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Abstract 

Multistep protein-protein interactions underlie most biological processes, but their 

characterization through methods such as isothermal titration calorimetry (ITC) is largely 

confined to simple models that provide little information on the intermediate, individual steps. 

We examine the hub protein LC8, which binds to disordered regions of 100+ client proteins in a 

wide range of stoichiometries. Despite evidence that LC8 binds clients cooperatively, prior ITC 

thermodynamic analyses have relied on models that do not accommodate allostery, and 

furthermore do not account for critical uncertainties in analyte concentrations. To characterize 

allostery in a more rigorous fashion, we build on existing Bayesian approaches to ITC to 

quantify thermodynamic parameters for multi-step binding interactions impacted by significant 

uncertainty in protein concentration. Notably, we account for a previously unrecognized intrinsic 

ambiguity in concentrations in standard binding models and clarify how this ambiguity impacts 

the extent to which binding parameters can be determined in cases of highly uncertain analyte 

concentrations. Our approach is applicable to a host of multi-step binding interactions, and we 

use it to investigate two systems. First, we deeply examine 2:2 LC8 binding and find it to be 

significantly positively cooperative with high confidence for multiple clients. Building on 

observations in the LC8 system, we develop a system-agnostic ‘phase diagram’ calculated from 

synthetic data demonstrating that certain binding parameters intrinsically inflate parameter 

uncertainty in ITC analysis, independent of experimental uncertainties. Second, we study 2:2 

binding between the dynein intermediate chain and binding protein NudE, where in contrast, we 

find little evidence of allostery. 

 

Introduction 

Intracellular processes frequently depend on complex, multistep interactions between proteins 

or between protein and small-molecule ligands (1– 3). The hub protein LC8 provides an 

extreme example of binding complexity, accommodating over 100 client proteins via two 

symmetrical binding grooves (4, 5) – often binding in multivalent fashion with a range of 

stoichiometries (6–10). LC8 is found throughout the eukaryotic cell, and involved in a host of cell 

functions, with client proteins including transcription factors (7, 9), tumor suppressors and 

oncogenes (11, 12), viral proteins (13–15), and cytoskeletal proteins (6, 16).  

Structurally, LC8 forms a small 20 kDa homodimer (Fig. 1a), with two identical binding 

grooves formed at the dimer interface (4, 5). These binding sites induce a beta-strand structure 

in a well-characterized linear motif anchored by a TQT amino acid sequence within disordered 

regions of client proteins (6, 9). Despite extensive studies (9, 16, 17), the mechanisms and 
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thermodynamics of LC8 binding are still not fully understood, due to the difficulty of 

deconvoluting a multiplicity of microscopic states in its complex binding processes.  

 While usually fit to a simple model, LC8-client binding is likely impacted by allostery. The 

first evidence indicating allosteric behavior arose from nuclear magnetic resonance (NMR) 

titrations of peptides with LC8. A partially bound intermediate was detected half-way through 

titrations, with an estimated 2.5 to 6-fold higher affinity for the second binding step relative to the 

first (18). Further evidence of allostery emerged from isothermal titration calorimetry (ITC) 

studies. Although ITC data are commonly fit to a simple n-independent sites binding model (19, 

20), this model is inadequate for a number of LC8-client systems that exhibit non-sigmoidal 

behavior, dipping slightly in heat per injection during early titration points instead of forming a 

flat plateau (Fig. 1b)(9). This non-canonical behavior raises the possibility that these isotherms 

may fit well to a two-step model of binding, more representative of the expectation of dimeric 

LC8-client binding (21).  

 The use of ITC to interrogate complex systems and multi-step binding is challenging, as 

ITC data is of relatively low information, and individual isotherms often fit well to varied model 

parameters (21, 22). Despite this, well designed experiments can utilize ITC to measure 

cooperativity or allostery (23, 24), entropy-enthalpy compensation (17, 25), changes in 

protonation state (26, 27), and competition between multiple ligands (28, 29). In general, these 

studies rely on fitting data globally to a model that includes several isotherms collected at varied 

conditions to reduce ambiguity of fit parameters (21, 22), or a ‘divide and conquer’ type 

approach, where subsections of a complex binding network can be isolated and examined (16, 

23). 

Concentration uncertainty is a critical concern in analysis of ITC data. In principle, 

accurate determination of protein and ligand concentration is a prerequisite for obtaining reliable 

thermodynamic quantities by ITC, yet these values are challenging if not impossible to obtain for 

many systems (20, 30–32). The most common software package for fitting ITC data, built in 

Origin 7.0 and distributed with calorimeters, attempts to account for this uncertainty in its 

simplest multi-ligand model through the stoichiometric parameter n, which can fit to non-integer 

values to correct for error in cell concentrations (19, 33). However, this implementation ignores 

uncertainty in concentration of the titrant in the syringe, and is only applicable to the simple 

binding model, as complex binding models in Origin have no comparable correction factor. The 

popular and highly flexible fitting software SEDPHAT significantly improves on Origin’s 

capabilities, allowing for both explicit or implicit (i.e. an ‘inactive fraction’ correction) uncertainty 

corrections (22, 34). As the authors note, however, allowing for variation in both analyte 
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concentrations makes binding constants indeterminable within SEDPHAT due to correlative 

effects among model parameters. 

Bayesian analysis offers a natural framework for incorporating uncertainty in 

concentration measurements in ITC analysis (20, 35). In a Bayesian framework, thermodynamic 

parameter determination is guided by a mix of experimental data and ‘prior’ information, such as 

uncertainty ranges/models, that weights the overall ‘posterior’ probability of a given set of 

thermodynamic parameters. The posterior distribution of estimated binding parameters 

generated through Bayesian analysis is a complete description of the probability range of each 

model parameter – and correlations among parameters – based on the input data and priors.  

With a meaningful prior description of concentration uncertainty, there is reduced risk of 

underestimating uncertainty in thermodynamic binding parameters.  

 We build on earlier applications of Bayesian inference to ITC.  Nguyen et al. (2018) 

studied 1:1 binding using a Bayesian statistical framework accounting for concentration 

uncertainty, and performed sensitivity analysis on concentration priors. For a two-site binding 

model, Duvvuri et al. (2018) demonstrated that a Bayesian method can accurately and precisely 

determine two separate affinities when applied as a global model to several isotherms, but the 

work assumes no uncertainty in measured concentrations (36), raising the possibility that 

parameter uncertainty is underestimated (20, 22).  Cardoso et al. (2020) used a simplified 4-

step binding model with a single common binding enthalpy for a set of isotherms to determine 3 

of 4 distinct affinities between protein and ligand, with the fourth being uncertain across a range 

of several orders of magnitude. Although Cardoso et al. (2020) include concentrations as model 

parameters, they greatly narrow concentration priors using a preliminary ‘calibration’ assuming 

independent sites. We note that the n-independent sites model likely is not appropriate for 

complex systems. A sensitivity analysis regarding concentration uncertainty was not performed 

in either multisite study, and neither work probed the information content of single isotherms for 

multisite systems. 

Here, we report a Bayesian analysis of allosteric effects in two-site systems with a 

careful accounting of concentration effects critical for reliable analysis. We show that LC8-client 

interactions unambiguously exhibit positive allostery, driving binding towards a fully bound state. 

In contrast, symmetric two-site binding between the coiled coil domain of the dynein cargo 

adaptor NudE and the intermediate chain (IC) of dynein(37) shows no significant evidence for 

allostery.  

We also provide methodological advances.  First, we derive simple mathematical 

relations that govern the influence of concentration uncertainties on different binding 
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parameters, providing a fundamental basis for the previously noted strong sensitivity of 

enthalpies – but not free energies – to concentration uncertainty (22).  Second, by using 

synthetic models, we systematically characterize the causes of binding-parameter uncertainties 

in two ways: we  demonstrate that substantial uncertainty can result from the binding 

parameters themselves, e.g., strong vs. weak binding; and we also determine the effects of 

different prior functional forms and uncertainty ranges in a multisite context, extending the work 

of Nguyen et al. (2018).  Finally, we outline best practices for determining model parameters 

and uncertainties in a multisite Bayesian framework. 

 

 

Figure 1: LC8 binds clients through a two-step mechanism. (a) Diagram of LC8-client binding, showing a 
structure of apo LC8 on the left, and a fully bound structure (PDB 3E2B) on the right. Intermediates are boxed to 
indicate they are symmetric and indistinguishable species. (b) example isotherms for binding between LC8 and client 
peptide taken from GLCCI (left) and binding between the intermediate chain (IC) and partner NudE (right). 

 

Results 

A mathematical “degeneracy” in thermodynamic parameters impacts analysis at any 

stoichiometry 

We first present a simple mathematical analysis that explains previously reported correlation 

effects among titrant and titrand concentrations (22), and which significantly impacts the overall 

analysis of ITC data.  Importantly, our analysis applies to monovalent or multivalent binding.  

Specifically, when the concentrations are uncertain, as is common in analysis of ITC data (20, 

22), we show below that only the ratio of titrant:titrand concentrations can be estimated, rather 

than the individual values, and this ambiguity propagates to all thermodynamic parameters.  

Hence, there is a “degeneracy” in that multiple solutions (sets of concentration values and 

thermodynamic parameters) will equally describe even idealized ITC data lacking experimental 

noise (Fig. 2).  
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Figure 2: Exact degeneracy in binding isotherms. Based on the scaling relations of Eq (2), for any set of ligand 
and macromolecule concentrations (Xt, Mt), there are infinitely many alternative concentrations (e.g., filled circles) on 
a diagonal line in the ([Xt], [Mt]) plane which yield exactly equivalent isotherms (inset) for a fixed set of thermodynamic 
parameters. For any given point in parameter space, equivalent degenerate lines can be drawn in a radial manner 
(e.g. the two additional solid black lines), passing through the point and the origin. The plotted synthetic isotherms are 
for 1:1 binding, but analogous degeneracy also holds for multivalent binding - see text.   
 

We first describe the degeneracy for standard 1:1 binding between a macromolecule M and 

ligand X, following the scheme 

                                                           M+ X ⇌ MX                                   (1) 

                                                

The heat, Q, of a 1:1 binding system at any titration point can be described using the standard 

quadratic binding equation used in the independent sites model (19, 38): 

𝑄

𝑉0
=
[𝑀𝑡]∆𝐻

2
{1 +

[𝑋𝑡]

[𝑀𝑡]
+
𝐾𝑑
[𝑀𝑡]

− √(1 +
[𝑋𝑡]

[𝑀𝑡]
+
𝐾𝑑
[𝑀𝑡]

)
2

−
4[𝑋𝑡]

[𝑀𝑡]
 } 

(2) 

where [Mt] and [Xt] are the concentrations of macromolecule and ligand (i.e., cell component 

and syringe component) respectively, while Kd and ΔH are the binding affinity and enthalpy.  

The degeneracy is demonstrated by introducing a linear scaling of all parameters by an 

arbitrary number denoted 𝛼. Specifically, we apply the following transformations: 

[𝑀𝑡]
        
→  𝛼[𝑀𝑡] 

[𝑋𝑡]
        
→  𝛼[𝑋𝑡] 

𝐾𝑑
        
→  𝛼𝐾𝑑 

∆𝐻
        
→   

∆𝐻

𝛼
 

(3) 
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Applying this set of transformations, we can rewrite the binding equation: 

𝑄

𝑉0
=
𝛼[𝑀𝑡]

∆𝐻
𝛼

2
{1 +

𝛼[𝑋𝑡]

𝛼[𝑀𝑡]
+
𝛼𝐾𝑑
𝛼[𝑀𝑡]

− √(1 +
𝛼[𝑋𝑡]

𝛼[𝑀𝑡]
+
𝛼𝐾𝑑
𝛼[𝑀𝑡]

)
2

−
4𝛼[𝑋𝑡]

𝛼[𝑀𝑡]
 } 

(4) 

Regardless of the value of the factor α, all introduced factors cancel leaving Q unchanged.  

Nearly identical considerations apply in the two-step binding model of primary interest 

here.  As detailed in the SI, the value of Q is unchanged when both concentrations and both Kd 

values are multiplied by α and both ΔH values are divided by α. The underlying model is more 

complex as it requires solving a system of nonlinear equations (see Methods for details), but the 

result is that α is propagated through the nonlinear equation solutions, and once again cancels 

in the calculation of Q, leaving the heat value unchanged.  

For reference, the corresponding concentration degeneracy scaling relations for 2:2 

binding derived in Methods are as follows: 

 

[𝑀𝑡]
        
→  𝛼[𝑀𝑡] 

[𝑋𝑡]
        
→  𝛼[𝑋𝑡] 

𝐾𝑑1
        
→  𝛼𝐾𝑑1 

∆𝐺1
        
→  ∆𝐺1 + 𝑅𝑇 log𝛼 

𝐾𝑑2
        
→  𝛼𝐾𝑑2 

∆𝐺2
        
→  ∆𝐺2 + 𝑅𝑇 log𝛼 

∆𝐻1
        
→  
∆𝐻1
𝛼

 

∆𝐻2
        
→  
∆𝐻2
𝛼

 

(5) 

To facilitate analysis and discussion of allostery below, from this point on we 

parameterize our model using ΔG, ΔΔG, ΔH and ΔΔH. The ΔΔG and ΔΔH value correspond to 

the differences between the first and second binding steps. Thus Kd1 = eΔG/RT, Kd2 = e(ΔG+ΔΔG)/RT, 

and ΔH2 - ΔH1 = ΔΔH. The energy-like formulation allows for easy assessment of allostery, as 

ΔΔG is the free energy of allostery (which will be zero in the absence of allostery and positive or 

negative for negative or positive cooperativity, respectively), and ΔΔH is the change in enthalpy 

between binding steps with analogous characterization.  

The degeneracy and associated scaling relationships in Eq (3) provide important insight 

into assessment of thermodynamic parameters inferred from ITC data.  We see directly that 

binding enthalpy changes proportionately to concentrations of titrant and titrand.  That is, a 
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given percent error in an assumed concentration of either ligand (characterized by alpha) 

translates to the same scale of error in ΔH.  On the other hand, the binding free energy ΔG, is 

less sensitive to concentration errors, due to scaling with ln(α), rather than directly multiplied by 

α. 

The scaling relationships of Eq. (3) also presage a significant issue in Bayesian 

inference, namely, sensitivity to the choice of priors. Within the set of degenerate solutions 

(diagonal lines of concentration pairs in Fig. 2), the Bayesian ‘likelihood’ probability – which 

describes how well a parameter set fits the data in the absence of prior information – will be 

constant, as solutions are mathematically identical. Thus, within any degenerate set, the 

assumed prior distributions for concentrations, will determine the overall posterior distributions 

(see Methods). Because the posterior distributions ultimately determine the uncertainty ranges, 

this is a key point. 

Below, we continue to examine the ramifications of the concentration degeneracy, 

demonstrating concretely that enthalpy is more impacted by uncertainty in concentrations than 

free energy. We also examine the influence of priors on parameter distributions, and discuss 

parameter distributions determined from isotherms in cases of high concentration uncertainty.  

 
Validation of Bayesian inference pipeline with synthetic data 

To test our Bayesian pipeline (Methods), we generated ‘synthetic’ simulated isotherms using 

hand-chosen sets of thermodynamic parameters ΔG, ΔΔG, ΔH, ΔΔH (see Fig. 1) inserted in 

Methods Eq (15) with added Gaussian noise. Following an exploration using synthetic data of 

how allostery impacts binding isotherms (e.g. Fig. 3a), we selected synthetic model parameters 

to mimic the isotherm shape seen in LC8-peptide binding examples. Specifically, slight positive 

allostery (ΔΔG = -1, ΔΔH = -1.5 kcal/mol) was best-suited to imitating real LC8-peptide 

isotherms, along with ΔG = -7 and ΔH = -10 kcal/mol. Synthetic noise is taken from a Gaussian 

distribution with a zero mean and standard deviation σ = 0.2 μcal.  As shown in Fig. 3, we used 

our pipeline to sample posterior distributions for these isotherms. For concentrations, we chose 

uniform prior distributions of ±10% of the true value (which simply limits sampled concentration 

values to these ranges).  The choice of 10% approximates what we view to be an attainable 

level of uncertainty for experimental protein concentrations.  
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Figure 3: Analysis of two-step model using synthetic isotherms. (a) A set of synthetic isotherms for two-step 
binding with varied ΔΔG parameters demonstrating how allostery changes isotherm shape. Thermodynamic 
parameters are ΔG = -7, ΔH=-10, and ΔΔH=0. Concentrations are set at 17 and 500 μM for cell and syringe 
respectively, and injection volumes are 6 μL.  (b) A synthetic isotherm with added gaussian noise (points) with 50 
fitted isotherms (lines) generated through the Bayesian pipeline, i.e., sampled from the posterior. (c) One and two-
dimensional marginal distributions for thermodynamic parameters, with contours in the two-dimensional plots set at 
95 (yellow), 75 (orange), 50(purple) and 25%(black) confidence. Red lines and dots indicate true values for the 
synthetic isotherm. Marginal distributions, along with MCMC chains for all eight model parameters, including nuisance 
parameters can be found in Supplemental Figure S1. (d) Marginal distributions for concentration parameters, 
exhibiting characteristic diagonal shape (Fig. 2) with contours as in (c). (e,f) One-dimensional distributions for ΔG (e) 
and ΔH (f) plotted for models with prior ranges for concentrations of 1, 5, 10, 30 and 50% of the stated concentration. 
(g) Width of the 95% Bayesian credibility region, akin to a confidence interval, for thermodynamic parameters as a 
function of the width of the concentration prior used in modeling, plotted from models with prior ranges for 
concentrations of +/-1, 5, 10, 30 and 50% of the stated concentration.  

 

Under these representative conditions, we validated our pipeline by calculating posterior 

distributions that recapitulated known model parameters, as well as closely capturing the 

isotherm shape (Fig. 3b,c). The finite widths of the distributions are due to synthetic 

experimental noise.  The posterior distribution for ΔG covers a range of ~1 kcal/mol distributed 
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around the true value of -7 kcal/mol. Examination of the distribution lets us define a ‘credibility 

region,’ that contains 95% of the distribution probability (i.e., from the 2.5 to 97.5%ile of the 

distribution), which is directly analogous to a frequentist confidence interval. For ΔG, the 95% 

credibility region is -7.5 to -6.4 kcal/mol. Similarly, the 95% credibility region for ΔΔG covers a 

range of ~1.5 kcal/mol, evenly distributed around -1 kcal/mol. ΔH and ΔΔH both have slightly 

wider credibility regions, with widths of 2.3 and 3.3 kcal/mol respectively, but both are distributed 

around the true values of -10 and -1.5 kcal/mol respectively.  

One benefit of Bayesian inference is the ability to examine multi-dimensional likelihood 

distributions to obtain correlations between model parameters. For example, in our two-

dimensional distributions for the thermodynamic parameters, the ΔG and ΔΔG values are 

strongly negatively correlated (Fig. 3c), indicating a compensatory effect in the model, where 

increases in ΔG can be compensated by decreases in ΔΔG to arrive at similar solutions. 

Resultantly, the distribution for both ΔG and ΔΔG are broader than the ‘total’ free energy (i.e., 

2𝛥𝐺 +  𝛥𝛥𝐺), evidence that we can know the overall energy of binding more precisely than we 

can know the energy of each step (Supp. Fig. S2). Additionally, the mathematical degeneracy 

for concentrations described above can clearly be seen in these two-dimensional correlations: 

the two-dimensional marginal distribution for each concentration is a noise-broadened straight 

line covering the entire prior range (Fig. 3d).  The scaling relationship of the model parameters 

outlined previously means that each point along this diagonal corresponds to a degenerate 

solution, i.e., each point has equivalent likelihood based on the data.  

 

Impact of concentration degeneracy on two-site thermodynamic parameters assessed via 

synthetic data. 

Bayesian inference enables determination of distributions for thermodynamic parameters even 

in cases of a concentration degeneracy. The net result, as will be seen, is a broadening of 

(posterior) parameter distributions based on multiple equally likely solutions, constrained by the 

priors used.  Despite intrinsic limitations surrounding concentrations, the ratio of concentrations 

can be quantified with relatively high precision even when individual concentrations are highly 

uncertain. 

To quantify the impacts of the concentration degeneracy within a Bayesian inference 

pipeline, we examined a series of uniform prior distributions for concentrations, ranging from 

±1% to ±50% for both concentrations. These priors were applied to a synthetic isotherm 

mimicking experimental parameters, as described in the pipeline validation above. The choice of 

concentration prior – which embodies assumed experimental uncertainty – significantly impacts 
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the predicted uncertainty of thermodynamic parameters.  The distributions for ΔG and ΔH, not 

surprisingly, both widen as the prior range is increased (Fig. 3e,f). As anticipated by the 

degeneracy scaling relations of Eq (3), the width of the distributions for ΔH and ΔΔH increases 

roughly linearly with the concentration prior range, while the distributions for ΔG and ΔΔG 

increase initially at low concentration ranges then level off. This can be explained by the 

logarithmic relationship between the Kd (which is what scales with the degeneracy) and free 

energy. Functionally, high uncertainty in concentrations therefore only slightly increases 

uncertainty in binding free energy, while having a more significant impact on binding enthalpy.  

The concentration degeneracy of the model limits the degree to which erroneously 

determined individual concentrations can be corrected.  As discussed above, the fact that the 

Bayesian likelihood is equal at any point along the degeneracy lines (Fig. 2) means that the data 

have little impact on the posterior distributions for individual concentrations, which instead takes 

the shape of the prior used. This can be seen in the model validation example (Fig. 3d), where 

the posterior distribution is approximately uniform, echoing the uniform prior.   

The ratio of concentrations (‘macromolecule’ to ‘ligand’), on the other hand, is a more 

meaningful parameter, and the quality of the ratio can improve a single uncertain concentration.  

For example, when we sample the posterior for the same isotherm, but use a normal (i.e. 

Gaussian) distribution for one concentration prior and a uniform distribution for the other, both 

posteriors take the shape of a normal distribution (Supp. Fig. S3).  This is a direct result of the 

degeneracy identified above. Supp. Table S1 shows concentration ratio credibility regions for 

the experimental systems. 

Because of the nearly determinative relationship between the prior and posterior 

concentration distributions, we elected to use uniform priors for concentrations throughout this 

work to avoid undue influence on our results from model priors.  We believe varying the widths 

of uniform priors is the best way to probe concentration uncertainty effects.  

For completeness, we also assayed 1:1 binding with synthetic data.  Overall, the impact 

of the concentration degeneracy on model parameters is similar (Supp. Fig. S4): binding 

enthalpy posterior distributions are significantly wider than free energy distributions.  In 

response to changes in concentration prior ranges, the posterior for ΔG is more impacted than 

in the two-step model, but the distribution remains much narrower than that of the enthalpy in 

every case.   
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Application to 2:2 LC8:IDP Systems 

We applied the Bayesian analysis pipeline to a set of 7 experimental isotherms of binding 

between LC8 and client peptides, all of which bind in a 2:2 ratio. Note that the two LC8’s form a 

strong homodimer (Kd ~ 60 nM (39)) and this initial homodimer formation is excluded from our 

analysis. The systems were selected from a prior study (9) for tight binding and their deviation 

from the standard sigmoidal isotherm shape. As noted above, the user-supplied uncertainties 

for concentrations significantly impact uncertainty in other parameters. Following analysis with 

priors of ±10% and ±20% of the measured LC8 concentration as determined by absorbance at 

280 nm, we have elected to focus on results at ±10%, as moving to ±20% does not significantly 

impact the posterior distributions (Table 1, Supp. Table S2), and we believe ±10% to be an 

achievable uncertainty in protein concentration for most cases. The high degree of purity 

(>95%) and high number of chromophores (1 Trp, 5 Tyr) allow relatively high confidence in the 

LC8 concentration measurement. Comparatively, because of the difficulty in accurately 

measuring concentration for peptides with few or no chromophores (31, 40), we used a prior of 

increased width for the peptide concentration, up to a limit of ±50% of the initially measured 

value estimated by absorbance at 280 nm. As discussed above, the posterior distributions 

processed through the Bayesian pipeline are limited by the most restrictive prior used, so this 

approach ensures that posterior distributions are limited to the range around the measured 

concentration of LC8, allowing us to effectively infer the ratio of LC8:peptide (Supp. Table S1).  

 
Figure 4: LC8 binding to a peptide from the protein SPAG5. (a) Experimental titration isotherm of SPAG5 into 

LC8 (points) with 50 example traces (lines) drawn from the posterior distribution of thermodynamic parameters and 

concentrations. (b) One and two-dimensional marginal distributions for thermodynamic parameters, with contours in 

the two-dimensional plots set at 95 (yellow), 75 (orange), 50(purple) and 25%(black) confidence. (c) Marginal 

distributions for concentrations of LC8 and peptide, showing a line of degenerate solutions, which may be compared 

to Fig. 2. (d) Marginal distributions for entropy (-TΔS) and entropy of allostery (-TΔΔS).  
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 Bayesian analysis of the seven systems reveals significant heterogeneity in the precision 

with which binding parameters can be determined (Table 1).  As will be described in detail 

below, this is only partially reflective of apparent data quality (e.g., noise level).  Instead, certain 

binding parameters, particularly binding enthalpies, are intrinsically more difficult to characterize.  

Variations in precision do not stem from inadequate sampling in the Bayesian pipeline: triplicate 

runs are performed to confirm sampling quality (see Methods) (example in Supp Fig. S5). 

In particularly tractable cases, such as for SPAG5 binding in Figure 4, the analysis 

provides marginal distributions of similar precision to those seen with synthetic data.  For 

binding between a peptide from the protein SPAG5 and LC8, Bayesian analysis yields a 95% 

credibility region of -6.9 to -6.2 for ΔG (Table 1), equivalent to a range for Kd1 of 8.7 μM to 27 

μM. The 95% credibility region for ΔΔG, the allosteric difference between the first and second 

binding event, is -2.1 to -1.1, roughly equivalent to a 6 to 30-fold increase in affinity for the 

second binding step relative to the first. The change in binding enthalpy between first and 

second events, ΔΔH, is distributed around zero (Fig. 4c), with significant uncertainty, meaning 

we are unable to discern conclusively if there is any allosteric change in enthalpy between 

binding steps. From ΔG and ΔH values for both binding steps, we can additionally calculate -

TΔS and -TΔΔS, for the entropy of binding and the change in entropy across binding steps 

respectively. Although the marginal distributions for these terms are quite broad (Fig. 4d), the -

TΔΔS mostly sits at negative values, indicating that binding allostery is likely to be entropically 

driven.  See Table 1 for the full set of credibility regions. 

Table 1: Ranges for thermodynamic parameters for LC8-client binding. Values delineate 95% Bayesian 

credibility regions from sampled posterior distributions, which are akin to 95% confidence intervals.  

 

Some general conclusions about allostery are apparent from the full set of data (Table 

1).  In all cases except one (binding to BIM), the distribution for ΔΔG is negative, indicating that 

all isotherms exhibit some positive cooperativity. Even for BIM, which has the widest ΔΔG 

distribution, the range predominantly covers negative values. All isotherms exhibit precisely 

determined free energies: 95% credibility regions cover a range of 2 kcal/mol or less for all 
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cases except BIM. A common feature among some isotherms, seen clearly in the ‘fair’ and 

‘poor’ examples in Figure 5, is an apparent loss of precision in our ability to determine model 

enthalpies, as both show wide distributions for ΔH and ΔΔH. For these isotherms (e.g., 

SLC9A2, GLCCI, and BIM), the two-dimensional marginal distribution for ΔH and ΔΔH shows a 

clear correlative effect (Supp. Fig. S6), and the one-dimensional distribution for the ‘total’ 

enthalpy (i.e. 2𝛥𝐻 +  𝛥𝛥𝐻) is significantly narrower than the individual parameter distributions 

(Supp. Fig. S2). In sum, the wide enthalpy distributions represent an inability to determine 

‘microscopic’ enthalpies for individual binding events, even when the overall enthalpy is 

determinable. 

Figure 5: Example distributions for thermodynamic parameters from 3 LC8-peptide isotherms. Binding 

between LC8 and peptides from Ebola VP35 (left), SLC9A2 (middle) and motif 1 from BSN (right). Isotherms are 

shown at the top, and distributions for thermodynamic parameters are shown below. Horizontal axes represent the 

full width of the prior for each parameter to allow for direct comparison between each isotherm. 

 

Parameter inference from multiple isotherms 

The use of additional experimental information is expected to increase the precision of 

parameter determination, and Bayesian inference is readily adapted to employ multiple 

isotherms, whether at matching or different experimental conditions (36).  For some systems 

where two isotherms were available, we therefore used a ‘global’ model that included both 

isotherms. Despite the higher dimensionality resulting from additional nuisance parameters (see 

Methods), we found it relatively easy to sample the parameter space for a two-isotherm model 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 1, 2022. ; https://doi.org/10.1101/2022.06.29.498022doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498022


(Supp. Fig. S7). In some cases, such as for GLCCI, the addition of a second isotherm usefully 

narrowed posterior distributions, while in others (e.g. BSN motif I) it proved less impactful, 

largely just taking the same shape as the distribution for individual isotherms. We note that the 

isotherms examined were designed as technical replicates, not as optimized isotherms at 

different conditions for a global model. Results on multiple isotherms with varied experimental 

setups, e.g., different concentrations, would likely be more consistently valuable. Nevertheless, 

the global models demonstrate our ability to apply the pipeline to multiple isotherms 

simultaneously, a key step toward improved precision going forward. 

 

IC-NudE binding 

To confirm the utility of the Bayesian pipeline for a range of systems, we tested it on binding of 

the intermediate chain of dynein (IC) to the non-dynein protein NudE. Binding between IC and 

NudE can be described by the same model as binding between LC8 and clients – NudE forms a 

dimeric coiled-coil structure which then accommodates two strands of monomeric disordered IC 

for a 2:2 complex stoichiometry (Fig. 6a)(37). Prior characterization of NudE-IC binding used a 

simple independent sites binding model without taking in consideration any binding allostery, 

and thus provides a good system for  re-analysis as well as for comparison to LC8-client binding 

(37, 41). 

For IC-NudE binding, a two-step model recapitulates the parameters determined in fits to 

independent sites modeling with little evidence of allostery. For high confidence in model 

parameters, we applied a global model, identical to the one used in LC8-client binding, to two 

titrations of IC into NudE. Bayesian sampling returns distributions that are narrowly dispersed 

for all thermodynamic parameters, both for individual-isotherm models (Supp. Fig. S8), and for 

the global, 2-isotherm model (Fig. 6). As expected from the lack of prior evidence of allostery, 

neither ΔΔG nor ΔΔH are significantly shifted from a distribution around zero, suggesting little, if 

any, allostery in binding. Simple models on these data indicate that binding has an enthalpy of -

3.1 kcal/mol, and an affinity of 2.3 uM (i.e. a ΔG of of -7.6 kcal/mol) implying a TΔS value of 4.5 

kcal/mol, meaning binding is entropically favored (42). Our two-step model predicts a ΔH 

distribution centered near -3 kcal/mol, and a ΔG distribution centered near -7.5 kcal/mol, 

aligning well with the published values. This binding interaction works well as a counterexample 

to LC8-client binding: distributions for allosteric terms are centered around zero, and determined 

distributions match closely to reported values modeled from an independent sites model.  
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Figure 6: binding between the intermediate chain (IC) and NudE. (a) A model of IC-NudE binding, which forms a 

2:2 complex, similar to what is seen in LC8. A cartoon diagram of NudE is shown in purple and IC in orange. (b) 

Sampled distributions modeled from two isotherms for binding between IC and NudE from yeast. Marginal 

distributions for thermodynamic parameters are shown on the left, and the top right corner contains the experimental 

isotherms (points) with model values (lines) drawn from the posterior. 

 

‘Phase diagram’ analysis reveals weak binding affinities underlie loss of precision in binding 

enthalpies 

We exploit synthetic isotherms to systematically survey binding parameters and determine the 

extent to which the physical parameters themselves intrinsically lead to lower precision in 

parameter inference.  That is, for a fixed level of experimental noise, we quantify the widths of 

posterior marginal distributions and array the information in an interpretable ‘phase diagram.’  

This effort was motivated by initial anecdotal observations that weaker binding was correlated 

with increased uncertainty, i.e., broader posterior marginals, in binding parameters, especially 

ΔH and ΔΔH.  We created a series of synthetic isotherms on a grid of ΔG and ΔΔG values and 

determined posterior distributions for each isotherm. Two-dimensional plots of the width of these 

distributions (Fig. 7) as a function of ΔG and ΔΔG capture trends in our ability to determine 

model parameters.  

Generally, we lose precision in binding enthalpy in situations of weaker binding. 

Interestingly, the relationship appears to differ somewhat between ΔH (Fig. 7a) and ΔΔH (Fig. 

7b). For ΔH, the primary dependence appears to be on the value of ΔG, with precision 

decreasing when ΔΔG is 0 or negative (top left corner of 7a). Conversely, the precision for ΔΔH 

appears dependent on both ΔG and ΔΔG, with the worst precision found in the top right quarter 

of the plot, where binding is weak and allostery is positive. This is consistent with our 
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experimental results, wherein tighter-binding isotherms, higher magnitude ΔG value) such as 

Ebola VP35 and SPAG5 (Fig. 4, Fig. 5) perform better in terms of enthalpy determination than 

slightly weaker-binding isotherms such as SLC9A2 (Fig. 5), and much better than weakly-

binding isotherms such as for BSN motif I (Fig. 5).  

 
Figure 7: Phase diagram of width of posterior distributions as a function of model parameters. Two-

dimensional plots along axes of ΔG and ΔΔG, wherein synthetic data with those parameters were generated, then 

sampled for posterior distributions at each point. Boxes are colored by the width of the 95% credibility region for ΔH 

(a) and ΔΔH (b), with lighter colors correspond to wider credibility regions (color bars). Red polygons demonstrate 

where each Kd (Kd1 for left, Kd2 for right) is greater than 17 µM, the cell concentration set for these synthetic 

isotherms. Red dots indicate mean values for experimental isotherms for binding for BSN motif I and SLC9A2 

 

This overall loss in precision in cases of weaker binding is consistent with the concept of 

c in ITC experimental design (38, 43), with additional considerations. The parameter 𝑐 =

 𝑛[cell]/𝐾𝑑, where n is binding stoichiometry, is a guide for setting experimental concentrations: 

ideally, c should be between 10 and 1000.  For example, when n=1, the concentration in the cell 

should be 10-1000 times the Kd.  In a multisite system, the exact relationship between each Kd 

and enthalpy determination is complicated by the existence of two binding constants, both of 

which may be outside of the relevant range and therefore limit precision. Conversely, model 

precision appears highest when both Kd1 and Kd2 are within the 10 to 1000 range for their 

respective c values. Concretely, the cell concentration for these simulated experiments is 17 

μM, just below the Kd at a ΔG value of -6.5 kcal/mol. This neatly explains the steep drop-off in 

precision we see above -6.5 kcal/mol ΔG values for precision in ΔH, boxed in red in Figure 6. 

Similarly, when ΔG2 (i.e. ΔG + ΔΔG) is above -6.5, the precision drops off steeply for ΔΔH, 

seen along a diagonal boxed in red in the Figure. 

For weak-binding isotherms such as BSN motif I, the lack of precision in enthalpy 

determination can be explained by a value for Kd1 that is above the experimental concentration. 

For BSN motif I (location marked in Fig. 7, along with SLC9A2), ΔG is near -5 kcal/mol, 
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compensated for by a negative ΔΔG value such that overall binding still appears relatively 

strong. Functionally, this means that the first-glance evaluation of binding affinity excluding 

allosteric considerations can be somewhat misleading, hiding the fact that ΔG (and therefore 

Kd1) is relatively weak. Even hidden in this fashion, the weakness of Kd1 nonetheless hurts our 

ability to accurately determine binding enthalpies and explains the variation we see in precision 

in enthalpy parameters throughout our tested data. 

 

Discussion 

This work examines the application of two-step binding models to isothermal titration calorimetry 

binding data, focusing on the hub protein LC8 and on accounting for critical uncertainties. LC8 

binds over 100 client proteins in eukaryotic cells, and is involved in regulating a host of cell 

functions, motivating the detailed mechanistic study of LC8 binding. Using a Bayesian 

framework, we sought to determine precisely how much information can be extracted from a 

single isothermal titration (ITC) calorimetry isotherm, and examine how uncertainty in analyte 

concentration impacts model parameters, an investigation greatly aided by the use of simulated 

‘synthetic’ isotherms with known parameters. Building on prior work (20, 35, 36), we have 

advanced Bayesian analysis of binding, and applied it to rigorous biophysical characterization of 

binding between LC8 and client peptides, as well as binding between the intermediate chain of 

dynein and the coiled-coil domain of NudE.  We also used synthetic data to unambiguously 

separate effects of experimental error from intrinsic limitations, and we systematically surveyed 

the latter to generate a ‘phase diagram’ of intrinsic (in)tractability. 

 

Allostery in LC8 binding 

Our data show that LC8 can bind client proteins with significant positively cooperative 

allostery. Of the 7 peptides examined here, Bayesian analysis for all except one (BIM) yields a 

highly certain negative ΔΔG value, in agreement with early NMR studies that suggested positive 

allostery in LC8 binding (18). Further investigation is required to determine whether such 

behavior is universal for LC8 client peptides.  For the present study, we selected test isotherms 

with preference for two criteria we anticipated would leverage Bayesian modeling: (1) tight-

binding to LC8 and (2) an isotherm shape that breaks from a strict sigmoid. Because this was 

neither a comprehensive nor random selection of systems, more work will be needed to 

determine conclusively whether LC8 binding is uniformly positively cooperative and whether the 

degree of allostery is sequence dependent.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 1, 2022. ; https://doi.org/10.1101/2022.06.29.498022doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.29.498022


 Our findings are a step toward understanding the underlying biological function of LC8 

allostery. While LC8-client complexes are varied, the putative functional unit of many LC8-client 

interactions is a 2:2 bound structure, where LC8 promotes dimerization in client proteins (44–

46). Further, In proteins where LC8-binding plays a structural role, such as at the nuclear pore 

in yeast (10, 47), fully bound states driven by cooperativity are more likely to be highly rigidified. 

In both the case of 2:2 binding, and structural complexes, then, the functional state is promoted 

by cooperativity. We have proposed that positive allostery could drive the formation of 

homodimeric complexes (18), with the same client bound to each LC8 motif, and that allostery 

could effectively encourage homologous complexes while discouraging heterologous ones. In 

the future, ITC or nuclear magnetic resonance titrations of a second peptide into a bound LC8-

peptide complex could be used to examine whether heterologous binding is indeed disfavored. 

The picture of LC8-client binding is additionally complicated by the discovery over the last 

decade of multivalent LC8-binding proteins such as the nucleoporin NUP159 or the transcription 

factor ASCIZ. Complexes between LC8 and multivalent clients are often highly heterogeneous 

in both stoichiometry and conformation (7, 48, 49), and particularly in the case of ASCIZ, the 

fully bound state is highly disfavored by some form of negative cooperativity, ensuring ASCIZ is 

sensitive to LC8 even at high LC8 concentrations. The role that allostery of LC8 binding plays in 

these interactions is likely very complicated, and its relationship to effects seen in multivalent 

binding that rely on the length and structure of linkers between motifs (49, 50), remains to be 

seen. 

 The mechanism of allostery appears to be entropically driven. While entropy is often the 

term with the widest distribution (table 1), owing to its dependence on both the free energy and 

the enthalpy, there is a clear trend in our results towards positive TΔΔS values, which equates 

to the second binding step being more entropically favorable than the first. Relatedly, NMR 

dynamics measurements indicate LC8’s flexible core is rigidified on binding to clients (17, 51). 

Since LC8-binding allostery necessarily requires some change in the structural ensemble of 

LC8, it is possible that the first binding step can be thought of as ‘paying up-front’ for the 

entropic cost of both binding steps–i.e., rigidifying the whole LC8 core. This mechanism would 

also allow for variation in allostery on a per-peptide basis, as the degree of rigidification in the 

core seen by NMR is dependent on client sequence (17). Future molecular dynamics 

simulations can examine the differences in rigidity of the LC8 core in different bound states and 

across binding to different peptides.  
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Bayesian inference in binding analysis 

 “How much information is contained in an ITC isotherm?” is a fundamental biophysics 

question that Bayesian inference is uniquely suited to answer.  Building on prior work (20, 35, 

36), we have improved the ability of the Bayesian approach to account for the uncertainty that 

intrinsically occurs in both titrant and titrand concentrations.  Our approach was motivated in 

large part by the apparently novel recognition of a mathematical “degeneracy” in ITC analysis, 

i.e., the existence of multiple solutions even in the absence of experimental noise, which 

prevents inference of a fully unique set of thermodynamic parameters.  This degeneracy holds 

for simple 1:1 binding and apparently for arbitrary stoichiometry, as described in the Results. 

While fitting ITC data to multi-step binding and other complex models is challenging, 

Bayesian inference allows for quantified “posterior” probability distributions for model 

parameters, reducing the risk of overfitting a complex model to insufficient data. These posterior 

distributions – or more accurately, the joint distribution over all binding parameters – 

fundamentally answer the question of the information contained in an ITC isotherm (20, 36).  

Bayesian inference is particularly powerful both for handling the degenerate nature of binding 

models that account for concentrations, and for experiments like ITC, which is very ‘low-

information’ by nature (21, 22). 

The Bayesian approach offers several advantages over frequentist fitting methods (20, 

22) that are particularly useful in the case of ITC-measured binding: (1) Bayesian inference is 

not hampered by correlative or degenerate model solutions, allowing for inclusion of 

concentration parameters,  (2) inferred distributions offer insight into correlative relationships in 

model parameters, and (3) the Bayesian model is highly flexible, and allows for incorporation of 

additional experimental data, whether additional isotherms or through the implementation of a 

variety of prior distributions.   

Our investigation of how concentrations impact model parameters has shown that, as 

expected from the correlative relationships of the model parameters, that uncertainty in 

concentration significantly increases uncertainty in binding enthalpy, and has a reduced impact 

on free energy. This agrees well with Nguyen et al. (2018) who reported results on 1:1 binding, 

suggesting the concentration-enthalpy relationship is likely to be generic to all binding models. 

We have shown that while the individual concentrations may be indeterminable from the model 

alone, the ratio of concentrations can be readily determined (Supp Table S2).  

Our primary goal has been to quantify uncertainty as completely as possible in 

determination of thermodynamic binding parameters. From a single isotherm, we sample 
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marginal posterior distributions with widths on the scale of 1-2 kcal/mol for a two-step model of 

binding with four thermodynamic parameters, consistent with prior Bayesian analysis (35, 36). 

Although this is much higher uncertainty than the fractions of a kcal/mol usually reported in the 

analysis of ITC data (23, 24), the difference can be explained to a great extent by the complexity 

of the two-step model, which intrinsically includes other correlative effects, e.g., between ΔG 

and ΔΔG, which are not accounted for in frequentist fitting methods. Additional uncertainty, 

beyond what can be attributed to the two-step binding model, arises from our ‘skeptical’ 

consideration of analyte concentrations, modeled by realistically wide concentration priors (± 

10% for LC8, up to ±50% for peptides) that contribute to uncertainty in determined parameters.  

While ‘microscopic’ free energy and enthalpy parameters for individual binding steps cannot 

always be determined with good precision, the total values accounting for both steps show 

improved precision (Supp. Table S2, Supp. Fig. S2). 

We believe that, in cases where higher precision is required for binding parameters, 

uncertainty can be decreased through the use of careful concentration determination through 

multiple methods, and the use of global models derived from multiple isotherms at varied 

concentrations. 

 

Synthetic datasets guide experimentation 

 Our investigation has benefited significantly from the use of synthetic isotherms. Built 

from known thermodynamic parameters, and modeled using our Bayesian pipeline, the value of 

synthetic isotherms as an aid in experimental design is well-established (20, 22). They are 

particularly valuable in cases of complex binding, where it is not necessarily clear how 

determinable model parameters are, such as in our case. Synthetic isotherms have allowed us 

to test and troubleshoot our pipeline (Fig. 3), probe the information content of isotherms under 

variable conditions of concentration and priors (Fig. 3, Supp. Fig. S4), and examine how 

thermodynamic parameters themselves impact our ability to determine information from 

isotherms, resulting in the ‘phase diagram’ of relative tractability (Fig. 7). In the context of multi-

isotherm modeling, utilizing synthetic data to design new experiments, such as is done with 

frequentist fitting in the program SEDPHAT (22, 34), is likely to be of significant value.  

 

Practical limitations of Bayesian sampling and global modeling 

Bayesian statistical analysis is much more computationally expensive than frequentist 

fitting methods. It usually relies on Markov chain Monte Carlo (MCMC) sampling, which requires 

simulating a sufficient number of steps to adequately explore the parameter space, potentially 
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including a need to locate and sample multiple probability peaks (akin to energy basins in 

conformation space). For our ITC model, simple MCMC sampling methods proved unable to 

adequately sample the model space, even following sampling times of several days and over 4 

million samples. While the ensemble sampler(52) used by us and others applying Bayesian 

models to ITC (35, 36) has been robust for our purposes, sampling  continues to be an 

important consideration, especially when considering future study of more complex models. For 

all work presented here, wall-clock sampling times were on the scale of hours, and hence 

readily feasible.  More complex models could require significantly more sampling, although 

there is no simple scaling law that applies because of the uncertain nature of the parameter-

space ‘landscape’. Global modeling of multiple isotherms may also require additional sampling: 

as additional isotherms are added to a global model, each one brings with it a new set of 

nuisance parameters (4 per isotherm in our work - see Methods). In our hands, global models of 

two isotherms could be well-sampled within half a day. While global models of technical 

replicates may improve signal to noise ratios, ideally, global experiments should be designed 

with the intent of covering several experimental conditions (35, 36), and all experiments must be 

high quality to ensure they contribute to global fits. 

As an aid to investigators employing Bayesian inference in future studies, we have 

developed a set of guiding best practices (see Supplemental Information). 

 

Concluding remarks and future steps 

Bayesian inference has allowed us to characterize the binding and allostery with high 

confidence for two different protein-protein interactions of 2:2 stoichiometry, despite significant 

uncertainties in analyte concentrations and inherent limitations of isothermal titration 

calorimetry. Our analysis was enabled by improvements to prior work (20, 35, 36) in treating 

concentration uncertainties, and further demonstrates the value of Bayesian inference to ITC 

analysis.  We used synthetic data to systematically characterize the uncertainty landscape for 

2:2 binding based on intrinsic binding properties, an approach that readily can be extended to 

other models. 

We examined two multi-step binding systems, the hub protein LC8 and the dynein 

intermediate chain (IC), For LC8, every client peptide studied showed significant evidence of 

allostery, corroborating hypotheses from a decade ago (18), and thus serving as an important 

step toward quantitative  characterization of more complex LC8-client complexes.  In contrast, 

the dynein IC/NudE complex showed minimal evidence of allostery. 
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While our focus here has been on two-step symmetric-site binding systems, Bayesian 

methods can be applied to other complex models investigated by ITC.  Measurement of 

complex multivalent systems, enthalpy-entropy compensation, and ternary complexes or 

competition binding are all likely to benefit from analysis under a Bayesian framework. Although 

there is a limit on how much information can be gained from individual isotherms, investigation 

utilizing synthetic data can guide design, to help determine experimental conditions that 

maximize gain from additional ITC experiments within a given system.  
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METHODS 

 

Binding Models 

1:1 binding 

For a 1:1 binding interactions between some macromolecule M, and ligand X: 

                                                          M + X ⇌ MX                                   (1) 

                                                

The energy of binding is described by the following quadratic equation (38)  

𝑄

𝑉0
=
[𝑀𝑡]∆𝐻

2
{1 +

[𝑋𝑡]

[𝑀𝑡]
+
𝐾𝑑
[𝑀𝑡]

− √(1 +
[𝑋𝑡]

[𝑀𝑡]
+
𝐾𝑑
[𝑀𝑡]

)
2

−
4[𝑋𝑡]

[𝑀𝑡]
 } 

(2) 

[Mt] and [Xt ] are the total concentrations of macromolecule and ligand after each injection, ΔH is 

the binding enthalpy, Kd is the binding affinity, V0 is the volume of the cell, and Q is the heat of 

the system. This is directly equivalent to Origin’s independent-sites model (19) when n=1. The 

observed measurement is dQi (i.e. the heat of injection i), which is calculated from Q using the 

following equation: 

𝑑𝑄𝑖 = 𝑄𝑖 +
𝑉𝑖
𝑉0
(
𝑄𝑖 + 𝑄𝑖−1

2
) − 𝑄𝑖−1 + ∆𝐻0 

(3) 

where Vi is the injection volume for injection i, to account for the change in volume associated 

with the injection. ΔH0 is a correction term to account for heat of dilution and other effects that 

can shift, assumed constant over all injections in a given isotherm.  

 

Two-step binding 

Two-step binding is modeled in a standard fashion, such as in the binding polynomial model 

(53) as: 

                                                      M + X ⇌ MX + X ⇌  MX2                   (1) 

                                                

Under this scheme, each binding affinity is as follows: 

2𝐾𝑑1 =
[𝑋][𝑀]

[𝑀𝑋]
 

1

2
𝐾𝑑2 =

[𝑋][𝑀𝑋]

[𝑀𝑋2]
 

(5,6) 
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where Kd1 and Kd2 are the affinities for the first and second binding step. Factors of 2 and ½ 

account for the existence of indistinguishable rotationally symmetric intermediates in our model. 

The total concentrations of X and M can be written as: 

[𝑀𝑡] = [𝑀] + [𝑀𝑋] + [𝑀𝑋2] 

[𝑋𝑡] = [𝑋] + [𝑀𝑋] + 2[𝑀𝑋2] 

(7,8) 

Through rearrangement and substitution of equations 5 and 6, the total concentration equations 

can be rewritten only in terms of [M] and [X], the concentrations of free macromolecule and 

ligand: 

[𝑀𝑡] = [𝑀] + 2
[𝑋][𝑀]

𝐾𝑑1
+
[𝑋]2[𝑀]

𝐾𝑑1𝐾𝑑2
 

[𝑋𝑡] = [𝑋] + 2
[𝑋][𝑀]

𝐾𝑑1
+ 2

[𝑋]2[𝑀]

𝐾𝑑1𝐾𝑑2
 

(9,10) 

This system of equations is solved numerically for each given injection point to determine the 

unbound concentrations [M] and [X]. With both free concentrations determined, the system heat 

can be calculated: 

𝑄

𝑉0
= ∆𝐻1[𝑀𝑋] + (∆𝐻1 + ∆𝐻2)[𝑀𝑋2] 

(11) 

where ΔH1 and ΔH2 are the enthalpies of binding step one and two respectively. The 

concentrations of each bound state can be calculated from [X] and [M] and equations 5 and 6. 

As in the 1:1 binding model, equation 3 is used to calculate the observed heat of injection, dQ, 

for each injection. 

 

Degeneracy in two-step binding 

When protein concentrations are included as model parameters, degenerate solutions are 

introduced. As outlined in the manuscript, the degeneracy is exposed from the following 

transformation:  

[𝑀𝑡]
        
→  𝛼[𝑀𝑡] 

[𝑋𝑡]
        
→  𝛼[𝑋𝑡] 

𝐾𝑑1
        
→  𝛼𝐾𝑑1 

∆𝐺1
        
→  ∆𝐺1 + 𝑅𝑇 log𝛼 

𝐾𝑑2
        
→  𝛼𝐾𝑑2 

∆𝐺2
        
→  ∆𝐺2 + 𝑅𝑇 log𝛼 
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∆𝐻1
        
→  
∆𝐻1
𝛼

 

∆𝐻2
        
→  
∆𝐻2
𝛼

 

(12) 

Here, α can be any positive number. Following this transformation, the equations used to 

calculate [X] and [M] (eq. 5 and 6 in the methods) are transformed:  

𝛼[𝑀𝑡] = [𝑀] + 2
[𝑋][𝑀]

𝛼𝐾𝑑1
+
[𝑋]2[𝑀]

𝛼2𝐾𝑑1𝐾𝑑2
 

𝛼[𝑋𝑡] = [𝑋] + 2
[𝑋][𝑀]

𝛼𝐾𝑑1
+ 2

[𝑋]2[𝑀]

𝛼2𝐾𝑑1𝐾𝑑2
 

(13,14) 

In these transformed concentration-sum equations, the new solutions for both [X] and [M] are 

exactly the previous solutions multiplied by 𝛼, as can be verified by substitution.    Finally, 

applying the transformed values into the equation for Q yields  

𝑄

𝑉0
= 2

∆𝐻1
𝛼

𝛼[𝑋]𝛼[𝑀]

𝑎𝐾𝑑1
+
(∆𝐻1 + ∆𝐻2)

𝛼

𝛼[𝑀](𝛼[𝑋])2

𝛼2𝐾𝑑1𝐾𝑑2
 

(15) 

As in the 1:1 binding model, cancellation of α shows there is no change in the value of Q for any 

α value. This demonstrates the degeneracy for 2:2 binding, which we can expect to generalize 

to higher stoichiometries. 

 

Bayesian inference 

Bayesian inference is a method to calculate a “posterior” distribution of model parameter values 

based on prior assumptions (encoded as prior distributions for parameters presumed to hold in 

the absence of data) and the data. In general, as more data is analyzed, the influence of the 

prior will decrease (54, 55) . The posterior distribution of parameters provides rich information 

such as the parameter means and confidence intervals (technically “credibility regions”), in 

addition to correlation information regarding whether and how parameters vary together.  

Bayesian inference is based on Bayes’ rule (54, 56) which enables us to infer a 

distribution of parameters  (e.g., binding free energy and enthalpy, etc.) consistent with a given 

set of data D (e.g., ITC isotherms):  

 

𝑃(|𝐷)  = 𝑃(𝐷|) 𝑃() / 𝑃(𝐷)  

(16) 
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where 𝑃(|𝐷) is the (posterior) probability distribution of the model parameters, , given the 

data, D; 𝑃(𝐷|) (the likelihood) is the probability distribution of the data given the model 

parameters and is given below; 𝑃() (the prior) is the probability of the model parameters, 

specified below; and 𝑃(𝐷) (the evidence) is the probability of the data. For a given set of data, 

the unknown denominator 𝑃(𝐷) is constant, independent of parameters, so it does not affect the 

inference of posteriors.  Typically, it is not possible to analytically solve Bayes’ rule, so 

numerical methods such as Markov chain Monte Carlo are used to determine the target 

(posterior) distribution (57–59). Details of our implementation are given below. 

 

Bayesian model 

Following prior work (31, 36), we assume the data has Gaussian noise with a mean of zero and 

an unknown standard deviation. The ITC model parameters  include concentration terms 

(Xinitial,Minitial) and thermodynamic terms (ΔG, ΔΔG, ΔH, ΔΔH), as well as the nuisance 

parameters (ΔH0 and σ) for heat of dilution and Gaussian noise. We use uniform prior 

distributions for the model parameters specified below and the unknown noise standard 

deviation unless otherwise stated. For global models (e.g. Supp. Fig. S7, Fig. 6), while it may be 

possible to assume a global noise or concentration model, we instead elected to apply global 

models with an additional set of concentration and nuisance parameters for each additional 

isotherm (bringing the total parameter count up to 12 for two-isotherm models). Uniform prior 

ranges for thermodynamic parameters were identical for all models, listed below in the methods 

table. For nuisance parameters ΔH0 and σ, uniform priors of -10 to 10 μcal and 0.001 to 1 μcal 

respectively were used in all models.  

The likelihood for a set of data 𝐷 = {𝑥1, 𝑥2, … }, denoted (𝑝(𝐷|𝜃)), is the product of the 

probabilities at all data points xi based on a normal distribution of standard deviation σ centered 

around 𝜇𝑖(𝜃), the calculated value of point i for the binding model and parameters θ. It therefore 

takes the following form: 

𝑝(𝐷|𝜃) =  ∏
1

√2𝜋𝜎2
exp {−

(𝑥𝑖 − 𝜇𝑖)
2

2𝜎2
}

𝑖
 

(17) 

and we note that  is assumed unknown and sampled as part of the Bayesian inference 

process.  When the priors are uniform, as we most often assume, the posterior is simply 

proportional to the likelihood given here. 

 

Sampling 
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We use the affine-invariant Markov chain Monte Carlo sampling method (60) to perform 

Bayesian inference, as also used by Duvvuri et al. (2018) and Cardoso et al. (2020). The affine-

invariant sampler is an ensemble-based method in which multiple walkers move through the 

sample space in a correlated fashion. We empirically found this method to sample significantly 

better than the standard Metropolis-Hastings (57, 58) sampler for our model. In our hands, the 

Metropolis-Hastings method was unable to converge on the target distribution after 4,000,000 

sampling steps, whereas the affine-invariant sampler was able to converge after 100,000 

sampling steps.  

 

Implementation 

We used the EMCEE package (52) in Python to perform the affine sampling, using a 20%:80% 

mix of the “differential evolution” and “stretch” move sets with 25-50 walkers.  For each 

experiment, 3 replicas are run for 50,000-200,000 sampling steps/replica until convergence. 

Each replica converged, as determined by the autocorrelation time, where sampled steps must 

be greater than 50x the autocorrelation. Convergence was additionally assessed through 

examination of posterior distributions from model replicas, which were nearly identical in all 

cases (Supp. Fig. S5). This implementation runs at ~9 samples for each walker per second on 4 

cores of a node on the Oregon State College of Science computing cluster.  

 

The code, data, and an example notebook are available at: 

https://github.com/ZuckermanLab/Bayesian_ITC 

 

 Isotherm # 

samples 

# 

walker

s 

dG prior 

(kcal/mo

l) 

dH prior 

(kcal/mol) 

ddG prior 

(kcal/mol) 

ddH Prior 

(kcal/mol) 

X initial Prior 

(μcal) 

M initial Prior 

(μcal) 

Synthetic isotherm 

models 

50,000 25-50 -3 to -10  -50 to 0 -4 to 4 -40 to 40 Varied -          

±10% of 

stated unless 

otherwise 

noted 

Varied -          

±10% of stated 

unless 

otherwise 

noted 

Single isotherm 

experimental 

models 

100,000 50 -3 to -10  -50 to 0 -4 to 4 -40 to 40 ± 10% of 

stated 

Up to ±50% of 

stated 

Two isotherm 200,000 50 -3 to -10  -50 to 0 -4 to 4 -40 to 40 ± 10% of Up to ±50% of 
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experimental 

models 

stated stated 

Methods table: Model priors and sampling lengths for all isotherms.  

 

Experimental ITC 

All isothermal titration calorimetry experiments used here have been previously reported in other 

publications (9, 42). Briefly, LC8, IC and NudE were all expressed in BL21 or Rosetta cell lines, 

and purified to 95% purity using a combination of 6xHis TALON affinity purification and size 

exclusion chromatography. LC8-binding peptides were purchased from Genscript. Proteins 

were dialyzed prior to calorimetry into a buffer of 50 mM NaPO4, 50 mM NaCl, 5 mM β-

mercaptoethanol and 1 mM NaN3, at pH 7.5. In the case of LC8-peptide binding, Peptides were 

dissolved into buffer following dialysis to ensure minimal buffer mismatch between peptide and 

protein. All ITC experiments were performed at 25 C, with an initial injection of 2 μL, which was 

discarded to account for the first injection anomaly. Peak integration was performed in Origin 

7.0.  

 

Synthetic ITC isotherms 

Synthetic isotherms for 1:1 and two-step binding were generated following equation 2 for 1:1 

binding and equations 8,9 and 10 for two-step binding.  Parameters were chosen to mimic 

typical experimental conditions employed in our group.  For 1:1 binding (Supp. Fig. S4), we 

used ΔG and ΔH values of -12 and -8 respectively, and concentrations of 34 μM in the cell and 

500 μM in the syringe. For two-step binding, varied thermodynamic parameters were used (e.g. 

Fig. 3, Fig. 7), but concentrations were fixed at 17 μM in the cell and 500 μM in the syringe. For 

all synthetic isotherms under both models, we simulated one injection of 2μL followed by 34 

injections of 6 μL, with a ΔH0 of 0 μcal, and added synthetic noise from a Gaussian distribution 

with standard deviation 0.2 μcal. To accurately replicate experimental conditions, we eliminated 

the first injection when applying models to this data.  
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