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Abstract 8 

Adapting organisms often face fitness valleys, i.e. barriers imposed by ubiquitous genetic interactions, 9 

while optimizing functions. Elucidating mechanisms that facilitate fitness valley traversals is integral to 10 

understanding evolution. Therefore, we investigated how protein expression noise, mechanistically 11 

decomposed into instant variation and epigenetic inheritance of optimal protein dosage 12 

(‘transgenerational feedback’), shapes the fitness landscape. For this purpose, we combined a minimal 13 

model for expression noise with diverse data of Saccharomyces cerevisiae from literature on e.g. 14 

expression and fitness to representatively simulate mutational fitness effects. For our proxy of point 15 

mutations, which are very often near-neutral, instant dosage variation by expression noise typically 16 

incurs a 8.7% fitness loss (17% in essential genes) for non-neutral point mutations. However, dosage 17 

feedback mitigates most of this deleterious effect, and additionally extends the time until extinction 18 

when essential gene products are underexpressed. Taken together, we consider dosage feedback as a 19 

relevant example of Waddington’s canalization: a mechanism which temporarily drives phenotypes 20 

towards the optimum upon a genetic mismatch, thereby promoting fitness valley traversal and 21 

evolvability.  22 
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Author summary 23 

Gene products frequently interact to generate unexpected phenotypes. This universal phenomenon is 24 

known as epistasis, and complicates step-wise evolution to an optimum. Attempts to understand 25 

and/or predict how the optimum is found are further compromised by the countless combinations of 26 

mutations that are considered by nature, and necessitate the formulation of general rules on how the 27 

obstacles that epistasis presents are bridged. To make such a rule as insightful as possible, we reduced 28 

cell division to a generation-based model focusing on one protein at a time for reproductive success. 29 

Importantly, protein production between divisions is stochastic and we show how the resulting 30 

expression noise affects epistasis. After validating the model on experimental fitness landscapes, we 31 

combine high-throughput data of budding yeast from multiple sources to make our model predictions 32 

on mutational effects on fitness as representative as possible. We find different effects per mutation 33 

type: gene duplications have little effect, as genes in our simulated pool are rarely toxic, loss-of-34 

function mutations decrease mutational gains as adaptation progresses, and point mutations permit 35 

expression noise to unlock its roles in adaptation. For non-neutral point mutations, noise imposes a 36 

sizeable fitness penalty or even induces extinction, which is alleviated by an epigenetic, 37 

transgenerational feedback on protein dosage which is never deleterious. Particularly for essential 38 

genes, we predict that this effect reduces the obstacles of epistasis and hence significantly increases 39 

evolvability, adding to the general rules of evolution.  40 
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Introduction 41 

The ability to predict evolution has a plethora of societal applications. For example, tracking and 42 

forecasting viral evolution benefits vaccination strategies (Du, King, Woods, & Pascual, 2017; Neher & 43 

Bedford, 2015), efforts in rational design and directed evolution of microbial communities will improve 44 

chemical production and many aspects of daily life (Sanchez et al., 2020; Zomorrodi & Segrè, 2016), 45 

and research on evolutionary models provides better grip on diseases such as cancer (Diaz-Uriarte & 46 

Vasallo, 2019). However, several confounding phenomena complicate our understanding of evolution. 47 

One of those is expression noise, i.e. variation in dosage of gene products across an isogenic 48 

population. Another example is epistasis (e.g., (Bank, Matuszewski, Hietpas, & Jensen, 2016; Miton & 49 

Tokuriki, 2016; Sailer & Harms, 2017)), i.e. the observation that mutational effects can depend on the 50 

particular genetic background in terms of magnitude and sign, which causes the adaptive fitness 51 

landscape to have non-trivial shapes. Here we ask how expression noise and epistasis mechanistically 52 

intertwine, to ultimately improve our understanding and accurate prediction of evolution.  53 

Previous research has primarily focused on the consequences of noise given a certain fitness 54 

landscape, with ambiguous conclusions. On the one hand, noise can drive a population away from the 55 

optimal equilibrium, while on the other hand, noise can also function as a bet-hedging strategy (Philippi 56 

& Seger, 1989). This ambiguity also holds for the particular case of expression noise. Theoretically, 57 

expression noise can influence environmental robustness (Mineta, Matsumoto, Osada, & Araki, 2015), 58 

but it can also decrease the effective population size and increase drift (Wang & Zhang, 2011). By the 59 

same token, there is empirical evidence that expression noise has both been selected for as well as 60 

selected against in the evolution of Saccharomyces cerevisiae (Fraser, Hirsh, Giaever, Kumm, & Eisen, 61 

2004; Z. Zhang, Qian, & Zhang, 2009). 62 

Equally interesting is how noise shapes the fitness landscape itself. While theoretically important 63 

(Coomer, Ham, & Stumpf, 2022), the empirical relevance of this noise interaction has been much less 64 

intensively studied thus far. Epistasis is a natural property of fitness landscapes for noise to interact 65 
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with, as it is universally found across many organisms (Sanjuán & Elena, 2006). For example, changes 66 

in expression are expected to be a common source of (sign) epistasis (Li, Lalić, Baeza-Centurion, Dhar, 67 

& Lehner, 2019). This epistasis (see conceptually in Figure 1A) is particularly important for essential 68 

genes. As essentiality is increasingly found to be context-dependent (Larrimore & Rancati, 2019), 69 

epistasis and its link to noise are highly relevant for adaptation. Another example of ubiquitous 70 

negative epistasis is diminishing returns, i.e. mutations becoming less beneficial as fitness increases, 71 

which has been shown in model systems such as Methylobacterium extorquens (Chou, Chiu, Delaney, 72 

Segrè, & Marx, 2011), Escherichia coli (Khan, Dinh, Schneider, Lenski, & Cooper, 2011), S. cerevisiae 73 

(Kvitek & Sherlock, 2011) and a multicellular fungus (Schoustra, Hwang, Krug, & de Visser, 2016). The 74 

generality of diminishing returns epistasis across unrelated biological modules (Kryazhimskiy, Rice, 75 

Jerison, & Desai, 2014) naively suggests the existence of generic causes. As variation in protein dosage 76 

is known to couple otherwise unrelated modules (Kleijn, Krah, & Hermsen, 2018), a possible hypothesis 77 

is that expression noise generically affects epistasis and thereby the shape of the fitness landscape. 78 

 79 

In this paper, we will study how the interaction between noise and fitness landscapes feeds back on 80 

epistasis, differentiating between  genetic and epigenetic contributions of noise. For this purpose, we 81 

construct a minimal cell model to understand how noise shapes fitness landscapes and mutational 82 

effects therein, decomposed by mutational type and noise mechanism. This minimal model focusses 83 

on a single gene product stochastically switching between two dosage states, which determine the 84 

progeny per cell. First, we explore theoretically how the evolutionary roles of noise relate to two 85 

distinct noise mechanisms, namely generating instantaneous variation in protein dosage and an 86 

epigenetic feedback on dosage. Then, we integrate literature data of S. cerevisiae on for example 87 

empirical fitness landscapes and the distribution of mutational effects, to generate a representative 88 

estimate of the pattern of epistasis for e.g. promoter mutations and duplications. We find that an 89 

simple epigenetic feedback biases dosage with every generation to cause expression noise to 90 
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significantly mitigate the fitness penalties associated with instant variation, particularly for essential 91 

genes. Furthermore, the feedback also promotes longer survival before extinction when gene products 92 

are on average at a lethal dosage. We conjecture that this noise-based epigenetic feedback is 93 

important for the evolvability of many essential genes across organisms, suggesting a general rule on 94 

how expression noise acts as a fitness landscaper. Consequently, feedback emerges as a canalization 95 

mechanism in the context of evolutionary theories. 96 

Model methods 97 

Construction of a minimal model for epistasis and noise 98 

To elucidate the mechanistic coupling of noise to fitness landscapes, we make a minimal model for 99 

epistasis subject to noise (MEN-model), depicted in Figure 1D. The minimality of this model has the 100 

benefit of tractability and also accommodates the seemingly generic nature behind epistasis-noise 101 

coupling by disregarding many biological details. The latter justifies coarse-graining the underlying 102 

protein interactions and reducing the cellular environment to one protein under consideration at a 103 

time. 104 

We model a population of cells containing a protein X, with fitness ω defined as the reciprocal of the 105 

population doubling time (see also Model implementation details). In short, we disregard degradation 106 

and dilution, and the constant cell size permits interchangeable use of protein number and 107 

concentration. The cell cycle is simplified to two stages: first, X is produced stochastically, proportional 108 

to the cell cycle duration T. After this time, each cell is replaced by two cells which inherit X evenly, of 109 

which the progeny number g (between 0 and 2) survive. We assume the progeny scales with the 110 

available concentration [X], which is parametrized as a Hill curve (for example as in Figure 1B), where 111 

d modulates the difference between the best and worst progeny state: 112 
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 𝑔𝑔([𝑋𝑋]) = 𝑑𝑑 +
2 − 𝑑𝑑

1 + ([𝑋𝑋] 𝑐𝑐⁄ )−𝑘𝑘 (1) 

The Hill equation loosely permits the generic interpretation of X being involved in cooperative binding 113 

(with some caution (Prinz, 2010)) or switching between activation states (e.g., by phosphorylation). 114 

This defines c as a tipping point concentration and |k| as an effective cooperativity coefficient, 115 

resulting from coarse-graining the full chemical pathway involving X.  116 

After division, X is binned into two dosages, either low or high with respect to c, and therefore we only 117 

evaluate the progeny function g at 2c/3 and 4c/3, with values defined as gl and gh respectively. 118 

Consequently, the stochastic production of X forms a two-state discrete time stationary Markov chain, 119 

where every time step is a generation. Coefficients in the transition matrix M denote switching 120 

probabilities following from the cumulative distribution function (cdf) Fe(x; µ, V) governing expression, 121 

with x as the added protein and the parameters µ as mean expression and V as noise level. We only 122 

require the cdf at x = 2c/3 and 4c/3, whose values we define as Fh and Fl respectively (see Figure 1C). 123 

This yields state vector f, whose entries represent the number of cells in the high state (fh) or low state 124 

(fl) respectively: 125 

 �
𝑓𝑓ℎ
𝑓𝑓𝑙𝑙
��
𝑡𝑡=𝑇𝑇

= �𝑔𝑔ℎ(1− 𝐹𝐹𝑙𝑙) 𝑔𝑔ℎ(1 − 𝐹𝐹ℎ)
𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙 𝑔𝑔𝑙𝑙𝐹𝐹ℎ

� �
𝑓𝑓ℎ
𝑓𝑓𝑙𝑙
��
𝑡𝑡=0

≡ 𝑀𝑀𝑓𝑓|𝑡𝑡=0 (2) 

 𝜔𝜔 =
log2 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇
 (3) 

where λmax is the largest eigenvalue of M and ω is the fitness at equilibrium, which we can multiply by 126 

𝑇𝑇 to obtain the relative fitness ωr. Conveniently, our fitness is in reasonable accordance with the fit 127 

function postulated in (Keren et al., 2016), so we can straightforwardly compare the two fit results (see 128 

MEN-model fitness comparison with literature). We note that our model provides a parsimonious and 129 
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interpretable alternative on the originally postulated fit function, improving on 84% of the landscape 130 

data (see Appendix 1-figure 1). 131 

Decomposition of noise into variation and feedback 132 

We distinguish two noise contributions. Firstly, instant variation generates different dosages within 133 

each cycle. Additionally, as some cells have a dosage that allows more progeny, and since dosage is 134 

heritable, this results in an epigenetic bias towards the favorable dosage unless protein life-times are 135 

very short. We can refer to this as a transgenerational feedback of protein dosage after (Xue & Leibler, 136 

2016), only with respect to a genetic rather than a physical environment.  137 

We implement the absence of feedback into the model by resetting the distribution of cells across the 138 

two states after every division (see Figure 1D), countering the effect of selection. We redistribute the 139 

cells across the two states according to the state proportions when selection is absent, so when gh = gl 140 

= 2 in equation 2. This feedback has a strictly non-negative effect (see Appendix) on fitness or 141 

exponential decay of the population (λmax < 1). The relative fitness is given by: 142 

 𝜔𝜔𝑟𝑟,−𝑡𝑡𝑡𝑡𝑡𝑡 = log2 �
𝑔𝑔ℎ(1− 𝐹𝐹ℎ) + 𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙

1 − 𝐹𝐹ℎ + 𝐹𝐹𝑙𝑙
� (4) 

 143 

Generation of distributions of fitness effects (DFEs) 144 

To simulate the effects of mutations on fitness in populations in the MEN-model, we incorporate 145 

mutations into the model in two ways. Firstly, we consider expression mutations that affect the mean 146 

of the distribution underlying Fe(x; µ, V). Mutations that affect fitness otherwise are incorporated as a 147 

generic effect on cycle time T. Because a change in cell cycle time T also affects mean expression, these 148 

generic mutations can couple to expression in an unrelated module, akin to (Kleijn et al., 2018). 149 

Combining these mutation types, we examine the distribution of fitness effects (DFEs) by expression 150 

mutations in different stages of adaptation by varying the cycle time through the generic mutations. 151 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2022. ; https://doi.org/10.1101/2022.06.29.498068doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498068
http://creativecommons.org/licenses/by-nc/4.0/


8 
 

It is possible to link the simulated mutations considered above to many concrete mutations, which 152 

induce an effective change in mean expression. Apart from the trivial case of synonymous 153 

substitutions, this category includes promoter mutations, duplications, deletions or premature stops, 154 

mutations that affect reaction rates involving protein X that lead to an effective change in amount of 155 

available X, mutations that change mRNA stability, mRNA lifetime or protein half-life, but also 5’UTR 156 

mutations and RBS mutations influence expression (Kosuri et al., 2013; Mutalik et al., 2013). Expression 157 

related mutations form a significant part of the adaptive mutations in evolutionary trajectories of S. 158 

cerevisiae (Kryazhimskiy et al., 2014). It is even plausible that our modelled expression related 159 

mutations encompass synonymous mutations that affect fitness (Shen, Song, Li, & Zhang, 2022). 160 

Results 161 

Noise theoretically delays extinction, feedback compensates fitness loss 162 

In order to provide more intuition about possible fitness landscapes, we first formulate some 163 

expectation based on a theoretical analysis of the MEN-model, before applying the model to realistic 164 

mutational scenarios. In Figure 2, we consider the two extreme situations: the essential (lethal when 165 

underexpressed) and toxic (lethal when overexpressed) landscapes. We assume very sharp Hill curves 166 

(high effective cooperativities, k>>1) in both cases, and an initial population size of 1 million which is 167 

only relevant when the population is exponentially decaying. Three roles of noise immediately emerge, 168 

which we can decompose into the two aspects of noise: instant variation and epigenetic feedback. 169 

 170 

Firstly, noise smoothens the fitness landscape. For expression levels where the fitness can be defined 171 

(blue to green colors), increasing noise increases the span of the color gradient. Analogously, the 172 

number of generations a population can temporarily survive (red to purple colors) when expression is 173 

structurally insufficient or too high, also exhibits a shallower gradient at higher noise levels. We see 174 

this smoothing effect with and without feedback, although it is theoretically expected to be slightly 175 
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more pronounced with feedback unless the landscape is relatively flat (see Figure 2-figure supplement 176 

2). 177 

Secondly, increased noise has a dual effect on fitness. For the essential gene landscape, we see fitness 178 

decrease with the addition of noise, in correspondence with the notion that noise drives the 179 

population away from equilibrium. By contrast, in the toxic gene landscape, noise can actually improve 180 

fitness. However, we will see later that in practice, this beneficial role of noise will be rare. The 181 

feedback has no effect on the reversal from a negative to positive effect on fitness depending on 182 

landscape shape. The cause for this reversal is instant variation. 183 

Thirdly, we see a widespread role for noise to improve temporary survival. When expression is 184 

insufficient to sustain the population, population size will instead shrink exponentially with every 185 

generation. The number of generations it takes for the population to go extinct is important for 186 

evolution. For example, an environmental perturbation may render a population with a certain 187 

genotype inviable, causing a population shrinkage with time/generations. In the case of budding yeast, 188 

a large inviable population may also arise from sporulation. As the population decays, it can only evade 189 

extinction if it finds a genetic mutation that returns the population to the viable expression regime. 190 

We see noise conveniently increases the number of generations until extinction and thereby the time 191 

available for a compensatory mutation to occur. The diversifying and buffering potential of noise is not 192 

released in one moment, but is replenished continuously. Again, we see this effect with and without 193 

feedback. 194 

Despite qualitative similarities between scenarios with and without feedback, an important function 195 

surfaces for the transgenerational feedback on protein dosage. Comparing the two plots in the top 196 

row of Figure 2 to those in the bottom row, we see that deleting the memory of the system causes 197 

several deleterious effects on the population: (i) for expression levels where a fitness can be defined, 198 

the fitness is decreased; (ii) the viability edge, the expression threshold for which the population can 199 

structurally sustain its survival, also shifts to a disadvantageous direction;  (iii) the number of survivable 200 
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generations beyond the viability edge is decreased. So, although the feedback does not yield 201 

qualitatively different behavior for the effect of noise on fitness, there are noticeable quantitative 202 

effects on fitness. We reiterate that these quantitative effects of the feedback are never deleterious 203 

(see Strict non-negativity of transgenerational feedback effect on fitness).  We also note that this 204 

feedback requires a minimal amount of noise at any finite population size to sustain dosage memory 205 

inside the population in practice, as marked by the discontinuity in e.g. the viability edge. However, 206 

given the feasible region in (Chong et al., 2015) of 0.1<V<1, we can safely ignore this exception.  207 

Translation to realistic mutational landscapes 208 

Validation of MEN-model fits 209 

After forming theoretical expectations, we validate the MEN-model as part of our translation to 210 

realistic mutational scenarios in yeast by evaluating model fits, for estimates of the parameters k, c, d 211 

and V on empirical fitness landscapes  (Keren et al., 2016) (see also Materials and Methods section and 212 

SI: Evaluation MEN-model fits on empirical fitness landscapes). These landscapes are combined with 213 

WT dosage data (Kulak, Pichler, Paron, Nagaraj, & Mann, 2014) and essentiality data (Cherry et al., 214 

2012). Compared to the original fits of (Keren et al., 2016), our model fits are improvements in 84% of 215 

the cases (metric R2 adjusted for the free parameters (Wherry, 1931)), see Appendix 1-figure 1A.  216 

However, despite the quality of the fits, the interpretation of parameters should be approached with 217 

care. The Hill curve for the progeny function suggests the interpretation of k as a Hill coefficient, which 218 

in turn can represent allostery (e.g., (Prinz, 2010)). Yet, if we define a feasible allosteric range of |k|≤ 219 

5 for simple reactions, that means that many of the inferred k’s  fall outside this reasonable regime 220 

(Appendix 1-figure 1C). This suggests that a generic reaction form involving protein X assumed is 221 

probably too simplistic for most gene products considered. The observed ultrasensitivity suggests 222 

more subtle underlying processes, such as feedback loops or multiple phosphorylation steps to 223 

activate one protein (Ferrell & Ha, 2014a, 2014b; Ferrell, Jr, & Ha, 2014), or weak multivalent binding 224 

(Curk, 2016). 225 
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Simulation of mutations and DFEs 226 

To construct realistic model predictions for mutational returns, we construct a representative gene 227 

pool based on the aforementioned landscape fits (see Figure 3A, Figure 3-figure supplement 1A and 228 

the Materials and Methods section). The fitness landscapes pool is consistent with the observation 229 

that most genes are non-neutral and mostly affect fitness at low expression (Keren et al., 2016), and 230 

by design that around 19% of genes are essential (Giaever et al., 2002). We also consider this gene 231 

pool in various phases of adaptation, by setting a range of cycle times T to generate diversity in 232 

background fitness values. We can then also assess whether the coupling of noise and epistasis also 233 

depends on background fitness, e.g., whether the simulated mutations follow a diminishing return 234 

pattern. 235 

Given our synthetic gene pool, we consider three noise scenarios: (1) with instant variation and 236 

epigenetic feedback, (2) with variation only and (3) completely without noise. These scenarios allow 237 

for mechanistic decomposition of the mutational effects. Within these scenarios, we impose three 238 

different mutation types to generate distributions of fitness effects (DFEs), which comprise the 239 

collection of effects of single mutations in one gene at a time for various values of background fitness. 240 

Each type has its own distribution of mutational effects (DME) on gene expression underlying protein 241 

X. The mutation types are point mutations, indels/loss-of-function mutations and duplications. The 242 

former two are common functional mutations in yeast adaptation (Kryazhimskiy et al., 2014), the latter 243 

two are relevant in evolution of many organisms (Murray, 2020; J. Zhang, 2003), such as fungi 244 

(Wapinski, Pfeffer, Friedman, & Regev, 2007), Caenorhabditis elegans (Farslow et al., 2015), and plants 245 

(Panchy, Lehti-Shiu, & Shiu, 2016). 246 

Firstly, we obtain representative point mutations from re-analyzing the data (see Materials and 247 

Methods section) on the DMEs from (Hodgins-Davis, Duveau, Walker, & Wittkopp, 2019a, 2019b), 248 

where point mutations were randomly chemically induced to shift expression levels of a gene of 249 

interest. While based on only 10 lines, the similarity of the DMEs across lines (unimodality, centered 250 
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around WT expression) suggests this data set is sufficiently representative. The average DME (Figure 251 

3-figure supplement 1C) then allows translation of the landscape as function of expression to a 252 

simulated DFE, as function of background fitness. Secondly, the deletions and duplications define an 253 

effective expression at zero and twice the original expression. Although indels trivially have the same 254 

results with and without noise, we included these in our simulations for an additional validation step 255 

(see Simulated DFE comparison to documented diminishing returns), motivating our somewhat 256 

arbitrary choice of setting neutrality at ≤0.4% fitness effect. 257 

 258 

Variation generates non-neutrality, feedback recovers most fitness losses for 259 

representative mutants 260 

Our earlier theoretical analysis suggested three possible roles of noise: landscape smoothing, 261 

extinction delay and, for feedback in particular, recovery of fitness losses. Regarding the first point, we 262 

consider the percentage of non-neutral mutations in Figure 3B, which should be larger for smoother 263 

landscapes. With noise (circles), the simulations of representative mutations exhibit a large abundance 264 

of neutral mutations, 99.5 and 97.4% of point mutations (purple) and duplications (green) respectively. 265 

This can be attributed to point mutations causing mainly small expression shifts (see Figure 3-figure 266 

supplement 1C) and to toxicity being rare (see Figure 3-figure supplement 1B) respectively. The 267 

average mutational effects are also smaller compared to the impactful deletions which are usually non-268 

neutral (see also see Figure 3-figure supplement 1B) but for which noise is trivially irrelevant.  269 

However, without noise (crosses) the percentage of non-neutral mutations plummets about 12-fold 270 

and 2.5-fold respectively, yet simultaneously the average mutational effect increases. The loss of 271 

instant variation is the predominant cause of this shift, as without feedback (triangles) mutational 272 

effects are fairly similar. The instant variation hence generates the noise-driven non-neutrality. 273 

Although we theoretically expected more landscape smoothing of the presence of feedback (see Figure 274 

2-figure supplement 2), the aforementioned narrow point mutation DME and rare toxicity mean most 275 
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non-neutral mutations occur within the relatively narrow part of the landscape, which is smoothened 276 

in absence of feedback. 277 

By contrast, we confirm a higher degree of smoothing for essential gene profiles (see Figure 3-figure 278 

supplement 2). This translates to a higher percentage of non-neutral mutations for essential genes 279 

than for non-essential genes. If we extrapolate the percentage of non-neutral mutations to a higher 280 

likelihood of protein X having a genetic interaction affecting expression, this suggests that noise 281 

naturally grants essential genes with more interactors. This effect is consistent with the empirical 282 

observation that essential genes have about 80% more interactors (see Materials and Methods, 283 

(Cherry et al., 2012; Stark et al., 2006)], and that essential genes are more likely to have a hub function 284 

(H. Yu, Greenbaum, Lu, Zhu, & Gerstein, 2004). Noise can then be seen as a generator of epistasis. 285 

Expanding on the coupling of noise and epistasis, we bin the mutations per background fitness and 286 

determine whether we obtain a positive or negative dependency of the mean fitness effect with 287 

background fitness. Surprisingly, the point mutation DFEs show increasing rather than diminishing 288 

returns, an effect that is fully attributable to instant variation (see Appendix 1-figure 2). For 289 

duplications, the effects are much more subtle, and for indels where noise has no roles, we retrieved 290 

the documented diminishing returns with reasonable accuracy. 291 

For the second role of noise regarding extinction, we focus on point mutations, considering the rarity 292 

of toxic genes.  The non-neutral point mutations can be divided into three situations (see Figure 4A): 293 

most of the time (in 84% of the non-neutral mutations), the feedback is not critical for viability, in 14% 294 

of the cases the feedback is essential and for 1.7% of these mutations, the population will always decay 295 

exponentially. In the latter situation, the feedback notably extends the time to extinction (see Figure 296 

4B), which may permit the time to find a rescuing mutation. On average, feedback increases the 297 

number of generations until extinction by 51%, but a broad distribution underlies this number. So, 298 

while this situation is rare, feedback is important for these cases. 299 
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For the last role, mitigation of fitness losses by feedback, we turn to the vast majority of viable non-300 

neutral point mutations. In Figure 5, heat maps are shown with the magnitude of the fitness penalty 301 

that a population suffers when the modelled protein has noise (only instant variation) compared to no 302 

noise (vertical axis). As the feedback is never deleterious (see Strict non-negativity of transgenerational 303 

feedback effect on fitness), we can plot this against the percentage mitigated when allowing feedback 304 

(horizontal axis). Every viable non-neutral point mutation of Figure 4A (red and purple pie) is then 305 

placed in a bin along these two axes, with the frequency color-coded (dark blue meaning most 306 

abundant). 307 

In Figure 5A, we typically see a 8.7% fitness penalty (dotted line) due to instant variation. Importantly, 308 

68% of this penalty is mitigated by the presence of dosage feedback (a similar conclusion holds for 309 

duplications, see Figure 5-figure supplement 1). There seems to be a trend towards a higher 310 

percentage of mitigation when the fitness penalty is larger, as can be seen by the locations in the plot 311 

of the blue areas from bottom left to top right. This trend is more pronounced for genes for which the 312 

highest fitness losses are possible, namely essential genes (Figure 5B). For these genes, the typical 313 

fitness penalty is 17%, but the average mitigation level increases to about 87%. This illustrates the 314 

contribution of feedback to evolvability; for essential genes in particular, the feedback renders 315 

mutations less deleterious than expected, possibly allowing these mutations to become evolutionary 316 

accessible. 317 

 318 

Discussion 319 

Epistasis and expression noise are complicating factors for predicting phenotypes and consequentially, 320 

the potential course of evolution. To increase the understanding of the mechanical basis of how these 321 

factors interact, we have applied a minimal model for epistasis including protein expression noise 322 

(MEN-model). Despite the crude approximations of reality, such as binary protein number states, our 323 
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model accommodated empirical fitness landscapes from (Keren et al., 2016) well, improving on 324 

previous fits in 84% of the cases. 325 

Theoretically, several possible roles of noise and the underlying mechanistic basis emerged. Instant 326 

variation, the dosage diversity generated intra-generationally, has the potential to smooth the fitness 327 

landscape. This landscape smoothing provides for short timescales a causal alternative to the 328 

correlation between landscape sharpness and low noise, which has previously been associated to 329 

selection for low noise (Keren et al., 2016). The smoothing comes at the cost of a fitness penalty. This 330 

penalty is strongly mitigated by epigenetic dosage feedback, a mechanism which acts 331 

transgenerationally akin to (Xue & Leibler, 2016) yet adapts to the fitness landscapes as opposed to a 332 

fluctuating environment as Xue and Leibler introduced.  333 

To put the feedback in perspective, transgenerational inheritance has been observed at the mRNA 334 

level (Houri-Zeevi, Korem Kohanim, Antonova, & Rechavi, 2020), and epigenetic inheritance of 335 

doubling times has been linked mechanistically to gene expression noise for the palatinose pathway 336 

(Cerulus, New, Pougach, & Verstrepen, 2016). The feedback forms part of a larger panorama of 337 

epigenetic inheritance systems (Jablonka & Szathmáry, 1995), but differs in its relative independence 338 

of biological requirements. Here, the noise-based transgenerational feedback on protein dosage has 339 

an exclusively non-negative effect, also increasing the number of generations until extinction for ill-340 

adapted mean expression levels.  341 

More conceptually, instant variation and feedback combined cause noise to oscillate between the 342 

diversity generating role, which has previously been related to bet-hedging (Philippi & Seger, 1989),  343 

and another role, partial buffering of deleterious expression levels until a genetic improvement is 344 

found. These oscillations resemble an evolutionary LRC-circuit rather than a capacitor as exhibited by 345 

other epigenetic mechanisms (Rutherford & Lindquist, 1998). In this LRC-circuit, ‘evolutionary 346 

potential energy’ is stored by noise as a capacitor. Upon discharge due to e.g. environmental shock, 347 

much of the potential energy is absorbed by transgenerational feedback into the inductor representing 348 
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noise as a buffer, though at a loss which the feedback cannot fully compensate (the resistance R). After 349 

a rescuing mutation, energy returns to the capacitor. It must be noted that in this analogy, the 350 

resonance frequency of oscillations is not set by the components but by external, environmental time 351 

scales, unlike in electronics. 352 

To determine whether the theoretical expectations hold in realistic circumstances, we constructed 353 

distributions of fitness effects (DFE) for non-neutral point mutations, indels and duplications. This was 354 

done by simulating a representative pool of synthetic fitness landscapes based on our fits of 355 

experimentally determined landscapes in (Keren et al., 2016), and combining these with experimental 356 

distributions of mutational effects (DME) on mean protein expression (e.g. (Hodgins-Davis et al., 357 

2019b)). In particular, the rare (~0.5%) non-neutral point mutations best revealed the possible roles of 358 

noise. 359 

Firstly, the feedback turns out to play only a small role for smoothing the portion of the fitness 360 

landscape that is accessible on the short-term and thus for shaping the target size of non-neutral 361 

mutations. Secondly, the feedback has a notable influence on mitigating the deleterious effect of noise, 362 

namely reduction of fitness. The feedback recovers most of the reduction the instant variation of 363 

protein dosage generates, and is even more important (~87% mitigation) for essential genes. The 364 

feedback is therefore realistically pivotal for surviving fitness valleys, particularly for essential genes. 365 

  366 

Finally, its diverse roles position noise in important historical evolutionary contexts, see Figure 6. By 367 

neutral theory (Kimura, 1983), certain genetic diversity can already be expected by random drift 368 

without a significant phenotype penalty, such that there are multiple dark blue dominant genotypes. 369 

Moreover, because of bet hedging (Philippi & Seger, 1989), suboptimal genotypes are maintained for 370 

more diversity that may become relevant further along adaptation. In addition, feedback mitigates 371 

fitness penalties, which allows more genotypes to be maintained than expected. Complementary to 372 

this genotypic diversity is the phenotypic diversity generated by instant variation, as light through a 373 
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divergent lens, which reflects back to the optimal phenotype by the feedback as through a parabolic 374 

mirror. The phenotypic variation upon environmental perturbation (Figure 6B) allows time for more 375 

permanent, genetic changes to set in (the Baldwin effect (Simpson, 1953)) that mimic the temporarily 376 

generated phenotype. 377 

In this view, the continuous reinforcement of the best phenotype through inheritance of acquired copy 378 

numbers by transgenerational feedback provides a mechanism for Waddington’s canalization 379 

(Waddington, 1942), the driver for genetic assimilation (Loison, 2019; Waddington, 1953). Before the 380 

perturbation, the canalization allows for cryptic genotypical diversity and/or lowers the cost of bet-381 

hedging. After the perturbation, the feedback recanalizes the system to the optimum phenotype as 382 

the feedback continuously acts on the population. In this way, noise is key in various, complementary 383 

evolutionary frameworks. 384 

Ideas and speculation 385 

Our observations from the simulated DFEs can provide an alternative view on how hub genes emerge. 386 

Hubs have many interactors, and often correlate with essentiality (H. Yu et al., 2004), suggesting that 387 

strongly connected components become difficult to displace. However, it is possible to invert this 388 

causal relation. Due to fitness landscape smoothing by noise, which is theoretically maximal when the 389 

fitness drop as function of expression is highest as in essential genes, noise automatically generates 390 

many non-neutral expression mutations in essential genes (also in our simulations, see Figure 3-figure 391 

supplement 2). It is known that many mutations that affect expression in one gene can actually have 392 

their origin in mutations of other genes (Duveau et al., 2021). Therefore, a relatively large non-neutral 393 

mutation pool is indicative of a large number of proteins that affect expression of our essential genes, 394 

i.e. a large non-neutral pool may involve many interactors. Therefore, essential genes may naturally 395 

become hubs by their predisposition for numerous genetic interactions. This provides an unexpected 396 

alternative view on how essentiality and connectivity are thought to relate to the evolutionary rate 397 

(Fraser, Hirsh, Steinmetz, Scharfe, & Feldman, 2002). In the aforementioned paper the authors 398 
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propose that connectivity and evolutionary rate correlate by coevolution, and this correlation is not 399 

mediated by mutant fitness effects. However, the fitness effect can set the interactivity rather than 400 

being the intermediate. 401 

Moreover, if we combine this alternative essentiality-hub causality with the long-term selection for 402 

lower noise in these sharp landscapes (Keren et al., 2016), this would translate to a push towards less 403 

interactions for essential genes with sharp landscapes. This leads to a reduction of complexity and 404 

concordantly, an increase in modularity. The latter is commonplace in nature with multiple theorized 405 

origins (Wagner, Pavlicev, & Cheverud, 2007), and selection on noise can be one more source. 406 

Therefore, another role for noise may surface through the linkage of noise and genetic architecture. 407 

 408 

Materials and methods 409 

MEN-model fits on fitness landscapes from literature 410 

We considered the fluorescence values for different promoters and original fits from (Keren et al., 411 

2016) in glucose conditions. We related observed fluorescence to known WT dosage by dividing all 412 

fluorescence data from the synthetic promoters by the median ratio of fluorescence under 413 

endogenous expression and copy numbers from (Kulak et al., 2014). This was only possible for 73 of 414 

the 81 landscapes. Data at zero expression was supplemented by an essential gene data set, consisting 415 

of the null mutants in yeast strain background S288c from SGD (Cherry et al., 2012) (date of access 01-416 

08-2019). 417 

Fitting model values of λmax/2 (with λmax being our population growth factor per generation in Equation 418 

3) to the observed landscapes was performed in Matlab R2016a (as are all calculations throughout this 419 

paper) using the native fminsearch to minimize the sum of squared residuals. For essential genes, the 420 

fitness according to the definition of (Keren et al., 2016) at zero expression was set at 0, although any 421 

value below 1 would represent an essential gene here. However, setting the fitness at 0 works well to 422 
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correctly match modelled (non-)essentiality and actual (non-)essentiality 92% of the time. For the 423 

calculation of the adjusted R-squared of the fits of (Keren et al., 2016), essentiality data is excluded, as 424 

it was not considered in that paper. 425 

Fitting parameters c, k and d and V were restricted to 0 to ∞, -10 to 10, 0 to 2 and 0.1 to 1 (the latter 426 

as feasible range in (Chong et al., 2015)) respectively. We note that this V only has relevance in the 427 

context of these fits, as it represents an effective noise originating from the various synthetic 428 

promoters combined. Fits are then further fine-tuned with the Matlab’s R2016a fit function, where the 429 

restrictions on k are fully relaxed to also provide k with a (67%) confidence interval. 430 

 431 

Simulation of representative DFEs 432 

To generate the DFE as a function of background fitness, we first create a representative gene pool 433 

based on the model fits from the 61 fitness landscapes of (Keren et al., 2016) whose fits quality 434 

improved the original fits from that paper. Within the class of essential and non-essential genes 435 

separately, we resample new progeny shapes from random combinations of fitted model parameters 436 

c, k and d. As can be inferred from Appendix 1-figure 1C, essential genes (with large effect of deletions) 437 

constitute a relatively large part of the data set and we correct for this bias. This yields a balance 438 

between various fitness landscapes at shown in Figure 3-figure supplement 1B such that approximately 439 

19% (Giaever et al., 2002) of all combinations corresponds to essential gene profiles (5000 simulated 440 

genes in total except for Appendix 1-figure 3). We also assume fitness at WT expression is at >95% of 441 

the maximal value, such that WT is relatively optimized, and then normalize all fitness values for that 442 

gene to the value at WT expression. By setting different values for cycle time T (between -50% and 443 

~+5% relative to WT) and randomly assigning a noise level drawn from (Chong et al., 2015), we 444 

generate simulated fitness landscapes as function of expression, where background fitness is then 445 

defined as the fitness at WT expression at the various cycle times. For Figure 3, Figure 3-figure 446 

supplement 2 and Figure 5-figure supplement 1B, the absolute mutational fitness effects considered 447 
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are compared to the background fitness of each respective scenario (instant variation + feedback, only 448 

feedback or no noise), otherwise background fitness with instant variation and feedback is assumed. 449 

To convert these landscapes to DFEs, we transform for point mutations the expression axis to mutation 450 

frequency using the DME data from (Hodgins-Davis et al., 2019a, 2019b). After converting the observed 451 

counts to a density by normal kernel density smoothing, we interpret the control distributions as point-452 

spread functions blurring the real mutation distributions. We then retrieve the latter by Lucy-453 

Richardson deconvolution (Fish, Brinicombe, Pike, & Walker, 1995), as applied in Matlab’s deconvlucy 454 

of the observed mutation distributions. Using 201 uniform samples of the average DME, we obtain the 455 

DFE by expression mutants, as a function of background fitness. DMEs of the indels and duplications 456 

are trivially only non-zero at zero and twice the WT expression. 457 

We then consider the DFEs for the three scenario’s: with/without noise (instant variation + feedback) 458 

where fitness follows from equations 3 and SI.8, and with feedback suppressed (SI.12). To avoid 459 

singularities in the calculation of the cumulative distribution function, we set zero and infinite noise 460 

values to 10-20 and 1020 respectively instead. 461 

 462 

Essentiality and interactions 463 

Essential gene data is from the SGD Project (Cherry et al., 2012), date of access 1 August 2019, 464 

interactions data from BioGRID (Stark et al., 2006), date of access 3 February 2022. As our interactions 465 

of interest are genetic, we consider the number of interacting proteins per protein of interest for which 466 

a genetic but not a physical interaction exists. The essential genes are those genes that yield inviability 467 

with a null mutations in a S288C background. 468 

 469 

 470 
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 670 

Figure 1 Overview of the generation-based MEN-population model for adaptive epistasis under 671 

influence of expression noise. (A) Conceptual view of (sign) epistasis between two genes, whose 672 

gene products can be in a low or high dosage. Starting at high dosages, the first adaptive step always 673 

reduces fitness, but must precede the second step to yield an overall superior fitness. The number 674 

of cells in this cartoon depicts the fitness of that state. (B) Model description of progeny g from an 675 

individual cell as function of a single protein dosage X following a Hill curve, in this case illustrated 676 

for an essential gene product. Two states symmetric to the tipping point concentration c in the curve 677 

can be identified: low or high dosage. The progeny in the worst state is defined as gl, in the best state 678 

as gh.  Parameters d and k determine the depth and steepness of the Hill curve. (C) When protein is 679 

expressed in one burst per cell cycle (in amount x), cells can switch states stochastically each cycle 680 

with probabilities following the cumulative distribution function Fe to switch dosage states. Fl and 1-681 

Fh are the respective chances to switch from the high to low state or vice versa. Probabilities depend 682 

on mean expression level µ and expression coefficient of variation (noise level) V. (D) Graphical 683 

overview of the minimal epistasis-noise (MEN-) model concerning a population of cells that once per 684 
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cycle time T can stochastically switch between two protein dosage states (high/low, represented by 685 

dots) before division. The right-most patch denotes an optional addition to the MEN-model, where 686 

inheritance of dosage is suppressed by resetting the population dosage distribution.  687 

 688 

 689 

Figure 2 Two fitness landscape types with structurally and temporarily viable regimes, with and 690 

without feedback. Landscapes are given as heat maps plots as function of relative expression µ 691 

(scaled by tipping point concentration c) and noise level V. Blue to light green colors denote the log 692 

of relative fitness ωr, whereas the yellow to purple colors denote how many generations a 693 

population of 106 cells is expected to survive. The two regimes are separated by a black line. All plots 694 

assume a gamma cdf Fe, essential and toxic genes have |k|=105 and d=0. For completeness, noise 695 

levels below the feasible range in (Chong et al., 2015), where 99.8% of genes falls in 0.1<V<1, are 696 

plotted, with values below the discontinuity in the viability edge approximated. Color maps from 697 

(Smith, Walt, & Firing, 2015). 698 

 699 
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 700 

Figure 3 Role of noise on fitness effects of point mutations, indels and duplications. (A) Workflow 701 

for generating modelled distribution of fitness effects (DFE) from MEN-model fits of literature fitness 702 

landscapes. The fits on landscapes of (Keren et al., 2016) (with expression scaling from (Kulak et al., 703 

2014)) and noise levels from (Chong et al., 2015), fuel construction of a representative gene pool. 704 

For one gene at a time, mutations (proxies for point mutations, indels/loss-of-function mutations, 705 

and duplications) are imposed while also varying background fitness to mimic different stages in 706 

adaptation. This yield simulated DFEs as function of background fitness for various mutation types. 707 

(B) Percentage of non-neutral mutations in the DFEs for the aforementioned mutation types. Marker 708 

symbols denote the case with instant variation and feedback, only instant variation and no noise. 709 

 710 

 711 

Figure 4 Viability effects of transgenerational feedback. (A) Division of effects of feedback on viability 712 

for non-neutral point mutations. (B) Generations to extinction for non-neutral point mutations when 713 

the colony is not structurally viable despite feedback. 714 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 2, 2022. ; https://doi.org/10.1101/2022.06.29.498068doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498068
http://creativecommons.org/licenses/by-nc/4.0/


32 
 

 715 

 716 

Figure 5 Fitness penalty mitigation by transgenerational feedback. (A) Heat map denoting the 717 

frequency (color coded) of non-neutral point mutations with a fitness penalty associated to instant 718 

variation by expression noise and a certain mitigation level of feedback. Dashed line denotes average 719 

values. (B) The same plot as in (A), only for essential genes. 720 

 721 
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 722 

Figure 6 Roles of noise, including transgenerational feedback, in adaptive processes. (A) In addition 723 

to the genetic diversity permitted by neutral theory, noise generates phenotypic diversity, for 724 

example to prime bet-hedging, during low selective conditions. The instant variation acts as a 725 

diverging lens from the genotype plane, which is later refocused onto the phenotype plane through 726 

the epigenome acting as a parabolic reflector by making use of transgenerational feedback. This 727 

reflection corresponds to a canalization mechanism. (B) After perturbation, the transgenerational 728 

feedback as a proper canalization mechanism refocuses the GP-path in the direction of the optimal 729 
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phenotype. Further genetic adaptation occurs by making use of the enhanced bet-hedging 730 

possibilities from panel (A), and if needed the Baldwin effect to consolidate adaptation. 731 

 732 

 733 

Figure 1-figure supplement 1 Five cumulative distribution functions for fixed V (at 0.4), as function 734 

of expression per cycle, rescaled to the mean expression. Horizontal axis ticks indicate the low and 735 

high states in the MEN-model. 736 
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 738 

Figure 2-figure supplement 1 Two fitness landscape types with structurally viable regimes, with and 739 

without feedback. Landscapes are given as heat maps plots as function of relative expression µ 740 

(scaled by tipping point concentration c) and noise level V (from 0 to 1, which covers 99.8% of the 741 

genes in  (Chong et al., 2015)). Blue to light green colors denote the log of relative fitness ωr, All plots 742 

assume a gamma cdf Fe, |k|=3 and d=0.8. 743 
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 745 

Figure 2-figure supplement 2 Theoretical effect of transgenerational feedback on smoothing of 746 

fitness landscapes in the MEN-model. (A) Example fitness landscape to illustrate the definition of 747 

landscape width as expression range for which fitness falls between 10% and 90% of the maximum 748 

for a given noise level V and progeny difference between the high and low state. (B) Ratio of widths 749 

between the cases with and without feedback. We assume a gamma cdf Fe,, and |k|=15, a typical 750 

fitted value fitted (see Appendix 1-figure 1C). 751 

 752 

 753 
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 754 

Figure 3-figure supplement 1 Workflow for generating modelled distribution of fitness effects (DFE) 755 

from MEN-model fits of literature fitness landscapes.(A) Construction of the large simulated gene 756 

pool with corresponding fitness landscapes, based on MEN-model fits of landscapes of (Keren et al., 757 

2016) (with expression scaling from (Kulak et al., 2014)) and noise levels from (Chong et al., 2015). 758 

Displayed empirical fitness landscape examples are selected for good coverage across 0 to 2 WT 759 

expression levels for instructive purposes. This panel uses the mean progeny per cycle as fitness 760 

definition as in (Keren et al., 2016) instead of Equation 3. (B) Fractions of simulated fitness 761 

landscapes in the categories: essential (zero fitness at zero expression), mildly beneficial (viable 762 
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across expression range, but better at high expression, with fitness rise > 0.05), neutral (maximum 763 

fitness differences across expression range < 0.05), mildly toxic (viable across expression range, but 764 

better at low expression, with fitness rise > 0.05) and toxic (inviable at high expression). (C) 765 

Construction of the DFEs as function of background fitness using the distribution of mutational 766 

effects on expression (DME) for promoter mutations re-analyzed from (Hodgins-Davis et al., 2019a, 767 

2019b). Neutral (fitness effect < 4e-3 as a proxy for non-significance based on the experimental 768 

resolution in (Johnson, Martsul, Kryazhimskiy, & Desai, 2019)) and non-viable mutations are 769 

removed from the DFE, which is smoothened only here for visualization. Background fitness values 770 

are binned, ranging from 0.75 to 1.05. 771 

 772 

 773 

Figure 3-figure supplement 2 Influence of essentiality on mutational effects. Bars represent the ratio 774 

between the percentage of non-neutral mutations in essential and non-essential genes, for 775 

simulated point mutations, indels and duplications as in Figure 3. 776 
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 778 

Figure 5-figure supplement 1 Effects of noise and feedback on mutational returns of duplications. 779 

The heat map denotes the frequency (color coded) of non-neutral duplications with a fitness penalty 780 

associated to instant variation by expression noise and a certain mitigation level of feedback. Dashed 781 

line denotes average values. The same duplication DFE is considered as in Figure 3. 782 
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 784 

Appendix 1-figure 1 MEN-model validation and assessment of fitted fitness landscapes.(A) Goodness 785 

of fit of the MEN-model compared to the original fits of (Keren et al., 2016) on the associated fitness 786 

landscapes. (B) MEN=model fit estimate of the effective noise of all promoters combined from the 787 

landscapes for which the MEN-model improves the fits and noise level (coefficient of variation) 788 

estimates of (Chong et al., 2015) are available. (C) Fitness drop between states plotted against the 789 

parameter k, color coded with the literature noise values (Chong et al., 2015) (converted to ranks). 790 

No color for marker filling is given when for this gene no noise estimate was available (then only 791 
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black edges and error bars, 67% confidence intervals) or when the model fit is worse than the 792 

original. 793 

 794 

 795 

Appendix 1-figure 2 Effects on noise on the mean and standard deviation of the DFE. Fits are 796 

performed on the standard deviations of simulated DFEs as function of background fitness, with 797 

instant variation and feedback, instant variation alone and without noise. Positive slopes represent 798 

increasing returns (A) or noisier (B) returns as background fitness increases. Fits follow from 799 

weighted least squares (WLS) on the mean or standard deviation bootstrapped per 0.025 800 

background fitness bin, with weights as the reciprocal of the variance of the bootstrap values. DFEs 801 

and DMEs considered are for the point mutations, indels and duplications as in Figure 3, only 802 

disregarding lethal mutations for more appropriate comparison to the experimental reference value 803 

from (Johnson et al., 2019), relevant for indel DFEs. 804 

 805 
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 806 

Appendix 1-figure 3 Effects of noise on mutational returns when assuming linear scaling between 807 

log noise level and log expression (log V / log µ = -0.27) mimicking observations in the low expression 808 

regime from (Keren et al., 2015). Mutational pool is 500 instead of 5000 genes, but otherwise no 809 

changes are made in the workflow compared to Appendix 1-figure 2A (for panel A) and Figure 3 810 

(other panels). (A) Fits on the mean of simulated DFEs as function of background fitness, with instant 811 

variation alone, with instant variation and feedback, and without noise. Negative mean slopes 812 
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represent diminishing returns. Fits follow from weighted least squares (WLS) on the mean 813 

bootstrapped per 0.025 background fitness bin, with weights as the reciprocal of the variance of the 814 

bootstrap values. (B) Percentage of non-neutral mutations in the DFEs for the DMEs considered. 815 

Marker symbols denote the case with instant variation and feedback, only instant variation and no 816 

noise. (C) Division of effects of feedback on viability for non-neutral point mutations. (D) Generations 817 

to extinction for non-neutral point mutations when the colony is not structurally viable despite 818 

feedback. (E) Heat map denoting he frequency (color coded) of non-neutral point mutations with a 819 

fitness penalty associated to instant variation by expression noise and a certain mitigation level of 820 

feedback. Dashed line denotes average values. (F) The same plot as in (E), only for essential genes. 821 

 822 

Appendix 823 

Model implementation details 824 

For our model, we assume a constant size for all cells, and hence no dilution. We turned to data from 825 

(Chong et al., 2015), where many proteins in yeast were tagged with GFP such that the protein 826 

distribution across the population could be determined. By examining the coefficients of variation, 827 

which we define as noise level V, we get an indication on whether the noise levels on gene products 828 

are gene specific or have common noise sources, such as dilution. The floor value of V, which links to 829 

the common sources is 0.1, while the typical V (median) is 0.2. Using a crude root-mean-square 830 

decomposition of V suggests the common sources as dilution are typically only responsible for 25% of 831 

the noise, so idiosyncratic noise contributions dominate. 832 

Additionally, we assume no degradation of proteins. To see how stringent this assumption is, we 833 

assessed the degradation in several model systems. In E. coli, there is no noticeable degradation for 93 834 

to 98% of the proteome (Nagar et al., 2021). In Schizosaccharomyces pombe and S. cerevisiae, 835 

degradation is not a factor for protein abundancy for around 85% of the proteins (Christiano, Nagaraj, 836 
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Fröhlich, & Walther, 2014). Finally, we note that for C. elegans, the generation time for the 837 

multicellular organism is on the scale of the typical protein half-life (Dhondt et al., 2017; Muschiol, 838 

Schroeder, & Traunspurger, 2009). This suggests that protein degradation is important for roughly half 839 

the proteins. In conclusion, explicitly ignoring degradation is inconsequential for the standard microbes 840 

but may become a factor for higher order organisms. 841 

Furthermore, we simplify protein states to two discrete states to maximize analytical tractability. The 842 

rationale is that the effect of stochasticity in the model is already incorporated as soon as there is more 843 

than one state. Moreover, as shown further on most empirical fitness landscapes of (Keren et al., 2016) 844 

are consistent with one or two protein states with distinct progeny levels (see Appendix 1-figure 1A). 845 

The natural concentration scale that we can use to define the states is the tipping point concentration 846 

c in the Hill progeny curve from Equation 1. Ideally, we define the state symmetrically around c and as 847 

equally spaces as possible. However, the halving of the concentrations upon generating the progeny 848 

and the need to revert to the same states every cycle limits our choice of binning. As a compromise, 849 

we set our high and low state to X=2c/3 and X=0 respectively before protein production and to X=4c/3 850 

and X=2c/3 respectively after production. The relevant progeny, after production, is then the Hill curve 851 

from Equation 1 evaluated at X=4c/3 and X=2c/3, so for the high and low state gh and gl respectively: 852 

 

⎩
⎨

⎧𝑔𝑔ℎ ≡ 𝑔𝑔(4𝑐𝑐 3⁄ ) = 𝑑𝑑 +
2 − 𝑑𝑑

1 + (4/3)−𝑘𝑘

𝑔𝑔𝑙𝑙 ≡ 𝑔𝑔(2𝑐𝑐 3⁄ ) = 𝑑𝑑 +
2 − 𝑑𝑑

1 + (2/3)−𝑘𝑘

 (SI.1) 

Sometimes, the progeny-protein scaling assumption can be justified from the bottom-up, such as in 853 

the case of polarity establishment in S. cerevisiae. There, polarity success, which is essential for cell 854 

division, depends in an almost binary fashion on Cdc42p concentration (Brauns et al., 2020). In such a 855 

case, the progeny function also classifies as a mesotype (Daalman, Sweep, & Laan, 2021). 856 

Due to the stochastic protein production of X, a cell can switch between protein occupancy state with 857 

every cycle. We define the cumulative distribution function (cdf) for random variable x, the added 858 
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protein per cycle, as Fe(x; µ, V), with µ as the average production per cycle and V as the coefficient of 859 

variation, or noise level, of the protein production per cycle. We only consider the probability values 860 

of the two state transitions from the high state (before production) to the low state or low state to low 861 

state, which can be defined as Fl and Fh respectively. This is because the other two transitions simply 862 

follow from noting the probability to end in any state starting from the high (or low) state is trivially 1. 863 

To end in the low state from the high state (at X=2c/3), the production x may not exceed 2c/3, 864 

otherwise the total ends in the high bin again (at X=4c/3). Similarly, to end in the low state from the 865 

low state (at X=0), the production x may not exceed 4c/3, otherwise the total ends in the high bin again 866 

(at X=4c/3). Therefore, the probabilities Fh and Fl are given by: 867 

 �𝑃𝑃
(𝑥𝑥 ≤ 2𝑐𝑐 3⁄ ) = 𝐹𝐹𝑒𝑒(2𝑐𝑐 3⁄ ;𝜇𝜇,𝑉𝑉) ≡ 𝐹𝐹𝑙𝑙

𝑃𝑃(𝑥𝑥 ≤ 4𝑐𝑐 3⁄ ) = 𝐹𝐹𝑒𝑒(4𝑐𝑐 3⁄ ; 𝜇𝜇,𝑉𝑉) ≡ 𝐹𝐹ℎ
 (SI.2) 

where the mean µ depends implicitly on the cycle time; if the cycle time is longer, the mean increases 868 

and the probabilities to reach the high state after production are higher. 869 

Concretely, the precise values of Fh and Fl depend on the choice of the distribution for the cdf. Figure 870 

1-figure supplement 1 shows the cdfs for five different choices, including the gamma cdf, which is a 871 

sensible choice for modeling the production. A gamma distribution follows from adding exponential 872 

random variables, the latter being suitable to model protein numbers from expression bursts (see 873 

(Friedman, Cai, & Xie, 2006), motivated therein by experiments in references (Cai, Friedman, & Xie, 874 

2006; J. Yu, Xiao, Ren, Lao, & Xie, 2006)). In short, we see that fixing the first two moments of the 875 

distribution is rather restrictive for the precise values of Fh and Fl, even for unbiological choices for the 876 

protein production cdf (such as a triangular cdf), except for the Pareto distribution. Therefore, our 877 

model results are not sensitive to the choice of cdf, unless the real distribution of the protein 878 

expression bursts are very far from expectation. 879 

 880 

 881 
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MEN-model fitness comparison with literature 882 

After n generations, the number of cells in each protein state is given by: 883 

 �
𝑓𝑓ℎ
𝑓𝑓𝑙𝑙
��
𝑡𝑡=𝑛𝑛𝑇𝑇

= 𝑀𝑀𝑛𝑛𝑓𝑓|𝑡𝑡=0 (SI.3) 

If we decompose the initial state 𝑓𝑓|𝑡𝑡=0 into the eigenvectors v1 and v2 of M (with appropriate weights 884 

a1 and a2 , and λ1 and λ2 as the respective eigenvalues with λ1 ≥ λ2), then we have: 885 

 �
𝑓𝑓ℎ
𝑓𝑓𝑙𝑙
��
𝑡𝑡=𝑛𝑛𝑇𝑇

= 𝑀𝑀𝑛𝑛(𝑎𝑎1𝑣𝑣1 + 𝑎𝑎2𝑣𝑣2) = 𝑎𝑎1𝜆𝜆1𝑛𝑛𝑣𝑣1 + 𝑎𝑎2𝜆𝜆2𝑛𝑛𝑣𝑣2 (SI.4) 

After sufficient generations, only the term with the largest eigenvalue remains, so:  886 

 �
𝑓𝑓ℎ
𝑓𝑓𝑙𝑙
��
𝑡𝑡=𝑛𝑛𝑇𝑇

= 𝑎𝑎1𝜆𝜆1𝑛𝑛𝑣𝑣1 = 𝜆𝜆1
𝑡𝑡/𝑇𝑇𝑎𝑎1𝑣𝑣1 = 2log2(𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚) 𝑡𝑡/𝑇𝑇𝑎𝑎1𝑣𝑣1 (SI.5) 

From this expression, we note the time to double the state occupancy is T/log2(λmax), so the fitness, 887 

which is the reciprocal of this time, becomes ω=log2(λmax)/T, the expression in equation 3. 888 

We can write the eigenvalues, of which we need the largest one for equation 3, as: 889 

 𝑀𝑀𝑓𝑓|𝑡𝑡=∞ = 𝜆𝜆𝑓𝑓|𝑡𝑡=∞ ⟹ (𝑀𝑀 − 𝜆𝜆𝜆𝜆)𝑓𝑓|𝑡𝑡=∞ = 0 (SI.6) 

This is routinely solved by setting det(𝑀𝑀 − 𝜆𝜆𝜆𝜆) = 0, which for a 2x2 system reduces to: 890 

 det(𝑀𝑀) − 𝑡𝑡𝑡𝑡(𝑀𝑀)𝜆𝜆 + 𝜆𝜆2 = 0 ⟹ 𝜆𝜆 =
𝑡𝑡𝑡𝑡(𝑀𝑀) ± �𝑡𝑡𝑡𝑡(𝑀𝑀)2 − 4 det(𝑀𝑀)

2
 (SI.7) 

The determinant can be written as: 891 

 det(𝑀𝑀) = 𝑔𝑔𝑙𝑙𝑔𝑔ℎ𝐹𝐹ℎ(1− 𝐹𝐹𝑙𝑙) − 𝑔𝑔𝑙𝑙𝑔𝑔ℎ𝐹𝐹𝑙𝑙(1− 𝐹𝐹ℎ) (SI.8) 
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Generally, the first term is larger than the second, as 𝐹𝐹ℎ > 𝐹𝐹𝑙𝑙  and thus also 1 − 𝐹𝐹𝑙𝑙 > 1 − 𝐹𝐹ℎ. Assuming 892 

relatively low noise levels (e.g. those found in S. cerevisiae where the median value is 0.2 (Chong et al., 893 

2015)), we can state 𝐹𝐹ℎ ≫ 𝐹𝐹𝑙𝑙  and 1 − 𝐹𝐹𝑙𝑙 ≫ 1 − 𝐹𝐹ℎ, and then we can approximate the determinant as 894 

 det(𝑀𝑀) ≈ 𝑔𝑔𝑙𝑙𝑔𝑔ℎ𝐹𝐹ℎ(1 − 𝐹𝐹𝑙𝑙) (SI.9) 

The largest eigenvalue is then: 895 

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 ≈
(𝑔𝑔ℎ(1− 𝐹𝐹𝑙𝑙) + 𝑔𝑔𝑙𝑙𝐹𝐹ℎ) + �(𝑔𝑔ℎ(1− 𝐹𝐹𝑙𝑙) + 𝑔𝑔𝑙𝑙𝐹𝐹ℎ)2 − 4𝑔𝑔𝑙𝑙𝑔𝑔ℎ(1 − 𝐹𝐹𝑙𝑙)𝐹𝐹ℎ

2
 896 

=
(𝑔𝑔ℎ(1− 𝐹𝐹𝑙𝑙) + 𝑔𝑔𝑙𝑙𝐹𝐹ℎ) + |𝑔𝑔ℎ(1− 𝐹𝐹𝑙𝑙) − 𝑔𝑔𝑙𝑙𝐹𝐹ℎ|

2
= 𝑚𝑚𝑎𝑎𝑥𝑥(𝑔𝑔ℎ(1− 𝐹𝐹𝑙𝑙),𝑔𝑔𝑙𝑙𝐹𝐹ℎ) (SI.10) 

Combining this result with equation 3 yields equation SI.11, provided that there is sustainable growth 897 

to define fitness (𝜔𝜔𝑟𝑟 > 0): 898 

 𝜔𝜔𝑟𝑟 = 𝜔𝜔𝑇𝑇 = log2 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = log2 𝑚𝑚𝑎𝑎𝑥𝑥(𝑔𝑔ℎ(1− 𝐹𝐹𝑙𝑙),𝑔𝑔𝑙𝑙𝐹𝐹ℎ ,  1) (SI.11) 

Interestingly, we note a corollary with the fit function in (Keren et al., 2016), which the authors 899 

employed to fit their empirical fitness landscapes. Their fit function consists of a product of two 900 

sigmoids (from (Chechik et al., 2008)), fitting a fitness which they defined as the number of progeny 901 

compared to WT, equating to λmax/2 in our model. We see in our expression for λmax the contours of 902 

the product of two sigmoids, g and F, only this time motivated from the bottom-up, and incidentally, 903 

with three free parameters less (4 instead of 7).  While the double sigmoid worked well for authors of 904 

(Keren et al., 2016) on their fitness landscapes, our model construction provides the insight why their 905 

fit function worked so well. 906 

 907 
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Strict non-negativity of transgenerational feedback effect on fitness 908 

Given suppression of feedback effectively resets the state vector 𝑓𝑓 to the same value at every iteration, 909 

the state equation 2 can be modified for the absence of transgenerational feedback as: 910 

The state equation for the case when feedback is suppressed can be written as: 911 

�
𝑓𝑓ℎ
𝑓𝑓𝑙𝑙
��
𝑡𝑡=𝑇𝑇

= �𝑔𝑔ℎ(1 − 𝐹𝐹𝑙𝑙) 𝑔𝑔ℎ(1− 𝐹𝐹ℎ)
𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙 𝑔𝑔𝑙𝑙𝐹𝐹ℎ

� �
𝑓𝑓ℎ,𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡
𝑓𝑓𝑙𝑙,𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡

��
𝑡𝑡=0

= 𝑀𝑀𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 912 

We define the 𝑓𝑓𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 as the state vector in equilibrium when there is no selection, so when gh=gl=2. In 913 

that case, λmax=2 as all cells produce two daughter cells: 914 

�2(1 − 𝐹𝐹𝑙𝑙) 2(1 − 𝐹𝐹ℎ)
2𝐹𝐹𝑙𝑙 2𝐹𝐹ℎ

� 𝑓𝑓|𝑡𝑡=∞ = 𝜆𝜆𝑓𝑓|𝑡𝑡=∞ ⟹ �1 − 𝐹𝐹𝑙𝑙 1 − 𝐹𝐹ℎ
𝐹𝐹𝑙𝑙 𝐹𝐹ℎ

� �
𝑓𝑓ℎ,𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡
𝑓𝑓𝑙𝑙,𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡

� = �
𝑓𝑓ℎ,𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡
𝑓𝑓𝑙𝑙,𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡

� 915 

⟹ (1 − 𝐹𝐹𝑙𝑙)𝑓𝑓ℎ,𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 + (1 − 𝐹𝐹ℎ)𝑓𝑓𝑙𝑙,𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 = 𝑓𝑓ℎ,𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 ⟹ (1 − 𝐹𝐹ℎ)𝑓𝑓𝑙𝑙,𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 = 𝐹𝐹𝑙𝑙𝑓𝑓ℎ,𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡    916 

⟹   
𝑓𝑓ℎ,𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡

𝑓𝑓𝑙𝑙,𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡
=

1 − 𝐹𝐹ℎ
𝐹𝐹𝑙𝑙

 917 

Then, analogously to the eigenvalue in the case of the standard MEN-model, we write the growth of 918 

the total population per generation in the case of feedback suppression: 919 

⟹
𝑓𝑓ℎ|𝑡𝑡=𝑇𝑇 + 𝑓𝑓𝑙𝑙|𝑡𝑡=𝑇𝑇
𝑓𝑓ℎ,𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡 + 𝑓𝑓𝑙𝑙,𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡

=
𝑔𝑔ℎ(1− 𝐹𝐹𝑙𝑙)(1 − 𝐹𝐹ℎ) + 𝑔𝑔ℎ(1 − 𝐹𝐹ℎ)𝐹𝐹𝑙𝑙 + 𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙(1− 𝐹𝐹ℎ) + 𝑔𝑔𝑙𝑙𝐹𝐹ℎ𝐹𝐹𝑙𝑙

1 − 𝐹𝐹ℎ + 𝐹𝐹𝑙𝑙
 920 

 𝜆𝜆−𝑡𝑡𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓𝑘𝑘 =
𝑔𝑔ℎ − 𝑔𝑔ℎ𝐹𝐹ℎ + 𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙

1 − 𝐹𝐹ℎ + 𝐹𝐹𝑙𝑙
 (SI.12) 

We compare this to the growth (eigenvalue) in the standard MEN-model case (including feedback): 921 

𝜆𝜆 =
𝑡𝑡𝑡𝑡(𝑀𝑀) ± �𝑡𝑡𝑡𝑡(𝑀𝑀)2 − 4 det(𝑀𝑀)

2
 922 

We can show that this 𝜆𝜆 is always at least as large as (𝑔𝑔ℎ − 𝑔𝑔ℎ𝐹𝐹ℎ + 𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙) (1 − 𝐹𝐹ℎ + 𝐹𝐹𝑙𝑙)⁄ . In that case, 923 

the following identity must hold: 924 
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𝑡𝑡𝑡𝑡(𝑀𝑀) + �𝑡𝑡𝑡𝑡(𝑀𝑀)2 − 4 det(𝑀𝑀)
2

≥
𝑔𝑔ℎ − 𝑔𝑔ℎ𝐹𝐹ℎ + 𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙

1 − 𝐹𝐹ℎ + 𝐹𝐹𝑙𝑙
 925 

⟹�𝑡𝑡𝑡𝑡(𝑀𝑀)2 − 4 det(𝑀𝑀) ≥ �2
𝑔𝑔ℎ − 𝑔𝑔ℎ𝐹𝐹ℎ + 𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙

1 − 𝐹𝐹ℎ + 𝐹𝐹𝑙𝑙
− 𝑡𝑡𝑡𝑡(𝑀𝑀)� 926 

The left-hand side must be larger than zero, as 𝜆𝜆 must be real. If 2 𝑡𝑡ℎ−𝑡𝑡ℎ𝐹𝐹ℎ+𝑡𝑡𝑙𝑙𝐹𝐹𝑙𝑙
1−𝐹𝐹ℎ+𝐹𝐹𝑙𝑙

− 𝑡𝑡𝑡𝑡(𝑀𝑀) ≤ 0, then 927 

the identity holds. When 2 𝑡𝑡ℎ−𝑡𝑡ℎ𝐹𝐹ℎ+𝑡𝑡𝑙𝑙𝐹𝐹𝑙𝑙
1−𝐹𝐹ℎ+𝐹𝐹𝑙𝑙

− 𝑡𝑡𝑡𝑡(𝑀𝑀) > 0, it is not immediately clear the identity holds. 928 

We need to check this case, where we can square both sides of the identity without flipping the ≥ 929 

sign: 930 

𝑡𝑡𝑡𝑡(𝑀𝑀)2 − 4 det(𝑀𝑀) − �2
𝑔𝑔ℎ − 𝑔𝑔ℎ𝐹𝐹ℎ + 𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙

1 − 𝐹𝐹ℎ + 𝐹𝐹𝑙𝑙
− 𝑡𝑡𝑡𝑡(𝑀𝑀)�

2

≥ 0 931 

𝑔𝑔ℎ𝑔𝑔𝑙𝑙(𝐹𝐹𝑙𝑙 − 𝐹𝐹ℎ)− �
𝑔𝑔ℎ − 𝑔𝑔ℎ𝐹𝐹ℎ + 𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙

1 − 𝐹𝐹ℎ + 𝐹𝐹𝑙𝑙
�
2

+
𝑔𝑔ℎ − 𝑔𝑔ℎ𝐹𝐹ℎ + 𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙

1 − 𝐹𝐹ℎ + 𝐹𝐹𝑙𝑙
(𝑔𝑔ℎ − 𝑔𝑔ℎ𝐹𝐹𝑙𝑙 + 𝑔𝑔𝑙𝑙𝐹𝐹ℎ) ≥ 0 932 

Placing terms under the same denominator: 933 

𝑔𝑔ℎ𝑔𝑔𝑙𝑙(𝐹𝐹𝑙𝑙 − 𝐹𝐹ℎ)(1− 𝐹𝐹ℎ + 𝐹𝐹𝑙𝑙)2 − (𝑔𝑔ℎ − 𝑔𝑔ℎ𝐹𝐹ℎ + 𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙)2 + (𝑔𝑔ℎ − 𝑔𝑔ℎ𝐹𝐹ℎ + 𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙)(𝑔𝑔ℎ − 𝑔𝑔ℎ𝐹𝐹𝑙𝑙 + 𝑔𝑔𝑙𝑙𝐹𝐹ℎ)(1− 𝐹𝐹ℎ + 𝐹𝐹𝑙𝑙)
(1 − 𝐹𝐹ℎ + 𝐹𝐹𝑙𝑙)2

 934 

≥ 0 935 

When analyzing first the numerator alone, we see many terms cancel out: 936 

𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙 + 𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙𝐹𝐹ℎ2 + 𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙3 − 2𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙𝐹𝐹ℎ + 2𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙2 − 2𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙2𝐹𝐹ℎ − 𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹ℎ − 𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹ℎ3 937 

−𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙2𝐹𝐹ℎ + 2𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹ℎ2 − 2𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙𝐹𝐹ℎ + 2𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙𝐹𝐹ℎ2 − 𝑔𝑔ℎ2 − 𝑔𝑔ℎ2𝐹𝐹ℎ2 − 𝑔𝑔𝑙𝑙2𝐹𝐹𝑙𝑙2 + 2𝑔𝑔ℎ2𝐹𝐹ℎ − 2𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙 938 

+2𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙𝐹𝐹ℎ + 𝑔𝑔ℎ2 − 𝑔𝑔ℎ2𝐹𝐹𝑙𝑙 + 𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹ℎ − 𝑔𝑔ℎ2𝐹𝐹ℎ + 𝑔𝑔ℎ2𝐹𝐹ℎ𝐹𝐹𝑙𝑙 − 𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹ℎ2 + 𝑔𝑔𝑙𝑙𝑔𝑔ℎ𝐹𝐹𝑙𝑙 − 𝑔𝑔𝑙𝑙𝑔𝑔ℎ𝐹𝐹𝑙𝑙2 + 𝑔𝑔𝑙𝑙2𝐹𝐹𝑙𝑙𝐹𝐹ℎ 939 

−𝑔𝑔ℎ2𝐹𝐹ℎ + 𝑔𝑔ℎ2𝐹𝐹𝑙𝑙𝐹𝐹ℎ − 𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹ℎ2 + 𝑔𝑔ℎ2𝐹𝐹ℎ2 − 𝑔𝑔ℎ2𝐹𝐹ℎ2𝐹𝐹𝑙𝑙 + 𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹ℎ3 − 𝑔𝑔𝑙𝑙𝑔𝑔ℎ𝐹𝐹ℎ𝐹𝐹𝑙𝑙 + 𝑔𝑔𝑙𝑙𝑔𝑔ℎ𝐹𝐹ℎ𝐹𝐹𝑙𝑙2 − 𝑔𝑔𝑙𝑙2𝐹𝐹𝑙𝑙𝐹𝐹ℎ2 + 𝑔𝑔ℎ2𝐹𝐹𝑙𝑙 940 

−𝑔𝑔ℎ2𝐹𝐹𝑙𝑙2 + 𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹ℎ𝐹𝐹𝑙𝑙 − 𝑔𝑔ℎ2𝐹𝐹ℎ𝐹𝐹𝑙𝑙 + 𝑔𝑔ℎ2𝐹𝐹ℎ𝐹𝐹𝑙𝑙2 − 𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹ℎ2𝐹𝐹𝑙𝑙 + 𝑔𝑔𝑙𝑙𝑔𝑔ℎ𝐹𝐹𝑙𝑙2 − 𝑔𝑔𝑙𝑙𝑔𝑔ℎ𝐹𝐹𝑙𝑙3 + 𝑔𝑔𝑙𝑙2𝐹𝐹𝑙𝑙2𝐹𝐹ℎ 941 

= 2𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙𝐹𝐹ℎ2 − 2𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙𝐹𝐹ℎ + 2𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙2 − 2𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙2𝐹𝐹ℎ − 𝑔𝑔𝑙𝑙2𝐹𝐹𝑙𝑙2 + 𝑔𝑔ℎ2𝐹𝐹ℎ𝐹𝐹𝑙𝑙 + 𝑔𝑔𝑙𝑙2𝐹𝐹𝑙𝑙𝐹𝐹ℎ − 𝑔𝑔ℎ2𝐹𝐹ℎ2𝐹𝐹𝑙𝑙 942 
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−𝑔𝑔𝑙𝑙2𝐹𝐹𝑙𝑙𝐹𝐹ℎ2 − 𝑔𝑔ℎ2𝐹𝐹𝑙𝑙2 + 𝑔𝑔ℎ2𝐹𝐹ℎ𝐹𝐹𝑙𝑙2 + 𝑔𝑔𝑙𝑙2𝐹𝐹𝑙𝑙2𝐹𝐹ℎ 943 

= 𝐹𝐹𝑙𝑙�2𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹ℎ2 − 2𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹ℎ + 2𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙 − 2𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹𝑙𝑙𝐹𝐹ℎ − 𝑔𝑔𝑙𝑙2𝐹𝐹𝑙𝑙 + 𝑔𝑔ℎ2𝐹𝐹ℎ + 𝑔𝑔𝑙𝑙2𝐹𝐹ℎ − 𝑔𝑔ℎ2𝐹𝐹ℎ2 − 𝑔𝑔𝑙𝑙2𝐹𝐹ℎ2 − 𝑔𝑔ℎ2𝐹𝐹𝑙𝑙944 

+ 𝑔𝑔ℎ2𝐹𝐹ℎ𝐹𝐹𝑙𝑙 + 𝑔𝑔𝑙𝑙2𝐹𝐹𝑙𝑙𝐹𝐹ℎ� 945 

= 𝐹𝐹𝑙𝑙(𝐹𝐹ℎ − 𝐹𝐹𝑙𝑙)�2𝑔𝑔ℎ𝑔𝑔𝑙𝑙𝐹𝐹ℎ − 2𝑔𝑔ℎ𝑔𝑔𝑙𝑙 + 𝑔𝑔𝑙𝑙2 − 𝑔𝑔𝑙𝑙2𝐹𝐹ℎ + 𝑔𝑔ℎ2 − 𝑔𝑔ℎ2𝐹𝐹ℎ� 946 

= 𝐹𝐹𝑙𝑙(𝐹𝐹ℎ − 𝐹𝐹𝑙𝑙)(1− 𝐹𝐹ℎ)�𝑔𝑔ℎ2 − 2𝑔𝑔ℎ𝑔𝑔𝑙𝑙 + 𝑔𝑔𝑙𝑙2� = 𝐹𝐹𝑙𝑙(𝐹𝐹ℎ − 𝐹𝐹𝑙𝑙)(1 − 𝐹𝐹ℎ)(𝑔𝑔ℎ − 𝑔𝑔𝑙𝑙)2 947 

The identity to prove thus reduces to: 948 

𝐹𝐹𝑙𝑙(𝐹𝐹ℎ − 𝐹𝐹𝑙𝑙)(1 − 𝐹𝐹ℎ)(𝑔𝑔ℎ − 𝑔𝑔𝑙𝑙)2

(1 − 𝐹𝐹ℎ + 𝐹𝐹𝑙𝑙)2
≥ 0 949 

We can see this will always hold, as 𝐹𝐹ℎ > 𝐹𝐹𝑙𝑙 > 0. The equality is only obtained when the progeny 950 

landscape is flat (𝑔𝑔𝑙𝑙 = 𝑔𝑔ℎ) or when there is no noise (𝐹𝐹𝑙𝑙 = 𝐹𝐹ℎ), or at least effectively no noise to use 951 

for switching of states (𝐹𝐹𝑙𝑙 = 0 or 1 − 𝐹𝐹ℎ = 0). 952 

 953 

Theoretical fitness landscapes 954 

Figure 2 demonstrated the fitness landscapes for the two extreme cases of an essential and toxic gene. 955 

However, many genes fall in between these two cases (Figure 3-figure supplement 1B). Therefore, 956 

Figure 2-figure supplement 1 shows the fitness landscapes for mildly beneficial and mildly toxic genes, 957 

and with and without transgenerational feedback. In any case, we see how noise smoothens the 958 

landscape. 959 

Additionally, to illustrate how the landscape is smoothened for realistic landscapes, we consider the 960 

landscape sharpness that we typically encounter from MEN-model fits on empirical landscapes of 961 

(Keren et al., 2016) (see Appendix 1-figure 1C). We define a width to represent the smoothing as the 962 

expression range spanning 10% to 90% of the fitness transition between the worst and best state (see 963 

in Figure 2-figure supplement 2A). This width will differ with and without feedback, and the ratio of 964 
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widths between these two scenarios is plotted in Figure 2-figure supplement 2B for the possible 965 

landscape profile range from essential to toxic. 966 

 967 

Evaluation MEN-model fits on empirical fitness landscapes 968 

The literature fitness landscapes of (Keren et al., 2016) as measured through an array of artificial 969 

promoters equate to the values of λmax/2 as a function of mean expression µ. To avoid the problems 970 

with the negative values for fluorescence relating to WT expression in (Keren et al., 2016), we combine 971 

the empirical landscapes with WT protein numbers of (Kulak et al., 2014). Furthermore, we also add 972 

essentiality data from (Cherry et al., 2012). The MEN-model fits improve the original fits of (Keren et 973 

al., 2016) (metric R2) for 63% of the cases. Because our parsimonious approach only requires 4 974 

parameters (3 less than the original), adjusting our metric (Wherry, 1931) for this increase this 975 

percentages to 84% (see Fig. 2A). A similar percentage (85%) results from using the AIC (Akaike, 1974; 976 

Burnham & Anderson, 2004) as a metric. 977 

The success of fitting fitness functions based on simple, sigmoidal progeny functions also seems in line 978 

with another study on a subset of these landscapes done in (Schmiedel, Carey, & Lehner, 2019), where 979 

a noise decomposition was also performed. There, authors demonstrate two recurrent noise-mean 980 

expression relation underlie most fitness landscapes. The essential/(mildly) beneificlal and (mildly) 981 

toxic landscape types we describe in Figure 2 and Figure 2-figure supplement 1 are interpretable as 982 

the principal topologies authors describe. Together with the fit metrics, this inspires trust in our 983 

approach, and we proceed to generate our model prediction of a realistic epistatic pattern. 984 

Because the decomposition of observed fitness landscapes allows the decomposition into the progeny 985 

function and the noise component, we can also pose a different perspective to the observation that 986 

sharp fitness landscapes have lower noise levels (Keren et al., 2016). Remarkably, combining the fitted 987 

progeny sharpness k with noise levels that natively correspond to the respective genes (Chong et al., 988 

2015) does not show a significant correlation between the two (Spearman ρ = 0.08 (p-value 0.59), 989 
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N=40, see also Appendix 1-figure 1C). This test only includes genes with a known noise level in (Chong 990 

et al., 2015). No change in conclusion (Spearman ρ = -0.003 (p-value 0.99), N=24) follows by ignoring 991 

those 𝑘𝑘 with large uncertainties (67% confidence interval > 10), which are mainly caused by relatively 992 

flat progeny landscapes. This prompts the hypothesis that observing a sharp fitness landscape implies 993 

low noise, rather than selection necessarily sharpening the fitness landscape due to low noise. 994 

Moreover, we note that when we aggregate the noise of synthetic promoters used in (Keren et al., 995 

2016) into a single noise level parameter, fits on the associated landscapes indicate relative high noise 996 

(Appendix 1-figure 1B). Concretely, for these genes the median value is 0.68, almost three times as 997 

large compared to 0.24 of (Chong et al., 2015). While we stress this fit parameter indicate an effective 998 

noise with diverse contributions, this indicates care must be taken with direct interpretations of the 999 

landscapes of (Keren et al., 2016). In particular, fitness costs of mutations that change noise level will 1000 

otherwise be overestimated, as signaled by (Schmiedel et al., 2019), possibly contributing to the 1001 

discrepancy discussed in the previous paragraph. 1002 

 1003 

Construction of DFEs 1004 

The parameter pool of the MEN-model fits is transformed to a new pool to generate a synthetic 1005 

landscape pool (see Figure 3-figure supplement 1A). We removed the bias for essential genes (see 1006 

Figure 3-figure supplement 1B) and combine this with a distribution of mutational effects (Figure 3-1007 

figure supplement 1C) as described in Simulation of representative DFEs. An example of such a DFE as 1008 

function of background fitness is found in Figure 3-figure supplement 1C. 1009 

 1010 

Simulated DFE comparison to documented diminishing returns 1011 

To validate our simulated DFEs, we make use of the indel mutation type as our control. While removal 1012 

of noise is inconsequential for this type, literature is available for an experimental DFE in yeast 1013 
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(Johnson et al., 2019). This transposon insertion induced DFE should theoretically be fairly comparable 1014 

to our simulated indel DFE consisting of deletions of gene products. Yet, comparison with our 1015 

simulations requires some filtering on the mutations. Many mutations will be almost neutral to within 1016 

experimental resolution, In (Johnson et al., 2019),  64% of the mutations were deemed neutral, which 1017 

roughly means that measured relative fitness effects of at most 0.4% are considered as neutral, which 1018 

defines our neutrality threshold.  1019 

We then compare the slope of the observed diminishing returns pattern, a negative slope in mean 1020 

mutational return as a function of background fitness. Because of the experimental design of (Johnson 1021 

et al., 2019), we also exclude lethal mutations from our DFE, but only for the analyses on DFE statistics 1022 

as a function of background fitness. Our slope of the mean fitness effect as function of background 1023 

fitness is -0.29 (see Appendix 1-figure 2A), in reasonable accordance with figure 2E in (Johnson et al., 1024 

2019) where experimental slope for the mean is -0.18. By contrast, the slope in standard deviation of 1025 

the DFE is not so well fitted (see Appendix 1-figure 2B), and only the sign of the trend is correct. 1026 

 1027 

Supplemental DFE results 1028 

We had seen in Figure 3 that the feedback does not necessarily imply a larger non-neutral mutation 1029 

pool, even though this would have been possible theoretically (Figure 2). However, the landscape 1030 

smoothing is clearly more noticeable when comparing essential against non-essential genes, see Figure 1031 

3-figure supplement 2. There, we see for the different DFEs the effect of essential genes on the non-1032 

neutral mutation pool. Again, the effect of feedback on the smoothing is not pronounced. 1033 

Figure 5 had focused on the point mutations. Duplications are not lethal, only in a rare case without 1034 

feedback. Therefore, an analogous Figure 4 for duplication is not relevant, but an analogous Figure 5 1035 

is possible and shown in Figure 5-figure supplement 1. 1036 
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Incidentally, we note that empirically a negative correlation exists between (log) mean expression and 1037 

(log) noise level for certain expression levels (Bar-Even et al., 2006; Keren et al., 2015). Appendix 1-1038 

figure 3 shows the equivalent of Figure 3, Figure 4 and Figure 5, taking into account this negative 1039 

correlation. However, we notice that this correlation has a negligible influence on our conclusions. 1040 

Therefore, we consider for simplicity mutations that only change expression in the main text. 1041 

 1042 
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