This reflects s
the fact that increasing the random connectivity increased the inhibition for all MCs by s

o

roughly the same amount. In a linear firing-rate model this would preserve the 358
difference between the MC responses; with the saturation of the MC response used in 350
our model, the difference actually increased (Fig,E). 360
Thus, the aspects considered in Fig[f| are not able to distinguish between the 361

activity-dependent and the random model. We therefore considered the results of the e
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protocol of Figl]in more detail. 363

Random spine dynamics fail to induce observed disinhibition 364

As in Fig[d] we exposed the random model in the pre-training to 2 background odors, s

added odor F' as the ‘familiar’ odor to that ensemble during the training period, and 366
probed the response to additional 11 ‘novel’ odors. As expected, and in contrast to the s
activity-dependent model, the random model showed no qualitative difference in the 368
change index distribution of the familiar and the novel odors (FiglgD). Strikingly, even s
though in the random model the mean change index for the familiar odor was less 370
negative than that in the activity-dependent model ({CI),qndom = —0.14 vs an
(CT)y = —0.27), for none of the MC-odor pairs the change index was positive in the 32

random model. In contrast, in the activity-dependent model about 8% of the MCs had 37
a positive change index for the familiar odor (Figl6[E), which is in rough agreement with s
the experimental findings [25]. These MCs were disinhibited by the training (Fig[6JA).
For visualization purposes we also compared the changes in MC activity for the two 376
models using simplified stimuli. Again, while in the random model the training led to a s~
decrease in the activity of all MCs, in the activity-dependent model there were quite a s
few moderately activated MCs that were disinhibited by the training (Fig@]). 379

A more detailed analysis of the results of the activity-dependent model showed that the s
disinhibition in the response of a given MC to two odors can be quite different even if s
the two odors are very similar to each other. Considering again the mixtures used in the s
hard task of Figl2] we found a large number of MCs for which the difference in the 383
response to the two stimuli was significantly increased by the network restructuring. For s
some of them the enhancement arose from differential disinhibition, wherein the MCs 385
were inhibited by both odors before training, but only by one of them after training 386
(Fig[6]A). For other MCs the increased difference was due to differential inhibition. 387
While these MCs were excited by both odors before training, they responded only to 388
one of the very similar odors after training (Fig). Both, differential disinhibition and s
inhibition were observed experimentally in |26] (their Supp. Fig.S1). 390

In contrast, in the random model no disinhibition was obtained. This is illustrated for s
one odor in FiglfIC. It also manifested itself in the change index for novel and familiar s
odors Fig[6D (cf. FigfB) and the cumulative distribution of the change indices (FiglgE) s

Thus, the improved discrimination of pairs of very similar stimuli and the reduced 304
discrimination of dissimilar stimuli does not require the emerging connectivity to be 305
odor-specific, but only an overall increase in inhibition. The observed disinhibition, 306
however, is not consistent with random spine dynamics. But it is recapitulated with 307

activity-dependent spine stability, which leads to odor-specific network structure. Thus, s
combined with the experimental observations of |26] our computational model supports 10
the notion that odor exposure during perceptual learning leads to a network structure o0

that reflects the presented odor. 201
Removal of spines and forgetting by intermediate-amplitude w2
re-activation w03

A key feature of our model is the non-monotonic behavior of the resilience function ¢ 4
(Fig)7 which renders spines stable not only if the associated GC is strongly active, 405
but also when it is inactive. This allows previously learned connectivities to persist even 46
if the corresponding odors are not presented any more. If MCs and GCs are weakly a07
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Fig 6. Disinhibition in the activity-dependent but not in the random
model. (A) In the activity-dependent model training in the hard task with naturalistic
stimuli (cf. F ig disinhibited a large fraction of MCs differentially. The activity of a
specific MC is shown in (Az). (B) In the activity-dependent model training also
inhibited many MCs differentially. (C) Training-induced change in MC activities for the
random and the activity-dependent model for the simplified stimuli. (D) In the random
model the change index for familiar and novel naturalistic odors was statistically the
same (cf. Fig[B); Odor Ny is marked in blue. (E) The CDF of the change index shows
disinhibition only for the activity-dependent, but not the random model.

driven, however, the corresponding spines are removed. While the non-monotonicity of 4
the resilience function is reminiscent of models for synaptic weight plasticity [34L35], 409
there is no explicit experimental evidence for it so far for the bulbar structural plasticity. o0

To illustrate the impact of the non-monotonicity of the resilience function we used an1
simplified stimuli. During pre-training two dissimilar odors A,B were presented, which — a»
resulted in a connectivity comprised of two blocks on the diagonal (Fig). In a a3
subsequent training period we tested the persistence of the memory of the block a1
corresponding to odor A when the network was re-exposed to that odor, but with a a15
different amplitude (labeled A;. 4 in Fig. When that amplitude was small, the a16
connectivity remained essentially unchanged by the training (Fig/7B;). For intermediate a7
activities, however, a fraction of the connections established in the pre-training were a1

removed since the GC activity fell into the range in which the resilience function was a10
negative (Figl7Bs 3). For large amplitudes the resulting GC activity was large enough to 4
render the resilience function positive and the connections were stable (Figl7By ). 2
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Fig 7. Removal of connections for intermediate GC activation. A) Pre-training with
two odors, then training with only one of the two odors at different amplitudes A;. 4.
B) The connectivities W (M) resulting from the training depend non-monotonically on
the stimulus amplitude A; 4 during training. C) Non-monotonic mean change in the
response to odor A after training as a function of the amplitudes A 4 used in the

training.

Experimentally the connectivity itself is only poorly accessible. One can, however, a2
probe the predicted changes using the response of the MCs to odor A, similar to the 423
experiments in . When the connections are retained during the training, the o
response of the MCs to that odor will not change compared to their response before the s
training. However, if intermediate stimulus amplitudes are used in the training, the 426
removal of the connections manifests itself in an increase of the mean response of the a7

MCs to odor A after the training (Fig[7[C). Correspondingly, the distribution of the 428
differences between the MC activities after and before the training shifts and broadens o
in a non-monotonic fashion when the amplitude of the stimulus used in the training is 40

increased (Fig[S2). 431
Thus, if the odor exposure experiments in were to be continued with the same odor sz
but at a suitably reduced concentration, the model predicts that the MC response to 433
that odor would increase again within days rather than undergoing the slow recovery 234
over a period of 1-2 months that was observed in the absence of that odor [25]. a3
The protocol used in Figl7] does not have a simple behavioral read-out. Moreover, it 436
relies on a change in the overall activity of the MCs. Since the input to the MCs is a3
pre-processed in the glomerular layer, which is thought to provide an overall gain 438

control of the input 7 changes in the odor concentrations may not translate directly a3
into corresponding changes in MC activation and the ensuing change in the connectivity 0
predicted by the model. We therefore considered also a slightly modified protocol using s
mixtures composed of two dissimilar odor components. To reduce the impact of the a2
overall gain control, only the concentration of one of the two components was varied a3
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(Fig). Exposing in pre-training 2 the network to two mixtures in which that a4
component had similar but large values (Figf8lAs) enhanced the discrimination between s
these two mixtures (teal-magenta line in Fig), However, due to pre-training 2 the a6
network developed strong mutual inhibition between the MCs responding to the two aa7
mixture components (Fig). This allowed the strong component in the training aag
stimulus (Figg) to suppress the response to the weak component completely 449
(Fig8B). Subsequent training with the mixtures in which that component was weak, 450

removed many of those connections (Figg,F) and largely reversed that suppression s
(Fig). This enhanced the discriminability of those mixtures above its initial value 452

without any inhibition (blue-green line in Fig). 453
A, Pre-Training 1 A, Pre-Training 2 A, Training
wmm) wmm)
1;2 | D | 200
=
- B (e
é = 50 150 ’ =
5 E} 3
» 1 E 1 — C
»n 7
0 0
0 100 200 0 100 200 0 100 200
Mitral Cell Index Mitral Cell Index Mitral Cell Index
B Before Training C After Training D wmm)
1 1 0.5
= Before
= ~ — After
= C"Eé —— stimuli dif.
£ 05 5 T 0 -&—
< ~
Q o
= =
0 0 0.5
0 100 200 0 100 200 0 100 200
Mitral Cell Index Mitral Cell Index Mitral Cell Index
E Before training F After training G
wmg) wma)
>< . ! TR : ; - 6 Pair A, B
< 200§ 200 E /
= 40 400 £ 4
S 3 l
2 600 600 2 2 Pair C, D
£ 80 800 3 L
© 1000 5 ; 1000 £ ="
50 100 150 200 50 100 150 200 K ® &
Mitral Cell Index Mitral Cell Index £ 2 £
£ e £
8 g
& &

Fig 8. The discrimination of weak components of similar stimuli is abolished by
training with strong components, but recovers through training with weak components.
(A) Protocol: Aj: pre-training 1 with only 1 odor, As: pre-training 2 based on a
mixture of that and a dissimilar odor, As: training with a mixture in which the second
component is only weak. (B) Response to the training stimulus before training; due to
pre-training 2 the response to the weaker odor component is suppressed completely. (C)
Training with the weaker component recovers that component. (D) MC response
difference between odors A and B before and after training. (E,F) MC-GC connectivity
before and after training. (G) Fisher discriminant for odor pair (A,B) and (C,D).

The removal of spines on GCs that are only intermediately activated lead also to 454
forgetting of a discrimination task by learning a subsequent discrimination task, if the s
odors of the second task overlapped to some extent with those of the first task and 456
therefore interfered with the retention of the relevant connections (Fig. Upon as7
re-exposure to the odors of the first task, the network very quickly re-learned to 258

discriminate between those odors. In fact, the relevant connectivity was re-stablished 459
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faster than it had been learned in first odor exposure (Fig). In general re-learning 0

occurred noticeably faster than the forgetting (Fig[S4). w61
Realization of competition through competition for a limited a2
resource 463
In order to keep a Hebbian model stable, different compensatory processes can be 264

imposed depending on the state of nearby synapses on the same dendrite [37]. In the 465
model that we have discussed so far we used top-k competition because of its simplicity, e
without identifying a specific, biologically feasible mechanism. In this section, we a6
discuss one such mechanism. 468

The idea behind the competition is that within a single neuron, possibly within a single 40

dendritic branch, resources used for the formation of synapses are limited. In 470
hippocampal CA1 neurons, stimulating spines leads to the shrinking of neighboring an
unstimulated spines |[44]. A plausible explanation of this phenomenon is that some a2
resource is limited within the neuron. A computational model based on this idea has a73
reproduced the fast multiplicative scaling behavior of synapses and explained a transient a7
form of heterosynaptic plasticity [45]. Along similar lines, we assumed that the 475
formation of each synapse depletes a resource pool by a fixed amount, and the 476

formation rate is proportional to the fill-level of the resource pool. Further, we assumed 4~
that the resource for a synapse is returned to the pool when the synapse is removed and s
that the removal rate is independent of the resource pool size. We took the activation 4
function (Fig |§|A, red curve) to be comprised of a formation term, which depends on the s
fill-level of the resource pool (Fig9A, blue curve), and a removal term, which is a81
independent of the fill-level (Fig green curve). 482

It is easy to see how the limited resource pool provides a homeostatic mechanism. For s
low pool levels synapses are removed (open arrow in (Fig @A)), which replenishes the e

pool, while for high pool levels new synapses are formed (solid arrow in Fig |§|A))7 285
decreasing the pool level (Fig ) The equilibrium pool level and with it the number of 486
synapses in the steady state is regulated by the activity of the GCs, which in turn ag7

depends on the number of synapses via the activity of the MCs connected to the GCs. s

With this biophysically plausible stabilization of the structural plasticity, our model 289
yielded results that were qualitatively similar to those obtained with the simpler, top-k %
competition model (compare Fig Ep—F with Fig 7E and Fig [S5| with Fig|3). a01

Discussion w02

In the rodent olfactory bulb structural plasticity in the form of the extensive formation e
and removal of synaptic spines persists into adulthood [6] and may be a key factor in a0

establishing and maintaining the network structure of the olfactory bulb. Since it is 405
operating on timescales that are comparable to some learning processes |6,|18] it may 496
play an important role in these processes. In this study, we proposed a simple a07
Hebbian-type model to investigate this role. Our model shows that a local unsupervised 40
learning rule according to which the formation and removal of spines depends on GC 499
and MC activity is consistent with and explains a host of experimental 500
observations [18/25,/26]. Among them is the intriguing observation that training can s01
have opposite impact on the discriminability of very similar and of dissimilar odor pairs. so
As observed experimentally, in our model training enhanced the discriminability of 503

similar odors, but it reduced the discriminability of the training odors if they were quite s
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Fig 9. Synaptic competition via a common resource pool. The training protocol is the
same protocol as in Fig[2l (A) The modified activation function ¢(G) (red) is the
difference between the formation function (blue) and the removal function (green).

P = Py (thick), P > P, (dotted), P < Py (dashed). (B) (Top) For P > P, synapses
tend to form (solid arrow in (A)). (Bottom) For P < P, synapses tend to be removed
even though the GC activity is the same (open arrow in (A)). (C1,2) Responsive and
divergent cells and discriminability for the easy task (cf. Flg.i F). (D, 2) Responsive
and divergent cells and discriminability for the hard task (cf. FlglG H). (E,F)
Differential disinhibition and inhibition (cf. Flg@ ) Removal of splnes for training
with intermediate activities leads to an increase in MC activity (cf. Fig.

different from each other. In fact, for the dissimilar odors, the number of MCs that 505
responded differently to the odors decreased with learning, deteriorating the 506
performance. 507

Since a key prediction of our activity-dependent model is that upon repeated exposure  sos
with relevant odors the olfactory bulb develops subnetworks associated with these odors, sew

we investigated whether the experimental results are also consistent with a model in 510
which learning modifies the inhibition in a random, statistically homogeneous fashion, su
independent of the activity, and therefore without forming odor-specific subnetworks. 512

Surprisingly, the random model also captured the differential outcome of training with s
similar and with dissimilar odor pairs. It failed, however, to recapitulate the observation s

that during that learning process, which led to an overall increase in the number of 515
inhibitory connections, a sizable fraction of the MCs became more, rather than less 516
active, i.e. they were disinhibited rather than inhibited [26]. Similarly, the 517

activity-dependent, but not the random model, captured the odor-specific reduction in s
MC activity that is observed after an animal has been familiarized with an odor, which s
is much more pronounced for that familiar odor than for less experienced odors [25]. 520
One could imagine that the reduced response to a familiar odor is the result of an 521
inhibition-enhancing global modulatory signal that may be triggered by the recognition s
of the odor as familiar. This would, however, not explain the significant fraction of MCs s
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that are disinhibited in response to the familiar or the novel odor [25]. Thus, in 524
combination with [25]26] our model provides strong indirect evidence that perceptual s
learning leads to the formation of MC-GC subnetworks comprised of MCs and GCs 526
having significantly overlapping receptive fields. 527

Moreover, the model offers a foundation for further studies of learning-related functions s
in the olfactory bulb. For instance, in the current version of the model the novelty or s
salience of an odor is not considered explicitly. Only implicitly it is assumed that the 530
presented odors have sufficient salience, since experiments suggest that the plastic 531
changes occur predominantly for novel or otherwise salient odors [19}/46]. 532

In contrast to a previous model for structural spine plasticity [6], the model presented 53
here describes a learning mechanism that allows the network to remember previously 534
learned tasks in its connectivity. These memories are robust against subsequent learning s
of dissimilar tasks. The learned connectivity is only erased by exposure to interfering 536
stimuli, which overlap significantly with previously learned ones. This prediction should s
be amenable to experimental tests using sequential perceptual learning [47] with two 538
odor pairs, each comprised of two similar odors. Repeated exposure with one of the two  s3
odors of the first pair will enhance the spontaneous discriminability of the odors in that s
pair. The subsequent repeated exposure with an odor from the second pair is expected sa
not to affect the discriminability of the odors in the first pair, if the odors in the second s
pair are dissimilar from the first pair. However, if there is a significant overlap between s
the pairs, the second training is expected to compromise the discriminability of the first su
pair. Note, however, that if the odors in the second pair are very similar to those in the s
first pair, this interference is not expected. The latter aspect would differentiate this 546
forgetting from the widely observed retrieval-introduced forgetting [48]. 547

When assessing the role of structural spine plasticity in forgetting, attention has to be  sas

paid to the time scales of the experiments. In recent experiments the successive 549
perceptual learning and forgetting of different odor pairs has been investigated [4]. 550
There it was found that learning a second pair of odors seven days after the training 551

with the first pair strongly interfered with the memory of the first pair, while learning s
after 17 days did not. The experiments indicated that this interference arose from the  ss3
enhanced apoptosis of adult-born GCs that was triggered if the time between the 554
training periods was only seven days. Since the results of [25] suggest that significant  sss
changes in the connectivity arise already within the first day of exposure, performing 556
the interference experiments on that shorter time scale may avoid complications arising ss

from the apoptosis found in [4] and may focus on the role of the structural spine 558
plasticity described by our model. 550
We discussed two fast homeostatic mechanisms that stabilize the network activity 560
despite the Hebbian-type learning rule: an abstract top-k competition and a biologically s
plausible competition of synapses for a limited resource that operates via a sliding 562
threshold for the formation of synapses, somewhat reminiscent of the BCM-model [34]. se
The overall behavior of both models did not depend much on which homeostatic 564
mechanism was at work. It is worth noting that the specifics of the stabilization 565

mechanism may vary across brain areas. Moreover, resource-dependent competition may  ses
be too local to lead to competition across different dendrites or the whole neuron. In 567

addition, heterosynaptic plasticity may be controlled more by activity rather than a 568
limited resource [44]. For these reasons, we leave open the question of how to implement  se
the stabilization mechanism. 570
In principle, activity-dependent network restructuring could also arise from synaptic 571
weight plasticity rather than structural plasticity. Recent experiments show, however,  s»

that in adult-born GCs the amplitudes of evoked IPSCs were not significantly changed s
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after learning [18]. This suggests that changes in the inhibitory synaptic weights are not s

likely to be the dominant mechanism for learning. At the same time, in the same 575
experiment, the frequency of the evoked IPSCs was significantly up-regulated after 576
learning, which highly suggests an increase in the number of synaptic spines [18]. 577

What aspects of olfaction might favor structural plasticity even in adult animals, despite s
its seemingly high metabolic cost? A characteristic feature of olfaction is the high 579
dimensionality of odor space. As a consequence, the layout of the olfactory bulb does 580
not allow substantial chemotopy and MC dendrites have to reach across large portions se
of the bulb [28}/49], where they establish only a very sparse connectivity with GCs. To  ss
wit, each of the about 5 million GCs connects with on the order of 50-100 of the 50,000 s
MCs [50]. Thus, only less than 1% of the possible connections are actually made. The s

sparseness of the connectivity has recently been identified as a key factor favoring 585
structural plasticity over synaptic-weight plasticity in the context of feedforward 586
networks [51]. This may also be the reason why structural plasticity seems to be 587
essential in the adult motor system, as has been found recently [52]. 588
A characteristic feature resulting from the structural plasticity implemented in our 589

model is the emergence of MC-GC subnetworks that are specific to the learned stimuli. se0
The interaction between the excitatory MCs and the inhibitory GCs is known to drive  sa
the y-rhythms that are prominent in the olfactory bulb [53]. Since their power is 592
enhanced with task demand [54] and since the optogenetic excitation of GCs in the 593
~-range enhances discrimination learning [55], they are presumed to play a role in odor s
processing. The different subnetworks that are predicted by our model to emerge from s

learning different odors are likely to generate each its own ~-rhythm with its own 596
frequency. The question then arises whether these rhythms will synchronize if the 507
bulbar network is driven by the corresponding odor mixtures. Depending on the 508
temporal window over which the bulbar output is read out in downstream brain 599
areas |56L57], the perception of such mixtures may then well vary with the degree of 600
synchrony of the different rhythms. Interestingly, the synchrony of such interacting 601
rhythms can be enhanced by uncorrelated noise and by neuronal heterogeneity via a 602
paradoxical phase response [58.[59]. 603

A prominent feature of the olfactory bulb is its extensive centrifugal input via top-down o
projections that target particularly the GCs. Our model for the structural spine 605
plasticity suggests that the GC develop receptive fields for specific odors of the training s
set and are preferentially connected with MCs with similar receptive fields. Due to the oo
reciprocal nature of the MC-GC synapses, this implies that the activation of such a GC s
inhibits specifically MCs with the same response profile. If the top-down connectivity oo
was able to target specific GCs, top-down inputs could modulate bulbar processing in a w0
controlled fashion by inhibiting specific MCs. Computational modeling [15] suggests 611
that the extensive adult neurogenesis of GCs observed in the bulb naturally leads to a e

network structure that allows just that. That model predicts that non-olfactory 613
contexts that have been associated with a familiar odor allow to suppress that odor, 614
enhancing the detection and discrimination of novel odors. The spine plasticity 615
investigated here leads to a network structure that is similar to the bulbar component of e
the network obtained in the bulbar-cortical neurogenesis model. Structural spine 617
plasticity is therefore expected to support the specific control of bulbar processing by s
higher brain areas. 619

20/45


https://doi.org/10.1101/2022.06.29.498211
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.29.498211; this version posted July 3, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

SUBMISSION

Methods 620

The computational model comprises MCs and GCs (Fig[JA) that are described by the e

firing-rate models 622
dM
TMW =—M+FM(S—7W(’”9)G), (1)
dG T
oot = =G+ Fo ((W<m9>) M - gt,w) . 2)
Here the vectors M and G represent the firing rates of Ny;¢ MCs and Nge GCs, 623
respectively. The MCs receive sensory inputs S from the glomerular layer and 624
inhibitory input from GCs, with v denoting the inhibitory strength. The GCs receive 62
excitation from MCs, with gp, > 0 setting a non-zero firing threshold for the GCs. 626

Reflecting the reciprocal nature of the MC-GC synapses the connectivity matrix W™ &
is the transpose of W(™9) Focusing on the structural plasticity of the synapses, we do e
not include synaptic weight plasticity, the characterization of which is still somewhat 620
incomplete [31,(32]. We therefore keep the weight v fixed and set W ("9 either to 1 or 0. e
Initially, each row of W ("9 has Ny, non-zero entries, reflecting that each granule cell e
connects to N,opy, mitral cells. 632

Reflecting the large spread of the secondary dendrites of MCs [28|, we allow synapses to 63
be formed between all MCs and all GCs without any spatial limitations. Thus, the 634
ordering of the MCs and the GCs is arbitrary. 635

The firing rates depend on the neurons’ inputs via the activation functions Fy; and Fg e
given in , which are taken to be sigmoidal and piecewise linear, respectively. MCs 63
within the olfactory bulb experience saturation behavior. In [60] the authors recorded e
responses of MCs when the concentration of the odorant changed 10-fold. Among the 63

recorded cells, 38% of MCs responded linearly to stimuli, and 29% of the MCs 640
experienced saturation behavior. This saturation may be the result of saturation in the ea
inputs to the MCs or in the MCs themselves. The activity of the sensory neurons 642
saturates on a log scale when the odor concentration changes 1000-fold [61]. For the 643
concentration changes (0.6 : 0.4 mixture or pure odorant) relevant in our studies, we 644
therefore assumed that saturation occurred mostly in the MC rather than their sensory s
inputs and took the activation functions in (1}f2)) to be 646
Fy(z) = [tanh(z)]y, (3)
Fa(x) = [(2)ly- (4)

Based on the observations in [5,22,23,|33], we assume the rate of formation and removal e

of a synapse connecting MC i and GC j to depend on the activities of those neurons. s

As a proxy for those activities we take the steady-state solutions of Egs.(1l|2)) for given o4

stimulus S. We express the formation and removal rates in terms of a single rate 650

function, 651
Rij(M;, Gy) = M; ¢(Gj), (5)

where M; and G are the respective steady-state activities. The activation function 652

d)(Gj)v 653
$(G;) = [G; - GV, (G5 -GV, (6)

changes sign at a threshold G, which controls whether a new synapse is formed or an  es
existing synapse is removed (Fig ), giving the structural plasticity a bidirectional 655
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dependence on the GC activity. In addition, there is a second threshold, G(©), below 656
which the structural change is negligible. Specifically, in each trial of duration At, 657

which is one step in our simulation, a new synapse is formed with probability P;t

ij> 658

,Pi? =1—exp (_)\f [Rij], At) , if WZ.(;ng) =0. (7)

Conversely, an existing synapse is removed with probability P,

i 659

P =1—exp (—)\T [~Ry), At) W =1, (8)
Here, Ay and A, are the formation and removal rates, respectively. 660
Since the change in the total number of synapses appears to be limited in 661
experiments [36}/62], we introduce a homeostatic mechanism that limits the maximal 662
number of synapses on a given GC. For most of our results, we employ a top-k 663
(k > Neonn) competition mechanism, in which only the &k synapses with the largest 664

values of R;; survive if a GC has more than k synapses. A soft top-k competition can s
be realized by a resource-pool competition with additional assumptions, as discussed in s

the section |Realization of competition through competition for a limited resourcel 667
However, other mechanisms like scaling [63] or the ABS (Artola, Brocher and Singer) s
rule [64] may alternatively restrict the total number of synapses. Since the stability 669
mechanism was not our focus, we mostly used the (hard) top-k competition without 670
directly specifying its biological cause. 671
Summarizing the algorithm, in each step the steady-state firing rates M and G in 672

response to a randomly chosen odor S from the training set are computed. Based on 673
the resulting formation/removal rates R;; the connectivity matrix W (m9) is updated in o
two parts. First, we implement homeostasis by top-k competition: if any GC has more o5
than k synapses, the corresponding number with the smallest values of R;; are removed. e
Then, in the learning step the connectivity is updated based on the Hebbian learning 677
rules 7 except that synapses that were just removed in the homeostasis step are not e
recreated in this time step. We simulate the model long enough for the connectivity to e
reach a statistically steady state as measured by the discriminability of the training 680
odors (see Sec|Characterizing Discriminability)). As initial condition we take a 681
connectivity in which each GC is randomly connected to Neon, MCs. Unless specified  es
otherwise, the model parameters are as listed in Table |1} The steady states are obtained s
by setting 7 = 0, solving Eq. using ODE45 in Matlab, with G solved from Eq.. 684

We found that the overall behavior of the model is robust with respect to changes in its ess
parameters (Supplementary Materials). 686

Instead of the hard top-k competition the number of synapses can also be limited by a s
resource-pool competition. To this end we replace the activation function o(G) in (B) by e
a function ¢(G, P) that also depends on the fill-level P of that resource pool (Fig A, e

red curve) and assume that it is comprised of a formation term ¢ o, (Fig|9JA, blue 690
curve) and a removal term ¢, (Fig @A, green curve), 601
&(Ga P) = J)form(Ga P) - Qgremove(G) 5 (9)
which are, respectively, given by 692
- P
Oform(G,P) = (tanh (Kform (G — rform)) + 1+ Ro) X (10)
0
brem(G) = (tanh (Krem (G — Trem)) +1) /2+ Ry . (11)
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The fill-level P of the resource pool depends on the current number of synapses n, 693
P = Pl _p_where P(®) is the total amount of the resource in the cell, which was e
assumed to have the same constant value for all GCs. Here Py is the equilibrium size of o
the resource pool for which no spines are formed or removed when the GC is not active. s
Thus, for low GC-activity P eventually goes to Py and the number of the synapses on o

that GC goes to the initial value n = Nyppn = P — P, 698
In analogy to the original model, we define the two thresholds G(© < G via 699
&(G(O’l), P) = 0. The formation of synapses on significantly active GC is controlled by 70
GM. As more synapses are formed and the fill-level decreases, GO increases. This 701
makes it more difficult for synapses to form on that GC, leading to a saturation of the o
number of its synapses. This dependence of the threshold G(!) is reminiscent of the 703
sliding threshold of the BCM model for synaptic-weight plasticity [34]. However, the 704
sliding is caused here by the changes in the limited resource instead of a temporal 705
average over the previous activities. The change in GO s opposite to the change in 706
G® when the size of the resource pool changes. 707

In [26], mice were exposed to the test odors only when they were on the training stage. 7o
When they were back in the cage, the training odors were absent, and the activities of 700
GCs corresponding to those odors were likely to be low. In the original model, the 710
activation function ¢Z(G) vanishes when G < G(9) which means synapses are neither m
formed nor removed. Thus, the network is static. However, in the resource-pool model 2
the activation function ¢(G) is in general non-zero when G' < G(©). As a result, periods 73
of low input also lead to changes in the connectivity. We include such ‘air trials’, during 7
which only spontaneous activity is presented, after every four training trials. During air s

trials, the GC activity is very low and synapses are formed and removed based 716
particularly on the size of the respective resource pool, pushing each pool towards Py. 7
Given the uniform input to the MCs during air trials and the dependence of spine 718

formation on MC activity (cf. ), the formation is biased towards MCs that receive 79
less inhibition, i.e., that have fewer connections with GCs, while the removal is biased 70
towards MCs that receive more inhibition. We find that inserting such air trials ™
increases the dynamics of the synapses and speeds up the convergence of the network 72
evolution. It may compensate for the fact that in the resource-pool model an existing 73
synapse is removed only if the activation function is negative, ¢(G, P) < 0, while in the 72
top-k competition model, synapses can be removed not only when ¢(G) < 0, but also s

directly by that competition. 726
The top-k mechanism and the competition via a resource pool lead to similar results. 727
We expect that this would also be the case for other mechanisms that may restrict the 7
total number of synapses, like scaling [63] or the ABS (Artola, Brocher and Singer) 729
rule [64]. Since the stability mechanism was not our focus, we mostly used the (hard) 70
top-k competition without directly specifying its biological cause. 731

Nye | 240 Nge | 1000

Neonn | 60 k 66

™ 1 TG 0

At 1

Gthr 4.4 Y 5e — 4

GO 1 GM 14

Mg 6-10~% | A, 6-103

Table 1. Parameters used in the simulations of the model (unless stated otherwise).

The additional parameters of the pool-competition model are listed in Table 73
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R form 2.5 Rrem 5

T form 2 Trem 1
Ry 0.8 Py 20
At | 1| 7 [42.10°°F
Ag 1 P 1

Table 2. Table of parameters for the resource-pool model (unless stated otherwise).

Generation of simplified stimuli and naturalistic stimuli 733

The naturalistic stimuli are based on glomerular activation data [39], which contains 2-d 73
imaging z-scores of the glomeruli responses for a variety of odorants. In our simulations, 73
we used carvone, citronellol (pre-training), ethylbenzene, heptanal (training, pure, and s

mixture). For the novel odors employed in Figs we used in addition limonene, 737
ethylvalerate, 2-heptanone, acetophenone, valeric acid, isoamylacetate, isoeugenol, 738
1-pentanol, p-anisaldehyde. Since in the original data, not all pixel values were available 730
for all odorants, we kept only those that were common to all of them. We then 740
downsampled the resulting 2074 data points to 240 sample points S(°7i9) 741

The z-score data S(°"9) do not include the baseline activity of the glomeruli. Thus, a 7
z-core of 0, which represents the mean activity across the whole population, does not 743
imply that the activity was not affected by the odor presentation. To obtain a rough 744
calibration of the mean activity, we used the observation that around 60% of the MCs  7s
are activated by any given strong stimulus [25]. In the absence of other information, we s

used this as a guide to re-calibrate the 40% percentile z-score S(40%) as 0. Then, we 747
normalized the data by their maximum, resulting in 748
_ S(orig) _ 5(40%)
S = max(S(ria) — §0%)) °
Further, MCs are activated by the airflow even without any odorants, and odor 749
representations change mostly linearly with the concentration of odorants [60]. For any 7o
given mixture with concentration p of odor A and (1 — p) of odor B we therefore 751
modeled the stimulus as 752
S=[pSHA +(1—-p) 8B 4 §lin],
Here S(#") = (.1 is the ‘air’ stimulus and [-]; the rectifier, [z]; = max(z,0). 753
For the simplified model stimuli we used scaled Gaussian functions with different mean s
and standard deviation as S(45) and set S(4") = (.2. 755
Definition of responsive cells and divergent cells 756
We defined the response of an MC as the change in activity induced by an odor 757
compared to the activity with air as stimulus. Specifically, if a MC had activity M (4-B) 75
in response to stimuli §%) and it had activity M (") when presenting air as a 750
stimulus S(*") | we defined the response to odor A, B as Mi(A’B) — Mi(‘m). 760
The definitions of responsive and divergent cells were adapted from [26]. A cell was 761
classified as responsive, if its response to one odor in an odor pair was above a given 762
threshold 6, i.e. maX(Mi(A) - Mi(‘m‘)7 MZ-(B) - Mi(mr)) > 6. A cell was classified as 763
divergent, if the difference in its response to the two odors was above the same 764
threshold, |Mi(A) - Mi(B)| > @. Our results were robust over a range of values of the 765
threshold 6 (Fig[S14]). 766
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Characterizing Discriminability 767

We used d-prime and the Fisher discriminant to assess the discriminability of activity s

patterns. For each divergent neuron d-prime is given by the difference between the 769
mean activities of the neuron for the two presented odors scaled by the combined 770
variability of the activities. In our firing-rate model (1}i2)) the MC-activity exhibits m

fluctuations only on the time scale of network restructuring, which is much longer than

the odor presentation. Assuming, as in [15], that the MC firing rates Mi(A’B) represent 3
the mean values of independent Poisson spike trains, the variances X(45) of those spike s

trains are given by their respective means, EZ(-ZA’B) = MZ-(A’B) and EZ(]A’B) =0,7#j. 775
Thus, for each MC we have 776
’Mi(A) _ Mi(B)‘

d; = . (12)
Mz'(A) + Mi(B)
One way to characterize the overall discriminability of the activity patterns is then m
given by the average (d.) of the d-prime values across all neurons, as was done in [26]. s

This average (d;) may decrease when additional, less-discriminating MCs are included in 79
the ensemble. However, the information transmitted by the ensemble does not decrease. o
We therefore used also the Fisher discriminant to measure the discriminability. In 781
general, it is given by 78
e (w - (MW — M(B)))? ’
w? (A + 2B) w

where w is an arbitrary vector, which can be interpreted as the weights with which the 7
MC activity is fed into a linear read-out neuron. The weights w that maximize F' are 7
given by w(P) = (2(A) 1 BN =1(M(A) — MB)), The optimal Fisher discriminant s
used to assess discriminability is then given by 786

Nnye (4) (B)y\2
Z M — M,
Fopt — ( K 3 ) .

(13)
Pt Mi(A) + Mi(B)
It is related to the d-prime values of the individual neurons via 787
Nyc
Fopt = Z (d§)2-
i=1
Thus, F,y; always increases with the addition of MCs, reflecting the fact that even 788

poorly discriminating MCs provide some additional information about the odors. The 79
optimal read-out w(°PY) puts less weight on the poorly discriminating MCs to avoid that 70

the trial-to-trial variability associated with those MCs deteriorates the overall 701
discrimination. 702
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Supplementary Materials w010

Randomized Connectivity 1011

To further illustrate that the network learned not by simply changing the number of 1012
synapses, but by developing a specific, stimulus-dependent connectivity, we assessed the 103
performance of the network when the connections of each GC were rewired to random 101
MCs with probability p,ewire While keeping the number of synapses on each GC the 1015
same. For prewire = 0 (Fig|S1]A), the connection was the originally learned network; for 10
Drewire = 1, the connection for each GC was totally random (Fig ) Indeed, for the 107

highly similar training odors, the discriminability predominantly decreased as the 1018
randomness is increased (Fig|S1D). For the network trained on the dissimilar odors 1019
(easy task), the discriminability increased, as expected, when the randomness was 1020
increased (Fig|S1JF). Interestingly, when Py.cyire was increased beyond = 0.7 these 1021
trends reversed (Fig|S1D, F) somewhat. 1022

W™D, po =05 C WD, poie=1
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Fig S1. Randomly rewiring trained networks. (A to C) Connectivity matrices after
rewiring a network that was trained with the hard task (Fig , bottom). Rewiring
probability prewire = 0, 0.5, 1, respectively. (D) For the hard task discriminability
predominantly decreases with increasing rewiring probability prewire. (E) Activity
differences are reduced after rewiring. (F) For the easy task discriminability
predominantly increases with increasing prewire (cf. Fig , top).
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Removal of Spines for Intermediate GC Activation (cf. Fig[7) 1023
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Fig S2. CDF for the increase in the MC response to odor A due to training with that
odor at a reduced amplitude 2A after the network has been pre-trained with that odor
at amplitude 2. For protocol see Figm

1024
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Forgetting due to Interference 1025
A
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Fig S3. Interference leads to forgetting. (A) Training protocol. (B;) Non-interfering
stimuli for odor pair 2. (B2) Connectivities after pre-training, training, and retraining,
respectively. (Bs) Discriminability is retained throughout the training. (C) as (B) for
interfering stimuli. During the training the network forgets most of the previously
learned structure. Retraining recovers the previous performance.

The behavior of the model depended strongly on the similarity of the two odor pairs 1026
(Fig ,C). When the MCs that were activated during the training did not overlap 1027
with those activated in the pre-training, the network preserved the previously learned 102
structure (Fig[S3Bs2). However, if there was significant overlap, the learning of the new 100
stimuli interfered with the previously learned structure and that odor pair was forgotten 100
during the training (Fig 2, middle panel). It was re-learned by re-training 1031
(Fig 2, right panel). The different evolution for non-interfering and for interfering 102
stimuli is reflected in the Fisher discriminant F(:2), which is given by the sum over the 10
squares of the d; of the individual MCs in response to stimulus pair 1 and 2, 1034
respectively (see Methods). The Fisher discriminant F(!) remained high during the 1035
training with odor pair 2 if that pair was non-interfering (Fig|S3[Bs), while it decreased 10
if odor pair 2 was interfering (Fig 3). We expect that animals will spontaneously 10

discriminate the odors in a pair only if their bulbar representations are sufficiently 1038
different, i.e., if F is sufficiently large [38]. Thus, the model predicts that at the end of 10
the training phase of a multi-phase perceptual learning task an animal will not 1040
spontaneously discriminate any more the odors it learned during pre-training if the 1001
training odors interfere with those used in the pre-training. However, for sufficiently 1042
different odor pairs, the spontaneous discrimination should remain intact. 1043
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Rapid Relearning 1044

Repeatedly switching between odor pairs did not impair the learning ability (Fig. In 100
addition, the model predicts that re-learning during re-training is faster than the initial 106

learning during pre-training and forgetting is slower than either of the learning 1047
processes. 1048
A . . . . . . . .
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Fig S4. Alternating training does not impair learning ability. (A) Expanding the
training protocol of to 10 phases. (B) (Top) Stimuli of odor pair 1. (Bottom)
Interfering stimuli of odor pair 2. (C) The Fisher discriminant of odor pair 1 (top) and
pair 2 (bottom). Learning (increasing Fisher discriminant) proceeds faster than
forgetting (decreasing Fisher discriminant). The numbers above the x-axis indicate the
learning phase. (D) Effective connectivity W (™™ alternates.
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Resource Pool Model
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Fig S5. Results of the resource-pool model when trained with simplified stimuli Here
v = 1.7-1073. Training with dissimilar stimuli reduces their dlscrlmlnablhty
whereas training with very similar enhances their discriminability (F) (cf. Flg'
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Fig S6. Training results without pre-training phase. The training starts with a random
homogeneous network (cf. Fig 3]
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Robustness of the Model 1055
To demonstrate the robustness of the model, we first assessed the impact of some 106
modifications of the model. 1057

For the formation of the reciprocal synapses little is known about the timescales of the 10ss
maturation of the excitatory synapses relative to that of the inhibitory synapses. In the 100
main part of the paper we assumed that inhibition becomes functional at the same as 1060
the excitation. Here, we tested if the model behaves differently if inhibitory synapses e
mature later than the excitatory synapses. If the inhibitory synapses become only 1062
functional 2 computational time steps after the excitatory synapses, the model performs 1063
similarly (Fig A-C). Since 100 timesteps in our model correspond very roughly to 16
about 1 day training in the experiments, a lag of 2 timesteps would correspond to a lag 106
on the order of 30 minutes. However, the performance deteriorates if the lag is increased 16
and the model fails for lags of 10 or larger. A detailed analysis of this break-down is 1067
beyond the scope of this study. 1068

While action potentials can propagate along the secondary dendrites of MCs and can 1060
drive excitatory synapses on spines even far from the soma, the GC-driven inhibition 100
originating from those spines is likely to affect the MC somata only within a quite 1071
limited spatial range. To assess the impact of this spatial limitation, we blocked the 1072
inhibition in half of the MC-GC pairs: while in all spines the MC—GC connections 1073
excited the GCs, only half of the MC<+—GC connections in those spines were effective in 107
inhibiting the MCs. To make the total amount of inhibition comparable, we doubled the 107
number of granule cells. With this modification, the results are similar to the original 1o

model (Flg D7 E) 1077
wmm)
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Fig S7. Modifications with asymmetric inhibitory and excitatory synapses show
similar results in a hard task with simplified stimuli. (A - C) The results of setting
maturation of the inhibitory synapses lagged 2 timesteps. (A) The effective connectivity
after training. (B) Activity difference before and after training. (C) The cumulative
distribution function of synapse age. When the lag is 2, only a limited fraction of
connections does not inhibit MCs. (D, E) The results when the inhibitory synapses have
a geometry limitation. Organized as (A, B).

Further, we tested the influence of various parameters on the model performance. 1078
Changing the total number Ngo of GCs affected the performance very little, since the 107
number of GCs that were strongly activated and connected to specific MCs did not 1080
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change significantly, which influenced the effective connectivity W ™™ only mildly 1081
(Fig[S8). Analogously, changes in the inhibitory strength v were largely compensated by 12
a change in the number of activated GCs (Fig ). This feedback stabilizing the overall 108

inhibition arises from the reciprocal character of the MC-GC connections: new 108
connections increase the inhibition of the MCs, which decreases the excitation of the 1085
GC and in turn inhibits the formation of new connections. 1086
A Mitral Cell Activity B w(mg) C
1 300
= QOdor A
50
= QOdor B
= 500 % 200
B % < 100
g 05 S 1000 E oo
< = 3 100
8 1500 2 200
2000 == S 0
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Fig S8. The overall inhibition of the model depends only weakly on the number Ng¢
of GCs. (A-C) Training with simplified easy stimuli as in Fig[I]D and random initial
network as in Fig , but with twice as many GCs. (A) MC activity after training (cf.
Fig ) (B) Connectivity W(™9) after training. (C) Effective connectivity W (™™,
Compared to Fig[IJ the connectivity is not quite as selective. (D) The maximal and
mean MC activity after training as a function of the number of GCs. (E) The number
of activated GCs (G > GV) depends only weakly on the total number of GCs. In (D,
E) the vertical dashed line marks the value used in the rest of the paper.

What does control the overall inhibition, is the threshold G(!) in the activation function 1o

#(G) (Fig|S10). Only GCs with activity larger than G") form more synapses and 1088
generate stronger selective inhibition. Thus, for larger G() fewer GCs had sufficiently 1o
large activity to sustain their synapses, which reduced the overall inhibition and 1000

increased the MC activity level. The change in overall inhibition could be associated 1001
with a change in the selectivity. To quantify this, we called a GC responsive to odor A 100
(B), if after training its activity surpassed G(*) for odor A (B). Despite the increase in 100
the inhibition, the number of GCs that responded to both odors remained low when 1004
decreasing GV (Fig [S10H, red line), indicating that the selectivity depended very little 100
on G(l) 1096

The other threshold in the activation function, G(?), affects the removal but not the 1007
formation of synapses. For low values of G(?) weakly activated GCs removed many of 10
their synapses, particularly those connecting them to active MCs (Fig[S11IC, D). This 10
lead to higher selectivity of the connectivity and with it to a weaker inhibition of the 110
spontaneously active MCs that were not odor-driven (Fig[S11B, E). It had, however, 1101
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Fig S9. The overall inhibition of the model depends only weakly on the inhibitory
strength . The results are organized as in Fig (C) The connectivity is slightly less
selective than in Fig[IJJ. (D,E) The vertical dashed line indicates the value used in the
rest of the paper. (D, E) To allow a direct comparison, W ™) and N((;hcigh) have been
re-scaled by —t7y with ylorig) — 5 % 1074

little impact on the maximal MC amplitudes (Fig[S11H). The removal of synapses 1102
played a larger role in retaining and forgetting connections. To assess its impact, we 1103
trained the model in a second phase with a new pair of stimuli that overlapped with the 1104
stimuli learned in phase 1 (Fig[S11[). For G(?) = 0 any weak activity (0 < G < GM)) 115
triggered the removal of spines and lead in phase 2 to an almost complete forgetting of 1106
the connectivity learned in phase 1 (Fig|S11D, K) and with it to poor discrimination of 107
the previously learned odors (Fig ). However, for large G(©) the previously learned 1106

connectivity was maintained (Fig , M) and with it the discriminability of the 1100
previously learned stimuli. The discrimination of the newly learned stimulus pair 2 was, 110
however, not significantly affected by G(©) (Fig|S110). un

The maximal number of connections k that each GC can make had a significant impact 112
on MC amplitudes and on the selectivity of the connections. With increasing k, each 113
GC integrated input from more MCs, and more easily surpassed the threshold G, 1114
Each of these more activated GCs inhibited a larger number of MCs, increasing the 115
overall inhibition (Fig|S12/C). When the maximal number of connections was larger than s
the number of MCs activated by one of the odors, not all connections of a GC could be 117
made to MCs that were activated by odor A, say. The remaining connections could then 1us
be made to MCs corresponding to odor B without destabilizing the other synapses. As 1o
a result, GCs that responded to both odors emerged (Fig[S12D). 1120
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Fig S10. Increasing G!) impairs the ability to form connections between activated
MCs and GCs. (A,B,C) Results for G = 1. (A) MC activity after training. (B)
Connectivity W (m9) between MCs and GCs. (C) Effective connectivity W mm).
(D,E,G) as (A,B,C) except for G = 10. Activated MCs are connected with fewer GCs
(compare E with B), resulting in weaker disynaptic inhibition (compare F with C) and
higher MC activity (compare D to A). In (F) most of the GCs cannot reach the high
threshold. As a result, the synapses that connect to strongly activated MCs are
removed faster than those connecting to weakly activated MCs. Thus, the effective
connectivity among the activated MCs is lower than the background. (G) Maximal and
mean MC activity increase with increasing G, The gray lines indicate the
corresponding values without inhibition from GCs (by setting v = 0). (H) The number
of responsive GC decreases with increasing G(1). (G,H) The vertical dashed line
indicates the value used in the rest of the paper.
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Fig S11. Learning ability is not affected by G(?), but the memory is. (A-G) Phase 1.
(A) Training stimuli in phase 1. (B) MC activity after training. (C) Connectivity
W(m9) (D) Effective connectivity W ™™, (E to G) as (B to D) except for G(0) = 4.
(H) Maximal and mean MC activity after training in phase 1 as a function of G"). (I to
M) as (A to G) but after Phase 2. (I) Interfering training stimuli. (J-M) For G(®) = 0
the network forgets the previously learned connectivity, but not for G(©) = 4. (N) The
Fisher discriminant for odor pair 1 is unaffected by G(©) in phase 1, but substantially
reduced in phase 2 for small G(?). (O) For odor pair 2 the Fisher discriminant depends
only little on G(9). The vertical dashed lines in (H,N,0) indicate the value used in the
rest of the paper.
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Fig S12. The selectivity of GCs is influenced by the number of connections each GC
makes. Easy stimuli as in Fig with random initial network as in Fig[IJF. The ratio of
maximal to initial number of connections is kept fixed at k/Neon, = 1.1. (A, B) The
MC activity is very similar for Ny, = 60 and Negn, = 120. (C) Maximal and mean
MC activity decrease with increasing Nconn. The gray lines indicate the corresponding
values without inhibition from GCs (by setting v = 0). (D) The selectivity of the GCs is
impaired for Neon, > 60: a population of cells emerges that respond to both odors (red
line).
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Fig S13. Increasing the number of GCs does not reduce the interference-induced
forgetting of odor pair 1 during training phase 2. Independent of the number of GCs,
the discriminability of odor pair 1, which is learned during phase 1 (black line in panel
A), is substantially reduced by the subsequent training during phase 2 (gray line in
panel A). The discriminability of odor pair 2 that is reached after training with those
odors during phase 2 also does not depend on the number of GCs. Only the learning of
odor pair 2 during the training with odor pair 1 is slightly improved in the larger
network. (G(®) =1, ¢f. Fig I ,0).
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Dependence on the Threshold 6
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Fig S14. Qualitatively, the results for the fraction of responsive and divergent cells do
not depend on the threshold 6 for their classification. (A, B) Training with naturalistic
stimuli for different thresholds 6. The results in Fig[2] and Fig[9] are based on 6 = 0.2.
(C, D) as (A, B) but for training with simplified stimuli. (E, F) as (A, B) but in the
resource-pool model.
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