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Abstract 

 

Spn1/Iws1 is an essential eukaryotic transcription elongation factor that is conserved from yeast 

to humans as an integral member of the RNA polymerase II elongation complex. Several 

studies have shown that Spn1 functions as a histone chaperone to control transcription, RNA 

splicing, genome stability, and histone modifications. However, the precise role of Spn1 is not 

understood, and there is little understanding of why it is essential for viability. To address these 

issues, we have isolated eight suppressor mutations that bypass the essential requirement for 

Spn1 in Saccharomyces cerevisiae. Unexpectedly, the suppressors identify several functionally 

distinct complexes and activities, including the histone chaperone FACT, the histone 

methyltransferase Set2, the Rpd3S histone deacetylase complex, the histone acetyltransferase 

Rtt109, the nucleosome remodeler Chd1, and a member of the SAGA co-activator complex, 

Sgf73. The identification of these distinct groups suggests that there are multiple ways in which 

Spn1 bypass can occur, including changes in histone acetylation and alterations of other 

histone chaperones. Thus, Spn1 may function to overcome repressive chromatin by multiple 

mechanisms during transcription. Our results suggest that bypassing a subset of these functions 

allows viability in the absence of Spn1.  
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Introduction 

 

Eukaryotic transcription is a complicated process that requires a multitude of factors for 

initiation, elongation, and termination by RNA polymerase II (SCHIER AND TAATJES 2020). Many 

of these transcription factors function to overcome the barriers imposed by nucleosomes. These 

factors include nucleosome remodeling complexes, histone modification enzymes, and histone 

chaperones. The importance of these activities is emphasized by their conservation throughout 

eukaryotes and by the finding that many of them are essential for viability. Given that there are 

more factors than there are perceived functions during transcription, understanding why so 

many vital proteins exist and how they function is an ongoing major challenge.  

 

Our studies have focused on histone chaperones, a large and diverse set of factors that have 

been implicated not only in transcription, but also in DNA replication and DNA repair (HAMMOND 

et al. 2017; WARREN AND SHECHTER 2017). Histone chaperones function in a variety of ways to 

modulate histone-DNA interactions in an ATP-independent fashion. In several cases, the 

physical interactions of histone chaperones with histones and nucleosomes have been 

elucidated (for example, (ENGLISH et al. 2006; CHEN et al. 2015; AGUILAR-GURRIERI et al. 2016; 

HAMMOND et al. 2016; LIU et al. 2020; LIU et al. 2021)). However, the cellular roles of histone 

chaperones are less well understood, at least in part because of their multi-functional roles 

(HAMMOND et al. 2017).  

 

An intriguing set of three histone chaperones that associate with elongating RNA polymerase II 

(RNAPII) are Spn1/Iws1, Spt6, and FACT. Each of these histone chaperones is highly 

conserved from yeast to human, and each is essential for viability in most organisms where this 

has been assessed. Spt6 and Spn1/Iws1 directly interact with each other (DIEBOLD et al. 2010; 

MCDONALD et al. 2010) and all three chaperones are functionally connected based on 

substantial genetic and molecular evidence (DUINA 2011; JERONIMO et al. 2015; MCCULLOUGH 
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et al. 2015; PATHAK et al. 2018; JERONIMO et al. 2019; VIKTOROVSKAYA et al. 2021). However, 

the precise roles of each factor, the nature of their functional and physical interactions, and why 

they are essential for viability are not fully understood. 

 

In this work, we have studied one of these histone chaperones, Spn1 (named Iws1 in organisms 

other than Saccharomyces cerevisiae (S. cerevisiae)). Spn1 was initially identified in S. 

cerevisiae (FISCHBECK et al. 2002; KROGAN et al. 2002; LINDSTROM et al. 2003), where it was 

subsequently shown to directly interact with Spt6 (DIEBOLD et al. 2010; MCDONALD et al. 2010). 

Spn1 functions as a histone chaperone based on several lines of evidence. First, in vitro, 

purified Spn1 interacts directly with histones, nucleosomes, and nucleosomal arrays, and it has 

modest nucleosome assembly activity (LI et al. 2018; LI et al. 2022). Second, in vivo, a 

temperature-sensitive spn1 mutation, spn1-K192N (FISCHBECK et al. 2002), causes changes in 

chromatin structure, resulting in altered spacing between nucleosomes and increased 

nucleosome fuzziness (VIKTOROVSKAYA et al. 2021). Third, spn1-K192N is suppressed by 

mutations that alter histone H2A (MCCULLOUGH et al. 2015) or that impair other chromatin-

related factors, including FACT, Swi/Snf, Set2, and Rpd3S (ZHANG et al. 2008; LEE et al. 2018b; 

VIKTOROVSKAYA et al. 2021). Finally, spn1 mutations cause double mutant sickness or lethality 

when combined with mutations that impair other histone chaperones (LI et al. 2018) or histone 

H3K4 methylation (LEE et al. 2018a). Together, this evidence shows that Spn1 functions to 

control chromatin structure by direct interaction with histone proteins. 

 

Spn1 associates with chromatin along coding regions, suggesting that its main function is during 

transcription elongation (MAYER et al. 2010; REIM et al. 2020). Studies in mammalian cells have 

shown that Spn1 interacts directly with several elongation factors in addition to Spt6, leading to 

the hypothesis that it acts as a hub for the RNA polymerase II elongation complex (LING et al. 

2006; LIU et al. 2007; CERMAKOVA et al. 2021). Consistent with this idea, recent studies showed 

that Spn1 is required for normal transcript levels in both yeast and mammalian cells (REIM et al. 
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2020; CERMAKOVA et al. 2021), as well as for mRNA splicing and histone modifications (YOH et 

al. 2007; YOH et al. 2008; REIM et al. 2020). Furthermore, in mammalian cells, Spn1 is essential 

for embryonic development and cell proliferation (LIU et al. 2007; ORLACCHIO et al. 2018; OQANI 

et al. 2019), and it has been implicated in cancer (DAVOLI et al. 2013; SANIDAS et al. 2014). 

Thus, Spn1 plays critical roles in gene expression, development, and disease. 

 

Given the importance of Spn1 throughout eukaryotes and its implication in human disease, we 

wanted to understand more about Spn1 function and why Spn1 is essential for viability. To do 

this, we isolated bypass mutations that suppress the inviability caused by a deletion of the 

SPN1 gene. This type of approach has been highly informative in several past studies, leading 

to insights into how an organism can compensate for loss of an essential gene (for example, 

(ZHAO et al. 1998; BISWAS et al. 2008; ROLEF BEN-SHAHAR et al. 2008; TORRES-MACHORRO AND 

PILLUS 2014; CHANG et al. 2018), for a review, see (DU 2020)). In addition to single-gene studies 

of bypass suppressors, other studies have systematically screened for suppressors of essential 

genes in either S. cerevisiae or Schizosaccharomyces pombe (S. pombe) (CHEN et al. 2016; LI 

et al. 2019; TAKEDA et al. 2019; VAN LEEUWEN et al. 2020). The results of these studies have led 

to interesting ideas concerning the evolvability and the relative importance of essential genes, 

based on whether or not they could be suppressed. However, those surveys likely 

underestimated the number of essential genes that can be bypassed, as no suppressors of 

spn1Δ were identified in either of the S. cerevisiae studies.  

 

Our results have shown that Spn1 can be bypassed by single mutations in at least eight 

different genes that control transcription and chromatin structure. In this work, we have followed 

up on two distinct and apparently opposite classes. Loss of one class, Set2/Rpd3S, causes 

increased levels of histone acetylation and we show that increased acetylation is indeed the 

mechanism by which loss of Set2/Rpd3 bypasses Spn1. In stark contrast, loss of the second 

class, Rtt109, causes decreased levels of histone acetylation. Our analysis of suppression by 
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loss of Rtt109 suggests that the sites of acetylation are critical for their effect on Spn1 bypass. 

The identification of such distinct classes of Spn1 bypass suppressors suggests that Spn1 is 

essential due to more than one activity, and suppression of a subset of these activities allows 

viability.  

 

Methods 

 

Yeast strains and growth media 

The S. cerevisiae strains with an FY name (Supplementary Table 1) were in an isogenic 

background derived from S288C (WINSTON et al. 1995) and were constructed by standard 

procedures using yeast transformation and crosses. CRISPR/Cas9 directed changes were done 

as previously described (LAUGHERY et al. 2015). Strains that contain the hht1-K56R and hht2-

K56R mutations (MCCULLOUGH et al. 2019), kindly provided by Dr. Tim Formosa, were derived 

from a cross of strain FY3462 (S288C background) by strain DY16302 (W303 background). 

Primers used for PCR are listed in Supplementary Table 2. Genotypes were confirmed by 

growth on selective media, PCR, or DNA sequencing. Strains were grown in the following liquid 

or solid media: YPD (1% yeast extract, 2% peptone and 2% glucose); solid YPD with G418 (200 

µg/ml), hygromycin (7.5 µg/plate), nourseothricin (3 µg/plate), dimethyl sulfoxide (DMSO, 0.1%), 

or 1-naphthaleneacetic acid (NAA, 500 µM); synthetic complete (SC) media lacking the amino 

acid of interest (0.2% dropout mix, 0.145% yeast nitrogen base without ammonium sulfate and 

amino acids, 0.5% ammonium sulfate, 2% glucose); or SC media with 0.005% uracil and with 5-

fluoroorotic acid (5-FOA, 1 mg/ml). S. pombe was grown in YES liquid or solid media (0.5% 

yeast extract, 3% glucose, 225 mg/L each of adenine, histidine, leucine, uracil, and lysine) at 

32°C. Spot tests to assay growth on different media used ten-fold serial dilutions of each strain 

with the most concentrated spot having an OD600!"!#$! 

  

Construction of strains to select for suppressors of spn1Δ 
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To allow for selection of spn1Δ suppressors, S. cerevisiae strains were built using the following 

steps. First, MATa and MATα wild-type strains were transformed with plasmid FB2701, which 

contains copies of the SPN1, URA3, and HIS3 genes. This plasmid was generated by cloning a 

copy of the URA3 gene into plasmid pCR311, kindly provided by Dr. Laurie Stargell (FISCHBECK 

et al. 2002), composed of pRS313 (SIKORSKI AND HIETER 1989) with 2xmyc-SPN1, including 403 

and 116 base pairs (bp) of upstream and downstream genomic sequences, respectively. 

Second, the genomic SPN1 open reading frame (ORF) was replaced in the transformed strains 

with one of the following drug-resistance cassettes: kanMX, natMX, or hphMX, to obtain the 

spn1Δ parental strains listed in Supplementary Table 1.    

 

Selection and screen to isolate spn1Δ suppressors 

About 50 single colonies each from strains FY3007 and FY3008 were spread as patches that 

occupied a quarter of a solid YPD plate. After one day of incubation at 30˚C, the patches were 

replica plated on medium containing 5-fluoroorotic acid (5-FOA) to detect cells that had lost the 

SPN1 plasmid. A subset of the plates was treated with 5000 µJ/cm2 of UV light using the 

Stratagene UV Stratalinker 2400, while the rest of the plates were left untreated. UV-induced or 

spontaneous suppressors were selected by incubating the 5-FOA plates at 30˚C for 3 days, and 

then replica plating them a second time on 5-FOA. This second set of 5-FOA plates, which had 

reduced background growth compared to the first set, was incubated at 30˚C for 5-7 days. 

Colonies that grow on 5-FOA could be either new mutations that suppress spn1Δ inviability, 

thus allowing plasmid loss, or could be mutations in the plasmid-borne URA3 gene. To 

distinguish between these two possibilities, the 5-FOA resistant candidates were screened by 

replica plating for those that were also His-, which would indicate plasmid loss. A maximum of 

two 5-FOA resistant His- candidates per patch were single-colony purified on YPD. Only one 

candidate from each patch that had a deletion of SPN1 and absence of URA3 and HIS3 was 

considered an independent spn1Δ suppressor. In exceptional cases, two candidates isolated 
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from the same patch were considered independent if the strains showed different growth 

patterns on SC-lys or on YPD media at 30°C or 37°C. From this we isolated 105 mutants. 

 

Dominance tests 

Each of the 105 spn1Δ suppressor strains with unidentified suppressor mutations was grown as 

parallel stripes on solid YPD, with a maximum of eight strains per 10-cm plate. The spn1Δ 

parental strains FY3007 and FY3008, which contain the SPN1 URA3 HIS3 plasmid, were also 

grown as parallel stripes on a different set of plates. The haploid spn1Δ suppressor strains were 

mated with haploid spn1Δ parental strains of the opposite mating type by replica plating both 

sets of strains on YPD, forming a grid of perpendicular stripes, thus allowing diploids to form 

where the stripes intersected. As a positive control, diploids with the SPN1 plasmid were 

selected by replica plating onto SC-leu -trp. Dominance was assayed by selecting for diploids 

without the SPN1 plasmid on SC-leu -trp + 5-FOA. Growth on these plates suggested that the 

diploid strain had a dominant spn1Δ suppressor, while failure to grow suggested that the diploid 

strain had a recessive suppressor.  

 

Whole-genome sequencing analysis 

To identify candidate suppressor mutations by WGS, we selected the 30 spn1Δ suppressor 

strains that were isolated spontaneously and that had the strongest spn1Δ suppression 

phenotype based on growth in the absence of the SPN1 plasmid at 30°C. We grew 25 ml liquid 

YPD cultures for each suppressor strain, as well as the spn1Δ parental strains (FY3007, 

FY3008, FY3038, and FY3040) until saturation was reached. This took multiple days for some 

strains. The cell concentration was determined using a hemacytometer, and the volume of 

saturated culture required to obtain 4-8x108 total cells was calculated. This volume of cells was 

pelleted, washed with 1 ml of distilled water, pelleted again, and flash frozen. Extraction and 

shearing of genomic DNA, library construction, and whole-genome sequencing were performed 

as described (GOPALAKRISHNAN AND WINSTON 2019). Although we found suppressor mutations 
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in multiple classes of genes, we focused on the mutations that targeted the coding regions of 

transcription- and chromatin-associated genes for follow-up studies. Additional analyses to 

identify the suppressors and to check for absence of the SPN1, URA3 and HIS3 genes were 

performed using Geneious version 11.0.5 (KEARSE et al. 2012).           

 

Gene replacements to test candidate spn1Δ suppressors 

To test the candidate spn1Δ suppressors in non-essential genes, we replaced the wild-type 

gene with either the kanMX or the hphMX drug-resistance cassette (BERGKESSEL et al. 2013), 

using the primers listed in Supplementary Table 2. In each case, the PCR products were 

column- or gel-purified and transformed into a SPN1/spn1Δ heterozygous diploid strain 

containing the SPN1 URA3 HIS3 plasmid, which was constructed by crossing FY3007 and 

FY132. Transformants were selected on media containing G418 or hygromycin, and the gene 

replacements were confirmed by PCR. After sporulation and tetrad analysis, the haploid strain 

that had deletion of both SPN1 and the candidate non-essential gene and that also contained 

the SPN1 URA3 HIS3 plasmid were tested for suppression on media containing 5-FOA. To test 

the candidate spn1Δ mutations in the essential genes POB3 and SPT16, we performed two-

step gene replacement (GRAY et al. 2005). A SPN1/spn1Δ heterozygous diploid strain was 

constructed by mating FY3007 and FY1856 and selecting for diploids that had lost the SPN1 

URA3 HIS3 plasmid on 5-FOA. The diploid was transformed with PCR products that had the 

URA3 ORF flanked by sequences homologous to the gene of interest. Transformants were 

selected on SC-ura and re-transformed with PCR products that contained the candidate 

suppressor. Transformants that lost the URA3 gene were selected on media containing 5-FOA. 

Presence of the candidate suppressor was checked by PCR and/or sequencing. Strains that 

had deletion of SPN1, the candidate suppressor, and the SPN1 URA3 HIS3 plasmid were 

tested for suppression on media containing 5-FOA.   

 

Plasmid complementation to test spn1Δ suppression by alteration of TFG1 
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To test suppression by alteration of TFG1, we performed the following steps. First, we replaced 

the TRP1 ORF with the hphMX cassette in both the FY3531 suppressor strain, which has 

spn1Δ and a candidate suppressor in TFG1, and the FY3463 wild-type strain. We then 

transformed both strains with plasmid pGH262 (LINDSTROM et al. 2003), kindly provided by Dr. 

Grant Hartzog, which contains URA3 and an untagged version of SPN1, including 479 bp of 

upstream and downstream genomic sequences. The transformed strains were then transformed 

a second time with one of two TRP1-containing plasmids: (1) an empty pRS314 plasmid 

(SIKORSKI AND HIETER 1989) or (2) pRS314-TFG1, kindly provided by Dr. Stephen Buratowski. 

The four resulting strains, FY3464-FY3467, were tested for spn1Δ suppression on SC-trp 

containing 5-FOA. Inviability on 5-FOA of the FY3531 spn1Δ suppressor strain with pRS314-

TFG1 would suggest that alteration of TFG1 is responsible for spn1Δ suppression.  

 

Chromatin immunoprecipitation-sequencing (ChIP-seq) 

Spn1 degron strains FY3477 and FY3478 were grown in triplicate as 170 ml YPD cultures at 

30°C to OD600!"!%$&$!'()!S. pombe strain FWP10 was grown in YES at 32°C until an OD600!"!

%$&!*+,!-./+01)2$!'()!345677!+12!345678!9:;/:<),!*)<)!20;:/)2!/*-=>-;2!*0/(!4?@!+12!20A02)2!

01/-!/*-!)B:+;!A-;:C),!*0/(!D@600!"!%$5$!3-<!EF1#!2)F;)/0-1G!-1)!->!/()!9:;/:<),!><-C!)+9(!

,/<+01!*+,!/<)+/)2!*0/(!HI!JK!indole-3-acetic acid (IAA) auxin (dissolved in DMSO) for 90 

minutes, and for non-depletion, DMSO was added to the other culture as previously described 

(REIM et al. 2020). To assay Spn1 depletion, 10 ml of each of the S. cerevisiae cultures were 

collected by centrifugation and whole cell lysates (MATSUO et al. 2006) were prepared to 

measure Spn1 levels by Western blot as in (REIM et al. 2020), using a 1:6,000 dilution of anti-

Spn1 antisera (kindly provided by Dr. Laurie Stargell) and a 1:10,000 dilution of anti-actin 

(Abcam, ab8224) as a loading control. In addition, 150 ml of each culture were transferred to a 

flask that was at room temperature, and 36 ml of 4°C YPD were added to each to reach room 

temperature. These cultures were then fixed with 1% formaldehyde for 30 minutes while 

shaking at room temperature. The crosslinking was quenched by adding glycine to each culture 
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to a final concentration of 125 mM and by shaking for 10 minutes at room temperature. The 

cells were pelleted, washed twice with cold 1x TBS (100 mM Tris, 150 mM NaCl pH 7.5), and 

flash frozen. FY3477 and FY3478 cell pellets were resuspended in 800 µl of LB140 (50 mM 

HEPES-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 1%. Triton X-100, 0.1% sodium 

deoxycholate, 0.1% SDS, 100 µg of leupeptin, 100 µg of pepstatin A, 8.71 mg of PMSF, 3.08 

mg of 1M DTT), and lysed by bead-beating at 4°C for 8 minutes with 4-minute incubations on 

ice after every minute of bead-beating. The S. pombe FWP10 pellets were treated similarly, but 

they were lysed by bead-beating at 4°C for 11 minutes. The lysate was collected by centrifuging 

the samples at 14,000 rpm for 5 minutes at 4°C. After discarding the supernatant, the pellet was 

washed with LB140. The final pellet was washed in 580 µl of LB140 and sonicated in a QSonica 

Q800R machine for 10 minutes (30 seconds on, 30 seconds off, 70% amplitude) to obtain 

fragments of about 100-500 bp. The protein concentrations of all samples were measured by 

Bradford (BRADFORD 1976). To prepare the IP reactions, about 250 µg of S. cerevisiae 

chromatin was used as starting material, and 10% w/w S. pombe chromatin was added to each 

sample as a spike-in control (ORLANDO et al. 2014; GOPALAKRISHNAN et al. 2019). Samples 

were brought to 250 µl in LB140 buffer, then 250 µl WB140 buffer (50 mM HEPES-KOH pH 7.5, 

140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate) was added. Then, 40 

µl of each sample were set aside as input for later processing at the reverse crosslinking step, 

described later. Two sets of IPs were prepared per sample with the following antisera: 3 µl of 

anti-H4 (AV94), kindly provided by Dr. Alain Verreault, and 16.7 µl of anti-H4ac (Millipore Sigma, 

06-866, which targets histone H4ac on lysines 5, 8, 12, and 16), volumes that were optimized by 

ChIP-qPCR. The immunoprecipitation reactions were incubated at 4°C with end-over-end 

rotation overnight (~14-16 hours). Aliquots of Dynabeads Protein G for Immunoprecipitation 

(Invitrogen) and Dynabeads Protein A for Immunoprecipitation (Invitrogen) were transferred to 

Eppendorf tubes, and the buffer was removed. A volume of WB140 equivalent to the initial 

volume of beads was used to wash the beads twice with WB140, and the beads were kept in 

the second wash to make a slurry. Fifty µl of the Protein G slurry were added to each of the H4 
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IPs, 278 µl of the Protein A slurry were added to the H4ac IPs, and the reactions were incubated 

at 4°C with end-over-end rotation for four hours. The beads were washed twice (first wash for 

one minute and second wash for five minutes with nutation) with WB140, twice with WB500 (50 

mM HEPES-KOH pH 7.5, 500 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium 

deoxycholate), twice with WBLiCl (10 mM Tis-HCl pH 7.5, 250 mM LiCl, 1 mM EDTA, 0.5% NP-

40, 0.5% sodium deoxycholate). The beads were then washed once with TE (10 mM Tris-HCl 

pH 7.4, 1 mM EDTA) for 5 minutes. The IP material was eluted from the beads twice with 100 µl 

of TES (50 mM Tris-HCl pH 7.4, 10mM EDTA, 1% SDS) at 65°C for 30 minutes first and then 

for 15 minutes. The saved inputs were thawed, and 60 µl of LB140 and 100 µl of TES were 

added. To reverse crosslinking, the eluates and the inputs were incubated at 65°C overnight. To 

degrade RNA, 5 µl of RNAse A/T1 (Thermo Fisher, EN0551) were added to each sample, and 

the samples were incubated at 37°C for one hour. To degrade protein, a mix of 7 µl of 

proteinase K (Roche), 1 µl of glycogen (Sigma G1767-1VL, 20 mg/ml), and 250 µl of TE were 

added to each sample, and the samples were incubated at 50°C for two hours. A DCC-5 kit 

(Zymo Research, D4014) was used to purify DNA (20-µl elution). The libraries were built with 

10.25 µl of DNA as starting material and using the GeneRead DNA Library I Core Kit (Qiagen, 

half of the volumes suggested by the manufacturer instructions were used) and custom 

barcodes (WONG et al. 2013). The samples were purified twice using 0.7x volume SPRI beads 

(A63881). PCRs were performed to determine number of amplification cycles, which ranged 

from 11 to 19, and to perform final library amplifications. The size distribution, quality, and 

concentration of the samples was assessed by running them in an Agilent Bioanalyzer. The 

resulting 45 ChIP-seq libraries were sequenced using the Illumina NextSeq High 75 cycles 

platform at the Harvard Bauer Core Facility. The data were analyzed as in (REIM et al. 2020)                

 

Results 

 

Isolation of mutations that suppress the inviability caused by deletion of the SPN1 gene 
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To isolate suppressors of a deletion of the essential SPN1 gene (spn1Δ), we followed a two-

step selection and screening protocol that identified viable spn1Δ strains (Figure 1A, Methods). 

We first isolated 105 independent suppressor candidates; of these 104 were recessive and one 

was dominant. To identify the causative mutations, we performed whole-genome sequencing of 

the 30 candidates with the strongest suppression phenotypes (29 recessive, one dominant). 

Sequencing of the mutants, all of which were spontaneous isolates, identified 7-21 mutations 

per genome (Supplementary Table 3). We then tested candidate genes by gene replacement 

analysis, focusing on genes known to be involved in transcription and chromatin structure. This 

analysis led to the identification of suppressor genes in 27 of the 30 strains (Supplementary 

Table 4). The mutations from the 27 strains identified at least eight genes that suppress spn1Δ 

to different degrees (Figure 1A, 1B, Supplementary Table 4).  

 

The eight genes encode proteins that function in different aspects of transcription and chromatin 

structure. Two of the genes, SPT16 and POB3, encode the two subunits of the essential FACT 

histone chaperone complex. Some of the spt16 and pob3 suppressor mutations identified here 

were recently described (VIKTOROVSKAYA et al. 2021). The other six genes encode non-

essential proteins: Set2 is the sole S. cerevisiae H3K36 methyltransferase (STRAHL et al. 2002; 

KEOGH et al. 2005; KIZER et al. 2005; POKHOLOK et al. 2005); Rco1 and Eaf3 are subunits of the 

Rpd3S histone deacetylase complex, whose deacetylase activity on histones H3 and H4 

requires H3K36 methylation by Set2 (CARROZZA et al. 2005; JOSHI AND STRUHL 2005; KEOGH et 

al. 2005; LI et al. 2007a; LI et al. 2007b; DROUIN et al. 2010; GOVIND et al. 2010); Chd1 is an 

ATP-dependent chromatin remodeler (WOODAGE et al. 1997; TRAN et al. 2000); Rtt109 is a 

histone acetyltransferase with multiple targets (SCHNEIDER et al. 2006; DRISCOLL et al. 2007; 

HAN et al. 2007; TSUBOTA et al. 2007; FILLINGHAM et al. 2008; ALBAUGH et al. 2011; ABSHIRU et 

al. 2013; KUO et al. 2015; COTE et al. 2019) and Sgf73 is a member of the SAGA coactivator 

complex, required for anchoring the SAGA histone deubiquitylation module (HELMLINGER et al. 

2004; MCMAHON et al. 2005; LEE et al. 2009; YAN AND WOLBERGER 2015). For all six non-
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essential genes, we found that a complete deletion could suppress spn1Δ to varying degrees 

(Figure 1B), demonstrating that, for each of these six genes, suppression is caused by loss of 

function.  

 

The suppression of spn1Δ by set2Δ suggested that loss of histone H3K36 methylation 

suppressed spn1Δ. However, Set2 may have other targets in yeast in addition to histone 

H3K36, as has been shown for its mammalian counterpart, SETD2 (PARK et al. 2016). To test 

whether it is specifically the loss of H3K36 methylation that is responsible for spn1Δ 

suppression, we constructed strains that produced only a mutant histone H3, H3K36A, which 

cannot be methylated at position 36. Our results showed that this mutation suppressed spn1Δ 

nearly as efficiently as did set2Δ (Figure 1C). Therefore, we conclude that loss of H3K36 

methylation is responsible for spn1Δ suppression in a set2Δ strain.  

 

To facilitate the analysis of Spn1 bypass suppressors, we switched from using spn1Δ to using 

strains in which we could conditionally deplete Spn1 using an auxin-inducible degron fused to 

the SPN1 gene (NISHIMURA et al. 2009; REIM et al. 2020). Our previous work showed that we 

could rapidly deplete cells of Spn1 protein as judged by both Western analysis and chromatin 

immunoprecipitation (REIM et al. 2020). Using this system, we re-analyzed the eight suppressor 

mutations by their ability to grow on plates that contain the auxin 1-naphthaleneacetic acid 

(NAA; see Methods). Our results showed that all eight mutations suppressed the growth defect 

of SPN1-AID on NAA plates (Figure 1D), thus validating this as a useful system for studying 

Spn1 bypass suppressors.  

 

Using this Spn1 depletion system, we tested whether combinations of suppressor mutations 

would confer stronger suppression than single suppressor mutations. This was of interest as 

several of our original isolates, although spontaneous, contained mutations in multiple 

suppressor genes (Supplementary Table 4). We constructed two double mutant combinations, 
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set2Δ chd1Δ and set2Δ rtt109Δ. These choices were made because of evidence, presented 

later, that set2Δ bypasses Spn1 by a distinct mechanism from either chd1Δ or rtt109Δ. In 

addition, set2 chd1 double mutants were found in our original suppressor strains. Our results 

showed that suppression was not detectably greater in the double mutants than in any of the 

single mutants (Figure 1E). Presumably, the set2 and chd1 mutations in the original isolates 

were weaker mutations than the deletions, such that combining them would result in greater 

suppression than by either mutation alone.   

 

Bypass of Spn1 by set2Δ occurs via elevated histone acetylation levels 

We suspected that Spn1 bypass by set2Δ, rco1Δ, and eaf3Δ might occur via increased histone 

acetylation, as several previous studies showed that histone H3 and H4 acetylation levels are 

elevated across coding regions in those mutants (VOGELAUER et al. 2000; CARROZZA et al. 

2005; JOSHI AND STRUHL 2005; KEOGH et al. 2005; LI et al. 2007b; LI et al. 2009; DROUIN et al. 

2010; GOVIND et al. 2010; VENKATESH et al. 2012).  We considered that suppression by elevated 

histone acetylation levels could be due to two possible defects caused by Spn1 depletion. First, 

Spn1 depletion might cause decreased levels or altered localization of histone acetylation. 

Given the essential nature of histone acetylation by the histone H4 acetyltransferase Esa1 

(SMITH et al. 1998; CLARKE et al. 1999), this could explain the essential nature of Spn1. 

Alternatively, Spn1 depletion may not alter histone acetylation, but rather might impair a 

different aspect of chromatin structure, such as histone turnover, that can be bypassed by 

elevated levels of histone acetylation. To begin to distinguish between these possibilities, we 

performed ChIP-seq to measure the genome-wide levels of histone H4 acetylation. These 

experiments were done in four conditions: before and after Spn1 depletion in both wild-type 

SET2 and set2Δ genetic backgrounds. Samples were normalized by adding an equal amount of 

chromatin from S. pombe to each sample prior to immunoprecipitation (see Methods). To assay 

the levels of acetylation, we used an antiserum that targets histone H4 acetylated at lysines 5, 

8, 12, and 16 (Methods), and H4 acetylation levels were compared to total histone H4 levels. 
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Each condition was performed in triplicate and the depletion of Spn1 was verified for each 

culture by Western blot analysis (Supplementary Figure 1A). Our analysis showed that we had 

highly reproducible results for most replicates (Supplementary Figure 1B, 1C).  

 

Our results provided several new pieces of information. First, Spn1 depletion alone caused a 

shift in the pattern of histone H4 acetylation, as we observed a modestly decreased level of H4 

acetylation over 5’ regions and a modestly increased level of H4 acetylation over gene bodies 

after Spn1 depletion (Figure 2A). These changes were most easily observable over long genes 

(Figure 2A, 2E). These results are consistent with an earlier study that showed an increase in 

H4 acetylation at two target genes after knockdown of the Spn1 homolog in mammalian cells 

(YOH et al. 2008). Second, in a set2Δ background, both before and after Spn1 depletion, we 

observed a greatly increased level of H4 acetylation in agreement with the previous studies 

cited earlier (Figure 2B, 2C, 2E). Third, in the set2Δ background, Spn1 depletion still caused a 

modest increase in H4 acetylation levels (Figure 2D, 2E). This demonstrated that the increased 

level of histone acetylation upon Spn1 depletion was not merely a consequence of the reduced 

recruitment of Set2 that results from Spn1 depletion (REIM et al. 2020). Together, these results 

show that Spn1 controls the pattern of histone acetylation across the genome. Furthermore, the 

results support a model in which bypass of Spn1 depletion by set2Δ correlates with hyper-

elevated histone acetylation levels.  

 

In contrast to changes in histone acetylation, we observed that Spn1 depletion had little effect 

on the level or pattern of total histone H4 levels associated with chromatin. However, Spn1 

depletion did cause a decreased level of chromatin-associated histone H4 over the 5’ ends of a 

small set of genes (Supplementary Figure 1D). These genes tended to be highly expressed, 

similar to our previous observations for histone H3 (REIM et al. 2020) (Supplementary Figure 

1E).   

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.28.498004doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.28.498004
http://creativecommons.org/licenses/by-nc-nd/4.0/


17	
	

The results of our ChIP-seq experiments demonstrated a correlation between the elevated 

levels of histone acetylation in a set2Δ background and bypass of Spn1. To test whether histone 

acetylation is required for Spn1 bypass, we constructed strains to ask whether Gcn5, an H3 

histone acetyltransferase (HAT), or Esa1, a histone H4 HAT, were required for suppression by 

set2Δ. These two HATs were chosen to be tested as both have been shown to be recruited to 

coding regions (GOVIND et al. 2007; GINSBURG et al. 2009). As GCN5 is not essential for viability 

we tested a set2Δ gcn5Δ double mutant. However, ESA1 is essential for viability, so we tested a 

temperature-sensitive allele, esa1-L254P, which causes reduced HAT activity at increased 

temperatures (CLARKE et al. 1999). Our results demonstrated that both Gcn5 and Esa1 are 

required for suppression by set2Δ (Figure 3A, 3B). These results strongly support the model that 

increased histone acetylation is required for Spn1 bypass by set2Δ. 

 

Evidence that Spn1 bypass can occur by multiple mechanisms 

Given that Gcn5 is strongly required for set2Δ to bypass Spn1, we asked whether Gcn5 is also 

required for other suppressor mutations to bypass Spn1. To do this, we combined gcn5Δ with 

four other strong suppressors (rco1Δ, rtt109Δ, chd1Δ, and pob3-E154K) and tested the ability of 

these strains to survive Spn1 depletion. As expected, gcn5Δ abolished suppression by rco1Δ, as 

both Set2 and Rco1 are required for Rpd3S function (Figure 4). In contrast, gcn5Δ had little or 

no effect on suppression by rtt109Δ, chd1Δ, or pob3-E154K (Figure 4), showing that this latter 

group of suppressors does not strongly require Gcn5-mediated histone acetylation to bypass 

Spn1. These results suggest that Spn1 bypass by set2Δ and rco1Δ occurs by elevated histone 

acetylation levels, whereas Spn1 bypass by the other suppressors tested, rtt109Δ, chd1Δ, and 

pob3-E154K, occurs by one or more distinct mechanisms that are not dependent on Gcn5-

dependent histone acetylation.  

 

Analysis of Spn1 bypass by rtt109Δ 
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Bypass suppression of Spn1 by rtt109Δ was intriguing, as Rtt109 is a histone acetyltransferase 

that targets multiple sites in histones H3 and H4, several of which overlap the sites targeted by 

Gcn5 (SCHNEIDER et al. 2006; DRISCOLL et al. 2007; HAN et al. 2007; TSUBOTA et al. 2007; 

FILLINGHAM et al. 2008; BURGESS et al. 2010; ALBAUGH et al. 2011; ABSHIRU et al. 2013; KUO et 

al. 2015). Therefore, while loss of one HAT, Gcn5, has a negative effect on Spn1 bypass, loss 

of a different HAT, Rtt109, causes Spn1 bypass. In an attempt to understand how decreased 

acetylation bypasses Spn1 and how two HATs with overlapping targets cause opposite effects, 

we investigated the mechanism by which rtt109Δ allows Spn1 bypass.  

 

First, as there are multiple H3 HATs in yeast, we tested whether suppression was specific to 

loss of Rtt109 by directly comparing loss of three different H3 acetyltransferases: Rtt109, Gcn5, 

and Sas3. Our results showed that only rtt109Δ allows Spn1 bypass (Figure 5A). Second, to 

verify that bypass by rtt109Δ is caused by loss of Rtt109 acetylation activity, we tested whether 

rtt109-D89A, which encodes a catalytically dead protein (HAN et al. 2007), allowed Spn1 

bypass. Our results showed that loss of Rtt109 catalytic activity is equivalent to an rtt109Δ 

mutation with respect to Spn1 bypass (Figure 5B). Thus, among the histone H3 HATs studied, 

Spn1 bypass suppression is specific to loss of Rtt109 acetyltransferase activity. 

 

Although Rtt109 has multiple acetylation targets, it is the only HAT that acetylates H3K56 

(DRISCOLL et al. 2007; HAN et al. 2007), a histone modification that has been implicated in 

controlling genome stability (GERSHON AND KUPIEC 2021). Given this unique role for Rtt109, it 

seemed likely that loss of H3K56 acetylation (H3K56Ac) would be responsible for Spn1 bypass. 

To test this possibility, we took advantage of previous work that showed that Rtt109 functions in 

combination with two histone chaperones, Asf1 and Vps75, to help specify the Rtt109 targets. 

The interaction with Asf1, but not with Vps75, is absolutely required for Rtt109-mediated H3K56 

acetylation (RECHT et al. 2006; FILLINGHAM et al. 2008; ZHANG et al. 2018). When we tested for 

Spn1 bypass in an asf1Δ mutant, our results showed that there was no detectable effect of 
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asf1Δ (Figure 5C). To test loss of H3K56 acetylation by an alternative approach, we constructed 

strains that contained mutations in both copies of the histone H3 genes (HHT1 and HHT2) that 

mimicked the unacetylated state (H3K56R) (MCCULLOUGH et al. 2019). In this case, we 

observed very modest Spn1 bypass, far weaker than was caused by  rtt109Δ (Figure 5C). 

Taken together, these showed that loss of H3K56Ac alone was not sufficient for Spn1 bypass.  

 

To test if bypass occurs by loss of acetylation at other Rtt109 histone target sites, we tested two 

mutations, vps75Δ (SELTH AND SVEJSTRUP 2007; TSUBOTA et al. 2007; FILLINGHAM et al. 2008) 

and rtt109-Q290K (RADOVANI et al. 2013), that primarily decrease Rtt109 acetylation at sites 

other than K56. Our results showed that both vps75Δ and rtt109-Q290K conferred very weak 

Spn1 bypass, similar to the H3K56R changes (Figure 5C). When we tested a combination of 

mutations, H3K56R with vps75Δ, that would impair Rtt109 acetylation at most or all of its known 

histone targets, we observed slightly greater, but still quite modest Spn1 bypass (Figure 5C). In 

summary, by several approaches to independently impair Rtt109 acetylation at its histone 

targets, the mutants were unable to recapitulate the level of Spn1 bypass observed by either 

rtt109Δ or a mutation that impairs Rtt109 catalytic activity. These results suggest the existence 

of additional Rtt109 targets that are independent of Vps75 and Asf1.  

 

Discussion 

 

Spn1 is a highly conserved and essential transcription factor that functions as a histone 

chaperone and that plays critical roles in transcription and chromatin structure. We have now 

shown that the inviability caused by the loss of Spn1 can be bypassed in S. cerevisiae by single 

mutations in eight different genes that play distinct roles in transcription and chromatin structure. 

Our results suggest that bypass can occur by distinct mechanisms. In the clearest case, bypass 

of Spn1 by set2Δ, we showed that bypass required increased levels of histone acetylation. In 

contrast, increased histone acetylation was not required in other cases, such as Spn1 bypass 
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by either chd1Δ or pob3 mutations. Furthermore, bypass of Spn1 by rtt109Δ required loss of the 

Rtt109 acetyltransferase activity, rather than elevation of acetylation. The bypass of Spn1 by 

different mechanisms suggests that Spn1 may have multiple functions in vivo, that the 

combination of these functions results in the essential nature of Spn1, and that the suppression 

of a subset of these functions can bypass the need for Spn1 for viability. 

 

Bypass of Spn1 by elevated histone acetylation levels suggests that Spn1 normally promotes 

DNA accessibility, and in its absence, chromatin remains in a repressed state that prevents 

transcription, and possibly other chromatin-related processes, from occurring normally. There 

are several possible reasons why increased histone acetylation would allow bypass. First, 

increased acetylation of histone N-terminal tails has been shown to lead to reduced electrostatic 

interactions of the histone tails with DNA, loosening chromatin and making the DNA more 

accessible to transcription factors (PROTACIO et al. 2000). In addition, histone acetylation 

recruits bromodomain-containing proteins, including nucleosome remodelers such as Swi/Snf 

(HASSAN et al. 2002) and RSC (CAREY et al. 2006; GINSBURG et al. 2009; MAS et al. 2009), and 

there is evidence that histone acetylation also facilitates histone turnover (VENKATESH et al. 

2012). There is evidence that histone acetylation levels affect the recruitment of histone 

chaperones, as one recent study showed that reduced histone acetylation decreased the 

recruitment of FACT (PATHAK et al. 2018). However, that same study showed that elevated 

histone acetylation levels did not increase the recruitment of FACT. Therefore, increased 

association of FACT seems unlikely to be a contributing factor.  

 

In contrast to set2Δ, Spn1 bypass by chd1Δ may be caused by increased association of the 

FACT complex. One recent study showed that in chd1Δ mutants there was an increased level of 

stable association of FACT with chromatin, suggesting a faster “on” rate in the absence of Chd1 

(JERONIMO et al. 2021). This result is consistent with recent structural studies that showed that 

the binding of FACT and Chd1 to a nucleosome was mutually exclusive (FARNUNG et al. 2021). 
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Thus, removing Chd1 by mutation might provide FACT with an increased opportunity to 

associate with transcribed chromatin. By this model, it is possible that some of the spt16 and 

pob3 bypass suppressors isolated in this study would increase FACT activity. This model also 

fits with previous studies that showed that chd1Δ suppresses a distinct class of spt16 and pob3 

temperature-sensitive mutations (SIMIC et al. 2003; BISWAS et al. 2007). In those cases, the 

decreased FACT activity caused by those spt16 and pob3 mutations might be compensated by 

an increased association of FACT with chromatin. Other changes that have been shown to 

occur in chd1Δ mutants are less likely to contribute to Spn1 bypass, including increased levels 

of histone acetylation and altered localization of some histone modifications (RADMAN-LIVAJA et 

al. 2012; SMOLLE et al. 2012; LEE et al. 2017), given the Gcn5-independence of chd1Δ bypass.  

 

Although our experiments did not elucidate the mechanism by which rtt109Δ bypasses Spn1, 

they did rule out specific possibilities and point toward future areas for investigation of Rtt109. 

First, by multiple genetic tests, we have eliminated the possibility that Spn1 bypass occurs 

solely via loss of H3K56 acetylation by Rtt109. In addition, our results showed that loss of 

acetylation at all of the known Rtt109 histone targets fails to recapitulate Spn1 bypass by 

rtt109Δ. Since loss of Rtt109 catalytic activity is sufficient for Spn1 bypass, our results suggest 

that Spn1 bypass by rtt109Δ requires loss of acetylation at novel Rtt109 targets that have not 

yet been identified. Such targets could be sites in histones that are independent of Asf1 and 

Vps75, or possibly, non-histone targets.  

 

Several recent structural studies have provided important new insights into the structure of the 

RNAPII eukaryotic transcription elongation complex and its interactions with nucleosomes 

(EHARA et al. 2017; FARNUNG et al. 2018; VOS et al. 2018a; VOS et al. 2018b; EHARA et al. 2019; 

VOS et al. 2020; FARNUNG et al. 2021). Although these structures have not yet revealed the 

location and detailed interactions of Spn1 within this complex, multiple studies have shown that 

Spn1 is part of the elongation complex (KROGAN et al. 2002; LINDSTROM et al. 2003; ZHANG et 
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al. 2008; DIEBOLD et al. 2010; MAYER et al. 2010; MCDONALD et al. 2010; PUJARI et al. 2010; LI 

et al. 2018; REIM et al. 2020; CERMAKOVA et al. 2021; VIKTOROVSKAYA et al. 2021), and recent 

evidence suggests that, in human cells, Spn1 serves as a hub for the elongation complex 

(CERMAKOVA et al. 2021). Our results have demonstrated that, in the presence of bypass 

suppressors, yeast can survive, and in some cases grow at close to wild-type rates, in the 

absence of Spn1. It will be of great interest to learn how Spn1 localizes within the transcription 

elongation complex and to understand whether the requirement for Spn1 can be bypassed in 

larger eukaryotes as well as in yeast.  

 

Data availability 

All strains and plasmids are available upon request. Sequencing data from this study is 

available at the NCBI Gene Expression Omnibus (GEO) with the accession number 

GSE202590. The code used for the ChIP-seq analysis is available at 

https://github.com/orgs/winston-lab/repositories. 
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Figure legends 

 

Figure 1. The isolation and analysis of Spn1 bypass suppressors. (A) A schematic showing the 

selection and subsequent screen used to isolate Spn1 bypass suppressors. Briefly, spn1Δ yeast 

strains that also have deletions of HIS3 and URA3 were grown. These strains are viable 

because they contain a wild-type copy of the SPN1 gene in a plasmid, which also has wild-type 

copies of URA3 and HIS3. Suppressors were selected on medium containing 5-fluoroorotic acid 

(5-FOA), which counterselects for cells that have URA3. To screen for the suppressor strains 

that lost the plasmid, rather than those that acquired a ura3 mutation, the 5-FOA resistant 

candidates were screened for those that were also His-. We isolated 105 independent spn1Δ 

suppressors. Whole-genome sequencing of the 31 strongest mutants, followed by gene 

replacements, identified eight genes with spn1Δ suppressors. (B) Dilution spot tests of spn1Δ 

suppressors. Shown are 5-FOA (suppression) and YPD (permissive) plates after seven days at 

30˚C. (C) Suppression of spn1Δ by set2Δ and by H3K36A. Plates are shown after five days at 

30˚C. (D) The suppressors of spn1Δ also suppress Spn1 depletion mediated by SPN1-AID. 

Plates are shown after three days at 30˚C. Plates labeled NAA contain 500 µM 1-

naphthaleneacetic acid to enable Spn1 depletion. Here we tested suppression of pob3-E154K, 

while in panel A we tested pob3-E171K. Both mutations target the dimerization domain of Pob3 

as previously described (VIKTOROVSKAYA et al. 2021) (E) Analysis of suppression by double 

mutants, shown after three days of incubation at 30˚C. 

 

Figure 2. ChIP-seq analysis of histone H4 acetylation. (A) Comparison of histone H4 acetylation 

levels in strains with and without Spn1 depletion. Top: metagene plots showing the average 

level of histone H4 acetylation normalized to total levels of histone H4 for 3,087 non-overlapping 

coding genes in Spn1 non-depleted and depleted conditions. The solid line and the shading are 
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the median and interquartile range of each sample. Bottom: a heatmap showing the same set of 

genes aligned by the transcription start site (TSS) and arranged by transcript length. The white 

dotted line on the right represents the position of the cleavage and polyadenylation site. (B) As 

in panel A except comparing Spn1 non-depleted to set2Δ Spn1 non-depleted. (C) As in A 

except comparing Spn1 non-depleted to set2Δ Spn1-depleted. (D) As in A except comparing 

set2Δ Spn1 non-depleted to set2Δ Spn1-depleted. (E) Single gene examples of ChIP-seq 

analysis. The H4 acetylation levels normalized to total H4 levels are shown for three genes, 

MYO5, EGT2 and NHA1. These three genes showed notable differences in H4ac between the 

Spn1 depleted and non-depleted conditions. They do not have significant changes in mRNA 

levels after Spn1 depletion (REIM et al. 2020).  

 

Figure 3. Spn1 bypass by set2Δ requires histone acetylation. (A) Dilution spot tests to examine 

whether Gcn5 is required for Spn1 bypass by set2Δ. Plates are shown after three days at 30˚C. 

(B) Dilution spot tests to examine whether Esa1 is required for Spn1 bypass by set2Δ. Plates 

are shown after two days of incubation at 34˚C.  

 

Figure 4. Epistasis tests between Spn1 bypass suppressors and gcn5Δ. The plates shown were 

incubated at 30˚C for three days. 

 

Figure 5. Genetic analysis to understand rtt109Δ bypass of Spn1. (A) Dilution spot tests to 

examine the loss of three different histone acetyltransferases for Spn1 bypass. Plates are 

shown after three days at 30˚C. (B) Dilution spot tests of an rtt109 catalytically dead mutant. 

Plates are shown after three days at 30˚C. Vector refers to the same plasmid without an 

RTT109 gene. (C) Dilution spot tests to analyze mutants that impair different aspects of Rtt109 

activity. Plates are shown after three days at 30˚C.  
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