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Abstract 
fMRI is an indispensable tool for neuroscience investigation, but this technique is limited by 
multiple sources of physiological and measurement noise. These noise sources are particularly 
problematic for analysis techniques that require high signal-to-noise ratio for stable model fitting, 
such as voxel-wise modeling. Multi-echo data acquisition in combination with echo-time 
dependent ICA denoising (ME-ICA) represents one promising strategy to mitigate physiological 
and hardware-related noise sources as well as motion-related artifacts. However, most studies 
employing ME-ICA to date are resting-state fMRI studies, and therefore we have a limited 
understanding of the impact of ME-ICA on task or model-based fMRI paradigms. Here, we 
addressed this knowledge gap by comparing data quality and model fitting performance on data 
acquired during a visual population receptive field (pRF) mapping paradigm (N=13 participants) 
after using one of three preprocessing procedures: ME-ICA, optimally combined multi-echo data 
without ICA-denoising, and typical single echo processing. As expected, multi-echo fMRI 
improved temporal signal-to-noise compared to single echo fMRI, with ME-ICA amplifying the 
improvement compared to optimal combination alone. However, unexpectedly, this boost in 
temporal signal-to-noise did not directly translate to improved model fitting performance: 
compared to single echo acquisition, model fitting was only improved after ICA-denoising. 
Specifically, compared to single echo acquisition, ME-ICA resulted in improved variance explained 
by our pRF model throughout the visual system, including anterior regions of the temporal and 
parietal lobes where SNR is typically low, while optimal combination without ICA did not. ME-ICA 
also improved reliability of parameter estimates compared to single echo and optimally 
combined multi-echo data without ICA-denoising. Collectively, these results suggest that ME-ICA 
is effective for denoising task-based fMRI data for modeling analyses and maintains the integrity 
of the original data. Therefore, ME-ICA may be beneficial for complex fMRI experiments, 
including task fMRI studies, voxel-wise modeling, and naturalistic paradigms.  
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Introduction 
Functional MRI data is powerful tool for investigating neural activity in the human brain, 
providing a window into brain organization (Avena-Koenigsberger et al., 2017; Bassett and 
Bullmore, 2006, 2017; Bassett and Sporns, 2017; Buckner et al., 2011; Bullmore and Sporns, 2012; 
Busch et al., 2022; Feilong et al., 2021; Gomez et al., 2019a; Gordon et al., 2017; Gratton et al., 
2018; Grill-Spector and Weiner, 2014; Huntenburg et al., 2018; Kanwisher et al., 1997; Laumann 
et al., 2015; Margulies et al., 2016; Murphy et al., 2018; Power et al., 2011; Thomas Yeo et al., 
2011) and neural computations (Allen et al., 2021; Baldassano et al., 2017; Breedlove et al., 2020; 
Caucheteux and King, 2022; Chang et al., 2021; Constantinescu et al., 2016; Doeller et al., 2010; 
Gomez et al., 2019a; Güçlü and van Gerven, 2015; Hasson et al., 2008; Honey et al., 2012; Huth 
et al., 2016, 2012; Kay et al., 2015a; Kriegeskorte et al., 2008; Lescroart and Gallant, 2019; 
Popham et al., 2021; Sha et al., 2015; Wager et al., 2013). However, the contribution of non-
neuronal noise, such as motion, heart rate, respiration, and hardware-related artifacts, severely 
impacts the quality of fMRI data (Bright and Murphy, 2017; Caballero-Gaudes and Reynolds, 
2017; Friston et al., 1996; Liu, 2016). As such, optimizing data acquisition and 
preprocessing/denoising is critically important for ensuring accurate and reproducible results in 
all fMRI studies.  

One promising data acquisition and preprocessing procedure is multi-echo fMRI (Poser et al., 
2006; Posse, 2012) combined with echo-time (TE) dependent ICA denoising (hereafter referred 
to collectively as ME-ICA (Kundu et al., 2017, 2012)). The ME-ICA procedure is described in detail 
elsewhere (DuPre et al., 2019; Evans et al., 2015; Kundu et al., 2017, 2012), but in brief, ME-ICA 
involves two steps. First, during acquisition, researchers acquire multiple TEs at each repetition 
time (TR) (Kundu et al., 2017; Poser et al., 2006). Second, during preprocessing researchers use 
ICA to decompose the fMRI signal into multiple sources (components). These components are 
then classified as signal and noise by leveraging the differential decay rate of BOLD-like and non-
BOLD signals across TEs (Evans et al., 2015; Kundu et al., 2012). 

In principle, ME-ICA helps to resolve two central limitations of single echo fMRI: i) heterogenous 
signal quality across the echo planar image (EPI) volume due to regional variation in the optimal 
TE (Kundu et al., 2017; Poser et al., 2006) and ii) noise sources that are not easily differentiable 
from signal (Kundu et al., 2017). First, because multiple TEs are collected, an optimal TE can be 
calculated for all voxels and synthesized by a weighted combination of the echoes (Kundu et al., 
2012; Poser et al., 2006; Turker et al., 2021). This benefit is most apparent in regions impacted 
by susceptibility artifacts, like the orbital frontal cortex and lateral temporal lobes (Deichmann et 
al., 2003; Weiskopf et al., 2007, 2006), where including short echo times greatly improves signal 
(Kundu et al., 2017; Poser et al., 2006). Second, ME-ICA denoising offers a data-driven method 
for identifying and removing various noise sources from the neural signal. ME-ICA is particularly 
effective for removing physiological noise such as cardiac and respiratory signals, which can be 
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challenging to model effectively (DuPre et al., 2021, 2019; Evans et al., 2015; Kundu et al., 2012; 
Spreng et al., 2019). These benefits make multi-echo a promising strategy for data acquisition, 
particularly when combined with TE-dependent ICA denoising.  

How effective is the ME-ICA procedure at denoising fMRI data? Studies evaluating ME-ICA have 
focused largely on its application in resting-state fMRI, where the underlying neural signal cannot 
be explicitly modelled. In these studies, ME-ICA reliably identifies known noise sources, including 
motion-related artifacts, physiological signals, and thermal noise for removal (Kundu et al., 2012). 
After ME-ICA denoising, studies typically report significantly greater correlation values among 
regions within known functional networks (Cohen et al., 2021; Kundu et al., 2012; Lynch et al., 
2020; Olafsson et al., 2015) and in difficult to image brain areas like the locus coereleus (Turker 
et al., 2021). However, because no ‘ground truth’ signal exists in resting-state data, it is 
challenging to quantify denoising success. Therefore, resting-state is undesirable for evaluating 
denoising performance for model-based fMRI analysis (e.g., task-fMRI).  

Few studies have evaluated the impact of ME-ICA on task-based fMRI. In one study, the authors 
showed participants grating stimuli with slowly varying stimulus contrast (Evans et al., 2015). 
They found that ME-ICA enabled detection of this drifting neural signal, which was not possible 
using single echo processing (Evans et al., 2015). Similarly, a second study found that ME-ICA led 
to more consistent cardiovascular reactivity mapping during breath-hold challenges (Moia et al., 
2021). While these studies demonstrate unique advantages of ME-ICA, they did not report 
measures of data quality, such as signal-to-noise or model fit, so it is not clear whether this 
benefit would generalize to other task paradigms or study designs. More recently, a study found 
that ME-ICA improved signal quality when participants performed a verbal report task, which 
causes unavoidable head motion. However, these authors did not quantitatively evaluate data 
quality, but instead evaluated denoising success based upon confirmation of their hypothesis 
after ME-ICA was applied but not before (Gilmore et al., 2022). So, presently it is unclear whether 
ME-ICA can recover task-related signals and classify them as BOLD-like (Kundu et al., 2012), or 
whether these signals might be erroneously discarded, or, worse, propagated across the brain 
because of biased retention of only task-like signal components, potentially leading to false-
positive activation. 

Here, we addressed this knowledge gap by quantifying how ME-ICA affects model-based fMRI 
analyses by comparing ME-ICA to both a minimally pre-processed single echo pipeline and 
optimally combined multi-echo fMRI without ICA denoising. We were specifically interested in 
comparing ME-ICA versus single echo and optimal combination with respect to i) data quality, ii) 
model fitting performance, and iii) reliability of model parameter estimates. To this end, we 
leveraged the well-studied population receptive field (pRF) mapping paradigm (Amano et al., 
2009; Dumoulin et al., 2018; Dumoulin and Wandell, 2008; Groen et al., 2022; Harvey and 
Dumoulin, 2011; Kay et al., 2015b, 2013; Klein et al., 2014; Larsson and Heeger, 2006; Lerma-
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Usabiaga et al., 2020; Samuel Schwarzkopf et al., 2014; Sheremata and Silver, 2015; Silson et al., 
2016, 2015; Sprague and Serences, 2013; Takemura et al., 2012; van Dijk et al., 2016; Wandell et 
al., 2007; Wandell and Winawer, 2015; Winawer et al., 2010). In brief, pRF mapping involves 
systematic spatiotopic stimulation of the visual field to find the optimal visual receptive field for 
each voxel in the brain (Figure 1) (Dumoulin and Wandell, 2008). The pRF paradigm is ideal for 
evaluating the impact of ME-ICA for several reasons (Lerma-Usabiaga et al., 2020). First, the 
spatial distribution of retinotopic coding in the brain is well-described, so this prior knowledge 
can serve as a basis for evaluating the impact of ME-ICA. Second, because pRF mapping relies on 
model fitting, the impact of denoising can be evaluated by comparing variance explained (R2) 
across the protocols. Third, because three pRF parameters (position (X, Y) and size (sigma)) are 
estimated from the data, the impact of each protocol on reliability can be quantified by 
comparing the parameter estimates from distinct runs of data. To preview our results, we found 
that ME-ICA significantly improved data quality, model fit performance, and parameter estimate 
reliability compared to both single echo data and optimal combination alone. 
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Figure 1. Population receptive field modeling paradigm. A. Task schematic for pRF mapping: Scene images were flashed through 
a bar aperture that traversed the visual field. A single sweep across the visual field took 36 s and consisted of 18 equal time (2s) 
and width instances of the aperture. In each run, the aperture completed eight sweeps (2 orientations, 4 directions). Participants 
were required to maintain fixation and indicate the detection of a color change at fixation via button press. Over an entire sweep, 
90 scene images (5 x 18 aperture positions) were presented at random without replacement, guaranteeing that no scene was 
presented twice within a sweep. This results in a measured timeseries at each fMRI voxel (B). C. To determine the population 
receptive field for each voxel, a synthetic timeseries is generated for 400 locations in the visual field (200 x and y positions), and 
100 sizes (sigma). This results in 4 million possible timeseries that are fit to each voxel’s activity (D). This fitting procedure is done 
separately for ME-ICA, optimally combined, and single echo data. a.u.: Arbitrary units. 
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Methods 
Participants 
We recruited 13 participants (10 females, mean age=23.23 ± 3.5 std) for this study. Participants 
had normal or corrected-to-normal vision, were not colorblind, and were free from neurological 
or psychiatric conditions. Written consent was obtained from all participants in accordance with 
the Declaration of Helsinki with a protocol approved by the Dartmouth College Institutional 
Review Board and Committee for Protection of Human Subjects (CPHS).  

Retinotopy 
To map population receptive fields (pRFs), we used a paradigm adapted from Silson et al., 2015 
(scene pRF mapping). In brief, we presented portions of scene images through a bar aperture 
that moved in a stepwise fashion through a circular field (7.3° visual angle). During each 36 s 
sweep, the bar aperture took 18 evenly spaced steps every 2 s (1 TR). The bar made eight passes 
in each run (four orientations, two directions: L-R, BR-TL, T-B, BL-TR, R-L, TL-BR, B-T, and TR-BL; 
L: left, R: right, B: Bottom, T: top). During each bar step (1 TR), we rapidly presented five scene 
fragments (400 ms per image). All 90 possible scene images were displayed once per sweep. 
reducing the likelihood that participants mentally “fill in” the underlying image. To ensure 
fixation, participants performed a color-detection task at fixation, indicating when the fixation 
dot changed from white to red via button press (semi-random, approximately 2 color changes 
per sweep). Six runs of pRF data were collected from each participant. 

FMRI 
MRI Acquisition 
All data was collected at Dartmouth College on a Siemens Prisma 3T scanner (Siemens, Erlangen, 
Germany) equipped with a 32-Channel head coil. Images were transformed from dicom to nifti 
format using dcm2niix (v1.0.20190902) (Li et al., 2016). 

T1 image 
For registration purposes, a high-resolution T1-weighted magnetization-prepared rapid 
acquisition gradient echo (MPRAGE) imaging sequence was acquired (TR = 2300 ms, TE = 2.32 ms, 
inversion time = 933 ms, Flip angle = 8°, FOV = 256 × 256 mm, slices = 255, voxel size = 1 × 1 × 
1 mm). T1 images segmented and surfaces were generated using Freesurfer (Dale et al., 1999; 
Fischl, 2012; Fischl et al., 2002) (version 6.0) and aligned to the fMRI data using align_epi_anat.py 
and @SUMA_AlignToExperiment.  

Functional MRI Acquisition 
FMRI data were acquired using a multi-echo T2*-weighted sequence. The sequence parameters 
were: TR=2000 ms, TEs=[14.6, 32.84, 51.08], GRAPPA factor=2, Flip angle=70°, FOV=240 x 192 
mm, Matrix size=90 x 72, slices=52, Multi-band factor=2, voxel size=2.7 mm isotropic. The initial 
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two frames of data acquisition were discarded by the scanner to allow the signal to reach steady 
state.  

Preprocessing 
Multi-echo data processing was implemented based on the multi-echo preprocessing pipeline 
from afni_proc.py in AFNI (Cox, 1996). Signal outliers in the data were attenuated (3dDespike) 
(Jo et al., 2013). Motion correction was calculated based on the second echo, and these 
alignment parameters were applied to all runs. For the single echo procedure, we considered 
only the middle echo. For optimally combined and ME-ICA denoised procedures, the optimal 
combination of the three echoes was calculated, and the echoes were combined to form a single, 
optimally weighted timeseries (T2smap.py). ME-ICA was then performed for the ME-ICA 
denoised data (see below). 
 
Following denoising, all images (single echo, optimally combined, and ME-ICA denoised) were 
blurred with a 5 mm gaussian kernel (3dBlurInMask), and signals were normalized to percent 
signal change.  

Multi-echo ICA 
The ME-ICA data were denoised using TE-dependent multi-echo ICA denoising (tedana.py (DuPre 
et al., 2021, 2019; Evans et al., 2015; Kundu et al., 2012)). In brief, PCA was applied, and thermal 
noise was removed using the Kundu decision tree method. Subsequently, data was decomposed 
using ICA, and the resulting components were classified as signal and noise based on the known 
properties of the BOLD versus noise on the T2* signal decay. Components classified as noise were 
discarded using tedana’s automated classification with accuracy confirmed via visual inspection. 
The remaining components were recombined to form the denoised timeseries. 

pRF model 
Our goal was to determine the impact of multi-echo fMRI on encoding model fit and parameter 
reliability. To this end, we performed several analyses that differed in the number of runs 
averaged together in time to constitute the timeseries fit by the pRF model. Averaging runs in 
the time domain is typical in pRF mapping studies to increase signal-to-noise of data prior to 
model fitting (Silson et al., 2016, 2015). The pRF model implementation used for all analyses is 
described below. Critically, unless otherwise specified, data presented considered all six runs 
averaged together in time. 

Data were analyzed using the pRF implementation in AFNI. The model estimates pRFs using three 
parameters: center position (X and Y) and a size (sigma). Center positions X and Y are sampled on 
a cartesian grid with 200 samples across the width and height of the screen, and 100 evenly 
spaced FWHM varying from 0 to half of the screen width constitute possible pRF sizes (sigma). 
These result in 4 million possible pRFs for which the timeseries (i.e, bar positions over time) are 
estimated and convolved with the hemodynamic response function. We then find the best fit 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.29.498113doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498113
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

timeseries for each voxel by minimizing the least-squares error of the predicted versus actual 
timeseries (using both Simplex and Powell optimization algorithms). The resulting output 
contains the best X, Y, and sigma (pRF size) values for each voxel, as well as the explained variance 
(R2). 

ROI definitions 
We considered three ROIs known to have retinotopic response properties (Dumoulin and 
Wandell, 2008; Silson et al., 2015) to assess model performance in low and high-level visual areas.  

For low level areas we considered early visual cortex, which we defined anatomically using 
Glasser parcellation (Glasser et al., 2016) (visual areas 1-3) defined on the SUMA standard mesh 
(std.141). 

To evaluate model fits in high-level visual areas, in each subject we independently defined the 
scene selective areas on the brain’s lateral (occipital place area; OPA (Dilks et al., 2013)) and 
ventral (parahippocampal place area; PPA (Epstein and Kanwisher, 1998)) surface. These regions 
were established using the same criterion we used in our prior work (Steel et al., 2021). 
Participants passively viewed blocks of scene, face, and object images presented in rapid 
succession (500 ms stimulus, 500 ms ISI). Blocks were 24 s long, and each run comprised 12 blocks 
(4 blocks/condition). There was no interval between blocks. Participants performed two runs of 
the scene perception localizer. Scene and face areas were drawn based on a general linear test 
comparing the coefficients of the GLM during scene versus face blocks. These contrast maps were 
then transferred to the SUMA standard mesh (std.141) using @SUMA_Make_Spec_FS and 
@Suma_AlignToExperiment. A vertex-wise significance of p < 0.001 along with expected 
anatomical locations was used to define the regions of interest (Julian et al., 2012; Steel et al., 
2021; Weiner et al., 2018). 

Data analysis and statistics 
For ROI-based analyses, surface nodes were considered if they survived the following criterion in 
all preprocessing procedures: 

• R2 value greater than 0.1, which is within the typical range for pRF mapping studies 
(Gomez et al., 2019a, 2019b; Silson et al., 2016, 2015) 

• Center position (X and Y value) between -0.95 and 0.95 relative to minimum and 
maximum of the cartesian grid 

• Sigma less than 0.95 relative to maximum modeled width  

Because of the non-normal distribution of R2 and parameter estimates, for vertex-based analyses 
we employed non-parametric statistical tests (Kruskal-Wallis and Wilcoxen rank-sum tests). For 
across participant analyses, we used standard parametric tests (ANOVAs). 
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Results 
Multi-echo ICA denoising improves temporal signal-to-noise across the brain 
We first sought to determine the impact of ME-ICA on data quality during task fMRI. To this end, 
we quantified the temporal signal-to-noise (tSNR) of the preprocessed timeseries. We divided 
the timeseries mean by the noise, which we defined as the standard deviation of the residuals 
after pRF estimation. ME-ICA clearly improved tSNR compared to standard preprocessed optimal 
combined or single echo data (Figure 2). The average tSNR for ME-ICA processed data 
approximately was 1.6x and 1.3x greater than the single echo and optimally combined data, 
respectively (mean±std tSNR: single echo=167.7±44.8, optimally combined=198±42.7, ME-
ICA=266.5±55). The optimally combined signal offered a modest improvement compared to 
single echo. Consistent with the increased signal from the short TE, the improvement from 
optimal combination was concentrated in the ventral medial prefrontal cortex and lateral 
temporal lobes. 

 

 
Figure 2. Multi-echo fMRI improves temporal signal-to-noise (tSNR) compared to single echo with minimal preprocessing. We 
calculated tSNR by taking the mean signal divided by standard deviation of the residuals after pRF model fitting. The ME-ICA 
procedure significantly improved tSNR compared to single echo and optimal combination alone. Upper panel shows whole brain 
tSNR values. Lower panel shows difference relatively to single echo for (left) optimal combination and (right) optimal combination 
+ ME-ICA denoising 
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Multi-echo ICA denoising improves variance explained by the retinotopic encoding model 
The previous result confirmed that ME-ICA denoising and optimal combination with single echo 
processing improves tSNR compared to single echo during task fMRI. But does the improved tSNR 
translate to better model fitting? We addressed this question by comparing the R2 values 
between the three processing strategies. 

 
Figure 3. ME-ICA procedure results in significant improvement in pRF model fits across visual cortex. ME-ICA improved R2 by as 
much as 21%, with the largest improvements occuring in ventral temporal cortex.  

We found a significant improvement in model fitting after ME-ICA compared to single echo and 
optimally combined data (Figure 3). Interestingly, although optimal combination without ME-ICA 
denoising yielded improved tSNR, optimal combination alone offered little improvement 
compared to single echo acquisition.  

Across the majority of retinotopic cortex, R2 was greater for ME-ICA compared to single echo and 
optimal combination alone, with differences as large as 21%. The most pronounced improvement 
occurred in ventral occipitotemporal cortex, which we attribute to the tSNR increase afforded by 
optimal combination and ME-ICA. Importantly, model fits at our R2 threshold (0.1) do not extend 
outside of established retinotopic cortex, suggesting that the model fitting does not arise from 
an artificial propagation of the task-related signal to non-retinotopic cortex.  
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Figure 4. Example voxels timeseries from individual participants. The improvement from ME-ICA appears to result from removed 
high-frequency noise, which is particularly evident in subject 3 (bottom). Grey line depicts the model fit from the denoised 
timeseries for reference. 

This whole-brain analysis offered a coarse, high-level overview of the improvement afforded by 
ME-ICA denoising. To quantify the improvement more directly, we examined model fits in three 
visual areas with known retinotopic properties: early visual cortex (V1-V3 defined anatomically 
based on the Glasser parcellation (Glasser et al., 2016)), as well as two high level visual areas 
defined functionally in each individual: parahippocampal place area (PPA; (Epstein and 
Kanwisher, 1998)) on the ventral surface with a upper-field bias, and occipital place area (OPA; 
(Dilks et al., 2013; Hasson et al., 2003, 2002)) on the lateral surface with a lower-visual field bias 
(Silson et al., 2015). Example timeseries from voxels in these regions from individual participants 
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are shown in Figure 3, and the distribution of R2 values in these areas from all vertices in all 
individuals is shown in Figure 4. The improvement in R2 from ME-ICA is readily apparent in all 
regions, and the distributions are significantly different (Early visual cortex – left hemisphere: 
X2(2,214607)=5752.29, p<0.0001; right hemisphere: X2(2,215610)=5821.19, p<0.0001; OPA – left 
hemisphere: X2(2,8253)=525.62, p<0.0001, right hemisphere: X2(2,9422)=527.85, p<0.0001; PPA 
– left hemisphere: X2(2,8070)=737.39, p<0.0001, right hemisphere: X2(2,8792)=953.55, 
p<0.0001). These results demonstrate that ME-ICA denoising improved model fitting success 
compared to both single echo acquisition and optimal combination without ICA-denoising.  

 

 
Figure 5. Distribution of R2 values from early visual cortex (top), occipital place area (middle), and parahippocampaal place area 
(bottom) across the data processing procedures. ME-ICA resulted in significantly greater variance explained in all regions. 
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ME-ICA increases reliability of parameter estimates with limited data 
 
Our analysis of model fitting suggests that ME-ICA denoising offers substantial improvement in 
model fitting. However, it is possible that parameter estimates from ME-ICA are not robust if the 
components do not adequately describe the original signal. We investigated the robustness and 
reliability in two ways. First, to determine whether ME-ICA denoising preserved the underlying 
signal, we compared the parameters estimated from ME-ICA denoised data with parameters 
estimated from the optimally combined and single echo data at every supra-threshold vertex for 
all subjects. For this analysis, we considered the average of all six data runs. For simplicity, we 
considered both hemispheres together. 

Consistent with ME-ICA preserving the underlying data signal, we found that pRF parameter 
estimates were highly correlated in all regions of interest across the preprocessing regimes. In all 
regions, pRF center location estimates were correlated across all preprocessing procedure 
(Figures 3-5) (X – EVC: SExOC: r(143405) = .97 ; SExDN: r(143405) = .93; OCxDN: r(143405) = .94; 
OPA: SExOC: r(5696) = .98 ; SExDN: r(5696) = .97; OCxDN: r(5696) = .97; PPA: : SExOC: r(5326) = 
.98 ; SExDN: r(5326) = .96; OCxDN: r(5326) = .97; Y – EVC: SExOC: r(143405) = .95; SExDN: 
r(143405) = .9; OCxDN: r(143405) = .91; OPA: SExOC: r(5696) = .97 ; SExDN: r(5696) = .96; OCxDN: 
r(5696) = .95; PPA: SExOC: r(5326) = .94 ; SExDN: r(5326) = .88; OCxDN: r(5326) = .91). Sigma 
estimates were well-correlated between ME-ICA compared with optimally combined and single 
echo data for early visual cortex and OPA (Sigma – EVC: SExOC: r(143405) = .92; SExDN: r(143405) 
= .83; OCxDN: r(143405) = .86; OPA: r(5696) = .95 ; SExDN: r(5696) = .83; OCxDN: r(5696) = .85). 
PPA showed lower correlation between sigma estimates from ME-ICA with the other procedures 
(PPA: SExOC: r(5326) = .82; SExDN: r(5326) = .64; OCxDN: r(5326) = .69). This decreased 
correlation in PPA was due to a shift towards narrower pRF estimates (smaller FWHM) after ME-
ICA denoising compared with optimally combined and single echo data, which could suggest 
greater precision in pRF parameter estimates after ME-ICA denoising (van Dijk et al., 2016). 
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Figure 6. Population receptive field model parameter estimates are highly reliable for early visual cortex. Each plot depicts the 
vertex-wise correlation between two processing procedures. Data points represent parameter estimates from a single vertex from 
a single participant. Top row: X parameter, Middle row: Y parameter, Bottom row: Sigma parameter. Black line indicates the unity 
line. 

 
Figure 7. Population receptive field model parameter estimates are highly reliable for OPA. Each plot depicts the vertex-wise 
correlation between two processing procedures. Data points represent parameter estimates from a single vertex from a single 
participant. Left column: Single echo x Optimal combination, Middle column, ME-ICA x Single echo, Right column: ME-ICA x 
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Optimal combination. Top row: X parameter, Middle row: Y parameter, Bottom row: Sigma parameter. Black line indicates the 
unity line. 

 

 
Figure 8. Population receptive field model parameter estimates are highly reliable in PPA. Each plot depicts the vertex-wise 
correlation between two processing procedures. Data points represent parameter estimates from a single vertex from a single 
participant. Note that reliability is lower for sigma between ME-ICA and optimally combined/single echo denoising. On average, 
sigma estimates are lower for ME-ICA, suggesting higher precision sigma estimates. Top row: X parameter, Middle row: Y 
parameter, Bottom row: Sigma parameter. Black line indicates the unity line. 

As a second approach to test parameter estimate reliability, we compared the parameter 
estimates from each single run of data within a given subject. For each subject, we correlated the 
run x run parameter estimates for X, Y, and sigma across all vertices in early visual cortex, and 
compared correlation values across the preprocessing techniques. Higher correlation values 
indicate greater reliability of parameter estimates. We focused on early visual cortex because 
each run was estimated independently, so we were unable to meet our R2 threshold (0.10) for 
vertices in PPA and OPA after single echo processing in all subjects. For all three parameters (X, 
Y, and Sigma) ME-ICA denoising resulted in improved reliability (X – Kruskal-Wallis X2(2,1167) = 
20.58, p < 0.001; rank sum: OC v SE: z=-0.2, p = 0.83, DN v SE: z = 3.865, p = 0.0001, DN v OC: z = 
3.985, p < 0.0001; Y – X2(2,1167) = 39.41, p < 0.001; rank sum: OC v SE: z=0.10, p = 0.91, DN v SE: 
z = 5.5448, p < 0.0001, DN v OC: z = 5.3236, p < 0.0001; Sigma – Kruskal-Wallis X2(2,1167) = 27.79, 
p < 0.001; rank sum: OC v SE: z=0.39, p = 0.695, DN v SE: z = 4.815, p < 0.0001, DN v OC: z = 4.2814, 
p < 0.0001). 
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Figure 9. ME-ICA improves reliability of parameter estimates. X, Y, and Sigma estimates were calculated from single runs of pRF 
mapping. We then correlated these vertex-wise parameter estimates for all vertices within early visual cortex (V1-V3) across all 
pairs of runs. Reliability of parameter estimates were generally very high. However, ME-ICA resulted in greater reliability than 
either single echo or optimal combination alone, particularly for sigma. 

The above analysis suggested that ME-ICA results in significantly greater reliability with limited 
data. For our final analysis, we investigated how much R2 increased as more data is added. For 
this analysis, in each subject we averaged together increasing numbers of pRF data runs before 
pRF model fitting. We then calculated the average R2 by the pRF model in early visual cortex at 
each number of averages. We compared these R2 values using a repeated measures ANOVA with 
number of averages (1-6) and preprocessing procedure (single echo, optimally combined, ME-
ICA) as factors. Regardless of preprocessing, R2 improved with increasing numbers of runs (Main 
effect of averages: F(5,334) = 89, p < 0.0001). However, the pRF model explained significantly 
more variance after ME-ICA compared to the other preprocessing procedures regardless of 
number of averages (ANOVA: Main effect of preprocessing: F(2,334) = 76.26, p < 0.0001). We 
found that even with just a single run, ME-ICA resulted in R2 roughly equivalent to three runs of 
optimally combined or single echo data, and just two runs of ME-ICA achieved the same 
performance as six runs of the other procedures. This finding is consistent with findings 
investigating precision mapping of functional networks using resting state fMRI (Lynch et al., 
2020)).  
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Figure 10. ME-ICA improves model fitting with limited data. In each subject we averaged increasing numbers of runs and calculated 
the average R2 in early visual cortex at each number of averages. ME-ICA benefitted model fitting at all levels of data, with just 
two runs of data needed to achieve the same R2 as six single echo and optimally combined runs. 

Discussion 
Here, we investigated the impact of ME-ICA on model-based fMRI analysis. We found that ME-
ICA significantly improved tSNR compared to traditional preprocessing of optimally combined or 
single echo data resulting from a standard population receptive field (pRF) mapping paradigm. 
Compared to single-echo or optimal combination without denoising, ME-ICA increased the 
variance explained by our pRF model throughout the visual system and improved detection of 
pRFs in difficult to image regions like lateral ventral temporal cortex. ME-ICA also improved 
reliability of model parameter estimation. Together, these results demonstrate that ME-ICA 
preprocessing offers a significant benefit for model-based fMRI analyses.  

ME-ICA improves tSNR and model fitting 
As expected, we found that multi-echo fMRI acquisition improved tSNR. Both ME-ICA denoised 
and optimally combined data with typical preprocessing had significantly better tSNR compared 
to single echo data. The observed improvement was most pronounced in ventral temporal and 
orbitofrontal cortex because the dropout artifact was mitigated by including the short echo time 
at acquisition. This finding largely agrees with previous studies that compared results using 
resting state data (Kundu et al., 2012; Lynch et al., 2020; Turker et al., 2021). 

Surprisingly, the tSNR boost did not directly translate to improved model fits. When we compared 
R2 by our retinotopy model across the preprocessing procedures, we found that the model 
explained significantly more variance in ME-ICA denoised data compared to traditional 
preprocessing with optimally combined or single echo data. This agrees with a resting state 
investigation (Boyacioğlu et al., 2015), wherein the authors reported a failure to recover known 
resting state networks from optimally combined data without ICA denoising (in this case, FIX-ICA 
(Griffanti et al., 2014; Salimi-Khorshidi et al., 2014)). This finding is important, because one might 
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opt to do multi-echo acquisition with the goal of improving tSNR but not use ME-ICA denoising – 
for example, this procedure is implemented in one widely used preprocessing framework 
FMRIPREP (Esteban et al., 2017) (N.B., TE-dependent ICA denoising can be implemented 
separately on data processed using the FMRIPREP pipeline (DuPre et al., 2021, 2019)). However, 
our data suggest that model fitting greatly benefits from ME-ICA denoising, and that optimal 
combination without ME-ICA may only be advantageous compared to single echo acquisition in 
limited circumstances.  

The reason for the dissociation between tSNR and model fitting performance after optimal 
combination alone is not clear. One possibility is that global noise sources common across all 
echoes exist in the data, and so acquiring multiple echoes does not equate to the same benefit 
as independent averages (Power et al., 2017). Given that the average improvement in tSNR did 
not increase as much as expected (i.e., improvement was less than the square root of number of 
averages), this seems likely. Additionally, contrast-to-noise ratio is lower in the short echo times. 
So, despite improved tSNR in areas with shorter optimal TEs, these regions may still have 
suboptimal contrast-to-noise required for model fitting. Future work should continue examining 
the relationship between model fitting performance and tSNR. 

ME-ICA improves reliability of model parameter estimation 
Beyond R2, it is important that preprocessing and analysis choices lead to reproducible outcomes 
(Botvinik-Nezer et al., 2020; Bowring et al., 2019; Lerma-Usabiaga et al., 2020; Soltysik, 2020). In 
our study, we leveraged the relative stability of voxel-wise retinotopic tuning to test whether ME-
ICA led to similar parameter estimates from independent runs of data (van Dijk et al., 2016). We 
found that ME-ICA gave highly robust parameter estimates. First, parameters estimated from 
ME-ICA data were highly correlated to parameters estimated from single-echo data. This result 
suggests that the ICA procedure does not introduce bias or distort the timeseries signal.  

Second, ME-ICA improved the reliability of retinotopy parameter estimation from single runs of 
fMRI data compared to single echo or optimal combination alone. In addition, we found that ME-
ICA preprocessed data led to significantly lower estimates of pRF size compared to traditional 
preprocessing, suggesting that ME-ICA may increase the precision of pRF estimation (van Dijk et 
al., 2016).  

Limitations 
In the present study, we investigated the impact of ME-ICA denoising compared to a traditional, 
minimal preprocessing pipeline. Specifically, we sought to confirm that ME-ICA offered 
improvement in tSNR and model fitting, while not affecting parameter estimates. Our minimal 
preprocessing included only despiking, motion correction, smoothing, and scaling. This pipeline 
is similar the pipeline used in our other retinotopy studies (Silson et al., 2016, 2015). This 
nevertheless represents just one possible choice among many (Caballero-Gaudes and Reynolds, 
2017; Moia et al., 2021; Power et al., 2017). Other data-driven denoising techniques using ICA 
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(e.g., hand classification (Griffanti et al., 2017) or automated pipelines such as AROMA-ICA (Pruim 
et al., 2015) or ICA-FIX (Salimi-Khorshidi et al., 2014)) are highly effective at denoising single echo 
fMRI data. These techniques can be run on single echo or optimally combined data and thus may 
be viable preprocessing options if multi-echo acquisition is not possible. However, it is important 
to note that ICA-based denoising is not a panacea, and some noise sources remain (and can be 
worsened) after ICA-based denoising strategies, including ME-ICA (Power et al., 2018). 
Additionally, it is common in other fields, like resting state fMRI, to remove high-motion time 
points from data and to project ‘nuisance regressors’ out of the data prior to analysis (Ciric et al., 
2017; Power et al., 2017; Satterthwaite et al., 2013). The effects of these techniques, including 
CompCorr (Behzadi et al., 2007), anaticorr (Jo et al., 2010), MotSim (Patriat et al., 2017), and 
multiple derivatives of motion (Satterthwaite et al., 2013), have been compared in detail 
elsewhere (Ciric et al., 2017; Moia et al., 2021; Power et al., 2017), and an exhaustive comparison 
of preprocessing choices is out of the scope of the present work.  

Finally, because multi-echo acquisition requires taking multiple EPI volumes in a single TR, multi-
echo generally requires a longer TR than optimized single echo acquisition regimes. Relatedly, 
the sampling duration necessary for super high resolution fMRI imaging can preclude the use of 
multi-echo fMRI. While these limitations can be overcome using mutli-slice acquisition, in-plane 
acceleration, or partial Fourier acquisition, these techniques can result in decreased signal-to-
noise of the resulting data (Boyacioğlu et al., 2015; Cohen et al., 2021; Tsao and Kozerke, 2012). 
In the end, the optimal acquisition and preprocessing procedure for any given study depends on 
the research question, as well as the technical, computational, and hardware resources available.  

Conclusion 
To summarize, we found that ME-ICA improves tSNR and model fitting in task-based fMRI data 
(pRF mapping) both in terms of variance explained and regions implicated. Additionally, our 
findings suggest that model parameters can be estimated reliably from just a single run of data 
after ME-ICA processing. Therefore, ME-ICA may be an attractive option for naturalistic fMRI 
experiments where collecting single runs of fMRI data is common. 
 

References 
Allen, E.J., St-Yves, G., Wu, Y., Breedlove, J.L., Prince, J.S., Dowdle, L.T., Nau, M., Caron, B., 

Pestilli, F., Charest, I., Hutchinson, J.B., Naselaris, T., Kay, K., 2021. A massive 7T fMRI 
dataset to bridge cognitive neuroscience and artificial intelligence. Nature Neuroscience 
2021 25:1 25, 116–126. https://doi.org/10.1038/s41593-021-00962-x 

Amano, K., Wandell, B.A., Dumoulin, S.O., 2009. Visual field maps, population receptive field 
sizes, and visual field coverage in the human MT+ complex. Journal of Neurophysiology 
102, 2704–2718. https://doi.org/10.1152/JN.00102.2009 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.29.498113doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498113
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

Avena-Koenigsberger, A., Misic, B., Sporns, O., 2017. Communication dynamics in complex brain 
networks. Nature Reviews Neuroscience 2017 19:1 19, 17–33. 
https://doi.org/10.1038/nrn.2017.149 

Baldassano, C., Chen, J., Zadbood, A., Pillow, J.W., Hasson, U., Norman, K.A., 2017. Discovering 
Event Structure in Continuous Narrative Perception and Memory. Neuron 95, 709-721.e5. 
https://doi.org/10.1016/J.NEURON.2017.06.041 

Bassett, D.S., Bullmore, E., 2006. Small-world brain networks. Neuroscientist 12, 512–523. 
https://doi.org/10.1177/1073858406293182 

Bassett, D.S., Bullmore, E.T., 2017. Small-World Brain Networks Revisited. The Neuroscientist 
23, 499–516. https://doi.org/10.1177/1073858416667720 

Bassett, D.S., Sporns, O., 2017. Network neuroscience. Nature Neuroscience 20, 353–364. 
https://doi.org/10.1038/NN.4502 

Behzadi, Y., Restom, K., Liau, J., Liu, T.T., 2007. A Component Based Noise Correction Method 
(CompCor) for BOLD and Perfusion Based fMRI. Neuroimage 37, 90. 
https://doi.org/10.1016/J.NEUROIMAGE.2007.04.042 

Botvinik-Nezer, R., Holzmeister, F., Camerer, C.F., Dreber, A., Huber, J., Johannesson, M., 
Kirchler, M., Iwanir, R., Mumford, J.A., Adcock, R.A., Avesani, P., Baczkowski, B.M., 
Bajracharya, A., Bakst, L., Ball, S., Barilari, M., Bault, N., Beaton, D., Beitner, J., Benoit, R.G., 
Berkers, R.M.W.J., Bhanji, J.P., Biswal, B.B., Bobadilla-Suarez, S., Bortolini, T., Bottenhorn, 
K.L., Bowring, A., Braem, S., Brooks, H.R., Brudner, E.G., Calderon, C.B., Camilleri, J.A., 
Castrellon, J.J., Cecchetti, L., Cieslik, E.C., Cole, Z.J., Collignon, O., Cox, R.W., Cunningham, 
W.A., Czoschke, S., Dadi, K., Davis, C.P., Luca, A. de, Delgado, M.R., Demetriou, L., 
Dennison, J.B., Di, X., Dickie, E.W., Dobryakova, E., Donnat, C.L., Dukart, J., Duncan, N.W., 
Durnez, J., Eed, A., Eickhoff, S.B., Erhart, A., Fontanesi, L., Fricke, G.M., Fu, S., Galván, A., 
Gau, R., Genon, S., Glatard, T., Glerean, E., Goeman, J.J., Golowin, S.A.E., González-García, 
C., Gorgolewski, K.J., Grady, C.L., Green, M.A., Guassi Moreira, J.F., Guest, O., Hakimi, S., 
Hamilton, J.P., Hancock, R., Handjaras, G., Harry, B.B., Hawco, C., Herholz, P., Herman, G., 
Heunis, S., Hoffstaedter, F., Hogeveen, J., Holmes, S., Hu, C.P., Huettel, S.A., Hughes, M.E., 
Iacovella, V., Iordan, A.D., Isager, P.M., Isik, A.I., Jahn, A., Johnson, M.R., Johnstone, T., 
Joseph, M.J.E., Juliano, A.C., Kable, J.W., Kassinopoulos, M., Koba, C., Kong, X.Z., Koscik, 
T.R., Kucukboyaci, N.E., Kuhl, B.A., Kupek, S., Laird, A.R., Lamm, C., Langner, R., 
Lauharatanahirun, N., Lee, H., Lee, S., Leemans, A., Leo, A., Lesage, E., Li, F., Li, M.Y.C., Lim, 
P.C., Lintz, E.N., Liphardt, S.W., Losecaat Vermeer, A.B., Love, B.C., Mack, M.L., Malpica, N., 
Marins, T., Maumet, C., McDonald, K., McGuire, J.T., Melero, H., Méndez Leal, A.S., Meyer, 
B., Meyer, K.N., Mihai, G., Mitsis, G.D., Moll, J., Nielson, D.M., Nilsonne, G., Notter, M.P., 
Olivetti, E., Onicas, A.I., Papale, P., Patil, K.R., Peelle, J.E., Pérez, A., Pischedda, D., Poline, 
J.B., Prystauka, Y., Ray, S., Reuter-Lorenz, P.A., Reynolds, R.C., Ricciardi, E., Rieck, J.R., 
Rodriguez-Thompson, A.M., Romyn, A., Salo, T., Samanez-Larkin, G.R., Sanz-Morales, E., 
Schlichting, M.L., Schultz, D.H., Shen, Q., Sheridan, M.A., Silvers, J.A., Skagerlund, K., Smith, 
A., Smith, D. v., Sokol-Hessner, P., Steinkamp, S.R., Tashjian, S.M., Thirion, B., Thorp, J.N., 
Tinghög, G., Tisdall, L., Tompson, S.H., Toro-Serey, C., Torre Tresols, J.J., Tozzi, L., Truong, 
V., Turella, L., van ‘t Veer, A.E., Verguts, T., Vettel, J.M., Vijayarajah, S., Vo, K., Wall, M.B., 
Weeda, W.D., Weis, S., White, D.J., Wisniewski, D., Xifra-Porxas, A., Yearling, E.A., Yoon, S., 
Yuan, R., Yuen, K.S.L., Zhang, L., Zhang, X., Zosky, J.E., Nichols, T.E., Poldrack, R.A., 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.29.498113doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498113
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

Schonberg, T., 2020. Variability in the analysis of a single neuroimaging dataset by many 
teams. Nature 2020 582:7810 582, 84–88. https://doi.org/10.1038/s41586-020-2314-9 

Bowring, A., Maumet, C., Nichols, T.E., 2019. Exploring the impact of analysis software on task 
fMRI results. Human Brain Mapping 40, 3362–3384. https://doi.org/10.1002/HBM.24603 

Boyacioğlu, R., Schulz, J., Koopmans, P.J., Barth, M., Norris, D.G., 2015. Improved sensitivity and 
specificity for resting state and task fMRI with multiband multi-echo EPI compared to 
multi-echo EPI at 7 T. Neuroimage 119, 352–361. 
https://doi.org/10.1016/J.NEUROIMAGE.2015.06.089 

Breedlove, J.L., St-Yves, G., Olman, C.A., Naselaris, T., 2020. Generative Feedback Explains 
Distinct Brain Activity Codes for Seen and Mental Images. Current Biology 1–14. 
https://doi.org/10.1016/j.cub.2020.04.014 

Bright, M.G., Murphy, K., 2017. Cleaning up the fMRI time series: Mitigating noise with 
advanced acquisition and correction strategies. Neuroimage 154, 1–3. 
https://doi.org/10.1016/J.NEUROIMAGE.2017.03.056 

Buckner, R.L., Krienen, F.M., Castellanos, A., Diaz, J.C., Thomas Yeo, B.T., 2011. The organization 
of the human cerebellum estimated by intrinsic functional connectivity. Journal of 
Neurophysiology 106, 2322–2345. https://doi.org/10.1152/JN.00339.2011 

Bullmore, E., Sporns, O., 2012. The economy of brain network organization. Nature Reviews 
Neuroscience 2012 13:5 13, 336–349. https://doi.org/10.1038/nrn3214 

Busch, E.L., Rapuano, K.M., Anderson, K., Rosenberg, M.D., Watts, R., Casey, B., Haxby, J., 
Feilong, M., 2022. The LEGO theory of the developing functional connectome. bioRxiv 
2022.05.24.493295. https://doi.org/10.1101/2022.05.24.493295 

Caballero-Gaudes, C., Reynolds, R.C., 2017. Methods for cleaning the BOLD fMRI signal. 
Neuroimage 154, 128–149. https://doi.org/10.1016/J.NEUROIMAGE.2016.12.018 

Caucheteux, C., King, J.R., 2022. Brains and algorithms partially converge in natural language 
processing. Communications Biology 2022 5:1 5, 1–10. https://doi.org/10.1038/s42003-
022-03036-1 

Chang, L.J., Jolly, E., Cheong, J.H., Rapuano, K.M., Greenstein, N., Chen, P.H.A., Manning, J.R., 
2021. Endogenous variation in ventromedial prefrontal cortex state dynamics during 
naturalistic viewing reflects affective experience. Science Advances 7. 
https://doi.org/10.1126/SCIADV.ABF7129/SUPPL_FILE/ABF7129_SM.PDF 

Ciric, R., Wolf, D.H., Power, J.D., Roalf, D.R., Baum, G.L., Ruparel, K., Shinohara, R.T., Elliott, 
M.A., Eickhoff, S.B., Davatzikos, C., Gur, R.C., Gur, R.E., Bassett, D.S., Satterthwaite, T.D., 
2017. Benchmarking of participant-level confound regression strategies for the control of 
motion artifact in studies of functional connectivity. Neuroimage 154, 174–187. 
https://doi.org/10.1016/J.NEUROIMAGE.2017.03.020 

Cohen, A.D., Chang, C., Wang, Y., 2021. Using multiband multi-echo imaging to improve the 
robustness and repeatability of co-activation pattern analysis for dynamic functional 
connectivity. Neuroimage 243. https://doi.org/10.1016/J.NEUROIMAGE.2021.118555 

Constantinescu, A.O., O’Reilly, J.X., Behrens, T.E.J., 2016. Organizing conceptual knowledge in 
humans with a gridlike code. Science (1979) 352, 1464–1468. 
https://doi.org/10.1126/SCIENCE.AAF0941 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.29.498113doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498113
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

Cox, R.W., 1996. AFNI: Software for analysis and visualization of functional magnetic resonance 
neuroimages. Computers and Biomedical Research 29, 162–173. 
https://doi.org/10.1006/cbmr.1996.0014 

Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis: I. Segmentation and 
surface reconstruction. Neuroimage 9, 179–194. https://doi.org/10.1006/nimg.1998.0395 

Deichmann, R., Gottfried, J.A., Hutton, C., Turner, R., 2003. Optimized EPI for fMRI studies of 
the orbitofrontal cortex. Neuroimage 19, 430–441. https://doi.org/10.1016/S1053-
8119(03)00073-9 

Dilks, D.D., Julian, J.B., Paunov, A.M., Kanwisher, N., 2013. The occipital place area is causally 
and selectively involved in scene perception. Journal of Neuroscience 33, 1331–1336. 
https://doi.org/10.1523/JNEUROSCI.4081-12.2013 

Doeller, C.F., Barry, C., Burgess, N., 2010. Evidence for grid cells in a human memory network. 
Nature 463, 657–661. https://doi.org/10.1038/nature08704 

Dumoulin, S., Science, T.K.-A.R. of V., 2018, undefined, 2018. How visual cortical organization is 
altered by ophthalmologic and neurologic disorders. spinozacentre.nl. 
https://doi.org/10.1146/annurev-vision-091517 

Dumoulin, S.O., Wandell, B.A., 2008. Population receptive field estimates in human visual 
cortex. Neuroimage 39, 647. https://doi.org/10.1016/J.NEUROIMAGE.2007.09.034 

DuPre, E., Salo, T., Ahmed, Z., Bandettini, P.A., Bottenhorn, K.L., Caballero-Gaudes, C., Dowdle, 
L.T., Gonzalez-Castillo, J., Heunis, S., Kundu, P., Laird, A.R., Markello, R., Markiewicz, C.J., 
Moia, S., Staden, I., Teves, J.B., Uruñuela, E., Vaziri-Pashkam, M., Whitaker, K., 
Handwerker, D.A., 2021. TE-dependent analysis of multi-echo fMRI with *tedana*. Journal 
of Open Source Software 6, 3669. https://doi.org/10.21105/JOSS.03669 

DuPre, E., Salo, T., Markello, R., Kundu, P., Whitaker, K., Handwerker, D., 2019. ME-ICA/tedana: 
0.0.6. https://doi.org/10.5281/ZENODO.2558498 

Epstein, R., Kanwisher, N., 1998. A cortical representation the local visual environment. Nature 
392, 598–601. https://doi.org/10.1038/33402 

Esteban, O., Markiewicz, C.J., Berleant, S.L., Moodie, C., Ma, F., Isik, A.I., Erramuzpe, A., 
Goncalves, M., Poldrack, R.A., Gorgolewski, K.J., 2017. poldracklab/fmriprep: 1.0.0-rc5. 

Evans, J.W., Kundu, P., Horovitz, S.G., Bandettini, P.A., 2015. Separating slow BOLD from non-
BOLD baseline drifts using multi-echo fMRI. Neuroimage 105, 189–197. 
https://doi.org/10.1016/j.neuroimage.2014.10.051 

Feilong, M., Swaroop Guntupalli, J., Haxby, J. v., 2021. The neural basis of intelligence in fine-
grained cortical topographies. Elife 10. https://doi.org/10.7554/ELIFE.64058 

Fischl, B., 2012. FreeSurfer. Neuroimage. https://doi.org/10.1016/j.neuroimage.2012.01.021 
Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Van Der Kouwe, A., 

Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M., 2002. 
Whole brain segmentation: Automated labeling of neuroanatomical structures in the 
human brain. Neuron 33, 341–355. https://doi.org/10.1016/S0896-6273(02)00569-X 

Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S.J., Turner, R., 1996. Movement-related 
effects in fMRI time-series. Magnetic Resonance in Medicine 35, 346–355. 
https://doi.org/10.1002/MRM.1910350312 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.29.498113doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498113
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Gilmore, A.W., Agron, A.M., González-Araya, E.I., Gotts, S.J., Martin, A., 2022. A Comparison of 
Single- and Multi-Echo Processing of Functional MRI Data During Overt Autobiographical 
Recall. Frontiers in Neuroscience 16. https://doi.org/10.3389/FNINS.2022.854387 

Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, K., 
Andersson, J., Beckmann, C.F., Jenkinson, M., Smith, S.M., van Essen, D.C., 2016. A multi-
modal parcellation of human cerebral cortex. Nature 536, 171–178. 
https://doi.org/10.1038/nature18933 

Gomez, J., Barnett, M., Grill-Spector, K., 2019a. Extensive childhood experience with Pokémon 
suggests eccentricity drives organization of visual cortex. Nature Human Behaviour 2019 1. 
https://doi.org/10.1038/s41562-019-0592-8 

Gomez, J., Drain, A., Jeska, B., Natu, V.S., Barnett, M., Grill-Spector, K., 2019b. Development of 
population receptive fields in the lateral visual stream improves spatial coding amid stable 
structural-functional coupling. Neuroimage 188, 59–69. 
https://doi.org/10.1016/J.NEUROIMAGE.2018.11.056 

Gordon, E.M., Laumann, T.O., Gilmore, A.W., Newbold, D.J., Greene, D.J., Berg, J.J., Ortega, M., 
Hoyt-Drazen, C., Gratton, C., Sun, H., Hampton, J.M., Coalson, R.S., Nguyen, A.L., 
McDermott, K.B., Shimony, J.S., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., Nelson, S.M., 
Dosenbach, N.U.F., 2017. Precision Functional Mapping of Individual Human Brains. 
Neuron 95, 791-807.e7. https://doi.org/10.1016/J.NEURON.2017.07.011 

Gratton, C., Laumann, T.O., Nielsen, A.N., Greene, D.J., Gordon, E.M., Gilmore, A.W., Nelson, 
S.M., Coalson, R.S., Snyder, A.Z., Schlaggar, B.L., Dosenbach, N.U.F., Petersen, S.E., 2018. 
Functional Brain Networks Are Dominated by Stable Group and Individual Factors, Not 
Cognitive or Daily Variation. Neuron 98, 439-452.e5. 
https://doi.org/10.1016/J.NEURON.2018.03.035 

Griffanti, L., Douaud, G., Bijsterbosch, J., Evangelisti, S., Alfaro-Almagro, F., Glasser, M.F., Duff, 
E.P., Fitzgibbon, S., Westphal, R., Carone, D., Beckmann, C.F., Smith, S.M., 2017. Hand 
classification of fMRI ICA noise components. Neuroimage 154, 188–205. 
https://doi.org/10.1016/J.NEUROIMAGE.2016.12.036 

Griffanti, L., Salimi-Khorshidi, G., Beckmann, C.F., Auerbach, E.J., Douaud, G., Sexton, C.E., 
Zsoldos, E., Ebmeier, K.P., Filippini, N., Mackay, C.E., Moeller, S., Xu, J., Yacoub, E., Baselli, 
G., Ugurbil, K., Miller, K.L., Smith, S.M., 2014. ICA-based artefact removal and accelerated 
fMRI acquisition for improved resting state network imaging. Neuroimage 95, 232–247. 
https://doi.org/10.1016/j.neuroimage.2014.03.034 

Grill-Spector, K., Weiner, K.S., 2014. The functional architecture of the ventral temporal cortex 
and its role in categorization. Nature Reviews Neuroscience. 
https://doi.org/10.1038/nrn3747 

Groen, I.I.A., Dekker, T.M., Knapen, T., Silson, E.H., 2022. Visuospatial coding as ubiquitous 
scaffolding for human cognition. Trends Cogn Sci 26, 81–96. 
https://doi.org/10.1016/J.TICS.2021.10.011 

Güçlü, U., van Gerven, M.A.J., 2015. Deep Neural Networks Reveal a Gradient in the Complexity 
of Neural Representations across the Ventral Stream. Journal of Neuroscience 35, 10005–
10014. https://doi.org/10.1523/JNEUROSCI.5023-14.2015 

Harvey, B.M., Dumoulin, S.O., 2011. The Relationship between Cortical Magnification Factor 
and Population Receptive Field Size in Human Visual Cortex: Constancies in Cortical 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.29.498113doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498113
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

Architecture. Journal of Neuroscience 31, 13604–13612. 
https://doi.org/10.1523/JNEUROSCI.2572-11.2011 

Hasson, U., Furman, O., Clark, D., Dudai, Y., Davachi, L., 2008. Enhanced Intersubject 
Correlations during Movie Viewing Correlate with Successful Episodic Encoding. Neuron 
57, 452–462. https://doi.org/10.1016/J.NEURON.2007.12.009 

Hasson, U., Harel, M., Levy, I., Malach, R., 2003. Large-scale mirror-symmetry organization of 
human occipito-temporal object areas. Neuron 37, 1027–1041. 
https://doi.org/10.1016/S0896-6273(03)00144-2 

Hasson, U., Levy, I., Behrmann, M., Hendler, T., Malach, R., 2002. Eccentricity bias as an 
organizing principle for human high-order object areas. Neuron 34, 479–490. 
https://doi.org/10.1016/S0896-6273(02)00662-1 

Honey, C.J., Thesen, T., Donner, T.H., Silbert, L.J., Carlson, C.E., Devinsky, O., Doyle, W.K., Rubin, 
N., Heeger, D.J., Hasson, U., 2012. Slow Cortical Dynamics and the Accumulation of 
Information over Long Timescales. Neuron 76, 423. 
https://doi.org/10.1016/J.NEURON.2012.08.011 

Huntenburg, J.M., Bazin, P.L., Margulies, D.S., 2018. Large-Scale Gradients in Human Cortical 
Organization. Trends in Cognitive Sciences 22, 21–31. 
https://doi.org/10.1016/J.TICS.2017.11.002 

Huth, A.G., de Heer, W.A., Griffiths, T.L., Theunissen, F.E., Gallant, J.L., 2016. Natural speech 
reveals the semantic maps that tile human cerebral cortex. Nature 532, 453–458. 
https://doi.org/10.1038/NATURE17637 

Huth, A.G., Nishimoto, S., Vu, A.T., Gallant, J.L., 2012. A Continuous Semantic Space Describes 
the Representation of Thousands of Object and Action Categories across the Human Brain. 
Neuron 76, 1210–1224. https://doi.org/10.1016/J.NEURON.2012.10.014 

Jo, H.J., Gotts, S.J., Reynolds, R.C., Bandettini, P.A., Martin, A., Cox, R.W., Saad, Z.S., 2013. 
Effective Preprocessing Procedures Virtually Eliminate Distance-Dependent Motion 
Artifacts in Resting State FMRI. J Appl Math 2013. https://doi.org/10.1155/2013/935154 

Jo, H.J., Saad, Z.S., Simmons, W.K., Milbury, L.A., Cox, R.W., 2010. Mapping sources of 
correlation in resting state FMRI, with artifact detection and removal. Neuroimage 52, 
571–582. https://doi.org/10.1016/J.NEUROIMAGE.2010.04.246 

Julian, J.B., Fedorenko, E., Webster, J., Kanwisher, N., 2012. An algorithmic method for 
functionally defining regions of interest in the ventral visual pathway. 
https://doi.org/10.1016/j.neuroimage.2012.02.055 

Kanwisher, N., McDermott, J., Chun, M.M., 1997. The fusiform face area: A module in human 
extrastriate cortex specialized for face perception. Journal of Neuroscience 17, 4302–4311. 
https://doi.org/10.1523/jneurosci.17-11-04302.1997 

Kay, K.N., Weiner, K.S., Grill-Spector, K., 2015a. Attention Reduces Spatial Uncertainty in Human 
Ventral Temporal Cortex. Current Biology 25, 595–600. 
https://doi.org/10.1016/J.CUB.2014.12.050 

Kay, K.N., Weiner, K.S., Grill-Spector, K., 2015b. Attention Reduces Spatial Uncertainty in Human 
Ventral Temporal Cortex. Current Biology 25, 595–600. 
https://doi.org/10.1016/J.CUB.2014.12.050 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.29.498113doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498113
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

Kay, K.N., Winawer, J., Mezer, A., Wandell, B.A., 2013. Compressive spatial summation in 
human visual cortex. Journal of Neurophysiology 110, 481–494. 
https://doi.org/10.1152/JN.00105.2013 

Klein, B.P., Harvey, B.M., Dumoulin, S.O., 2014. Attraction of Position Preference by Spatial 
Attention throughout Human Visual Cortex. Neuron 84, 227–237. 
https://doi.org/10.1016/J.NEURON.2014.08.047 

Kriegeskorte, N., Mur, M., Ruff, D.A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., Bandettini, 
P.A., 2008. Matching categorical object representations in inferior temporal cortex of man 
and monkey. Neuron 60, 1126–1141. https://doi.org/10.1016/J.NEURON.2008.10.043 

Kundu, P., Inati, S.J., Evans, J.W., Luh, W.M., Bandettini, P.A., 2012. Differentiating BOLD and 
non-BOLD signals in fMRI time series using multi-echo EPI. Neuroimage 60, 1759–1770. 
https://doi.org/10.1016/j.neuroimage.2011.12.028 

Kundu, P., Voon, V., Balchandani, P., Lombardo, M. v., Poser, B.A., Bandettini, P.A., 2017. Multi-
echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals. 
Neuroimage 154, 59–80. https://doi.org/10.1016/J.NEUROIMAGE.2017.03.033 

Larsson, J., Heeger, D.J., 2006. Two Retinotopic Visual Areas in Human Lateral Occipital Cortex. 
Journal of Neuroscience 26, 13128–13142. https://doi.org/10.1523/JNEUROSCI.1657-
06.2006 

Laumann, T.O., Gordon, E.M., Adeyemo, B., Snyder, A.Z., Joo, S.J., Chen, M.Y., Gilmore, A.W., 
McDermott, K.B., Nelson, S.M., Dosenbach, N.U.F., Schlaggar, B.L., Mumford, J.A., 
Poldrack, R.A., Petersen, S.E., 2015. Functional System and Areal Organization of a Highly 
Sampled Individual Human Brain. Neuron 87, 657–670. 
https://doi.org/10.1016/J.NEURON.2015.06.037 

Lerma-Usabiaga, G., Benson, N., Winawer, J., Wandell, B.A., 2020. A validation framework for 
neuroimaging software: The case of population receptive fields. PLOS Computational 
Biology 16, e1007924. https://doi.org/10.1371/JOURNAL.PCBI.1007924 

Lescroart, M.D., Gallant, J.L., 2019. Human Scene-Selective Areas Represent 3D Configurations 
of Surfaces. Neuron 101, 178-192.e7. https://doi.org/10.1016/J.NEURON.2018.11.004 

Li, X., Morgan, P.S., Ashburner, J., Smith, J., Rorden, C., 2016. The first step for neuroimaging 
data analysis: DICOM to NIfTI conversion. Journal of Neuroscience Methods 264, 47–56. 
https://doi.org/10.1016/j.jneumeth.2016.03.001 

Liu, T.T., 2016. Noise contributions to the fMRI signal: An overview. Neuroimage 143, 141–151. 
https://doi.org/10.1016/J.NEUROIMAGE.2016.09.008 

Lynch, C.J., Power, J.D., Scult, M.A., Dubin, M., Gunning, F.M., Liston, C., 2020. Rapid Precision 
Functional Mapping of Individuals Using Multi-Echo fMRI. Cell Reports 33, 108540. 
https://doi.org/10.1016/J.CELREP.2020.108540 

Margulies, D.S., Ghosh, S.S., Goulas, A., Falkiewicz, M., Huntenburg, J.M., Langs, G., Bezgin, G., 
Eickhoff, S.B., Castellanos, F.X., Petrides, M., Jefferies, E., Smallwood, J., 2016. Situating the 
default-mode network along a principal gradient of macroscale cortical organization. Proc 
Natl Acad Sci U S A 113, 12574–12579. 
https://doi.org/10.1073/PNAS.1608282113/SUPPL_FILE/PNAS.201608282SI.PDF 

Moia, S., Termenon, M., Uruñuela, E., Chen, G., Stickland, R.C., Bright, M.G., Caballero-Gaudes, 
C., 2021. ICA-based denoising strategies in breath-hold induced cerebrovascular reactivity 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.29.498113doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498113
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

mapping with multi echo BOLD fMRI. Neuroimage 233, 117914. 
https://doi.org/10.1016/J.NEUROIMAGE.2021.117914 

Murphy, C., Jefferies, E., Rueschemeyer, S.-A., Sormaz, M., Wang, H., Margulies, D.S., 
Smallwood, J., 2018. Distant from input: Evidence of regions within the default mode 
network supporting perceptually-decoupled and conceptually-guided cognition. 
Neuroimage 171, 393–401. https://doi.org/10.1016/J.NEUROIMAGE.2018.01.017 

Olafsson, V., Kundu, P., Wong, E.C., Bandettini, P.A., Liu, T.T., 2015. Enhanced identification of 
BOLD-like components with multi-echo simultaneous multi-slice (MESMS) fMRI and multi-
echo ICA. Neuroimage 112, 43–51. https://doi.org/10.1016/J.NEUROIMAGE.2015.02.052 

Patriat, R., Reynolds, R.C., Birn, R.M., 2017. An improved model of motion-related signal 
changes in fMRI. Neuroimage 144, 74–82. 
https://doi.org/10.1016/J.NEUROIMAGE.2016.08.051 

Popham, S.F., Huth, A.G., Bilenko, N.Y., Deniz, F., Gao, J.S., Nunez-Elizalde, A.O., Gallant, J.L., 
2021. Visual and linguistic semantic representations are aligned at the border of human 
visual cortex. Nature Neuroscience 2021 24:11 24, 1628–1636. 
https://doi.org/10.1038/s41593-021-00921-6 

Poser, B.A., Versluis, M.J., Hoogduin, J.M., Norris, D.G., 2006. BOLD contrast sensitivity 
enhancement and artifact reduction with multiecho EPI: Parallel-acquired inhomogeneity-
desensitized fMRI. Magnetic Resonance in Medicine 55, 1227–1235. 
https://doi.org/10.1002/mrm.20900 

Posse, S., 2012. Multi-echo acquisition. Neuroimage 62, 665–671. 
https://doi.org/10.1016/J.NEUROIMAGE.2011.10.057 

Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A., Vogel, A.C., 
Laumann, T.O., Miezin, F.M., Schlaggar, B.L., Petersen, S.E., 2011. Functional Network 
Organization of the Human Brain. Neuron 72, 665–678. 
https://doi.org/10.1016/J.NEURON.2011.09.006 

Power, J.D., Plitt, M., Gotts, S.J., Kundu, P., Voon, V., Bandettini, P.A., Martin, A., 2018. Ridding 
fMRI data of motion-related influences: Removal of signals with distinct spatial and 
physical bases in multiecho data. Proc Natl Acad Sci U S A 115, E2105–E2114. 
https://doi.org/10.1073/PNAS.1720985115/SUPPL_FILE/PNAS.1720985115.SAPP.PDF 

Power, J.D., Plitt, M., Laumann, T.O., Martin, A., 2017. Sources and implications of whole-brain 
fMRI signals in humans. Neuroimage 146, 609–625. 
https://doi.org/10.1016/J.NEUROIMAGE.2016.09.038 

Pruim, R.H.R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J.K., Beckmann, C.F., 2015. ICA-
AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. 
Neuroimage 112, 267–277. https://doi.org/10.1016/J.NEUROIMAGE.2015.02.064 

Salimi-Khorshidi, G., Douaud, G., Beckmann, C.F., Glasser, M.F., Griffanti, L., Smith, S.M., 2014. 
Automatic denoising of functional MRI data: combining independent component analysis 
and hierarchical fusion of classifiers. Neuroimage 90, 449–468. 
https://doi.org/10.1016/J.NEUROIMAGE.2013.11.046 

Samuel Schwarzkopf, D., Anderson, E.J., de Haas, B., White, S.J., Rees, G., 2014. Larger 
Extrastriate Population Receptive Fields in Autism Spectrum Disorders. Journal of 
Neuroscience 34, 2713–2724. https://doi.org/10.1523/JNEUROSCI.4416-13.2014 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.29.498113doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498113
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

Satterthwaite, T.D., Elliott, M.A., Gerraty, R.T., Ruparel, K., Loughead, J., Calkins, M.E., Eickhoff, 
S.B., Hakonarson, H., Gur, R.C., Gur, R.E., Wolf, D.H., 2013. An improved framework for 
confound regression and filtering for control of motion artifact in the preprocessing of 
resting-state functional connectivity data. Neuroimage 64, 240–256. 
https://doi.org/10.1016/J.NEUROIMAGE.2012.08.052 

Sha, L., Haxby, J. v., Abdi, H., Swaroop Guntupalli, J., Oosterhof, N.N., Halchenko, Y.O., Connolly, 
A.C., 2015. The animacy continuum in the human ventral vision pathway. Journal of 
Cognitive Neuroscience 27, 665–678. https://doi.org/10.1162/jocn_a_00733 

Sheremata, S.L., Silver, M.A., 2015. Hemisphere-Dependent Attentional Modulation of Human 
Parietal Visual Field Representations. Journal of Neuroscience 35, 508–517. 
https://doi.org/10.1523/JNEUROSCI.2378-14.2015 

Silson, E.H., Chan, A.W.Y., Reynolds, R.C., Kravitz, D.J., Baker, C.I., 2015. A retinotopic basis for 
the division of high-level scene processing between lateral and ventral human 
occipitotemporal cortex. Journal of Neuroscience 35, 11921–11935. 
https://doi.org/10.1523/JNEUROSCI.0137-15.2015 

Silson, E.H., Steel, A.D., Baker, C.I., 2016. Scene-Selectivity and Retinotopy in Medial Parietal 
Cortex. Frontiers in Human Neuroscience 10, 412. 
https://doi.org/10.3389/fnhum.2016.00412 

Soltysik, D.A., 2020. Optimizing data processing to improve the reproducibility of single-subject 
functional magnetic resonance imaging. Brain and Behavior 10. 
https://doi.org/10.1002/BRB3.1617 

Sprague, T.C., Serences, J.T., 2013. Attention modulates spatial priority maps in the human 
occipital, parietal and frontal cortices. Nature Neuroscience 2013 16:12 16, 1879–1887. 
https://doi.org/10.1038/nn.3574 

Spreng, R.N., Fernández-Cabello, S., Turner, G.R., Stevens, W.D., 2019. Take a deep breath: 
Multiecho fMRI denoising effectively removes head motion artifacts, obviating the need 
for global signal regression. Proc Natl Acad Sci U S A 116, 19241–19242. 
https://doi.org/10.1073/PNAS.1909848116 

Steel, A., Billings, M.M., Silson, E.H., Robertson, C.E., 2021. A network linking scene perception 
and spatial memory systems in posterior cerebral cortex. Nature Communications 2021 
12:1 12, 1–13. https://doi.org/10.1038/s41467-021-22848-z 

Takemura, H., Ashida, H., Amano, K., Kitaoka, A., Murakami, I., 2012. Neural Correlates of 
Induced Motion Perception in the Human Brain. Journal of Neuroscience 32, 14344–
14354. https://doi.org/10.1523/JNEUROSCI.0570-12.2012 

Thomas Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., 
Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R., Fisch, B., Liu, H., Buckner, R.L., 2011. 
The organization of the human cerebral cortex estimated by intrinsic functional 
connectivity. Journal of Neurophysiology 106, 1125–1165. 
https://doi.org/10.1152/JN.00338.2011 

Tsao, J., Kozerke, S., 2012. MRI temporal acceleration techniques. Journal of Magnetic 
Resonance Imaging 36, 543–560. https://doi.org/10.1002/JMRI.23640 

Turker, H.B., Riley, E., Luh, W.M., Colcombe, S.J., Swallow, K.M., 2021. Estimates of locus 
coeruleus function with functional magnetic resonance imaging are influenced by 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.29.498113doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498113
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

localization approaches and the use of multi-echo data. Neuroimage 236, 118047. 
https://doi.org/10.1016/J.NEUROIMAGE.2021.118047 

van Dijk, J.A., de Haas, B., Moutsiana, C., Schwarzkopf, D.S., 2016. Intersession reliability of 
population receptive field estimates. Neuroimage 143, 293–303. 
https://doi.org/10.1016/J.NEUROIMAGE.2016.09.013 

Wager, T.D., Atlas, L.Y., Lindquist, M.A., Roy, M., Woo, C.-W., Kross, E., 2013. An fMRI-Based 
Neurologic Signature of Physical Pain. New England Journal of Medicine 368, 1388–1397. 
https://doi.org/10.1056/NEJMOA1204471/SUPPL_FILE/NEJMOA1204471_DISCLOSURES.P
DF 

Wandell, B.A., Dumoulin, S.O., Brewer, A.A., 2007. Visual Field Maps in Human Cortex. Neuron 
56, 366–383. https://doi.org/10.1016/J.NEURON.2007.10.012 

Wandell, B.A., Winawer, J., 2015. Computational neuroimaging and population receptive fields. 
Trends in Cognitive Sciences 19, 349–357. https://doi.org/10.1016/J.TICS.2015.03.009 

Weiner, K.S., Barnett, M.A., Witthoft, N., Golarai, G., Stigliani, A., Kay, K.N., Gomez, J., Natu, 
V.S., Amunts, K., Zilles, K., Grill-Spector, K., 2018. Defining the most probable location of 
the parahippocampal place area using cortex-based alignment and cross-validation. 
Neuroimage 170, 373–384. https://doi.org/10.1016/j.neuroimage.2017.04.040 

Weiskopf, N., Hutton, C., Josephs, O., Deichmann, R., 2006. Optimal EPI parameters for 
reduction of susceptibility-induced BOLD sensitivity losses: A whole-brain analysis at 3 T 
and 1.5 T. Neuroimage 33, 493–504. https://doi.org/10.1016/J.NEUROIMAGE.2006.07.029 

Weiskopf, N., Hutton, C., Josephs, O., Turner, R., Deichmann, R., 2007. Optimized EPI for fMRI 
studies of the orbitofrontal cortex: compensation of susceptibility-induced gradients in the 
readout direction. Magma (New York, N.y.) 20, 39. https://doi.org/10.1007/S10334-006-
0067-6 

Winawer, J., Horiguchi, H., Sayres, R.A., Amano, K., Wandell, B.A., 2010. Mapping hV4 and 
ventral occipital cortex: The venous eclipse. Journal of Vision 10, 1–1. 
https://doi.org/10.1167/10.5.1 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.29.498113doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498113
http://creativecommons.org/licenses/by-nc-nd/4.0/

