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Abstract

It is complicated to identify cancer-causing mutations. The recurrence of a mutation in
patients remains one of the most reliable features of mutation driver status. However,
some mutations are more likely to happen than others for various reasons. Different
sequencing analysis has revealed that cancer driver genes operate across complex
pathways and networks, with mutations often arising in a mutually exclusive pattern.
Genes with low-frequency mutations are understudied as cancer-related genes, especially
in the context of networks. Here we propose a machine learning method to study the
functionality of mutually exclusive genes in the networks derived from mutation
associations, gene-gene interactions, and graph clustering. These networks have
indicated critical biological components in the essential pathways, especially those
mutated at low frequency. Studying the network and not just the impact of a single
gene significantly increases the statistical power of clinical analysis. The proposed
method identified important driver genes with different frequencies. We studied the
function and the associated pathways in which the candidate driver genes participate.
By introducing lower-frequency genes, we recognized less studied cancer-related
pathways. We also proposed a novel clustering method to specify driver modules in each
type of cancer. We evaluated each cluster with different criteria, including the terms of
biological processes and the number of simultaneous mutations in each cancer.
Materials and implementations are available at:
https://github.com/MahnazHabibi/Mutation Analysis

1 Introduction 1

The driving forces behind cancer are gene, nucleotide, and cellular structure changes. 2

Somatic cells can acquire mutations one or two orders of magnitude more quickly than 3

germline cells, making them more susceptible to different types of cancer [1]. The vast 4

majority of these mutations, called passenger, have little effect on cell proliferation 5

compared to a few driver mutations that give cells a selective advantage [2]. Mutations 6

can activate or deactivate proteins, and they can change a wide range of cellular 7

processes for different patients and types of cancer. This results in high intra- and 8

inter-tumor heterogeneity in biochemistry and histology, which may explain why some 9

cancers are resistant to treatment and make it more challenging to identify the events 10

that cause cancer [3–5]. 11

June 25, 2022 1/23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2022. ; https://doi.org/10.1101/2022.06.29.498062doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498062
http://creativecommons.org/licenses/by/4.0/


Next-generation sequencing technology has transformed the cancer genome study, 12

facilitating us to sequence whole-genome and find somatic mutations in millions of 13

cancer genomes. The Cancer Genome Atlas (TCGA), a publicly funded genomics 14

project, contains a collection of mutation profiles from thousands of patients for more 15

than 30 different types of cancer [6]. The recent mutation perspective demonstrates the 16

importance of specifying genes and their associated networks to detect the cancer driver 17

genes. Finding significantly mutated genes with high recurrent mutations can help us 18

better predict the course of cancer development and progression. These cancer-causing 19

driver genes are difficult to track down, and many of the mutations have not been 20

detected using existing methods datasets. Methodical studies have shown multiple new 21

genes and classes of cancer genes, respectively. They have also demonstrated that 22

despite some cancer genes being mutated with high frequencies, most cancer genes in 23

most patients arise with intermediate or low frequencies (2–20%). Therefore, a complete 24

record of mutations in this frequency class will be essential for identifying dysregulated 25

pathways and effective targets for therapeutic interference. Nevertheless, current studies 26

present significant gaps in our understanding of cancer genes with intermediate 27

frequency. For example, a study of 183 lung adenocarcinomas discovered that 15% of 28

patients missed even a single mutation influencing any of the 10 known hallmarks of 29

cancer, and 38% of patients had 3 or even fewer such mutations [7]. As a result, we 30

cannot capture a complete expression profile of all genes and subsets of genes that drive 31

the evolution and progression of cancer. Cancer genes tend to alter considerably in a 32

limited number of pathways, especially in pathways related to survival, cell division, 33

differentiation, and genomic preservation. Therefore, it is necessary to determine the 34

pathway-level importance of genes, even those genes mutated at low frequencies [8]. 35

Since mutually exclusive couples of genes usually share similar pathways, one 36

strategy for detecting these drivers is to explore for mutual exclusivity of changed genes. 37

However, we know that mutated genes seldom coexist in the same tumor, while only one 38

gene in a pathway is typically found to have a driver mutation in each patient [9]. This 39

situation may occur due to cancer pathways’ functional redundancy or synthetic 40

lethality. Typical examples of mutually exclusive driver mutations contain EGFR and 41

KRAS mutations in lung cancer [10] and TP53 and MDM2 mutations in 42

glioblastoma [6]. Based on this explanation, finding mutual exclusivity modules in 43

cancer needs to find important and more relevant genes, find the correlation between 44

them, and analyze them. Then this analysis needs statistical tests to identify network 45

modules demonstrating patterns of mutually exclusive genetic changes across multiple 46

patients [11]. As a new method, Mutex uses a large pathway model of human signaling 47

processes to explore groups of mutually exclusively changed genes that share a joint 48

downstream event [12]. 49

The main disadvantage of the current methods is that they need comprehensive 50

filtering of mutation data, which are restricted to the most significantly mutated genes 51

and concentrate on predefined network modules [13]. The mutual exclusivity signal may 52

be biased towards recognizing gene sets where most of the coverage comes just from 53

highly mutated genes [14,15]. Although cancer-related genes have been shown to be 54

involved in numerous pathways, few methods determine the important gene sets where 55

a gene has various mutually exclusive correlations with other genes in diverse pathways 56

at different mutation frequencies. We proposed a novel three-step method to identify 57

candidate driver gene sets with mutually exclusive mutations to find the mutually 58

exclusive mutation pattern more comprehensively. In the first step, the proposed 59

unsupervised machine learning method detects candidate driver genes. For this purpose, 60

we constructed a biological network corresponding to important cancer-related genes. 61

Then, we defined six informative topological and biological features for each gene as a 62

node in the network. We calculated the score for our predefined features for each gene. 63
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Afterward, we introduced the high-score genes with meaningful relationships to cancer 64

as candidates for more investigation. In the second step, we presented a network based 65

on the relationship between genes to identify the cancer-related clusters. We used the 66

information on physical, biological, and functional interaction between the high-score 67

candidate driver genes obtained in the first step to construct this network. In the last 68

step, we specify driver modules of different sizes with various cutoffs and importance and 69

the number of simultaneous mutations in each cancer, from the previous step clusters. 70

2 Materials and methods 71

In this section, we present a new three-step method for identifying driver genes and 72

modules in different types of cancer. In the first step, we proposed an unsupervised 73

machine learning method to recognize a set of candidate driver mutated genes associated 74

with different types of cancer. In this step, we used the information of different patients 75

(cases) with various types of cancer and their associated mutated genes to create a 76

weighted network of mutated genes. Then six informative topological features are 77

calculated for each gene as a node of the constructed network. We generated a feature 78

matrix for the set of candidate mutated genes X = [xij ]m×n that each xij component 79

represents the j-th feature for the i-th gene. Then we employed an unsupervised 80

learning method to calculate the appropriate scores for each of the predefined features. 81

Finally, our proposed method selects a set of genes with higher scores as a set of 82

mutated genes that contain valuable information. In the second step, we constructed a 83

network based on the relationship between genes to identify the cancer-related clusters. 84

We used the information on biological and functional interactions between the high-score 85

genes obtained in the first step to build this network. Then, we used a heuristic method 86

to cluster the constructed weighted network. The weight of each cluster is calculated 87

based on the average weight of the nodes of that cluster. The set of clusters with higher 88

weights is identified as the cancer-related clusters containing important information. In 89

the last step, in each cluster, we identified driver modules for each cancer based on the 90

number of cases in which the specific gene was mutated in different types of cancer. The 91

general workflow of the proposed method is illustrated in Figure 1. 92

2.1 Datasets 93

Identifying associated driver genes with different cancer types plays a significant role in 94

determining mutated driver modules. Therefore, the starting point is identifying 95

appropriate datasets to extract complete information about the somatic mutation, 96

corresponding protein-protein interaction (PPI), and biological process information. A 97

representative set of tumors and mutations were gathered from TCGA, on March 98

2022 [6]. We downloaded the information on the primary site and mutations for 12,792 99

cases. This dataset contains 576 mutated cancer genes and 15 major primary sites. We 100

used the PPI network from Habibi et al. (2021) [16]. This dataset contains the physical 101

interactions between proteins that are collected from the Biological General Repository 102

for Interaction Datasets (BioGRID) [17], Agile Protein Interactomes Data analyzer 103

(APID) [18], Homologous interactions (Hint) [19], Human Integrated Protein-Protein 104

Interaction reference (HIPPIE) [20] and Huri [21]. All of the proteins in this dataset are 105

mapped to a universal protein resource (UniProt) ID [22]. This interactome contains 106

20,040 proteins and 304,730 interactions. We also used the informative biological 107

processes related to each mutated gene that is gathered from the Gene Ontology 108

(GO) [23], to identify functional interactions between mutated cancer genes. 109

June 25, 2022 3/23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2022. ; https://doi.org/10.1101/2022.06.29.498062doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498062
http://creativecommons.org/licenses/by/4.0/


Fig 1. The workflow of the proposed method.

2.2 Construction of the mutation network 110

We introduced a mutation network based on 576 mutated cancer genes in this work. 111

Suppose that V = {g1, ..., gn} indicates the set of mutated cancer genes. Also, suppose 112

that C(gi) is the set of cases that contain a given mutation gene (gi). A weighted 113

mutation network G =< V,E, ω > was constructed by connecting two genes gi and gj if 114

and only if C(gi) ∩ C(gj) 6= ∅. The weight of edge gigj ∈ E which is denoted by ω(gigj) , 115

is defined as follows: 116

ω(gigj) =
|C(gi) ∩ C(gj)|

min{|C(gi)|, |C(gj)|}
.

A path between gi and gj is determined as a sequence of distinct nodes such that an 117

edge of G connects two consequent nodes. The weight of a path equals the sum of the 118

weights of edges in this path. The shortest path from node gi to node gj is a path 119

between two nodes with minimum weight. The weight of the shortest path between two 120

nodes gi and gj is denoted by dw(gi, gj). 121

2.2.1 Informative topological features for mutation network 122

We defined the following informative topological features for each node of the weighed 123

mutated network. 124

• Weight: The Weight of node gi on weighted graph G =< V,E, ω > as follows: 125

ω(gi) =
∑
gj∈V

ω(gigj). (1)
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• Closeness: The Closeness centrality measure is defined for each node, gi, as 126

follows: 127

C(gi) =
|V | − 1∑

gj∈V dw(gi, gj)
. (2)

• Betweenness: The Betweenness centrality measure is defined of each node gi on 128

network G as follows: 129

B(gi) =
∑

gjgk∈V

δgjgk(gi)

δgjgk
, (3)

whereδgjgkdenoted the weights of shortest paths between two nodes gi and gk and 130

δgjgk(gi) is indicated the weighs of shortest paths between two nodes gi and gk 131

pass through node gi. 132

• PageRank: The score for each node gi in the network is calculated based on all 133

the scores assigned to all nodes gj , which are connected iteratively as follows: 134

PR(gi) = (1− d) + d ∗ [
∑
gi 6=gj

ω(gigj)∑
gj 6=gk

ω(gjgk)
PR(gj)], (4)

where d is a parameter between 0 and 1. 135

• Eigenvector: The Eigenvector centrality measure is defined as the amount of 136

influence for a node gi in the network as follows: 137

EV (gi) =
1

λ

∑
gj∈V

ω(gigj)EV (gj), (5)

where λ is a constant. 138

• Entropy: Suppose that ω(gi) is the weight of node gi on weighted network 139

G =< V,E, ω >. The probability distribution vector Π =< π1, ..., π(|V |) > is 140

defined on set of all nodes of the network as follows: 141

πi =
ω(gi)∑

gi∈V ω(gi)
, (6)

Then, the entropy of weighted graph G is calculated as follows: 142

En(G) = −
|V |∑
i=1

πi log πi. (7)

We calculated the effect of each node gi on network entropy as follows: 143

ε(gi) = |En(G)− En(G\gi)| (8)

where G\gi is the weighted network that is constructed with respect to the 144

removal of node gi and its connected edges from the network. 145
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2.3 Machine learning method to select top mutated cancer 146

genes 147

Since the problem of selecting the set of mutated candidate driver cancer genes is still 148

an open question, it can be studied as a problem without an exact answer. Therefore, 149

we utilized an effective unsupervised feature selection method to determine an efficient 150

set of mutated cancer genes. Suppose that X = [xij ]m×n represents the feature matrix 151

and xij represents the j-th feature of the i-th sample (genes). We assigned a feature 152

vector −→pi =< xi1, ..., xin > to each sample and defined the column matrix 153

Fj = [x1j , ..., xmj ]
T for the j-th feature. To find an appreciated score for each feature, 154

we used the Laplacian Score for Feature Selection (LSFS) as an unsupervised machine 155

learning method as follows: 156

Suppose that S = [sij ]m×m indicates the weighted matrix where sij = e−
|−→pi−

−→pj |
2

t if 157

the euclidean distance between two feature vectors −→pi and −→pj is less than δ. Also, 158

suppose that D = [di]m×m is the diagonal matrix where di =
∑m

k=1 sik and L = D − S 159

is the Laplacian matrix. The Laplacian Score for each feature, j, is calculated as follows: 160

Lj =
F̃j

T
LF̃j

F̃j
T
DF̃j

, (9)

where J = [1, 1, .., 1]T and F̃j = Fj − Fj
TDJ

JTDJ
J . 161

Finally, we calculated the LS for each mutated cancer gene gi as follows: 162

LS(gi) =
m∑
i=1

xijLj . (10)

The algorithm to calculate Laplacian Score (LS) for each mutated cancer gene is 163

described in Algorithm 1. 164

2.4 Heuristic algorithm to identify specific modules for each 165

cancer type 166

A biological network is constructed as an undirect weighted graph G =< V, E ,W > 167

where the set of nodes V = {g1, . . . , gN} is the N top mutated cancer genes regarding 168

maximum LS values. Two mutated cancer genes gi and gj are connected through an 169

edge eij if they participate in the same biological process or if there is physical 170

interaction between them. The W(gi) represents the weight of the mutated cancer gene 171

with respect LS value. In the following, we present a heuristic algorithm MG to cluster 172

the weighted network G. Suppose that S ⊆ V is the subset of nodes in the network. The 173

neighborhood of S is defined as follows: 174

C(S) = {gi ∈ V − S|∃gj ∈ S; gigj ∈ E}

The MG algorithm first selects a node as a cluster. Then, the new cluster expands 175

by adding a new node to the cluster regarding the average LS value of the nodes in this 176

cluster and the LS values of adjacent nodes in the cluster. The MG algorithm adds a 177

new adjacent node to a cluster such that the node’s weight is greater than the average 178

weight of the cluster nodes. If the weight of all adjacent cluster nodes is less than the 179

average cluster weight, the MG algorithm adds an adjacent node with the highest 180

weight to the cluster with a small probability. The likelihood of reaching nodes with 181

smaller weights decreases as the number of nodes in the cluster increases. The MG 182

constructs a new cluster by selecting a new seed from the network nodes that have not 183

been placed in a cluster and then expanding this node to get a new cluster with the 184
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Algorithm 1 The Laplacian Score (LS) algorithm

Require: : Feature matrix X = [xij ]m×n
1: Let −→pi =< xi1, ..., xin > for each sample i
2: Let Fj = [x1j , ..., xmj ]

T for each feature j
3: for i⇐ 1 to m do
4: for j ⇐ 1 to m do
5: if |−→pi −−→pj | < δ then

6: sij = e−
|−→pi−

−→pj |
2

t

7: else
8: sij = 0
9: end if

10: end for
11: end for
12: S = [sij ]m×m
13: D = [di]m×m, where di =

∑m
k=1 sik

14: L = D − S
15: J = [1, 1, .., 1]T

16: for j ⇐ 1 to n do

17: F̃j = Fj − Fj
TDJ

JTDJ
J .

18: Lj =
F̃j

T
LF̃j

F̃j
T
DF̃j

19: LS(gi) =
∑m

i=1 xijLj

20: end for

Algorithm 2 MG algorithm

Require: : The weighted graph G =< V, E ,W >
Require: : The cluster S
1: while T < Tlow do
2: Find gi ∈ N(S) with maximum weight
3: if W(S) <W(gi) then
4: S = S ∪ gi
5: else
6: x = random(0, 1)
7: end if
8: if x < exp

(W(gi)−W(S)
T then

9: S = S ∪ gi
10: end if
11: T = 0.9 ∗ T
12: end while

maximum average weight of all nodes. The MG algorithm extends clusters to weighted 185

graphs described in Algorithm 2. 186

3 Results 187

3.1 Evaluation of high score selected genes based on Laplacian 188

Score 189

One of the significant challenges for existing methods is that they need extensive 190

filtering of mutation data, which is limited to the most significantly mutated genes and 191
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Fig 2. Cross-talk between mentioned signaling pathways in different types of cancer

focuses on predefined modules. Therefore, the mutual exclusivity signal can be biased 192

toward recognizing gene sets where most of the coverage comes from highly mutated 193

genes. Finding a new set of genes with essential properties, even if they have 194

moderately or infrequently mutated, leads us to some new informative modules. The 195

proposed unsupervised machine learning method selects a list of 200 mutated genes with 196

high scores through its predefined properties. Figure 2 shows the heat map of the 197

number of mutations for each gene in each cancer and the value of the associated LS for 198

these high-score genes. In Figure 2, we sorted 200 high-score genes based on the number 199

of their mutations in 15 different types of cancer. Genes with high LS are highlighted in 200

Figure 2. This figure contains some of the frequently mutated genes such as TP53, 201

FAT4, and KMT2C, and some of the infrequently mutated genes such as FSTL3, SSX2, 202

and MDS2. Since most recent studies have focused on frequently mutated genes, we also 203

studied the number of infrequently mutated genes with high LS in addition to the 204

frequently mutated genes. In the following, we present a list of these infrequently 205

mutated genes with high LS. 206

• Follistatin-like 3 (FSTL3) is expressed in normal human tissues. Increasing 207

evidence demonstrates that FSTL3 plays an essential role in regulating embryonic 208

evolution, osteogenesis, glucose, and lipid metabolism. Furthermore, FSTL3 was 209

found abundantly expressed in cell lung cancer and breast cancer and participates 210

in tumor progression, containing invasion and metastasis. FSTL3 is an 211

independent risk factor connected with the prognosis for different cancers [24]. 212
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• Recent studies demonstrate that Cytochrome c oxidase subunit 6c (COX6C) has a 213

particular association with breast cancer, esophageal cancer, thyroid tumors, 214

prostate cancer, uterine cancer, and melanoma. Several reports show that the 215

differential expression of COX6C is associated with predicting some tumors and is 216

expected to become one of the diagnostic markers of typical tumors [25]. 217

• Recent studies demonstrated that SSX2 induces aging in different cells, as 218

specified by classical aging features, including enlargement of the cytoplasm, cell 219

growth arrest, and DNA double-strand breaks. SSX proteins are expressed in 220

multiple types of tumors, such as 40% of melanomas and up to 65% of breast 221

cancers. The SSX family comprises nine similar members, most likely redundant 222

in their cellular functions [26]. 223

• LMO1 belongs to the family of LIM-only domain genes (LMOs). Some studies 224

have shown that LMO1 plays an essential role in the tumorigenesis of several 225

types of cancer, including leukemia, breast cancer, and neuroblastoma. The 226

author of [27] found that LMO1 was significantly over-expressed in non-small cell 227

lung cancer (NSCLC) samples relative to normal adjacent tissue and that 228

over-expression of LMO1 in NSCLC cells elevated cell proliferation, supporting an 229

oncogenic function in NSCLC. 230

• The TNF receptor superfamily member 17 (TNFRSF17) is a gene that encodes a 231

protein involved in B cell development and autoimmune response. This protein 232

also plays a role in activating NF-κB and MAPK8/JNK. Multiple types of 233

mutations in TNFRSF17 have been shown in endometrial cancer, intestinal 234

cancer, and skin cancer. On average, TNFRSF17 mutations are found in 0.50% of 235

all cancers; the most common types are colorectal, colon cancer, glioblastoma, 236

lung cancer, and malignant cancer melanomas [30]. 237

• The Programmed cell death 1 ligand 2 (PD-L2) is a gene that encodes a protein 238

that involves in the signal that is required for IFNG production and T-cell 239

proliferation. Multiple types of mutations in PD-L2 have been observed in 240

intestinal cancer, skin cancer, and stomach cancer. On average, PD-L2 mutations 241

are found in 0.83% of all cancers; the most common types are lung cancer, breast 242

invasive ductal carcinoma, colon cancer, urothelial bladder carcinoma, and 243

high-grade ovarian cancer [29]. 244

• POU5F1 is associated with the pluripotency and proliferative potential of ESCs 245

and germ cells. Previous studies have shown that POU5F1 plays a critical role in 246

maintaining the normal stem cell self-renewal process. Several studies have noted 247

the expression of POUF1 in human cancer cells such as breast cancer, ovarian 248

cancer, and melanoma. Moreover, recent studies revealed that POU5F1 expression 249

was significantly elevated in tumor tissues compared to non-cancerous tissues [31]. 250

• The high mobility group A1 (HMGA1) gene has an essential role in embryonic 251

development. Multiple studies have shown elevated HMGA1 expression in 252

malignant cancer such as breast cancer, lung cancer, colorectal cancer, and uterine 253

cancer. Collectively, these studies reveal that HMGA1 has an essential role in 254

tumorigenesis and tumor progression [32]. 255

• The Programmed death-ligand 1 (PD-L1), also known as CD274 on cancer cells, 256

contributes to cancer immune escape. The PD-1/PD-L1 axis is the major 257

speed-limiting step of the anti-cancer immune response for multiple cancer types. 258

On average, CD274 mutations are found in 0.96% of all cancers; the most common 259

types are breast cancer, gastric cancer, lung cancer, colon cancer, bladder cancer, 260

and prostate cancer [33]. 261
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• All cancers have genome instability as a hallmark. RMI2 is an important element 262

of the BLM-TopoIIIa-RMI1-RMI2 complex that supports genome stability. 263

Several studies have shown the upregulated expression of RMI2, which is caused 264

tumor progression in cervical cancer, lung cancer, and prostate cancer [34]. 265

• The MDS2 is a gene that encodes a protein that functions in the onset of 266

myelodysplastic syndrome (MDS). Multiple mutations in MDS2 have been shown 267

in breast and ovarian cancer. On average, MDS2 mutations are found in 0.09% of 268

all cancers; the most common types are breast cancer, appendix cancer, lung 269

cancer, and colon cancer [35]. 270

• Tropomyosin-receptor kinase fused (TFG) encodes a protein which is a maintained 271

regulator of protein secretion that controls the export of materials from the 272

endoplasmic reticulum. TFG belongs to the systems that control cell size and is 273

implicated in apoptosis and cell proliferation regulatory mechanisms. The TFG 274

fusion proteins play a role in oncogenesis, with the activity of TFG fusion proteins 275

promoting tumor development. Multiple mutations in TFG have been shown in 276

intestinal cancer, lung cancer, and stomach cancer. On average, TFG mutations 277

are found in 0.19% of all cancers; the most common types are breast cancer, colon 278

cancer, and lung cancer [36]. 279

• The U2AF1 encodes for a member of the spliceosome. This protein plays a vital 280

role in RNA splicing. Multiple mutations in U2AF1 can cause irregular expression 281

patterns of some genes affected in cancer pathogenesis. On average, U2AF1 282

mutations are found in 1.5% of all cancers; the most common types are acute 283

myeloid leukemia, colon cancer, and lung cancer [30]. 284

• The SRSF3 is a member Ser/Arg-rich (SR) proteins family. As a potential 285

diagnostic and prognostic biomarker, SRSF3 is overexpressed in various types of 286

cancer, including cancer of the breast, retinoblastoma, ovarian cancer, gastric 287

cancer, head and neck cell squamous, colorectal cancer, cervical cancer and 288

hepatocellular carcinoma (HCC). Recent studies also show SRSF3 upregulation in 289

mesenchymal tumors [37]. 290

• Previous studies showed that ATF1 plays a crucial role in carcinogenesis and 291

participates in multiple cellular processes, including cell transformation, cell cycle, 292

DNA damage, and apoptosis. ATF1 is overexpressed in various types of cancer, 293

including lymphomas, nasopharyngeal carcinoma, and melanoma. However, other 294

studies have shown that ATF1 acts as a tumor suppressor in breast and colorectal 295

cancer [38]. 296

• SDHC is a gene that encodes a protein as a part of succinate dehydrogenase. 297

Multiple types of mutations in SDHC have been observed in ovarian cancer and 298

pancreatic cancer. On average, SDHC mutations are found in 1.5% of all cancers; 299

the most common types are lung cancer, breast cancer, pancreatic cancer, colon 300

cancer, and bladder cancer [30]. 301

• HOXD11 is a member of HOX family, which encodes transcription factors that 302

control different physiological processes. Recent studies have shown that HOXD11 303

is involved in tumor development and helps control gene expression. Multiple 304

types of mutations and changes in expression in HOXD11 have been observed in 305

lung cancer, Oral Squamous Cell Carcinoma, prostate cancer, ovarian cancer, and 306

Head and Neck Squamous Cell Carcinoma. HOXD11 may also change cell growth, 307

clonality, and metastatic potential in Ewing sarcoma [39]. 308
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• The protein coded by the ZRSR2 gene plays a vital role in RNA splicing. Multiple 309

types of mutations in ZRSR2 have been observed in chronic myelomonocytic 310

leukemia and chronic lymphocytic leukemia. These mutations can drive abnormal 311

expression patterns of some genes involved in cancer pathogenesis. On average, 312

ZRSR2 mutations are found in 1.2% of all cancers; the most common types are 313

lung cancer, breast cancer, colon cancer, and ovarian cancer [30]. 314

3.1.1 Signaling pathways associated with high score genes 315

One of the effective strategies for finding appropriate therapeutic approaches for cancer 316

is identifying molecular pathways and specifying important genes in these pathways. 317

Finding a new set of infrequently mutated genes with important properties can identify 318

new pathways in different cancers and introduce them for further study. Therefore, we 319

looked into the signaling pathways related to these genes and presented more 320

information about them in Table1. We also studied the significant signaling pathways 321

associated with our 200 top-selected mutated cancer-related genes. Table 2 shows some 322

of the significant signaling pathways for these 200 top selected genes and the average 323

Laplacian Scores of the genes for each of these pathways. 324

1. hsa04068: FoxO signaling pathway 325

The first pathway with the highest score in Table 1 is the FoxO pathway. FoxO, 326

as a family of transcription factors (FoxOs), has a direct role in cellular 327

proliferation, oxidative stress response, and tumorigenesis. FoxOs are commonly 328

inactivated by phosphorylation by several protein kinases such as AKT and PKB. 329

The PI3K-Akt-FoxO signaling pathway has a significant role in various 330

physiological processes such as cellular energy storage, growth, and survival [44]. 331

One of the critical genes in this pathway that our algorithm has identified as a top 332

gene is the transcriptional repressor factor CTCF. Recent studies show the effect 333

of the CTCF factor on some cancers like prostate cancer by regulating the FoxO 334

pathway [45]. The CTCF downregulates, or inhibition also governs the FoxO 335

signal pathway and delays tumor growth. Therefore, the overexpression or genetic 336

modification of CTCF affects the regulation of the FoxO pathway. 337

2. hsa04015: MAPK signaling pathway 338

The second pathway is Mitogen-Activated Protein Kinase (MAPK). The cascade 339

of this pathway is a highly protected module that plays an essential role in 340

different processes such as cell proliferation, differentiation, and migration, and 341

any deviation from the precise control of this signaling pathway initiates many 342

diseases [46], including various types of cancer. This signaling pathway has 343

different signaling paths to the cell nucleus that the protein members of the 344

MAPK /ERK chain (or Ras-Raf-MEK-ERK) are recognized by our algorithm. 345

Studies show that the ERK signaling pathway plays a crucial role in 346

tumorigenesis, migration, and invasion [47]. 347

3. hsa04151: PI3K-Akt signaling pathway 348

The phosphatidylinositol 3-kinase-Protein Kinase-B (PI3K-AKT) plays an 349

important role in intracellular physiological regulation. Various oncogenes and 350

growth factor receptors stimulate this signaling pathway, such as MET, KIT, 351

EGFR, and ERBB3, which our algorithm recognizes. This signaling pathway also 352

contains important genes such as PI3K, PTEN, mTOR, and JAK, which our 353

algorithm recognizes. These gens induce cell proliferation, stem cell differentiation, 354

and tumor suppressors in metabolic regulation. Disruption of this pathway and 355

mutations in any of these genes can exhaust the cell of the natural process. This 356
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pathway is involved in cancer progression, and dysregulation of the PI3K pathway 357

can be crucial in the cancer process [48]. 358

4. hsa04014: Ras signaling pathway 359

One of the critical signaling pathways in cellular activity is the Ras signaling 360

pathway. Abnormal activation of Ras proteins (including RRAS2, MRas, HRas, 361

KRas, and NRas) is the primary stimulus of oncogenes that has an essential role 362

in the main signaling pathway in cancer. Mutations of Ras proteins such as KRas, 363

which our method recognizes, cause cancer development. Meantime, the mutation 364

in the regulatory ligands like EGFR and EGR, as other top mutated genes 365

identified by our algorithm, cause the activation of their downstream signaling 366

cascade [49]. 367

5. hsa04012: ERBB signaling pathway 368

The ERBB tyrosine kinase family members demonstrate some of the most 369

generally changed proteins in cancer. Anomalous tyrosine kinase activation via 370

gene alterations can cause tumorigenesis, tumor growth, and progression. This 371

signaling pathway also contains important genes such as PI3K, CBLB, mTOR, 372

and KRAS, which our algorithm recognizes. Oncogenic alterations of genes 373

encoding members of the ERBB family, leading to unusual ERBB signaling and 374

driving tumor growth, have been reported in different types of cancer, such as 375

breast, lung, and gastrointestinal cancers. Recent studies show that the ERBB 376

family’s signaling abnormalities and mutations are essential in escaping antitumor 377

immunity in the cell process [50]. 378

6. hsa04072: mTOR signaling pathway 379

Mammalian target of rapamycin (mTOR) participates in multiple signaling 380

pathways and controls cell proliferation, autophagy, and apoptosis. Studies show 381

that the mTOR signaling pathway is related to different diseases, such as various 382

types of cancer. This signaling pathway is often activated in tumors and plays an 383

essential role in tumor metabolism. Therefore, the mTOR signaling pathway 384

could effectively target through anti-tumor therapy studies [51]. 385

Figure 3 shows the cross-talk between all of these significant signaling pathways in 386

different types of cancer. 387

3.2 Evaluation of the proposed clusters based on Gene Ontology 388

To gain a better understanding of the biological function and physical interaction of the 389

genes in each cluster, we have performed an analysis of the GO term annotations of the 390

obtained clusters from our method with the help of the Database for Annotation, 391

Visualization, and Integrated Discovery (DAVID) [52]. Figure 4 shows significant GO 392

terms for each cluster resulting from DAVID. 393

The first cluster, the most important cluster, is obtained by expanding the TP53 394

gene with an average Laplacian Score of 360.58 for its genes, which contains TP53, 395

PTEN, ARID1A, APC, KMT2A, ERBB4, and CREBBP genes. The accumulation of 396

these genes is higher in the nucleoplasm and nuclear lumen region. These genes also 397

participate in various functions, including binding to nucleotide acid and catalytic 398

activity. From the above genes, genes such as ATP, PTEN, and TP53 have the function 399

of binding to protein kinases. These genes are active in many biological processes, some 400

mentioned in Figure 1 (a), including GO:0006915 ∼ apoptotic process and GO:0012501 401

∼ programmed cell death. 402
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Fig 3. Cross-talk between mentioned signaling pathways in different types of cancer

The second cluster is obtained by expanding the PIK3CA gene with an average 403

Laplacian Score of 320.75 for its genes, which contain PK3CA, KMT2D, ATM, EP300, 404

NCOR1, NSD1, and POLE genes. Most of these genes are concentrated in the 405

intracellular organelle lumen or cytoplasm, and all of them have an activity of 406

GO:0003676 ∼ nucleic acid-binding. These genes are involved in critical biological 407

processes such as GO:0001775 ∼ cell activation, GO:0048589 developmental growth, 408

and GO:0008219 ∼ cell death. Figure 1 (b) shows significant GO terms associated with 409

the genes of this cluster. 410

The third cluster is obtained by expanding the FAT1 gene with an average Laplacian 411

Score of 315.48 for its genes, which contains FAT1, FBXW7, MED12, POUF1, LMO1, 412

and SSX2 genes. All genes in this cluster are known as regulators of biological processes 413

and play a role in signal transmission. Figure 1 (c) shows significant GO terms 414

associated with the genes of this cluster. 415

The fourth cluster, the smallest cluster, is obtained by expanding the NF1 gene with 416

an average Laplacian Score of 301.88 for its genes, which contains NF1, PIK3R1, and 417

NOTCH1 genes. The accumulation of these genes is cytoplasm and an intracellular 418

membrane-bounded organelle. These genes are also involved in critical biological 419

processes such as GO:0016477 ∼ cell migration, GO:0048468 ∼ cell development, and 420

GO:0008219 ∼ cell death. Figure 1 (d) shows significant GO terms associated with the 421

genes of this cluster. 422

The fifth cluster, the largest cluster is obtained by expanding the KRAS gene with an 423

average Laplacian Score of 286.72 for its genes, which contains PIK3CA, KRAS, EGFR, 424

mTOR, ERBB3, PTCH1, KIT, MET, TSC1, CD274, PDCD1LG2 genes. These genes 425

are involved in critical biological processes such as GO:0002250 ∼ adaptive immune 426

response, GO:0008219 ∼ cell death, and GO:0042127 ∼ regulation of cell proliferation. 427

Figure 1 (e) shows significant GO terms associated with the genes of this cluster. 428

The sixth cluster is obtained by expanding the SETD2 gene with an average 429

Laplacian Score of 292.53 for its genes, which contains TP53, SETD2, RB1, CTCF, and 430

HMGA1 genes. These genes are involved in critical biological processes such as 431

GO:0042127 ∼ regulation of cell proliferation and GO:0007049 ∼ cell cycle. Figure 1 (f) 432
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Fig 4. Significant GO terms for each cluster.

shows significant GO terms associated with the genes of this cluster. 433

The seventh cluster is obtained by expanding the CREBBP gene with an average 434

Laplacian Score of 284.07 for its genes, which contain CREBBP, ZNF521, MECOM, 435

ATF1, SRSF3, ZRSR2, and U2AF1 genes. In this cluster, some genes such as ATF1, 436

SRSF3, and ZRSR2, have fewer mutations than other genes. These genes are involved 437

in critical biological processes such as GO:0048518 ∼ positive regulation of biological 438

process and GO:0048731∼ system development. Figure 1 (g) shows significant GO 439

terms associated with the genes of this cluster. 440

The last cluster is obtained by expanding the BRCA2 gene with an average 441

Laplacian Score of 300.52 for its genes, which contain ATM, BRCA2, EP300, CHD4, 442

and ATR genes. The accumulation of these genes is more in the chromosome and 443

cytoplasm regions and they are involved in critical biological processes such as 444

GO:0040007 ∼ growth and GO:0002376 ∼ immune system process. Figure 1 (h) shows 445

significant GO terms associated with the genes of this cluster. 446

3.3 Evaluation of the proposed mutated modules 447

In the previous subsection, we evaluated each of the proposed clusters. We showed that 448

each cluster participates in important biological processes such as cell proliferation, 449

migration, and cell growth. In this subsection, we evaluated the result of our method to 450
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Fig 5. The number of cases in each module in each cancer separately.

find the important modules for each cancer. We studied the genes in each cluster that 451

simultaneously have several mutations in multiple cases to find driver modules. Table 3 452

shows the set of modulated genes for each cancer. The first column of Table 3 shows the 453

module number corresponding to each cluster. The second column shows the 454

corresponding cluster number, and the third and fourth columns show the genes found 455

in more than 10% and less than 10% of the cases simultaneously. For example, among 456

1379 patients with breast cancer, 65 patients in cluster 2 had mutations in the NCOR1 457

gene. Of these 65 patients, 38 patients had mutations in NCOR1 and PIK3CA genes 458

simultaneously. Therefore, we have reported these two genes as a driver module of 459

breast cancer. The important point to finding the module in this section is that, like 460

previous studies, we have examined the number of simultaneous mutations in the most 461

significant number of cases. Genes with fewer mutations are expected to participate in 462

fewer modules. Therefore, if we want to see genes with fewer mutations in our modules, 463

we should define other criteria than the number of mutations. Figure 5 shows the 464

number of cases in the modules introduced by our algorithm in each cancer separately. 465

For example, corpus uteri cancer has modules in all clusters, and modules 3, 4, and 8 466

are found in more cases than the other five modules. 467

Conclusion and Discussion 468

New sequencing technologies and improving genomics data help us identify 469

cancer-related genes and modules in various cancers. Most previous studies focus on 470

using statistical methods to identify high-frequency mutation genes. Finding these 471

mutation genes is important in determining the cancer progression mechanism. The 472

critical point is that some critical genes do not have high mutation frequencies and can 473
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not be identified depending on the number of mutations and statistical techniques. In 474

this study, we used a machine learning method to find important cancer genes with 475

low-frequency mutations along with the driver genes with high-frequency mutations. 476

For this purpose, we presented a novel three-step method to identify driver gene sets 477

with mutually exclusive mutations. 478

In the first step, we extracted 576 cancer-related genes for 15 common cancers 479

reported on TCGA and constructed a weighted graph for the corresponding mutations 480

of these genes. The weight of the associated edge between two genes in this network is 481

based on the number of common cases that contain these mutated genes simultaneously. 482

Since the problem of finding candidate driver genes is still an open question, it can be 483

studied as a problem without an exact answer. We used an unsupervised learning 484

method to determine an efficient set of mutated cancer genes to find an appropriate 485

response to this question. We defined six informative features for each gene and 486

calculated the score for these features with the help of the mentioned unsupervised 487

machine learning method for each gene. Afterward, we introduced 200 high-score genes 488

with meaningful relationships to cancer as candidate genes for more investigation 489

(Figure 2). Our method proposed some genes, such as TP53, FAT4, and KMT2C, with 490

high-frequency mutations as high-score genes that are presented through other statistical 491

methods. In addition to these genes, our method also identified some genes, such as 492

FSTL3, SSX2, and MDS2, with low-frequency mutations. We briefly studied these 493

genes with low-frequency mutations and examined the association of each of these genes 494

with different types of cancer. In addition, we studied the KEGG signaling pathways of 495

the set of high-score genes. We also examined the roles of these high-score genes and 496

the effects of mutations and abnormalities of these genes in the proposed set of signaling 497

pathways in the different cellular processes such as proliferation and migration. 498

Genomic analysis of different types of mutation in genes indicates the mutation 499

heterogeneity problem. Genes should be accepted as a module rather than as 500

individuals in order to solve this heterogeneity issue. We used the knowledge of gene 501

binding in protein-protein interaction networks and the information on the biological 502

processes of each of these genes to detect the high-score genes and identify 503

cancer-stimulating modules with high accuracy. For this purpose, we created a network 504

based on information about the physical interactions of genes and the biological 505

processes of these genes. We added weight to each node of this network with the help of 506

the Laplacian Score. Then, we proposed a heuristic algorithm and clustered the network. 507

We introduced 8 top clusters with the highest Laplacian Score as cancer clusters from 508

these clusters. To better understand the biological function of the genes in each cluster, 509

we analyzed the GO term annotations of the genes for each cluster with the help of the 510

DAVID tool. Finally, we studied the genes in each cluster that simultaneously have 511

several mutations in multiple cases to find driver modules for each cancer separately. 512

It can be concluded that the methods that filtrate mutation data based on the most 513

mutated genes and pre-defined network modules may lose important information about 514

genes with a lower frequency of mutations. The mutual exclusivity signal may be biased 515

toward recognizing gene sets that have a large proportion of their coverage in highly 516

mutated genes. Although cancer-related genes have been shown to be involved in 517

numerous pathways, few methods have been developed to identify the candidate driver 518

gene sets with different mutation frequencies. We proposed a method to detect 519

candidate driver genes with varying mutation frequencies and showed their critical role 520

in cancer progression. 521
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Table 1. Signaling pathways related to infrequently mutated genes.

Gene name Signaling pathway

FSTL3

Ample FSTL3 expression promotes epithelial-mesenchymal transition (EMT) and
improves aerobic glycolysis to positively affect cancer cells’ invasive and metastatic
capacity by activating the β-Catenin pathway. Results of [24] show that FSTL3 could
be a bridging molecule in the crosstalk between HIPPO/YAP1 and Wnt/β-Catenin
pathways and that FSTL3 is an essential regulatory factor of the β-Catenin molecular
mechanisms in cancer. [24].

COX6C

The expression level of COX6C was remarkably up-regulated in different cancers such
as gastric and lung. It has been reported that overexpression of COX6C could promote
the proliferation and decrease the apoptosis of cancer cells through activation of the
oxidative phosphorylation pathway [25].

SSX2
It has been shown that the SSX proteins are activated in several critical mitogenic
pathways, such as MAPK and Wnt [26].

LMO1
Studies show that LMO1 promoted the proliferation, aggression and migration of
cancer cells by activation of NF-κB pathway [40].

TNFRSF17
Recent studies show that overexpression of TNFRSF17 in cells activates the MAPKs
pathway, specifically JNK and p38 kinase, NF-κB , and Elk-1 [28].

PD-L2
Studies show the potential role of PD-L2 in regulating some pathways involved in
cancer cell aggressiveness. They showed the modulation of ERK and Akt/PKB
pathways are considered through PD-L2 [29].

POU5F1
Results of [31] demonstrate that IGF-IR/IRS-1/PI3K/AKT/GSK3β cascade-mediated
regulation of POU5F1 and construction of β-catenin/POU5F1/SOX2 complex is
essential for the retention of the self-renewal and tumorigenicity in cancer [31].

HMGA1

Recent studies show that HMGA1 s a critical transcription factor involved in multiple
biological pathways, such as the TNF-α/NF-κB, EGFR, Hippo, Ras/ERK, Akt,
Wnt/beta-catenin and PI3-K/Akt pathways. In all of these pathways, HMGA1 targets
various downstream genes [32].

PD-L1

PD-1/PD-L1 pathway regulates the induction and maintenance of immune tolerance
within the tumor microenvironment. Recent studies show that PD-L1 is involved in
multiple essential pathways, such as PI3K/AKT, MAPK, JAK/STAT, WNT, and
NF-κB pathways [33].

RMI2
Results of KEGG enrichment analysis indicated that RMI2 was significantly associated
with the p53 signaling pathway [34].

MDS2

Recent studies show that knockdown of SPAG6 significantly increased the apoptosis
of MDS cells by inducing the activation of tumor suppressor genes, such as p53 and
PTEN. SPAG6 knockdown induced autophagy via the AMPK/mTOR/ULK1 signaling
pathway in MDS2 cells, and inhibiting autophagy decreased SPAG6 knockdown-
mediated apoptosis [35].

TFG
Recent studies show that TFG is involved in the NF-κB and MAPK pathways, and
activation of MAPK pathway occurs in various cancers, and the NF-kB pathway is
essential in inhibition of apoptosis and treatment resistance in cancers [36].

U2AF1
The KEGG pathway enrichment analysis results showed that U2AF1 was involved in
several biological pathways, such as FoxO and PI3K/Akt signaling pathways [41].

SRSF3
Recent studies show that SRSF3 as an oncogene manipulates various cell functions
by regulating many pathways, such as p53, JNK, Ras, Wnt, and HER2 signaling
pathways [37].

ATF1
Recent studies showed that ATF1 activates a subset of genes related to apoptosis,
Wnt, TGF-β, and MAPK pathways, and these consequences could increase the risk of
various cancers [?].

SDHC
Recent studies showed that SDH activity has a significant role in regulating oncogenic
signaling pathways, such as those associated with NF-κB [42].

HOXD11
Recent studies showed that HOXD11 is involved in various cancer-related signaling
pathways such as cell cycle, DNA replication, ECM receptor interaction, and focal
adhesion [39].

ZRSR2
Recent studies showed that ZRSR2 is involved in various cancer-related signaling
pathways, such as TLR signaling pathway [43].
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Table 2. Significant signaling pathways with the high average LS.

Signaling pathway Ave. LS No. gene

hsa04068: FoxO signaling pathway 314.4 10
hsa04010: MAPK signaling pathway 308.8 15
hsa04151: PI3K-Akt signaling pathway 302.3 20
hsa04014: Ras signaling pathway 299.7 16
hsa04012: ERBB signaling pathway 295 10
hsa04072: mTOR signaling pathway 290.8 9
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Table 3. A set of obtained important modules for each cancer separately.
Cancer type No. Modules No. Clusters Genes Mutated in > 10% cases Genes Mutated in < 10% cases

Bladder

Module 1 Cluster 1 TP53, PTEN ARID1A
Module 2 Cluster 2 KMT2D, EP300
Module 5 Cluster 5 PIK3CA, ERBB3
Module 6 Cluster 6 TP53, RB1
Module 8 Cluster 8 EP300 ATM

Brain

Module 1 Cluster 1 TP53 PTEN
Module 2 Cluster 2 KMT2D POLE
Module 3 Cluster 3 FAT1, FBXW7
Module 4 Cluster 4 NF1, PIK3R1
Module 5 Cluster 5 EGFR PIK3CA
Module 6 Cluster 6 SETD2, RB1 HMGA1

Breast

Module 1 Cluster 1 TP53, PTEN ARID1A
Module 2 Cluster 2 PIK3CA NCOR1
Module 4 Cluster 4 NF1, PIK3R1
Module 5 Cluster 5 PIK3CA KRAS,
Module 6 Cluster 6 TP53 SETD2

Lung

Module 1 Cluster 1 TP53, PTEN, ARID1A
Module 2 Cluster 2 KMT2D, ATM,
Module 3 Cluster 3 FAT1, FBXW7
Module 4 Cluster 4 NF1, NOTCH1
Module 5 Cluster 5 KRAS, EGFR SDHC
Module 6 Cluster 6 TP53, RB1
Module 8 Cluster 8 ATM EP300

Cervix uteri
Module 1 Cluster 1 PTEN, ARID1A
Module 2 Cluster 2 PIK3CA, EP300
Module 3 Cluster 3 FAT1, FBXW7

Colon

Module 1 Cluster 1 TP53, PTEN
Module 2 Cluster 2 POLE KMT2D
Module 5 Cluster 5 KRAS PIK3CA,
Module 6 Cluster 6 SETD2 TP53
Module 7 Cluster 7 CREBBP ATF1
Module 8 Cluster 8 ATM, EP300,CHD4

Corpus uteri

Module 1 Cluster 1 PTEN, ARID1A, KMT2A TP53, ERBB4
Module 2 Cluster 2 PIK3CA, KMT2D, NSD1, POLE ATM
Module 3 Cluster 3 FAT1, FBXW7
Module 4 Cluster 4 NF1, PIK3CA
Module 5 Cluster 5 PIK3CA, mTOR, ERBB3, PTCH1 EGFR, KIT, MET, TSC1
Module 6 Cluster 6 SETD2, RB1, CTCF TP53
Module 7 Cluster 7 CREBBP ATF1
Module 8 Cluster 8 CHD4 ATM

Esophagus
Module 1 Cluster 1 TP53, ARID1A
Module 2 Cluster 2 KMT2D, ATM PIK3CA
Module 5 Cluster 5 KRAS PIK3CA

Kidney Module 1 Cluster 1 TP53, PTEN

Liver
Module 1 Cluster 1 TP53, ARID1A
Module 6 Cluster 6 TP53, SETD2

Ovary
Module 1 Cluster 1 TP53, KMT2A
Module 6 Cluster 6 TP53 SETD2

Pancreas
Module 1 Cluster 1 TP53 ARID1A
Module 5 Cluster 5 KRAS PIK3CA

Skin

Module 1 Cluster 1 TP53, PTEN
Module 2 Cluster 2 KMT2D, ATM
Module 3 Cluster 3 POUSF1, SSX2
Module 6 Cluster 6 TP53, SETD2

Stomach

Module 1 Cluster 1 TP53, PTEN ARID1A, ERBB4
Module 2 Cluster 2 PIK3CA, KMT2D, ATM
Module 4 Cluster 4 NF1, PIK3R1
Module 5 Cluster 5 PIK3CA, KRAS, TSC1
Module 7 Cluster 7 CREBBP, ZNF512
Module 8 Cluster 8 ATM, CHD4, ART

Uterus
Module 1 Cluster 1 TP53, PTEN
Module 2 Cluster 2 PIK3CA, KMT2D
Module 7 Cluster 7 ZNF512 ZRSR2
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