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Abstract

Many biological materials contain fibrous protein networks as their main structural components. Under-
standing the mechanical properties of such networks is important for creating biomimicking materials for cell
and tissue engineering, and for developing novel tools for detecting and diagnosing disease. In this work, we
develop continuum models for isotropic, athermal fibrous networks by combining a single-fiber model that
describes the axial response of individual fibers, with network models that assemble individual fiber prop-
erties into overall network behavior. In particular, we consider four different network models, including the
affine, three-chain, eight-chain, and micro-sphere models, which employ different assumptions about network
structure and kinematics. We systematically investigate the ability of these models to describe the mechan-
ical response of athermal collagen and fibrin networks by comparing model predictions with experimental
data. We test how each model captures network behavior under three different loading conditions: uniaxial
tension, simple shear, and combined tension and shear. We find that the affine and three-chain models can
accurately describe both the axial and shear behavior, whereas the eight-chain and micro-sphere models
fail to capture the shear response, leading to an unphysical zero shear moduli at infinitesimal strains. Our
study is the first to systematically investigate the applicability of popular network models for describing the
macroscopic behavior of athermal fibrous networks, offering insights for selecting efficient models that can
be used for large-scale, finite-element simulations of athermal networks.

Keywords: fibrous networks, continuum mechanics, network models, hyperelasticity, strain stiffening,
compression softening

1. Introduction

Many biological materials consist of fibrous protein networks as their main structural components, and
such networks play a critical role in determining their mechanical properties and other functions [1, 2, 3, 4, 5,
6]. For instance, the extracellular matrix (ECM) of tissues contains a random network of collagen and elastin
[7, 8]. Changes in the structure of these networks can give rise to abnormal mechanical properties of tissues5

that disrupt cell mechanosensitive responses and, in turn, initiate or exacerbate pathologies [9, 10]. Blood
clots are composed of networks of fibrin, whose structure and mechanical properties are crucial for preventing
bleeding [11, 12, 13, 14]. Thus, understanding and quantifying the mechanical behavior of fibrous networks
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is important not only for designing biomimetic materials that serve as physiologically relevant environment
for cell engineering, but also for developing novel diagnostic techniques for disease [15, 16]. With this as10

motivation, this paper is concerned with the development of continuum models for fibrous networks.
Fibrous networks can be classified into thermal and athermal networks, depending on the nature of the

constituent fibers [3]. A network is said to be thermal when its fibers are subjected to significant thermal
fluctuations, such that the fiber’s persistence length (i.e., the length over which the fiber appears straight in
the presence of Brownian forces) is much smaller or comparable to its contour length [2]. Examples include15

molecularly crosslinked, flexible networks like rubbers and polyacrylamide gels, in which the fiber persistence
length is far less than its contour length and the fiber appears as a random coil [17]. Another example is given
by semiflexible, cytoskeletal networks like actin and intermediate filament networks, in which the fiber has
a persistence length comparable to its contour length or the distance between network crosslinks [2]. In this
case, the bending energy of the fiber just outcompetes the entropic tendency of the fiber to crumple into a20

random coil, and the fiber exhibits small but significant thermal fluctuations around a straight conformation.
On the other hand, a network is said to be athermal when its fibers are large enough or rigid enough to
be negligibly affected by thermal fluctuations, with the fiber’s persistence length being much larger than its
contour length [3, 18]. Examples of athermal networks include collagen networks in the ECMs and fibrin
networks in blood clots. These athermal fibers often behave mechanically like slender elastic beams.25

Continuum modeling of fibrous networks treats the network as a mechanical continuum, with the goal of
developing a constitutive relation that describes the macroscopic response of the network in relation to the
properties of the constituent fibers and the network structure [19]. Such modeling efforts typically comprise
two steps. The first step is to derive a force-extension relation for single fibers along their axial direction
(i.e., the direction connecting the two ends of the fiber). For flexible fibers, entropic models of Gaussian or30

Langevin type are usually used [17]. The Gaussian model assumes that the fiber is a freely jointed chain of
rigid rods, being infinitely stretchable without approaching its fully extended state; this results in a linear
force-extension relation. In contrast, the more realistic Langevin model accounts for the finite stretchability
of the fibers yielding a strain-stiffening force-extension relation. For semiflexible fibers, different models
have been proposed (e.g., [20, 21]) building upon the classical worm-like chain model [22], treating fibers as35

continuous and smooth filaments with well-defined local curvatures. Then, fiber behavior can be described
by the free energy of bending of fibers induced by thermal fluctuations. As a fiber is stretched, the amplitude
of its transverse thermal undulations decreases, causing a decrease in available fiber conformations and thus
an entropic strain-stiffening of the fiber. Different from the above entropic models, models for athermal fibers
are intrinsically energetic, so that the force-extension relation can be derived from the stored elastic energy40

of the fibers. These fibers often exhibit a linear elastic or strain-stiffening response under axial tension, but
can buckle when subjected to axial compression, thus having a limited compression resistance [3, 23].

The second step of continuum modeling is to develop a network model that relates the stretch of indi-
vidual fibers to the macroscopic network deformation, so that the overall response of the network can be
computed by adding contributions from fibers over all orientations. Over the years, several network models45

have been developed for isotropic fibrous networks. These network models can be categorized into affine
and non-affine models. The affine model (also called the full network model) [17, 24, 25] considers fibers
isotropically distributed in the orientation space and assumes that the fibers deform according to the macro-
scopic deformationof the network (Fig. 1(a)), i.e., the axial stretch of any fiber is taken to be identical to
the corresponding macro-stretch of the continuum along the fiber’s direction.50

The development of non-affine models, however, is motivated by the fact that the true fiber deformation
is usually non-affine [2, 3]. One type of such non-affine models is the unit-cell model [19], which idealizes the
actual structure of the network as a periodic array of unit cells, each of them containing a certain number of
fibers with prescribed arrangements. The most popular unit-cell models are perhaps the three-chain model
[26] and the eight-chain model [27]. In the three-chain model, the unit cell is initially cubic containing three55

mutually orthogonal fibers along its edges (Fig. 1(b)). Under a prescribed macroscopic deformation, the
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three fibers are taken to be aligned with the principal directions of the deformation, and the stretch of the
fiber is determined by the corresponding principal stretch value. The eight-chain model has a setting similar
to that of the three-chain model, the key difference being that the unit cell contains eight fibers connecting
the center of the cell to the eight cell vertices (Fig. 1(c)). Due to the symmetry of such a network structure,60

the stretch of all the eight fibers equals the root mean square of the principle stretch values. Another type of
non-affine model is the so-called micro-sphere model [28], which also considers fibers isotropically distributed
in the orientation space (Fig. 1(d)). In this model, however, the axial stretch of a given fiber differs from
the corresponding macro-stretch of the continuum, and is obtained by minimizing the average free energy
of the fibrous networks. This minimization procedure yields an effective axial stretch of all the fibers to be65

the p-root average of the macro-stretch over all orientations, where p is a material parameter describing the
network’s non-affinity. For the special case of p = 2, the micro-sphere model recovers the eight-chain model.

These different network models, along with appropriately chosen force-extension relations for individual
fibers (e.g, Langevin model for flexible fibers, and worm-like chain model for semi-flexible fibers), have been
extensively used to study the overall behavior of thermal networks, such as rubber [19, 25], actin [20, 29, 30],70

and intermediate filament networks [31]. These networks are either incompressible themselves (e.g., dry
rubber networks), or embedded in an incompressible fluid (e.g., actin networks in cytosol). Since these
thermal networks typically have small pore sizes, fluids do not have enough time to migrate through the
network on a time scale of seconds to minutes. Therefore, in these scenarios, thermal networks can be modeled
as incompressible, hyperelastic materials. In particular, for the various network models described above, fairly75

good agreement between model predictions and experimental data was generally found. Compared with the
affine and three-chain models, the eight-chain model was found to be better at simultaneously capturing
the behavior of rubber networks under different loading conditions (e.g., uniaxial tension, biaxial tension,
and simple shear) [27, 19]. The micro-sphere model, which includes the eight-chain model as a special
case, further improves model capacity and provides better predictions for the behavior of rubber and actin80

networks [28].
Despite the extensive and systematic study of network models for thermal networks, it remains unclear

if these models can be extended to accurately describe the macroscopic behavior of athermal networks, such
as collagen and fibrin networks.Different from thermal networks, athermal networks often have a much more
open structure with large pore sizes; consequently, fluids can flow in and out of the networks on a similar85

time scale, causing significant changes in the network volume [18, 32]. However, in this work we do not
consider the dynamic network response induced by fluid flow; instead, we are interested in the quasi-static
behavior of the networks after fluid flow has completed and the network has reached an equilibrium state,
in which case the athermal networks can be modeled as compressible, hyperelastic materials. In particular,
we ask the following question: given that the affine, three-chain, eight-chain, and micro-sphere models have90

been widely used to describe the mechanical properties of incompressible, thermal networks, can they be
further generalized to capture the quasi-static behavior of compressible, athermal networks?

To answer this question, we develop various continuum models for athermal networks by combining
each of the above network models (the affine, three-chain, eight-chain, and micro-sphere models) with a
single-fiber model that has been found to successfully capture the axial response of athermal fibers. This95

single-fiber model was first developed by Steinwachs et al. [5], assuming that the fiber can stiffen under axial
tension and soften under axial compression. Further, to account for the compressibility of the network, we
incorporate into our models a volumetric energy term that can describe nonlinear volumetric responses of the
network, following the earlier work of [33]. Thereafter, we systematically evaluate the models’ performance
by assessing how well they fit available experimental data for collagen and fibrin networks subjected to100

various loading conditions, including uniaxial tension, simple shear, as well as combined tension and shear.
We also analyze why different models may have different capacities in capturing the true behavior of athermal
networks. Finally, we end with the conclusions of this study.

3
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2. Continuum models for athermal fibrous networks

In this section, we develop various continuum models for isotropic, athermal fibrous networks. As already105

discussed in the Introduction, these models contain two parts: (i) a single-fiber model that describes the
axial force-extension response of individual fibers, and (ii) a network model that describes the structure and
kinematics of the networks, as well as determines the overall network behavior by adding contributions from
all the fibers. Next, we discuss these two components.

2.1. Single-fiber models110

We characterize the axial response of individual fibers using the model developed by Steinwachs et al [5].
This model has been used to successfully describe the behavior of athermal collagen fibers, capturing the
asymmetric response of fibers to tension and compression. In particular, the fiber is assumed to be wavy
in its unloaded state and to exhibit three distinct regimes in response to external forces. When the fiber is
axially stretched, it has an initially constant stiffness, up to the point where the fiber is fully straightened.
Upon further stretching, the fiber gradually stiffens with a stiffness that increases with tensile strain. On
the contrary, when the fiber is axially compressed, it softens with a stiffness that decreases with compressive
strain. More specifically, the fiber’s differential stiffness, κf , is given by

κf (λf ) = κ0


e(λf−1)/d0 , if λf < 1,

1, if 1 ≤ λf < λs,

e(λf−λs)/ds , if λf ≥ λs.
(1)

In the above expression, λf is a kinematic variable denoting the axial stretch of the fiber, as given by the
ratio between the end-to-end length of the deformed fiber and that of the undeformed fiber. Moreover, κ0 is
the initial stiffness of the fiber, λs is the critical stretch at the onset of fiber stiffening (i.e., when the fiber is
just straightened), ds is a coefficient describing the exponential stiffening of the fiber, and d0 is a coefficient
describing the exponential softening of the fiber; these material parameters define the material properties of115

a single fiber and are determined from experimental data. We note that ds (or d0) can be interpreted as the
strain scale of fiber stiffening (or softening), where smaller values of ds (or d0) correspond to faster rate of
stiffening (or softening).

For later use, we also determine the axial force, Ff , and the strain energy, wf , associated with a single
fiber. Following earlier studies, we assume that the fiber is force-free and has a zero strain energy in its
unloaded state. Then, making use of the relation F ′f (λf ) = κf (λf ) and w′′f (λf ) = κf (λf ), we may compute
Ff and wf by integrating κf with respect to λf once and twice, respectively. Consequently, we have the
results that

Ff (λf ) = κ0


d0

[
e(λf−1)/d0 − 1

]
, if λf < 1,

λf − 1, if 1 ≤ λf < λs,

λs − 1 + ds
[
e(λf−λs)/ds − 1

]
, if λf ≥ λs,

(2)

and

wf (λf ) = κ0


d0

[
d0e

(λf−1)/d0 − λf − d0 + 1
]
, if λf < 1,

(λf − 1)2/2, if 1 ≤ λf < λs,

(λs − 1)2/2 + (λs − ds − 1)(λf − λs) + d2
s

[
e(λf−λs)/ds − 1

]
, if λf ≥ λs.

(3)

We note that several other models, such as the linear model of [34, 35] and the exponential model of
[36, 37], have also been used to describe the axial response of individual fibers. Those models typically120

assume that fibers buckle immediately under compression and cannot sustain compressive forces, as would

4
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be the case if d0 → 0 in (1)-(3). However, we do not make such an assumption; instead, we treat d0 as a
material parameter and determine it by fitting the model to experimental data. As will be seen below, d0

determined from experimental data is indeed very close to 0.

2.2. Network models125

In this subsection, we present network models for isotropic fibrous networks. We also combine each
of these network models with the above single-fiber model to develop full continuum models for athermal
fibrous networks.

As already mentioned in the Introduction, we focus on the quasi-static behavior of athermal networks,
which can be modeled as compressible, hyperelastic solids. Then, the mechanical behavior of the networks
can be fully described by a strain energy density function, W [38]. Following earlier works on compressible
hyperelastic solids [19], W may be written in an additive form:

W (F) = W1(F) +W2(J), (4)

where F = ∂x/∂X is the deformation gradient tensor, with x and X being the positions of a material point
in the deformed and undeformed configurations, respectively, J = det(F) is the Jacobian, W1 is the strain
energy density associated with a chosen network model (see below), and W2 is the volumetric strain energy
density due to volume changes. Different models for W2 have been proposed in the literature; interested
readers are referred to the excellent book of Anand and Govindjee [39] for a comprehensive review. Here
we employ the model developed by Bischoff et al. [33], which has the capacity to describe general nonlinear
volumetric response of a material. In this model, W2 is given by

W2(J) =
B

α2
{cosh[α(J − 1)]− 1}, (5)

where B determines the bulk modulus of the material, and α describes the nonlinearity of the volumetric
response. Note that W2 is empirical in nature, and both B and α are material parameters to be determined130

from experimental data.
W1 in (4) denotes the strain energy density predicted by a chosen network model. Such models account

for the network structure, first computing the stretch of individual fibers from the macroscopic network
deformation, and then computing the total strain energy of the network by summing up the energy of all the
fibers. In the following, we will briefly summarize various network models, including the affine, three-chain,135

eight-chain, and micro-sphere models. As will be seen, these models differ in how they describe the isotropic
network structure, as well as in how they compute the axial stretch of individual fibers from the macroscopic
network deformation.

Before introducing the network models, we note that we will make the following assumptions that will
apply to all models. First, although different fibers in a random network generally have different shapes140

(e.g., the end-to-end length and the contour length), we assume, for simplicity, that all the fibers have the
same shape. This shape can be interpreted as the average shape of all the fibers, as can be described by
the average end-to-end length and the average contour length of all the fibers. Second, in order to ensure
that the fibrous networks are stress-free in the undeformed configuration, we assume that all the fibers are
initially force free. In reality, the initial state of a fiber (i.e., force free, pre-streched, or pre-compressed)145

depends sensitively on the local polymerization conditions of the network. A detailed account of these effects,
however, is beyond the scope of this work.

5
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(a) (b)

(d)

Affine 3-chain

8-chain Micro-sphere(c)

Figure 1: Schematics for the geometry and deformation of different network models under simple shear. (a) Affine model.
Each point on the spherical surface represents a unique fiber orientation, with only one representative fiber shown in the figure.
(b) Three-chain model, where each fiber is aligned with one of the edges of the unit cell. (c) Eight-chain model, where each
fiber connects the center of the unit cell to one of the cell vertices. (d) Micro-sphere model. Each point on the spherical surface
represents a unique fiber orientation, with all the fibers stretched to the same degree. The rotation of the fibers, however, is
not well defined; thus, fiber deformation is not shown in the figure.

2.2.1. Affine model

The affine model accounts for all the fibers isotropically distributed in space, and assumes that these
fibers deform affinely with the continuum [17, 19] (Fig. 1(a)). As a result, the axial stretch of each fiber,
λaff
f , is given by the macro-stretch of the continuum along the direction of that fiber, i.e.,

λaff
f = |FM|, (6)

with M being the unit vector along the fiber orientation in the undeformed configuration, and | · | denoting
the norm of a given quantity. Thus, the strain energy density associated with the affine model can be
computed by integrating the strain energy of fibers over the entire orientation space:

W aff
1 (F) =

N

4π

∫
S

wf (λaff
f )dS =

N

4π

∫ π

0

∫ 2π

0

wf (|FM|)sinθdφdθ. (7)

Here N is the number of fibers per unit volume of the undeformed network, S is the surface of a unit sphere
representing the orientation space, with each point on S denoting a unique fiber orientation, and θ and φ150

are, respectively, the polar angle and the azimuthal angle in a spherical coordinate. Note that M can be
expressed in terms of θ and φ as M = [sinθcosφ, sinθsinφ, cosθ]T .

2.2.2. Three-chain model

In the three-chain model [3, 26], the network is idealized as a periodic array of initially cubic unit cells,
each containing three fibers located along the edges of the cell (Fig. 1(b)). These fibers deform with the
unit cell, such that the end-to-end vector of a fiber always coincides with the corresponding cell edge. For

6
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a prescribed network deformation, the unit cell deforms into a general cuboid, with the cell edges (or the
fibers) always aligned with the principal directions of the deformation, and the stretches of the edges (or
the fibers) equal to the corresponding principal stretch values. As such, the strain energy density associated
with the three-chain model can be computed by summing up the strain energy of the three classes of fibers:

W 3ch
1 (F) =

N

3

3∑
i=1

wf (λi), (8)

where the λi (i = 1, 2, 3) denote the principal stretches associated with the deformation gradient F.
The deformation of fibers predicted by the three-chain model is generally non-affine. This can be easily155

seen when the network is subjected to simple shear deformation. As the shear deformation progresses, the
three classes of fibers rotate simultaneously while remaining mutually orthogonal (Fig. 1(b)) This is in
contrast to what would happen if these fibers deformed affinely with the continuum, in which case the angles
between these fibers would change during the course of the simple shear deformation. Finally, we note that
the three-chain model can be viewed as a method of sampling the rotation and stretching of fibers along the160

three principal directions of the deformation.

2.2.3. Eight-chain model

The eight-chain model is similar to the three-chain model, the main difference being that there are eight
fibers connecting the center of the unit cell to each of the eight cell vertices [27] (Fig. 1(c)). Due to the
symmetry of this network structure, the end-to-end lengths of all the fibers equal half of the length of the
unit cell’s body diagonal. Thus, the axial stretch of each fiber is given by the root mean square of the
principal stretch values, i.e.,

λ8ch
f =

√
λ2

1 + λ2
2 + λ2

3

3
=

√
trace(C)

3
, (9)

where C = FFT is the right Cauchy-Green deformation tensor. Consequently, the strain energy density
associated with the eight-chain model is given by

W 8ch
1 (F) = Nwf (λ8ch

f ). (10)

Fiber deformation predicted by the eight-chain model is again non-affine, as can be also seen when the
network undergoes simple shear deformation. If the deformation of fibers were affine, then as shear progresses
some of the fibers would be stretched whereas the rest would be compressed. This scenario, however, differs165

from the predictions of the eight-chain model, where all the fibers are stretched to the same degree (see (9)
and Fig. 1(c)), implying that fiber deformation is generally non-affine for this model. We also note that the
eight-chain model can be viewed as a method of sampling the rotation and stretch of fibers in eight directions
relative to the principal directions of the deformation.

2.2.4. Micro-sphere model170

The original micro-sphere model [28] considers all the fibers isotropically distributed in space (Fig. 1(d)),
with each fiber subjected to a tube constraint. This tube constraint accounts for the conformational con-
straints placed on a fiber by its neighbors, having important ramifications on the fiber conformational entropy.
However, since in this work we focus on athermal networks, whose mechanical response is dominated by the
fiber elastic energy and is negligibly affected by its conformational entropy, we expect the tube constraint to175

have no significant effects on the mechanical behavior of the network. Thus, we neglect the tube constraint.
Similar simplifications have also been used in [30], where the authors found that typical parameters for the
tube constraint have a minor influence (< 4%) on the final result at small to intermediate strains (< 20%).

7
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The micro-sphere model incorporates non-affine fiber deformations by allowing axial fiber stretches to
fluctuate around the corresponding macro-stretches of the continuum. In particular, the axial stretches of
fibers are determined by minimizing the network strain energy density, under the ad hoc constraint that
the p-root average of axial fiber stretch equals that of the macro-stretch. Here p is a material parameter
describing the non-affinity of the network. This minimization procedure leads to the result that the axial
stretches of all the fibers equal the p-root average of the macro-stretch, i.e.,

λmsph
f (F) =

(
1

4π

∫
S

|FM|pdS
)1/p

=

(
1

4π

∫ π

0

∫ 2π

0

|FM|psinθdφdθ
)1/p

. (11)

Here we recall that S denotes the surface of a unit sphere, where each point on S represents a unique fiber
orientation, M. Thus, the strain energy density associated with the micro-sphere model is given by

Wmsph
1 (F) = Nwf (λmsph

f ). (12)

Note that when p = 2, equations (11) and (12) can be shown to reduce to (9) and (10), respectively, so that
the micro-sphere model recovers the eight-chain model.180

In summary, the hyperelastic response of the compressible athermal networks can be characterized by
the strain energy density W in (4), with W2 given by (5), and W1 given by (7), (8), (10), or (12), depending
on the choice of the network model. Then, the first Piola-Kirchhoff stress, P, of the fibrous network is given
by

P =
∂W

∂F
=
∂W1

∂F
+
B

α
sinh [α (J − 1)] JF−T. (13)

Remarks.

1. In literature, the names “affine,” “three-chain,” “eight-chain,” and “micro-sphere” have been used to
describe different types of network models, which are independent of the choice of single-fiber models.
However, since we have combined these network models with the single-fiber model in Section 2.1
to develop full continuum models, we will henceforth use these names to describe the corresponding185

continuum models.
2. Both the affine and micro-sphere continuum models require the computation of two-dimensional inte-

grals over the surface of a unit sphere (see, e.g., (7) and (11)). These surface integrals are computed by
discretizing the surface with 808 triangular elements and employing linear finite element interpolations.
This number was found to be sufficient to guarantee convergence [40, 41].190

3. The affine, three-chain, and eight-chain continuum models each contain a set of six material parameters,
c = {K, d0, ds, λs, B, α}, where K = Nκ has been treated as a single material parameter (recall
that κ is the stiffness of individual fibers at small strains, and N is the number density of fibers).
On the other hand, the micro-sphere continuum model contains a set of seven material parameters,
c = {K, d0, ds, λs, B, α, p}.195

3. Results and Discussion

In this section, we evaluate the performance of the affine, three-chain, eight-chain, and micro-sphere
models in describing the mechanical properties of athermal networks, including collagen and fibrin networks.
Specifically, we test how well these models capture the network behavior under three different loading
conditions, including (i) uniaxial tension, (ii) simple shear, and (iii) combined tension and shear. These200

loading conditions are commonly used to measure the mechanical properties of fibrous networks. For each
loading condition, we fit each of our models to available experimental data (for both collagen and fibrin
networks), and assess the accuracy of the model by quantifying the mismatch between model predictions
and experimental measurements.
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3.1. Uniaxial tension205

In this subsection, we examine the ability of different models to capture the response of fibrous networks
under uniaxial tension. In particular, we compare model predictions with the experimental data of Roeder
et al. [42] for collagen networks, and with that of Purohit et al. [43] for fibrin networks.

In standard uniaxial-tension tests, network samples are stretched along a given direction and are allowed
to deform freely in directions perpendicular to the loading direction. Thus, we assume that the networks
undergo a homogeneous deformation, with the deformation gradient given by

F =

µ 0 0
0 µ 0
0 0 λ

 . (14)

Here λ denotes the axial stretch along the loading direction, and µ denotes the corresponding lateral stretch,
which is chosen in such a way that the lateral stresses predicted by a given model are zero. (Without loss210

of generality, we have assumed that loading is applied in the z direction.) Then, for each model we may
compute the axial stress, Pzz, as a function of the axial stretch, λ, using (13).

We fit the above predicted stress-stretch (Pzz-λ) response of the network to available experimental data
by solving a minimization problem, with the goal of finding the set of material parameters, c, that minimizes
the cost function

π (c) =
n∑
i=1

[
Pzz

(
λ̂i; c

)
− P̂i

]2
, (15)

where (λ̂i, P̂i) (i = 1 · · ·n) are the pairs of experimental data for the axial stretch and axial stress,respectively,
with n denoting the total number of experimental data points. We note that under uniaxial tension, most
fibers in a network are extended; thus, network behavior is governed mostly by fiber tensile properties, and215

not by their compressive properties. Consequently, uniaxial-tension data alone is insufficient for determining
material parameters that describe compressive responses, such as d0 in equation (1). Thus, in the above
minimization problem we set d0 = 1× 10−2 for all models, and solve for the rest of the material parameters.
This choice of d0 is motivated by the fact that athermal fibers typically buckle easily under compression, so
that d0 (which describes the strain scale of softening) is expected to be very close to 0.220

We evaluate the ability of each model to capture the true network response by computing the relative
error, which describes how closely the predicted network response matches the measured network response.
In particular, we define the relative error as

e(c∗) =

√√√√√∑n
i=1

[
Pzz

(
λ̂i; c∗

)
− P̂i

]2
∑n
i=1 P̂

2
i

, (16)

where c∗ is the set of optimal material parameters that minimizes the cost function (15).
Figure 2 presents the stress-stretch curves predicted by different models when fitted to the experimental

data for collagen and fibrin networks. The optimal material parameters obtained from data fitting, as well as
the relative errors, are shown in Tabs. S1 and S2 in the Supporting Materials. We observe that for both the
collagen and fibrin networks, the slope of the stress-stretch curve (i.e., the tangent modulus of the material)225

increases with stretch, indicating a nonlinear strain-stiffening response of these networks. This is because
as deformation progresses, fibers rotate towards the direction of the maximum principal stretch (i.e., the
uniaxial loading direction), leading to realignment along that direction, and thus to strain stiffening of the
network. This mechanism of fiber realignment is purely geometric, independent of the material properties
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of individual fibers. If individual fibers also stiffen with strain, this effect would further enhance the strain-230

stiffening response of the network. Further, we find that the nonlinear stress-strain curve can be captured
fairly well by all the continuum models, with relative errors below 14% (see the Supporting Materials).

(a) (b)

(c) (d)

Collagen networks Collagen networks

Fibrin networks Fibrin networks

Figure 2: Axial stress Pzz as a function of axial stretch λ. Results predicted by the (a) affine and 3-chain models, as well as
by the (b) 8-chain and micro-sphere models, are shown for collagen networks. The experimental data of Roeder et al. [42] is
also displayed. The corresponding results are also shown for fibrin networks, including predictions of the (c) affine and 3-chain
models, as well as of the (d) 8-chain and micro-sphere models. The corresponding experimental data of Purohit et al. [43] is
also shown.

3.2. Simple shear

In this subsection we test the ability of various models to describe the network behavior under simple
shear. To do this, we compare model predictions with the experimental data of Storm et al. [31] for collagen235

networks and that of van Oosten et al. for fibrin networks [32].
The deformation gradient for simple shear can be written as

F =

1 0 γ
0 1 0
0 0 1

 , (17)

where γ denotes the amount of shear. (Here we have assumed, without loss of generality, that shear is
applied in the x-z plane along the x direction.) Thus, for each model we can compute the shear stress, Pxz,
together with the nominal shear modulus, G = Pxz/γ, as a function of γ, using (13). We fit the predicted
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modulus-strain (G-γ) curve to the available experimental data (for both collagen and fibrin networks) by240

solving a minimization problem analogous to the problem in Section 3.1. We also evaluate the relative errors
using an expression that is similar to (16).

Since simple shear deformation is volume conserving (J = 1), the last term in (13) vanishes, implying that
network behavior under simple shear is insensitive to the values of B and α (which describe how a network
responds to volume changes). As a consequence, the values of B and α cannot be inferred from shear245

response. Motivated by this observation, when performing curve fitting we solve for material parameters
other than B and α.

Fibrin networksFibrin networks

Collagen networks

(a) (b)

(c) (d)

Collagen networks

Figure 3: Nominal shear modulus G as a function of the amount of shear γ. Results predicted by the (a) affine and 3-chain
models, as well as by the (b) 8-chain and micro-sphere models, are shown for collagen networks. The experimental data of
Storm et al. is also displayed. The corresponding results are also shown for fibrin networks, including predictions of the (c)
affine and 3-chain models, as well as of the (d) 8-chain and micro-sphere models. The corresponding experimental data of van
Oosten et al. [32] is also shown.

The best-fit G-γ curves, along with the corresponding experimental data, are shown in Fig. 3. The
optimal material parameters and the associated relative errors are shown in Tabs. S3 and S4 in the Supporting
Materials. It can be seen from Fig. 3 that for both the collagen and fibrin networks, the shear modulus250

increases with shear strain, again indicating a nonlinear strain-stiffening behavior of the networks. As already
mentioned, this behavior is induced by fiber realignment along the direction of the maximum principal stretch,
and is reinforced by strain stiffening of individual fibers.

From Fig. 3 we observe that both the affine and three-chain continuum models accurately describe the
network shear response. In contrast, the eight-chain and micro-sphere models capture network response at255

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.28.497976doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.28.497976
http://creativecommons.org/licenses/by-nc/4.0/


large strains, but significantly underestimate the shear modulus at small strains. In particular, as the shear
strain tends to zero, the shear modulus predicted by both models also tends to zero, indicating that the
networks are mechanically unstable at small shear strains. These predictions significantly differ from the
true network properties.

Upon closer inspection, we identify two reasons that explain why the eight-chain and micro-sphere models260

lead to unstable network response at small strains. First, in both models, under a prescribed network
deformation all the fibers are stretched to the same degree described by a single, effective stretch (see (9)
and (11)). (In contrast, in the affine and three-chain models, fibers along different directions are generally
stretched to different extents, as would be expected in real situations.) Second, all fibers are assumed to be
force free at zero strain. It can be shown (see the Appendix) that taken together, these two factors lead to265

a vanishing shear modulus at small strains.
In this context, we note that if all the fibers are taken to be initially pre-stretched, the eight-chain and

micro-sphere models (as well as the affine and three-chain models) do give rise to stable network responses
with positive shear moduli. However, it is known from more detailed, discrete fiber network simulations
that prestress is not necessarily required for the stability of athermal networks [1, 3, 18, 44]. Therefore, the270

reliance of the eight-chain and micro-sphere models on prestress to achieve network stability is an unwanted
feature, restricting their utility in describing the mechanical behavior of athermal networks.

Finally, we note that our results do not contradict earlier findings that the eight-chain and micro-sphere
models can accurately describe the mechanical response of thermal networks like rubber. In those cases,
chains within the network are always prestressed with an entropic, contractile tendency (unless the two ends275

of the chains overlap). As a result, the eight-chain and micro-sphere models are guaranteed to yield positive
shear modulus and stable network behavior.

3.3. Combined tension and shear

In this subsection we study the performance of different models in characterizing network response under
combined tension and shear. Specifically, we compare model predictions with the available experimental280

data of van Oosten et al. [32] for collagen and fibrin networks. In their experiments, cylindrical disk shaped
network samples were sandwiched between the two parallel plates of a shear rheometer. These samples were
axially compressed or stretched in steps by changing the gap between the two plates. At each level of axial
stretch, the axial stress of the sample was measured after the fluid had re-distributed and the material had
reached an equilibrium state. In addition, a small amount of shear strain was superimposed—by rotating285

one of the plates relative to the other. This was used to measure the shear modulus of the sample at that
level of axial stretch. Thus, both the axial stress and the shear modulus were recorded as a function of axial
stretch.

Given that the network samples were very thin, and that both the top and bottom surfaces of the samples
were firmly attached to the rheometer plates, we assume that the lateral strain of the samples was zero. This
assumption has also been used in previous studies to simulate the loading conditions in such experiments
[18, 45]. Thus, we may write the deformation gradient as

F =

1 0 γ
0 1 0
0 0 1


︸ ︷︷ ︸

shear

1 0 0
0 1 0
0 0 λ


︸ ︷︷ ︸

stretch

=

1 0 γλ
0 1 0
0 0 λ

 , (18)

where λ is the axial stretch, and γ is the amount of superimposed shear, with γ = 2% in the experiment.
For each model, we first set γ = 0 in (18) and use (13) to compute the axial stress, Pzz, as a function of λ.290

We then set γ = 2% and repeat the above procedure to compute the nominal shear modulus, G = Pxz/γ, as
a function of λ. Thereafter, we simultaneously fit the stress-stretch (Pzz-λ) relation, as well as the modulus-
stretch (G-λ) relation, to the corresponding experimental data for collagen and fibrin networks. The stress
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data and the modulus data have rather different magnitudes. To avoid bias in data fitting, in the cost
function we use different weights for the two data sets. In particular, we choose weights that are inversely295

proportional to the squared magnitudes of the two data sets.
Figure 4 presents the best-fit curves and the corresponding experimental data for collagen networks, with

Tab. S5 showing the calibrated material parameters and the associated relative errors. Figure 5 and Tab.
S6 display the corresponding results for fibrin networks.

(a) (b)

(c) (d)

Figure 4: Axial stress Pzz and nominal shear modulus G of collagen networks as a function of axial strain (ε = λ− 1). Results
predicted by the (a) affine, (b) 3-chain, (c) 8-chain, and (d) micro-sphere models, as well as the corresponding experimental
results of van Oosten et al., are shown.

It can be seen from Fig. 4 that the stress-stretch behavior of the collagen network displays strong tension-300

compression asymmetry, with network behavior being much stronger under tension than under compression.
Correspondingly, the network shear modulus increases with increasing extension, but decreases with increas-
ing compression. The stiffening of the network in tension can be attributed, once again, to fiber realignment
along the loading direction and strain stiffening of fibers, whereas softening in compression is primarily due
to buckling of fibers [18, 32].305

Further, we observe from Fig. 4 that the affine and three-chain models can reasonably characterize both
the axial and shear response of the network. On the other hand, the eight-chain and micro-sphere models
capture the axial properties of the network, but not its shear properties. In particular, the eight-chain
model significantly underestimates the networks shear modulus for all strains, and the micro-sphere model
underestimates the shear modulus for small tensile and compressive strains. These discrepancies can again310

be attributed to the fact that these two models describe fiber deformations using a single effective stretch,
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which is insufficient to simultaneously capture the multi-axial response of the network. In particular, for the
special case when the axial strain is zero (λ = 1), the deformation gradient in (18) reduces to simple shear
in (17). In this case, the shear modulus predicted by the eight-chain and micro-sphere models will always
be close to zero (as discussed in Section 3.2), thus failing to match the experimental data. We note that the315

predicted shear modulus is not exactly zero due to the finite amount of shear strain, i.e., 2%, applied to the
network. As this shear strain tends to zero, the predicted shear modulus will tend to zero (as shown in the
Appendix). We also make similar observations for the fibrin networks in Fig. 5.

(a) (b)

(c) (d)

Figure 5: Axial stress Pzz and nominal shear modulus G of fibrin networks as a function of axial strain (ε = λ− 1). Results
predicted by the (a) affine, (b) 3-chain, (c) 8-chain, and (d) micro-sphere models, as well as the corresponding experimental
results of van Oosten et al., are shown.

In this context, we remark that the kinematics and mechanics of random athermal networks depend
strongly on the detailed structure of the network, such as the network connectivity and cross link density [1,320

2, 44]. In particular, deformation of fibers in random networks is known to be highly non-affine [8, 46, 47, 48],
partially due to heterogeneities in network structure. These detailed structural features and complex fiber
kinematics, are not captured by any of our continuum models, which all employ simplifying assumptions
about network structure and fiber kinematics [3]. However, the affine and the three-chain models appear
to have sufficient complexity that they are able to represent the macroscopic behavior of the networks with325

reasonable accuracy. Thus, they can be used as efficient, reduced-order tools to describe the macroscopic
responses of athermal networks. In particular, these models can be easily implemented in finite-element
packages to perform large-scale, structural simulations for athermal networks.

Similar to our findings, a recent study on modeling of fibrous tissues also suggests that, although the
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affine model fails to describe the underlying non-affine fiber kinematics, it can capture the macroscopic330

response of fibrous tissues using appropriate material parameters obtained from data fitting [49]. These
material parameters, however, must be interpreted with care, because they are tuned to compensate for the
model errors made in describing the network structure and kinematics. Consequently, their values (obtained
from data fitting) can differ significantly from those that represent the true fiber properties.

Finally, we emphasize that our results do not imply that the affine and three-chain models are better than335

the eight-chain and micro-sphere models per se. In fact, as already mentioned, the eight-chain and micro-
sphere models do a better job in characterizing the mechanical behavior of thermal networks like rubbers
[19, 28]. Apparently, the relative performance of various network models depends on specific network types.
Thus, we recommend that practitioners should systematically investigate the behavior of different models
and select the ones that are best suited for the tasks at hand. Our study represents an example of one such340

effort.

4. Conclusion

In this work, we developed continuum models to describe the compressible, hyperelastic behavior of
isotropic athermal fibrous networks. For this purpose, we combined a single-fiber model that captures the
asymmetric axial behavior of athermal fibers, with various network models—including the affine, three-345

chain, eight-chain and micro-sphere models—that assemble individual fiber properties into overall network
response. Then, we systematically investigated the accuracy of these models by comparing model predictions
with available experimental data for collagen and fibrin networks. Specifically, we tested how well each
model captures the true network behavior under three loading conditions: uniaxial tension, simple shear,
and combined tension and shear. We found that the affine and three-chain models can reasonably describe350

both the axial and shear response of the network. In contrast, the eight-chain and micro-sphere models
accurately describe the axial behavior, but are inadequate in capturing the shear behavior. In particular,
these models lead to zero shear modulus and thus to unstable network response at infinitesimal strains. We
therefore recommended the use of the affine and three-chain models to describe the mechanical behaviors
of athermal networks. These models can be implemented in finite-element codes to conduct large-scale,355

structural simulations for biopolymer networks like collagen and fibrin networks, serving as efficient tools
to guide the design of fibrous scaffolds for cell engineering, and to understand the role of mechanics in
pathologies.
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Appendix

In this Appendix, we employ the eight-chain and micro-sphere models to compute the nominal shear365

modulus of athermal fibrous networks, which undergo simple shear deformations. In particular, we demon-
strate that when all the fibers are initially force free, the shear moduli predicted by both models are zero at
infinitesimal strains.
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A1. Eight-chain model

The first Piola-Kirchhoff stress predicted by the eight-chain model is given by (13), with W1 given by
(10) and (9). Substituting the simple-shear deformation gradient (17) into (13), and using the definition of
the nominal shear modulus, G = Pxz/γ, we arrive at

G =
N

3λ8ch
f

Ff (λ8ch
f ). (19)

Here we recall that N is the number density of fibers, Ff = W ′f is a fiber’s axial force (see, e.g., (2)), and

λ8ch
f =

√
(γ2 + 3)/3, with γ being the amount of shear in (17). Then, it can be easily shown that

lim
γ→0

G =
N

3
Ff (1). (20)

If all the fibers are initially force free (i.e., Ff (1) = 0), limγ→0G = 0, implying that the mechanical behavior370

of fibrous networks is initially unstable.
Note that if all the fibers are pre-stretched (i.e., Ff (1) > 0), limγ→0G > 0. This is indeed the case

for thermal networks like rubbers, in which individual fibers are always pre-stretched with a contractile
tendency (unless the two ends of a fiber coincide). On the other hand, if all the fibers are pre-compressed
(i.e., Ff (1) < 0), limγ→0G < 0.375

A2. Micro-sphere model

The first Piola-Kirchhoff stress predicted by the micro-sphere model is given by (13), with W1 given by
(12) and (11). Substituting the simple-shear deformation gradient (17) into (13), and using G = Pxz/γ, we
arrive at

G =
N

4πγ
Ff (λmsph

f )
(
λmsph
f

)1−p ∫ π

0

∫ 2π

0

(
1 + γsin2θcosφ+ γ2cos2θ

) p−2
2 (sinθcosθcosφ+ γcos2θ)sinθdφdθ,

(21)

where we recall that p > 0 is a material parameter, and λmsph
f is given by

λmsph
f =

(
1

4π

∫ π

0

∫ 2π

0

(
1 + γsin2θcosφ+ γ2cos2θ

)p/2
sinθdφdθ

)1/p

. (22)

Note that for the special case p = 2, equations (21) and (22) can be evaluated analytically, and (21) can be
shown to reduce to (19). However, for general values of p, (21) and (22) cannot be computed analytically
and numerical integration is required.

Next, we compute the normalized modulus, G∗ = (4πG)/(Nκ0), as a function of γ, and study how G∗380

behaves as γ → 0. (Recall that κ0 is a fiber’s stiffness at infinitesimal strains, see (1).) To do this, we need
to know the axial responses of individual fibers. Since the value of G∗ at infinitesimal strains is independent
of the axial responses of fibers at large strains, we assume, for simplicity, that the fibers are linear elastic,
that is Ff (λf ) = κ0(λf − 1). Other forms of Ff can also be used, but they will not affect the value of G∗ as
γ → 0. We observe from Fig. 6 that limγ→0G

∗ = 0 for all values of p, again implying that the networks are385

initially unstable.
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Figure 6: The normalized, nominal shear modulus G∗ predicted by the micro-sphere model. Note that G∗ = (4πG)/(Nκ0),
with G given by equation (21). Regardless of the value of p, G∗ → 0 as γ → 0, indicating that the fibrous networks are initially
unstable.
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