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Abstract 

A widely accepted view in memory research is that previously acquired information can be 
reactivated during sleep, leading to persistent memory storage. Recently, Targeted Memory 
Reactivation (TMR) has been developed as a technique whereby specific memories can be 
reactivated during sleep using a sensory stimulus linked to prior learning. TMR can improve 
various types of memory, raising the possibility that it may be useful for cognitive enhancement 
and clinical therapy. A major challenge for the expanded use of TMR is that experimenters must 
manually control stimulation timing and intensity, which is impractical in most settings. To 
address this limitation, we developed the SleepStim system for automated TMR in the home 
environment. SleepStim includes a smartwatch to collect movement and heart-rate data, plus a 
smartphone to emit auditory cues. A machine-learning model identifies periods of deep non-
REM sleep and triggers TMR sounds within these periods. We tested whether this system could 
replicate the spatial-memory benefit of in-lab TMR. Participants learned the locations of objects 
on a grid, and then half of the object locations were reactivated during sleep over three nights. 
In an experiment with 61 participants, the TMR effect was nonsignificant but varied 
systematically with stimulus intensity; low-intensity but not high-intensity stimuli produced 
memory benefits. In a second experiment with 24 participants, we limited stimulus intensity and 
found that TMR reliably improved spatial memory, consistent with effects observed in laboratory 
studies. We conclude that SleepStim can effectively accomplish automated TMR and that 

avoiding sleep disruption is critical for TMR benefits. 

Keywords: memory consolidation, sleep, memory replay, wearable technology, sleep disruption 
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Introduction  

Sleep has long been recognized as important for good memory function (e.g., Patrick & Gilbert, 

1896), but much remains to be learned about why. A prevalent view at the present time is that 

reactivation of stored information during sleep helps stabilize memories, preventing forgetting of 

important information (Born & Wilhelm, 2012; Marr, 1971; Paller, 1997; Paller et al., 2020). 

Studies using Targeted Memory Reactivation (TMR) have provided evidence for this hypothesis 

by demonstrating that selectively reactivating memories during sleep can strengthen them 

(Oudiette & Paller, 2013). In TMR experiments, learning is associated with a sensory cue, which 

is subsequently presented during sleep without awaking the sleeper. Cue presentation can lead 

to reactivation of memory content in the cortex and hippocampus (Bendor & Wilson, 2012; 

Cairney et al., 2018; Wang et al., 2019). After waking, reactivated memories are typically 

remembered better than those not reactivated, demonstrating that memory reactivation during 

sleep can strengthen memory, a finding that has been confirmed by meta-analysis (Hu et al., 

2020).  

Experiments with TMR have shown that it is a useful tool for investigating questions in memory 

research and potentially as an intervention for cognitive enhancement. For example, TMR can 

improve retention of information learned in a classroom setting (Gao et al., 2020), and facilitate 

learning of motor skills (Cheng et al., 2021; Johnson et al., 2019). Researchers have therefore 

proposed that TMR may be useful to enhance memory and to augment therapies that depend 

on learning, like rehabilitation (Oudiette & Paller, 2013; Paller, 2017). 

A major barrier to expanding use of TMR is that the technique requires experimenters to control 

presentation of cues while monitoring sleep using polysomnography. In this way, cues can be 

presented in a particular sleep stage without arousing the participant from sleep. A specialized 

sleep facility and extensive training of operators is required for this online sleep scoring, and 

participants must sleep in an environment that differs in many ways from their typical sleeping 

environment at home. 

These requirements impose substantial limitations on TMR experiments. For example, very few 

studies have examined the effects of multiple TMR sessions, owing largely to logistical 

difficulties. Standard TMR requirements also make it impractical to study or use TMR in clinical 

therapy across multiple sessions. To surmount these limitations, new ways to perform TMR in 

participants’ own homes are needed, ideally using an automated system that does not require 

direct control by an operator.  
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Previous research on TMR outside of the sleep lab 

Previous research on home-TMR can be divided into two categories. With unsupervised 

approaches, TMR cues are automatically presented during sleep irrespective of sleep stage. In 

supervised approaches, there is an attempt to present TMR cues in a specific sleep stage. 

Unsupervised home-TMR has shown mixed results in improving cognition and memory.  Ritter 

and colleagues (2012) found that memory reactivation during sleep could enhance creative 

problem solving; the researchers reactivated a problem-solving task using a plug-in scent 

diffuser during overnight sleep. While they slept, participants received either an odor linked to 

the task, an irrelevant odor, or no odor, and those who received task-linked odors produced 

solutions that blinded raters judged as more creative. Similarly, Neumann and colleagues 

(2020) found that TMR with an olfactory cue (incense sticks placed near the head while 

sleeping) could improve vocabulary learning in children. Other unsupervised TMR experiments, 

on the other hand, did not find benefits consistent with the TMR literature. Donohue and 

Spencer (2011) found that TMR using a continuous ocean sound played while participants slept 

overnight did not improve memory for word pairs. Göldi and Rasch (2019) found no effect of 

TMR when foreign vocabulary was cued 30 minutes after sleep onset. However, a further 

analysis showed that TMR benefitted memory for participants who reported that their sleep was 

undisturbed, but not those who reported that sound cues disturbed their sleep. 

Our recent experiments using polysomnographic recordings in the lab environment 

substantiated the notion that Göldi and Rasch (2019) put forward—that TMR does not improve 

memory when sleep is disrupted by sounds. One study showed that a TMR benefit for learning 

face-name associations was reduced when TMR sounds disrupted sleep (Whitmore et al., 

2022). Furthermore, deliberately disrupting sleep with loud sound cues reverses the TMR effect 

on spatial recall, selectively weakening reactivated memories (Whitmore & Paller, 2022). 

Therefore, we suggest that unsupervised TMR may tend to be ineffective because the intensity 

and timing of cues cannot be adjusted to avoid disrupting sleep. 

Accordingly, supervised home TMR using a sleep sensor may be superior to unsupervised 

TMR. In two prior experiments with home TMR, we used a modified Zeo system (Shambroom et 

al., 2012) with electrolyte-filled electrodes for forehead EEG recordings used to control sound 

presentations. One study showed an impact of TMR on feelings of ownership and 

proprioceptive drift in the rubber-hand illusion (Honma et al., 2016). The other showed effects 

on creative problem solving (Sanders et al., 2019). 
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Designing a home TMR system 

Based on previous research and pilot testing, we identified key needs for a home TMR system. 

These included the ability to target specific sleep stages, \ robustness  signal problems such as 

poor contact quality, and minimal reliance on proprietary or black-box technology. The system 

must also be comfortable, avoid disturbing sleep, and be easy for participants to use. 

As no complete system currently exists meeting these requirements, we developed a new TMR 

system that we call SleepStim, based on consumer devices, specifically an Android phone and 

a smartwatch (Fitbit Versa). As sleep stages can be decoded from heart rate and wrist 

movement (Beattie et al., 2017; de Zambotti et al., 2018; Faust et al., 2019), we developed a 

custom algorithm using this information in real time to identify periods of N3 sleep. Our aim was 

to trigger TMR cueing during these periods, rather than to discriminate all sleep stages. We then 

tested whether TMR with SleepStim could improve memory for object-location associations as 

observed in previous TMR studies (e.g., Rudoy et al., 2009).  

Experiment 1 Methods 

Figure 1 shows a diagram of the 5-day procedure. On the first day, we provided participants 

with a Fitbit and an Android smartphone. To allow us to correlate sleep-physiology features with 

behavioral results, a Dreem-2 headband (Arnal et al., 2020) was also provided. On the second 

day, participants learned arbitrary screen locations for 50 objects shown on a grid on the 

smartphone. Each object appeared with a distinct sound naturally associated with the object. On 

the second, third, and fourth night, sound cues for half of the objects were presented during 

sleep. Memory was tested in the morning of the third, fourth, and fifth day. We predicted that 

participants would recall locations more accurately for objects reactivated during sleep 

compared to those not reactivated, replicating the typical effect of TMR on spatial memory. 

Participants 

We collected data from 120 adults who we recruited using flyers placed on campus. The 

protocol was approved by the Northwestern University IRB. Participants provided written 

informed consent and were paid for their time. Prior to data analysis, the following inclusion 

criteria were applied.  

• Completion of training, the bedtime memory test, and at least one morning memory test 

• During sleep, at least 25 cues were presented 
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• No more than four stimuli were presented when the Fitbit read a heart rate of zero 

(indicative of a poor heart rate signal) 

• Objects were correctly allocated to cued and uncued conditions (which did not happen for 

3 participants due to a bug in the allocation algorithm) 

This process yielded data from 61 participants for analysis. Participants were between 18-25 

years old (mean=20.6 years) and 28% of them were male. 

Procedure 

Day 1. Participants picked up the equipment and were instructed on the procedure and how to 

use the smartphone app. They wore the Fitbit and the Dreem-2 that night to allow for 

acclimation to the equipment. The phone played continuous white noise overnight. Participants 

used a slider in the app to set the white-noise intensity to a comfortable level. This intensity 

setting was used as the initial setpoint for sounds played during the night. Using the algorithm 

described in detail below, the app controlled presentation of a control sound (electronic ding) 

intended to help participants adapt to the potential disruption of sound presentations. The goal 

was to reduce sleep disruption from experimental sounds presented on subsequent nights. 

Targeting slow-wave sleep, the phone repeatedly played an electronic ding sound that was 

unrelated to the memory task. 

Day 2. Using the phone, participants completed the learning phase at a mean time of 10:24 PM 

[SEM 71 min]. In this task (described in Figure 2), a grid covered the phone’s entire screen, and 

participants learned the correct locations of objects on the grid. The app recorded accuracy and 

response times during each phase. 

There were 5 blocks of trials, each with 10 objects. First, the participant was shown the correct 

locations of the 10 objects in that block. Then, each object appeared in the center of the screen 

in a random order, and the participant attempted to move it to the correct location. The 

participant then received feedback consisting of a red X (if incorrect) or a green checkmark (if 

correct) at the location where they positioned the object. The feedback was presented for 2 

seconds, after which the object was displayed in the correct position for 3 seconds. The 

placement was considered correct if the object was placed within 120 pixels (~2 cm) of the 

correct location; correct objects were dropped from the rotation. A block ended when the 

participant placed all objects correctly. The phone played the sound associated with each object 

when it first appeared on the screen, and when the correct location was shown in the feedback 

phase. 
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Participants began the bedtime memory test shortly after completing the learning (mean delay 

11 min, SEM=5 min). In this test, all 50 objects were presented sequentially in the center of the 

screen, in random order, and the participant attempted to move each object to its correct 

location. Unlike in the learning phase, no feedback was given. 

After participants completed their bedtime memory test, the app selected 25 objects to be cued 

during sleep using a matching algorithm to minimize the difference in bedtime memory 

performance between two sets of objects (to be cued and uncued). Objects were sorted by 

memory error and then assigned in alternating order (i.e., 1=cued, 2=uncued…). Because some 

differences remained after this assignment, the app also counterbalanced participants so that 

the assignment procedure started with cued in half of the participants and uncued in the other 

half. As expected, there was no difference in recall accuracy between cued and uncued objects 

in the bedtime memory test [Wilcoxon signed-rank test, z(60)=0.8,p=0.42]. 

Shortly before going to sleep, the participant put on the Fitbit and Dreem-2, started the TMR 

app, and calibrated white-noise intensity. During the night, and on all subsequent nights, sounds 

linked to the 25 objects in the cued condition were presented during sleep. 

Days 3 and 4. Participants completed a memory test in the morning. The test was identical to 

the memory test on Day 2, except with a different random order of objects. During sleep, they 

used the Fitbit, Dreem-2, and TMR app as on previous nights. 

Day 5. Participants completed a final memory test in the morning and returned the equipment. 

When returning the equipment, we asked participants whether they remembered hearing any of 

the sounds from the memory task while they were sleeping. 
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Figure 1. A. Sequence of events in the study. On day 2 all tasks were completed in the evening. 
B. Procedures for the learning phase, including presentation of objects (left) and trials of 
location recall with the drop-out method (right). The sound of each object was played whenever 
the object appeared on the screen in its target location. The memory test used the same 
procedure for location recall except that participants were not given feedback or shown the 
correct location of the objects, and the sounds were not played. 

 

Automated TMR 

Sounds were played at 10-second intervals when N3 sleep was detected. Detection was 

operationalized as (a) a high value for the probability of N3 averaged over the most recent 240 

s, P(N3)  0.9, and (b) the most recent value for P(N3)  0.85. Cue start/stop and cue sound 

intensity was controlled by the algorithm shown in Figure 2. 
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Figure 2. Flow chart illustrating how sounds are controlled in the SleepStim system. P(N3) is 
the probability that the participant is in N3 sleep as determined by the neural network classifier. 
The Fitbit transmits data once per second; if no Fitbit data is received for 10 seconds (indicating 
loss of signal), the sounds are turned off. A rapid drop in P(N3) while sounds are playing 
suggests the sounds aroused the participant and the intensity may be set too high, therefore the 

intensity setpoint is decreased if P(N3) drops below 0.85  while sounds are playing. 

SleepStim was limited to presenting sounds when P(N3) was high within a time interval from 15 

minutes to 3 hours after the time the system was turned on. The system was also limited to a 

maximum time of stimulation of 10.5 minutes. These constraints were imposed to minimize the 

chance of disrupting sleep with the sounds, and are consistent with the protocols used in 

previous lab-TMR studies (Rudoy et al., 2009). 

Memory performance measurement 

We measured memory change as the ratio of mean spatial error at a morning memory test to 

mean spatial error at the bedtime memory test (e.g., mean test1 error / mean bedtime test 

error). We computed this statistic separately for cued and uncued objects. 
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For each test, we computed the TMR effect as the  memory change for cued objects minus the 

memory change for uncued objects. A negative value indicates a benefit of TMR for memory. 

For example, a TMR effect of -0.1 implies that the increase in error for cued objects was 10% 

lower than the increase in error for uncued objects. We determined whether TMR effects 

differed significantly from zero using the Wilcoxon signed-rank test, a non-parametric one-

sample test.  

In the primary analysis of the TMR effect, we examined memory performance on the last test 

taken. Whereas participants were asked to take three memory tests, some failed to do so on 

one or more mornings. Therefore, the primary analysis focused on the memory error from the 

last test, and we treated the number of prior memory tests and the number of nights cued as 

predictors in our model. 

In the secondary analysis, we considered only participants who completed all three memory 

tests (n = 41). We evaluated the effect of TMR at each test to observe how it changed over 

time. 

Controlling for effects of initial memory performance 

We observed that TMR effects were correlated with the pre-sleep difference in memory 

performance between cued and uncued objects (Figure 3), which could be interpreted as 

regression to the mean. That is, the larger the cued/uncued difference initially, the more likely 

this difference is reduced on the subsequent test. Because this effect adds variability that could 

obscure other correlations, we controlled for this effect before analyzing relationships between 

the TMR effect and other variables. In this procedure, we used linear regression to isolate the 

relation between the TMR effect and initial memory performance differences between cued and 

uncued objects, computed separately for each test. The residual effect after covarying out this 

relationship was calculated as the corrected TMR effect.  
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Figure 3. An example of the linear regression used to control for variation in memory 
performance in the bedtime test in Experiment 1. The bimodal distribution of bedtime test scores 
resulted from the procedure used to assign objects to cued and uncued conditions.  

Dreem-2 sleep staging 

 We used data from the Dreem-2 headset to compute the time participants spent in each sleep 

stage, as well as the percentage of cues delivered in each sleep stage. Some participants did 

not have sufficient high-quality data for staging (by the proprietary Dreem algorithm), so only a 

subset of 45 participants were included in these analyses.  

 

SleepStim system 

A custom application running on the Fitbit acquired data once per second. The data consisted of 

heart rate in beats per minute, acceleration on X, Y, and Z axes, and rotation on these axes 

from the accelerometer and gyro, respectively. The data were transmitted via Bluetooth to the 

paired phone. The first step of processing on the phone was feature extraction, as schematized 

in Figure 4. Briefly, the phone computed a time-frequency representation of the last 240 

seconds of accelerometer, gyro, and heart-rate data. The result was a time-frequency matrix, 

quantifying variability as a function of both time (number of prior seconds) and frequency. This 

transformation is similar to that used in other sleep-staging algorithms (Beattie et al., 2017), and 

is useful because it allows for characterization of various sleep phenomena (e.g., high-

frequency vs. low-frequency heart rate variability). Because time-frequency variability was highly 

correlated on all axes, only the Z axis of the accelerometer and gyro signals was used in 

computing the time-frequency representation. Following feature extraction, the time-frequency 
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features along with current values from all sensors and total motion integrated over the last 240 

seconds were input to an artificial neural network classifier trained to predict the probability of 

N3 sleep. For each sample (each second), the network produced a value, P(N3), corresponding 

to the probability of N3 sleep.  

 

Figure 4. Schematic of the feature-extraction system and neural network. Variance was 
calculated using the standard deviation of each chunk. 

Neural network training and testing 

We trained the neural network on a dataset for 24 participants that included Fitbit data and 

sleep scores from an overnight session. Half of the participants were young adults who slept in 

the lab overnight for an unrelated study and half were middle-aged adults who slept at home. 

For the young adults, sleep stages were determined by manual scoring of polysomnographic 

data; for middle-aged adults sleep stages were determined using the automatic scoring built into 

the Dreem-2.  

Prior to training, we computed features for the Fitbit data as described above. To speed training, 

we subsampled the data by a factor of 5, to yield one sample every 5 seconds. Preliminary 

testing showed that this did not meaningfully affect classifier accuracy, likely because 

successive samples contained mostly redundant information. In total, 178,948 observations 

were included in the dataset. 
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We then trained a perceptron neural network classifier with two hidden layers to predict whether 

each second would be scored as N3 based on the Fitbit features. Training was performed using 

the Neural module of JMP 15.2.1 (2019) using the “squared” regularization penalty. To evaluate 

the network’s overall performance in classifying N3 sleep, we also trained a separate version of 

the model with one-third of the subjects (50,425 observations) held out from training as a 

validation set. The model achieved an area under the curve of 0.77 in classifying sleep as N3 or 

non-N3, indicating that it exceeded chance performance. We also evaluated alternative 

classifier schemes, including linear discriminant analysis and a convolutional neural network. Of 

these, the two-layer perceptron combined with our feature extraction algorithm performed the 

best. 

Experiment 1 Results 

TMR cues were effectively targeted to N3 sleep 

For 45 participants with EEG recordings of sufficient quality to permit sleep staging during 

cueing, we compared the percent of cues delivered in each sleep stage to the percent of overall 

time spent in that sleep stage. This analysis served as an independent test that the algorithm 

targeted N3 sleep in a new group of participants following the original test and validation set. 

Results shown in Figure 5 revealed that SleepStim successfully targeted N3. Compared to the 

total time in each stage, the time when cues were played was more likely to be N3 [t(44)=3.56, 

p<0.001] and less likely to be classified as N2 [t(44)=2.26, p=0.03] or REM [t(44)=2.61, p=0.01]. 

Although N2 was underrepresented in the cued sleep, a substantial number of cues were 

presented in N2 due to the higher base rate of N2 sleep. We did not observe differences 

between total sleep and cued sleep in wake or N1, which may be because these stages were 

rarely observed in the training set, providing little opportunity for the model to learn how to 

identify them. 
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Figure 5. Results showing that the SleepStim system predominantly delivered cues during N3 
sleep. Gray bars show the proportion of time spent in each sleep stage and blue bars show the 
distribution of sleep stages when cues were delivered. Whereas N3 comprised 21.1% of sleep, 
34.7% of the cues were delivered in this stage, and 65.5% of the cues were delivered in stages 
N2 or N3.  

Participants generally did not notice TMR cues 

In the full sample (including participants who did not pass inclusion criteria), 16/120 participants 

(13%) reported hearing at least one sound from the memory task. No participants reported that 

the sounds disrupted their sleep or woke them. Among the participants included in analysis, 

7/61 (11%) reported hearing at least one sound. 

Participants efficiently learned and retained object locations 

Participants required a mean of 1.61 [SEM=0.09] repetitions per object in the learning phase to 

reach criterion. In the bedtime test, participants’ mean accuracy surpassed the criterion (Figure 

6), indicating that the learning procedure created an effective memory at a short delay.  
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Figure 6. Error at the bedtime test remained below the learning criterion (120 pixels). Error did 
not differ between cued and uncued conditions [Wilcoxon signed-rank test; mean 
difference=0.76 pixels, z(60)=0.8,p=0.42] 

Recall accuracy declined but seemed uninfluenced by TMR 

Mean spatial error increased from 83 pixels at bedtime test to 105 pixels at last test, indicating 

significant forgetting [t(60)=9.48, p<0.001]. No significant TMR effect was found at the last test 

or at any of the individual time points (Figure 7). 

 

 

Figure 7. Mean spatial error increased by about 30% for both cued and uncued objects at the 
last test (compared to the bedtime test immediately after learning).  No significant difference in 
error was found between cued and uncued objects. B. In participants who completed all 3 
morning tests (n=41), error continued to increase throughout the experiment, reflecting 
forgetting. Error bars reflect the SEM for the within-subjects analysis of cued error-uncued error. 
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TMR effect was associated with cue-sound intensity and sleep-stage targeting 

One factor shown to impact TMR effects in prior studies is level of sleep disruption (Whitmore et 

al., 2022). Therefore, we hypothesized that sleep disruption caused by cues might have 

influenced the extent to which participants responded here. One potentially relevant parameter 

is sound intensity. Given that sleep could be disrupted when sounds were too loud, we 

quantified the maximum intensity used overnight. The memory benefit from TMR was 

significantly correlated with maximum cue intensity and marginally correlated with the 

percentage of cues delivered in stage N3 (Figure 8, Table 1). 
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Figure 8. A. Correlation between corrected TMR effect and maximum cue intensity. B. 
Correlation between corrected TMR effect and proportion of cues in N3. 
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Table 1. Correlations between the corrected TMR effect and sleep/participant variables. 

Correlation is a linear regression. Sign of the r value indicates the direction of the correlation; a 

negative r indicates higher values of the independent variable are associated with more benefits 

of TMR for memory 

  

Measure Mean (SEM) p r Rationale 

Total number of 
cues 

145.13 (8.52) 0.36 -0.12 Increased number of cues may 
produce more reactivation and 
stronger effect 

Maximum cue 
intensity 

0.03 (0.00) 0.02 0.31 Sound intensity is set by the user 
before sleep;  excessively loud or 
soft cues might be ineffective  

Number of 
sounds on 
adaptation night 

48.23 (3.66) 0.26 -0.15 Receiving cues on the adaptation 
night might reduce sleep disruption 
on the first TMR night  

Portion of sound 
cues delivered 
in N3 

0.34 (0.04) 0.05 -0.29 Cueing in stages other than N3 might 
reduce the effects of TMR  

Number of 
sound cues 
delivered in N3 

17 (2.86) 0.05 -0.29 Cues might be especially effective in 
N3 sleep 

Portion of sound 
cues delivered 
in N2+N3 

0.64 (0.04) 0.18 -0.2 Cues may work equally well in N2 
and N3, but worse in other sleep 
stages. 

Portion of sound 
cues in wake/N1 

0.2 (0.04) 0.59 0.08 Cues in wake/N1 may be especially 
likely to be noticed and disrupt sleep.  

Portion of sound 
cues in REM 

0.14 (0.03) 0.20 0.20 Reactivation in REM may produce 
unique effects not seen in other 
sleep stages (Hutchison et al., 2021) 

Portion of total 
sleep time in N3 

0.25 (0.01) 0.57 0.09 Proxy for overall depth of sleep, 
which was shown to affect TMR in a 
previous studies (Whitmore et al., 
2022) 

Portion of 
participants 
reporting 
hearing sounds 

0.11 (0.04) 0.86 -0.02 In (Göldi & Rasch, 2019), 
participants who reported hearing 
cues had smaller TMR effects 

Mean error at 
initial test 
(pixels) 

83.39 (3.51) 1.00 0.00 TMR effects may depend on the 
strength of initial learning (Creery et 
al., 2015) 

Morning 
memory tests 
performed 

2.87 (0.05) 0.61 0.07 If TMR effects evolve over time, 
participants who completed all tests 
might show a different effect than 
those completing only some tests 

Number of 
nights cued 

2.18 (0.11) 0.62 -0.06 Repeated cueing on multiple nights 
may increase the total reactivation 
and provide a stronger TMR effect 

Participant age 
in years 

20.56 (0.23) 0.92 -0.01 Previous studies  (Cordi et al., 2018; 
Whitmore et al., 2022) found TMR 
effects were associated with age 
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Comparing TMR with optimal versus non-optimal parameters 

Given the correlational results, we explored individual differences further by considering whether 

TMR might have a larger benefit in participants cued with optimal parameters, defined as 

receiving at least 25 sound cues on the adaptation night and using a relatively low maximum 

sound intensity (<0.02). We opted to select these participants because these two factors, 

adaptation procedures and sound intensity, could be directly controlled by the experimenter to 

reduce sleep disruption. Differences between the two groups were nonsignificant (Figure 9), but 

we did observe trends where the TMR effect was larger for the optimal-cued participants at last 

test [Mann-Whitney U test, U(60)=356, p=0.12] and at test 3 [U(52)=258, p=0.11]. Neither the 

optimal or non-optimal group showed a significant effect of TMR at the last test or at test 3. 

 

Figure 9. Participants cued with optimal parameters showed a trend towards a benefit from 
TMR. Participants cued with non-optimal parameters showed a trend towards a detrimental 
effect of TMR. Results are shown for participants on their last test (A) and for all 3 tests (B).  

 

Experiment 2 Methods 

Because our initial experiment suggested that SleepStim could improve memory contingent on 

low cue intensity, we conducted a follow-up study implementing an improved method. This 

experiment was identical to the original experiment, except for the following modifications. 

• Participants could not set initial intensity higher than 0.02 
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• A new algorithm required participants to receive at least 25 adaptation cues before they 

could begin the memory test, and if 25 cues were not presented, the adaptation procedure 

was administered again 

• Participants could receive up to 30 minutes of cueing per night (compared to 10.5 minutes 

in Experiment 1) 

• We improved the algorithm for allocating objects to cued and uncued conditions, which 

matched conditions more closely, obviating the need for controlling for pre-sleep memory 

performance in the analysis 

Participants  

Participants were recruited and paid using the same methods as the prior experiment. We 

collected data from 44 participants, and of these, 24 passed inclusion criteria and their data 

were included in analysis. Participants ranged from 18-31 years old (mean=21.6 years) and 

29% were male. 

Experiment 2 Results 

Participants rarely reported hearing sounds 

In the full sample, 3/44 participants (7%) reported hearing TMR sounds during sleep. Among 

participants included in analysis, 2/24 (8%) reported perceiving TMR sounds, and 1 reported 

that the sounds disturbed their sleep. 

TMR improved spatial memory at last test 

As shown in Figure 10, the improved TMR protocol significantly improved memory for cued 

objects relative to uncued objects at the last test [Wilcoxon signed-rank test; z(23)=-2.69, 

p=0.007]. For participants who took all three memory tests (n=18), a significant difference 

between cued and uncued conditions emerged at the second memory test and persisted in the 

third test [Wilcoxon signed-rank test; z(17)=-1.63, -2.24,-2.29, p=0.103,0.025,0.022 for test 1, 2, 

and 3, respectively]. 
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Figure 10. A. TMR effects at the final memory test. B. TMR effects at each time point, for the 
participants who performed all three morning memory tests. Error bars reflect the SEM for the 
within-subjects analysis of cued error versus uncued error. Figure S1 shows data for individual 

participants. 

 

Discussion 

Given that studies in the home environment would greatly expand research and applications 

related to memory processing during sleep, we designed and tested SleepStim, a novel 

wearable system for presenting auditory cues during sleep. Our results confirmed that 

SleepStim can target deep sleep and produce memory benefits that mirror those achieved via 

memory reactivation in sleep labs equipped with polysomnographic equipment. We used a 

wearable device for obtaining EEG data from the forehead to validate our procedure, but the 

TMR method we devised can be applied with this system using only a wrist-worn device and a 

smartphone, making it easy to use, efficient, relatively inexpensive, and well tolerated by most 

individuals. The results demonstrate that home sleep interventions with the SleepStim system 

are feasible and effective, provided consideration is given with respect to cue intensity and 

control algorithms. 

An important finding in our experiment was that participants remained unaware that TMR cues 

were presented in almost all cases, with 13% reporting hearing the cues in Experiment 1 and 

7% reporting cues in Experiment 2. This is a substantial improvement over unsupervised home 

TMR in past studies in our lab and others, where participants frequently reported hearing cues 

and having their sleep disturbed (e.g., Göldi & Rasch, 2019). Presenting cues without 

participants noticing is important for usability and to avoid accidentally unblinding participants in 
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experiments where they are assigned to different conditions. This result also confirms that 

SleepStim can target states where participants are soundly asleep. 

The ability to target deep sleep was also reflected by analysis of the times of cue delivery in 

relation to the automatic sleep staging provided by Dreem-2. Cues were delivered 

disproportionately in N3 sleep, and most of the cues not delivered in N3 were delivered in N2. In 

a recent meta-analysis of the TMR literature, memory benefits were found for both N2 and N3 

sleep (Hu et al., 2020). In TMR experiments aimed at enhancing memory in the sleep lab 

environment, cues are typically presented in either N3 or a combination of N2 and N3, and 

memory-related sleep features like spindles and slow waves occur in both of these stages (Dijk 

et al., 1993). Our results show that SleepStim  can target deep non-REM sleep and deliver cues 

without waking participants, both important advances for sleep-intervention studies in the home. 

Our findings also showed that better targeting of N3 was associated with stronger benefits of 

TMR for memory (Figure 8B), further emphasizing the importance of targeting cues to N3. 

We also demonstrated that the TMR procedure at home can yield the typical effect observed in 

the lab, where TMR with quiet sounds improves performance in a spatial memory task (Antony 

et al., 2018; Creery et al., 2015; Rudoy et al., 2009; Schechtman et al., 2021; Vargas et al., 

2019). We also found that loud cues reversed the TMR effect, consistent with our prior findings 

in a study of face-name learning (Whitmore & Paller, 2022). Accordingly, our findings suggest 

that home-TMR can be useful for investigating memory and perhaps in clinical applications as 

well. In particular, TMR at home may open up possibilities for clinical research with TMR, 

studies of performance enhancement over multiple nights, and TMR studies with larger 

numbers of participants and greater efficiency. 

Our results also highlight the critical importance of auditory cue intensity and sleep disruption in 

home TMR. Initially we allowed users to adjust sound intensity individually; however, forcing a 

consistent low level, as in Experiment 2, produced larger TMR effects and presumably produces 

less sleep disruption. Therefore, our recommendation is that home-TMR experiments use cues 

barely audible in a quiet room. Optimizing methods for calibrating intensity and making 

adjustments during the night is an important challenge for future research. 

In this research we acquired a large amount of combined data from wearable devices on the 

wrist and head. Such data could be useful, especially given large participant samples, for 

studying how sleep parameters and experimental-design factors like the number and timing of 
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cues relate to TMR response. Likewise, improved algorithms could possibly be developed for 

sleep staging using wearable data. 

SleepStim offers a powerful platform for future sleep research. The ability to run TMR 

experiments at scale outside the sleep lab can enable new fundamental and clinical studies. 

The ability to deliver closed-loop interventions in sleep using SleepStim may also be useful for 

applications beyond TMR, such as influencing dream content (Konkoly et al., 2021) or non-

phase-locked entrainment to increase slow wave and spindle activity (Antony & Paller, 2016; 

Simor et al., 2018). 
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Supplementary information

 

Figure S1. Data from Figure 10A with individual participant values. Each line represents one 
participant. Participants with improved memory for cued objects relative to uncued objects are 
shown in pink, others are shown in gray. 
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