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Abstract 29 

 30 

Thalamocortical interaction is a ubiquitous functional motif in the mammalian brain. 31 

Previously (Hwang et al., 2021), we reported that lesions to network hubs in the human 32 

thalamus are associated with multi-domain behavioral impairments in language, 33 

memory, and executive functions. Here we show how task-evoked thalamic activity 34 

and thalamocortical interactions are organized to support these broad cognitive abilities. 35 

To address this question, we analyzed functional MRI data from human subjects that 36 

performed 127 tasks encompassing a broad range of cognitive representations. We first 37 

investigated the spatial organization of task-evoked activity and found that multi-task 38 

thalamic activity converged onto a low-dimensional structure, through which a basis set 39 

of activity patterns are evoked to support processing needs of each task. Specifically, the 40 

anterior, medial, and posterior-medial thalamus exhibit hub-like activity profiles that 41 

are suggestive of broad functional participation. These thalamic task hubs overlapped 42 

with network hubs interlinking cortical systems. To further determine the cognitive 43 

relevance of thalamocortical interactions, we built a data-driven thalamocortical 44 

interaction model to test whether thalamocortical functional connectivity transformed 45 

thalamic activity to cortical task activity. The thalamocortical model predicted task-46 

specific cortical activity patterns, and outperformed comparison models built on cortical, 47 

hippocampal, and striatal regions. Simulated lesions to low-dimensional, multi-task 48 

thalamic hub regions impaired task activity prediction. This simulation result was 49 

further supported by profiles of neuropsychological impairments in human patients 50 

with focal thalamic lesions. In summary, our results suggest a general organizational 51 

principle of how thalamocortical interactions support cognitive task activity. 52 

 53 

Impact Statement: Human thalamic activity transformed via thalamocortical functional 54 

connectivity to support task representations across functional domains.  55 
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Introduction 56 

  57 

Distributed neural activity supports a broad range of perceptual, motor, affective, and 58 

cognitive functions. Discovering how brain systems implement this broad behavioral 59 

repertoire is critical for elucidating the neural basis of human cognition. Past studies 60 

have revealed two organizational principles—low-dimensional architecture and multi-61 

task hubs—that connect distributed neural activity with task performance across 62 

functional domains. 63 

 64 

The application of dimensionality reduction techniques on whole-brain imaging data 65 

has revealed a relatively low-dimensional organization of distributed neural activity. 66 

Specifically, the number of variables required to explain a large amount of variance in 67 

distributed neural activity is far lower than the total number of variables in the data 68 

(MacDowell and Buschman, 2020; Nakai and Nishimoto, 2020; Shine et al., 2019a). The 69 

spatiotemporal patterns of these variables are commonly referred to as intrinsic 70 

networks in task-free conditions, or manifolds, motifs, and latent components in task 71 

contexts. This low-dimensional organization may reflect an elementary set of 72 

information processes implemented by distributed brain systems (Cunningham and Yu, 73 

2014; Yeo et al., 2016), in which different tasks selectively engaged selective latent 74 

activity patterns depending on the specific processing requirements of individual tasks.  75 

 76 

The anatomical overlap between spatiotemporal components predicts that some brain 77 

regions broadly participate in multiple tasks. In support of this prediction, studies have 78 

found that associative regions in frontal and parietal cortices are involved in executing a 79 

wide array of tasks (Cole et al., 2013; Duncan, 2010). These task-flexible regions, also 80 

commonly referred to as brain hubs (Gratton et al., 2018; van den Heuvel and Sporns, 81 

2013), have diverging connectivity with multiple brain systems, and are thought to 82 

perform integrative functions that allow perceptual inputs to interact with contextual 83 

task representations for adaptive task control (Bertolero et al., 2018, 2015; Ito et al., 2022; 84 
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Nee, 2021). The behavioral significance of brain hubs is affirmed by lesion studies 85 

demonstrating that lesions to hub regions are associated with task impairments across 86 

multiple functional domains (Hwang et al., 2021; Reber et al., 2021; Warren et al., 2014). 87 

 88 

However, a prevailing assumption is that diverse human behavior depends on the 89 

organization of cortical activity, and the contribution from subcortical regions, 90 

particularly the thalamus, is not well understood. Our previous studies demonstrated 91 

that the human thalamus contains a complete representation of intrinsic cortical 92 

functional networks, and additionally, exhibits a hub-like connectivity profile 93 

interlinking multiple cortical systems (Hwang et al., 2021, 2017). Furthermore, lesions to 94 

the anterior and the medial thalamus in human patients are associated with behavioral 95 

impairments across functional domains (Hwang et al., 2020a, 2021). Given that every 96 

cortical region receives projections from multiple thalamic nuclei and that the thalamus 97 

mediates striatal and cerebellar influences on cortical processes (Jones, 2001; Sherman, 98 

2007; Shine, 2020), thalamocortical interaction is ideally suited to shape cortex-wide 99 

activity patterns that instantiate cognitive representations. Whether thalamic task 100 

activity exhibits similar low-dimensional organization and how thalamocortical 101 

interactions contributes to cognitive task activity remains unclear. 102 

 103 

The goal of the current study was to determine how thalamic task-evoked activity, low-104 

dimensional organization, and thalamic hub architecture are organized to support 105 

cognitive functions across diverse functional domains. To this end, we analyzed 106 

functional magnetic resonance imaging (fMRI) data where human subjects performed a 107 

rich battery of tasks designed to elicit neural activity for a wide range of cognitive 108 

functions. Our study addressed the following three specific questions. First, does task-109 

evoked thalamic activity exhibit a low-dimensional organization? Second, are there 110 

task-flexible thalamic hub regions that exhibit task-evoked responses across diverse task 111 

domains? Third, can thalamic task-evoked activity transformed via thalamocortical 112 

functional connectivity (FC) predict cortical task-evoked activity patterns? Answering 113 
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these three questions would reveal a general principle of how thalamocortical 114 

interactions contribute to higher-order, multi-domain cognitive task activity for flexible 115 

human behavior.  116 

 117 

 118 

  119 
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Results 120 

 121 

To determine the organization of task-evoked thalamic activity and thalamocortical 122 

interactions, we analyzed two publicly available fMRI datasets, both of which utilized 123 

rich batteries of tasks designed to elicit a wide range of processes encompassing 124 

perceptual, affective, memory, social, motor, language, and cognitive domains (Figure 125 

1A). In the first dataset, the multi-domain task battery (MDTB) dataset, 21 subjects 126 

performed 25 behavioral tasks (King et al., 2019). In the second dataset, the Nakai and 127 

Nishimoto (N&N) dataset, 6 subjects performed 103 tasks (Nakai and Nishimoto, 2020). 128 

 129 
Figure 1 Low-dimensional organization of thalamic task-evoked response that supports 130 
multi-task performance. (A) We decomposed the high-dimensional multi-task evoked 131 
activity matrix into low-dimensional spatial components in the human thalamus and a 132 
task-wide loading matrix. For a list of all tasks see Figure 1-Supplementary File 1 (B) 133 
Spatial topography of the top three components from the MDTB dataset that explained 134 
about 50% of the variance in the group averaged task activity matrix. For top 135 
components for the N&N dataset see Figure 1-Figure Supplement 1. For the loadings 136 
between tasks and components, see Figure 1-Figure Supplement 2. (C) Results from 137 
applying PCA to single subjects. For both the MDTB and N&N datasets, for individual 138 
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subjects up to 60% of the variance across multiple tasks can be explained by the top 10 139 
components. Error bars and shaded areas indicate 95% bootstrapped confidence 140 
intervals.  141 

Low dimensional organization of thalamic task-evoked activity 142 

We first sought to determine the low-dimensional organization of task-evoked 143 

responses in the human thalamus. We used a general linear modeling approach to 144 

characterize the task-evoked blood-oxygen-level-dependent (BOLD) activity patterns 145 

and estimated the magnitude of BOLD evoked responses for every task (“task betas”). 146 

Task betas were extracted for every thalamic voxel and every task and compiled into a 147 

voxel-by-task activity matrix for each dataset. The cross-subject averaged matrix was 148 

subjected to a principal component analysis (PCA) to decompose multi-task evoked 149 

activity patterns into a linear summation of a voxel-by-component weight matrix 150 

multiplied by a component-by-task loading matrix (Figure 1A). The voxel-by-151 

component weight matrix can be conceptualized as sets of basis patterns of thalamic 152 

activity components engaged by different tasks. Similar to previous studies that focused 153 

on cortical activity patterns (Nakai and Nishimoto, 2020; Shine et al., 2019a), this 154 

analysis revealed a low-dimensional organization, in which the top thalamic activity 155 

components can explain up to 60% of the variance across tasks, and each task is 156 

associated with a weighted sum of these components (Figure 1B, Figure 1 – Figure 157 

Supplements 1-2). Repeating the PCA for each subject (without averaging across 158 

subjects) showed that this low-dimensional organization is also observed in individual 159 

subjects, where variances across task-evoked activity patterns in the human thalamus 160 

can be explained by a low number of components relative to the larger number of 161 

cognitive tasks administered (Figure 1C). 162 

 163 

 164 
Hub organization of thalamic task-evoked activity 165 

Examining the spatial patterns of thalamic components (Figure 1B) revealed that several 166 

thalamic subregions showed spatial overlap across multiple components, which 167 

suggests that these thalamic subregions may flexibly support multiple tasks. We 168 
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reasoned that if a thalamic voxel is broadly participating in multiple functional domains, 169 

it will express a strong weight in components that explained more variances across 170 

tasks. Therefore, to further map task-flexible regions in the human thalamus, we 171 

calculated a task hub metric by summing each voxel’s absolute component weight 172 

multiplied by the percentage of variance explained by each component. Results showed 173 

that the anterior, medial, medio-posterior, and dorsal thalamus exhibited strong task 174 

hub properties (Figure 2A); we had also previously identified these same thalamic 175 

subregions as network hubs (Hwang et al., 2017). 176 

 177 

Network hubs in the human thalamus exhibit diverse functional connectivity patterns 178 

interlinking multiple cortical systems (Greene et al., 2020; Hwang et al., 2017). To 179 

determine whether the tasks hubs we identified correspond to network hub regions 180 

previously identified in the thalamus, we compared the spatial similarity of task hubs 181 

with functional connectivity hubs (FC hubs). We calculated a network hub metric, the 182 

participation coefficient (Gratton et al., 2012; Guimerà and Nunes Amaral, 2005), for 183 

every thalamic voxel using timeseries after removing task-evoked variances from the 184 

preprocessed fMRI data. The task hubs showed significant spatial correspondence with 185 

FC hubs (Figure 2A; spatial correlation: MDTB mean = 0.17, SD = 0.083, p < 0.001; N&N 186 

mean = 0.17, SD = 0.05, p < 0.001). One discrepancy we identified was the posterior 187 

thalamus, which showed strong task hub but not network hub property for the MDTB 188 

dataset. We then projected the task hubs estimates onto the cortex by calculating the dot 189 

product between each thalamic voxel’s task hub estimate and its thalamocortical FC 190 

matrix. We found that tasks hubs were most strongly coupled with associate regions in 191 

the frontal and parietal cortex, for example the lateral frontal, the insula, the dorsal 192 

medial prefrontal, and the intraparietal cortices (Figure 2B), regions previously 193 

identified as cortical network hubs (Bertolero et al., 2018, 2015). 194 
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 195 
Figure 2. Hub regions in the thalamus. (A) Task hubs and FC hubs in the thalamus. WxV = 196 
component weight x variances explained by each component. PC = participation coefficient. (B). 197 
Projecting task hub metrics onto the cortex via thalamocortical FC. 198 

Thalamocortical interactions transform cognitive task activity 199 

To further test whether thalamic task-evoked activity can support diverse cognitive 200 

functions putatively implemented by distributed cortical activity, we adapted the 201 

activity flow mapping procedure (Cole et al., 2016; Ito et al., 2017) to assess whether 202 

thalamocortical interactions can plausibly transform thalamic task-evoked responses to 203 

cortical task activity (Figure 3A). Briefly, for every thalamic voxel, we calculated the dot 204 

product between the thalamic evoked response pattern of each task and the 205 

thalamocortical FC matrix. This calculation yielded a predicted cortex-wide activity 206 

pattern for every task, which can be compared to the observed cortical activity pattern 207 

using Pearson correlation. One null model randomly shuffled thalamic evoked 208 

responses (the “null model”) while the other one set all thalamic evoked responses to a 209 

uniform value across all voxels (the “uniformed evoked model”). Both null models 210 

assumed no spatial structure in thalamic task-evoked responses, and the uniformed 211 

evoked model further assumed that cortical activity patterns are determined only by the 212 

summated inputs from thalamocortical FC patterns. We found that across tasks, our 213 

thalamocortical activity-flow model outperformed the null models (Figure 3B; MDTB 214 

thalamocortical model: mean pattern correlation across tasks = 0.39, SD = 0.1; MDTB 215 
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null model: mean r = 0.09, SD = 0.053; MDTB uniformed evoked model: mean r = -0.002, 216 

SD = 0.11; MDTB thalamocortical model vs null model: t(24) = 15.27, p < 0.001; MDTB 217 

thalamocortical model vs uniformed evoked model: t(24) = 14.13, p < 0.001; N&N 218 

thalamocortical model: mean pattern correlation across tasks = 0.23, SD = 0.064; N&N 219 

null model: mean r = 0.073, SD = 0.044; N&N uniformed evoked model: mean r = -0.021, 220 

SD = 0.22; N&N thalamocortical model vs null model: t(102) = 28.4, p < 0.001; N&N 221 

thalamocortical model vs uniformed evoked model: t(102) = 17.98, p < 0.001). These 222 

results indicate that thalamocortical interactions carry task information. 223 

 224 

We then sought to compare our thalamocortical activity flow model to other cortical 225 

and subcortical regions. We constructed a series of comparison models by applying the 226 

same activity flow mapping procedure to 100 cortical regions of interests (ROIs) that 227 

had similar size as the thalamus (Schaefer et al., 2018), as well as to other subcortical 228 

regions including the hippocampus, the caudate, the putamen, and the globus pallidus 229 

(Figure 3B). We found that several cortical regions also showed strong prediction 230 

performance, including the insula, the inferior frontal cortex, the dorsal medial frontal 231 

cortex, the intraparietal sulcus, and the visual cortex (Figure 3C; For a detailed list of 232 

prediction results for every ROI and every task, see Figure 3-Supplement File-1). 233 

However, the thalamocortical model outperformed all comparison models except 234 

cortical ROIs from the visual cortex from the N&N data. These results indicate that 235 

thalamocortical interaction is one of the strongest predictors of cortical task activity.  236 

 237 
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 238 
Figure 3. Thalamus multi-task activity and its influence on multi-task cognitive activity in the 239 
cortex. (A) Model for testing whether patterns of cortical task-evoked responses can be 240 
predicted by thalamic task-evoked activity transferred through thalamocortical FC. (B) 241 
Compared to other brain structures, thalamic task-evoked activity has the strongest predictive 242 
power of multi-task cortical activity patterns. Cortical regions divided by 7 cortical functional 243 
networks: Vis = visual, SM = somatomotor, DA = dorsal attention, CO = cingulo-opercular, DF 244 
= default mode, FP = frontal parietal; for a detailed list of prediction results for every ROI and 245 
every task see Figure 3- Supplemental data 1. Null model: randomly permute the evoked 246 
pattern in the thalamus. Uniformed model: setting thalamic evoked responses to uniform across 247 
all voxels. Error bars indicate 95% bootstrapped confidence intervals. (C) In addition to the 248 
thalamus, the visual cortex, the insula, the inferior frontal cortex, the intraparietal sulcus, the 249 
medial frontal cortex, and the precentral sulcus also showed strong activity predictions. 250 

 251 
Representation geometry predicted from thalamocortical interactions 252 

In addition to predicting activity patterns for individual tasks, we also tested whether 253 

thalamocortical activity-flow can predict the dissimilarity among task activity patterns, 254 

a measure also known as representational geometry (Kriegeskorte and Kievit, 2013). 255 
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Specifically, representation geometry seeks to capture the topography of task 256 

representations by characterizing the multivariate distance among activity patterns for 257 

each task. We calculated the representational dissimilarity matrix (RDM) using 258 

Spearman correlation from both the predicted and observed cortical activity patterns 259 

(Figure 4A). Predicted and observed RDMs were then compared using Kandal’s Tau 260 

(Nili et al., 2014). We found that across subjects, the thalamocortical activity-flow model 261 

performed significantly better than the two null models (MDTB thalamocortical model: 262 

mean tau = 0.34, SD = 0.11; MDTB null model: mean r = 0.17, SD = 0.077; MDTB 263 

uniformed evoked model: mean r = 0.012, SD = 0.037; MDTB thalamocortical model vs 264 

null model: t(20) = 8.35, p < 0.001; MDTB thalamocortical model vs uniformed evoked 265 

model: t(20) = 13.82, p < 0.001; N&N thalamocortical model: mean tau = 0.18, SD = 0.064; 266 

N&N null model: mean r = 0.12, SD = 0.054, N&N uniformed evoked model: mean r = -267 

0.0047, SD = 0.27; N&N thalamocortical model vs null model: t(5) = 7.02, p < 0.001; 268 

N&N thalamocortical model vs uniformed evoked model: t(5) = 5.84, p = 0.002), and 269 

outperformed most comparison models except the visual cortex and cortical regions in 270 

the DA network for the N&N dataset (Figure 4B; For a detailed list of prediction results 271 

from all ROIs and tasks see Figure 4-Supplementary File-1). We note that the predicted 272 

RDM suggests the thalamocortical activity flow model showed differences in activity 273 

patterns between tasks, as the predicted distances varied. In addition to the thalamus, 274 

comparison models constructed with activity patterns from the insula, the dorsal 275 

medial prefrontal cortex, the precentral sulcus, the inferior frontal cortex, the 276 

intraparietal sulcus, and the visual cortex also showed strong prediction of 277 

representational geometry, but weaker than the thalamus (Figure 4B-C). These results 278 

indicate that thalamocortical interaction provides one of the strongest contributions to 279 

cortical representational geometry across multiple functional domains.  280 
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 281 
Figure 4. Thalamus multi-task activity and its influence on multi-task representational geometry 282 
in the cortex (A) Model for testing whether multi-task representational geometry constructed 283 
from observed cortical responses can be predicted by thalamocortical activity flow (Figure 3) (B) 284 
Compared to other brain structures, thalamic task-evoked activity showed stronger predictive 285 
power of multi-task representational geometry than most comparison models. Cortical regions 286 
divided by 7 cortical functional networks: Vis = visual, SM = somatomotor, DA = dorsal 287 
attention, CO = cingulo-opercular, DF = default mode, FP = frontal parietal. For a detailed list of 288 
prediction results for every ROI and every task see Figure 4- Supplemental data 1. Null model: 289 
randomly permute the evoked pattern in the thalamus. Uniformed model: setting thalamic 290 
evoked responses to uniform across all voxels. Error bars indicate 95% bootstrapped confidence 291 
intervals. (C) In addition to the thalamus, the visual cortex, the insula, the inferior frontal cortex, 292 
the medial frontal cortex, the intraparietal sulcus, and the precentral sulcus also showed strong 293 
predictions. 294 

 295 

Lesions to task hubs in the thalamus are associated with impaired prediction of task 296 

reorientations and representational geometry 297 

The results presented in figures 3 and 4 demonstrated that thalamic task-evoked 298 

responses can be transformed to cortical activity patterns to putatively support 299 
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cognitive representations via thalamocortical interactions. However, it is unclear to 300 

what degree task hubs in the thalamus (Figure 3A) contribute to these results. One 301 

possibility is that all thalamic voxels contribute equally to cortical task activity patterns. 302 

Another possibility is that, since thalamic task hubs are broadly engaged by multiple 303 

tasks and exhibited diverging connectivity patterns with multiple cortical systems, 304 

thalamic task hubs have a stronger contribution to predicting cortical task activity 305 

patterns. To evaluate this prediction, we performed virtual lesion simulations. 306 

Specifically, we systematically removed 20% of thalamic voxels based on their 307 

percentile rank of task hub estimates and calculated the percentage of reduction in 308 

prediction accuracy from the activity-flow analysis. For both datasets, we found that 309 

removing voxels with strong task hub estimates decreased the prediction accuracy in 310 

cortical task-evoked activity patterns (Figure 5A) and representational geometry (Figure 311 

5C). We fitted a regression model to test the relationship between reduction in 312 

prediction and percentile rank of task hub metrics removed, and found significant 313 

negative associations (MDTB activity flow prediction: b = -0.43, SE = 0.019, t = -22.63, p 314 

< 0.001; N&N activity flow prediction: b = -0.1, SE = 0.028, t = -3.79, p < 0.001; MDTB 315 

RDM prediction: b = -0.61, SE = 0.029, t = -21.3, p < 0.001; N&N RDM prediction: b = -316 

0.6454, SE = 0.066, t = -9.72, p < 0.001). These results indicate that virtual lesioning of 317 

thalamic task hubs had a stronger impact on reducing the model’s ability to predict 318 

cortical activity patterns. Furthermore, thalamic voxels with the strongest impact on 319 

prediction performance were spatially located in the anterior, medial, mediodorsal, and 320 

medial posterior thalamus that we previously identified as task hubs (Figure 5B and 321 

Figure 5D).  322 

 323 

We compared these simulation results with neuropsychological impairments found in 324 

20 human patients with focal thalamic lesions. Neuropsychological profiles of these 325 

patients were described in detail in our previous publication (Hwang et al., 2021). 326 

Briefly, patients performed a battery of neuropsychological tests to assess executive, 327 

language, memory, learning, visuospatial, and construction functions (Lezak et al., 328 
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2012). Test performance was then compared to published, standardized norms and 329 

converted to z-scores quantify the severity of impairment (Figure 6A). Patients were 330 

grouped into two groups, those that showed impairment (z-score < -1.695, worse than 331 

95 percentile of the normative population) in single or fewer domains (the SM group) 332 

versus those showed impairment across multiple domains (the MM group; Figure 6B). 333 

There were no statistically significant differences in the lesion volumes between these 334 

two groups of patients (MM group: mean = 1559 mm3, SD = 1370 mm3; SM group: mean 335 

= 1073 mm3, SD = 925 mm3; group difference in lesion size, t(18) = 0.87 p = 0.39).  336 

 337 

Lesion sites from each group were compared to the effects of the simulated lesions 338 

presented in Figure 6B-D. Specifically, we compared the percentages of reduction in 339 

voxels from these two groups of lesions. We found that simulated lesions to voxels that 340 

overlapped with lesion sites in the MM patient group showed larger reductions in task 341 

activity predictions for the N&N dataset but not the MDTB dataset (Figure 6C; MDTB: 342 

Komogorov-Smirnov Test D = 0.048, p = 0.065; N&N: Komogorov-Smirnov Test D = 343 

0.25, p < 0.001). Parallel findings were also observed for representational geometry 344 

(Figures 6D; MDTB: Komogorov-Smirnov Test D = 0.17, p < 0.001; N&N: Komogorov-345 

Smirnov Test D = 0.28, p < 0.001). These empirical results from human patients support 346 

our simulated lesion analyses, suggesting that lesioning task hubs in the human 347 

thalamus are associated with behavioral deficits across functional domains.  348 

 349 
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 350 
Figure 5. Simulating the thalamic lesion’s effect on multi-task evoked pattern similarity and 351 
representational geometry. (A) Artificial lesion of 20% of the thalamus voxels based on their 352 
percentile rank of task hub property: examination of the impact on task activity prediction. (B) 353 
Subregions that showed greater reduction in prediction accuracy were primarily located in 354 
anterior, medial, and posterior thalamus. (C) Artificial lesion of 20% of the thalamus voxels 355 
based on their percentile rank of task hub property: examination of the impact on 356 
representation geometry prediction. (D) Subregions that showed greater reduction in prediction 357 
accuracy of representation geometry showed spatial correspondence with task hubs in the 358 
thalamus. Shaded error indicates 95% bootstrapped confidence intervals. 359 
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 360 
Figure 6. Neuropsychological evaluations from 20 patients with focal thalamic lesions. (A) 361 
Twelve patients exhibited multi-domain (MM) impairment (negative z-scores) across multiple 362 
neuropsychological assessments. Eight patients exhibited no multi-domain (SM) impairment. 363 
(B) Lesion sites from patients with and without multi-domain impairment. (C-D) Mean and 95% 364 
bootstrapped confidence interval of the reduction activity prediction after virtual lesions, 365 
plotted separately for virtual lesion sites that overlapped with MM or SM lesions. Lesion sites 366 
associated with multi-domain impairment also associated with a larger reduction in multi-task 367 
pattern similarity after simulated lesions (C) and in representational geometry (D). Figure 6A 368 
reproduced from Hwang et al., 2021 with permission. 369 

 370 

Discussion  371 

 372 

It was hypothesized that the thalamus influences cognitive representations beyond 373 

sensory and motor domains (Halassa and Sherman, 2019; Wolff and Vann, 2019). 374 

Anatomically, every cortical region receives inputs from one or many thalamic 375 
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subregions, and most thalamic subregions send signals to one or many cortical systems 376 

(Jones, 2001; Sherman, 2007). Functionally, resting-state fMRI studies have found a 377 

complete representation of intrinsic cortical networks in the human thalamus (Greene et 378 

al., 2020; Hwang et al., 2017; Yuan et al., 2016; Zhang et al., 2008). Several of these 379 

networks, such as the FP, CO, and DF, have been implicated in multiple cognitive 380 

functions (Sadaghiani et al., 2010; Seeley et al., 2007). These observations raised a 381 

broader question of if and how the human thalamus contributes to cognitive task 382 

activity across functional domains – the central question we sought to address in this 383 

study.  384 

 385 

For the current study, we investigated how thalamic task-evoked activity and 386 

thalamocortical functional interactions are organized. We identified several key 387 

organizational characteristics pertaining to these activities. First, similar to cortical task 388 

activity, thalamic task-evoked activity exhibited a low-dimensional organization, in 389 

which a relatively low number of activity patterns can explain a large amount of the 390 

variances observed in multi-task thalamic activity patterns. Second, the anterior, medial, 391 

and posterior-medial thalamus were more functionally flexible and participated in 392 

multiple tasks, and these “task-hubs” spatially overlapped with FC hubs mapped in our 393 

previous studies (Hwang et al., 2021, 2017). Third, thalamocortical functional 394 

interactions transform thalamic task-evoked activity to task-specific activity patterns in 395 

the cortex. Critically, when compared to other brain structures, this thalamocortical 396 

activity flow model performed the best in predicting cortical task activity, further 397 

highlighting the capacity of the thalamus in influencing distributed activity patterns 398 

that may instantiate cognitive representations. Finally, findings from the 399 

thalamocortical activity flow model were further corroborated by simulated lesions and 400 

neuropsychological impairments observed in patients with focal thalamic lesions, 401 

affirming the behavioral significance of thalamocortical interactions. Collectively, these 402 

findings highlight a general and critical role of thalamocortical interactions supporting 403 

cognitive functions. 404 
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 405 

Neural systems support a rich and diverse behavioral repertoire. Findings from both 406 

human functional neuroimaging and animal models now point to the low-dimensional 407 

structure as a key organizational characteristic that interlinks spatiotemporal neural 408 

activity and behavior (Beam et al., 2021; Karolis et al., 2019; MacDowell and Buschman, 409 

2020; Nakai and Nishimoto, 2020; Shine et al., 2019a). For example, a large-scale meta-410 

analysis on more than 10,000 neuroimaging studies found that activity patterns across 411 

83 behavioral tasks can be summarized by 13 latent components (Yeo et al., 2016). This 412 

study formalized the notion that task performance depends on sets of cognitive 413 

components, and that the neuroanatomical distribution of task-evoked activity has a 414 

low-dimensional organization. Behaviorally, similar observations have also been 415 

reported in the clinical profiles from human stroke patients (Bisogno et al., 2021), 416 

demonstrating that three components can explain 50% of behavioral deficits across 417 

neuropsychological batteries. Analogous findings have also been reported for the 418 

temporal dynamics of neural activities, in which spatiotemporal patterns associated 419 

with memory, social, emotion, and language tasks correspond to the temporal flow 420 

within a low-dimensional state space (Shine et al., 2019a). Altogether, these studies 421 

suggest that an elementary set of processes can be deployed adaptively to support 422 

processing demands across different tasks. 423 

 424 

However, most prior studies focused on cortical activity patterns, therefore one 425 

contribution of our study was to identify a low-dimensional activity structure in the 426 

human thalamus. This observation may refine our understanding of thalamic 427 

contributions to human cognition. For example, the thalamus itself likely does not 428 

encode high-dimensional, vivid, cognitive representations for each individual task. 429 

Instead, thalamocortical circuits may support a few key, common but significant, 430 

functions across tasks. Notably, the thalamic task components we observed expressed 431 

strongest weights in anterior, medial, and posterior thalamus but not in lateral thalamic 432 

regions that overlap with first-order thalamic relays such as the lateral geniculate 433 
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nucleus and the ventrolateral nucleus. This observation suggests that the thalamus 434 

likely supports functions beyond basic sensorimotor relay, some of which were 435 

suggested by previous studies, and include selection and gain control (Halassa and 436 

Kastner, 2017), adjustment of inter-regional communication (Hwang et al., 2020b; 437 

Saalmann et al., 2012), and modulation of cortical excitability (Kosciessa et al., 2021). 438 

The small size of the thalamus further suggests a prominent role in modulating the low-439 

dimensional organization of task-evoked cortical activity – for instance, previous 440 

studies have found that thalamic activity correlates with the dimensionality and the 441 

strength of cross-system coupling between cortical regions (Garrett et al., 2018; Shine et 442 

al., 2019b). These thalamocortical processes may be required for behavioral performance 443 

across many different tasks, driving the low-dimensional organization we observed. 444 

 445 

Our findings further support proposals suggesting that the human thalamus, by virtue 446 

of its unique connectivity profile, may be in an ideal position to influence cortex-wide 447 

task activity (Garrett et al., 2018). Because every cortical region receives inputs from one 448 

or multiple thalamic regions, thalamocortical interactions may be more effective in 449 

pushing cortical activity patterns to the desired task state. We speculate that the 450 

thalamus may be at the nexus where specific activity patterns in the thalamus can be 451 

selectively down- or up-regulated to meet the specific information processing demands 452 

of different tasks. This hypothesis predicts that thalamocortical interactions should 453 

transfer task-specific information between the thalamus and the cortex, a prediction we 454 

tested in our thalamocortical activity flow analysis. Specifically, we constructed an 455 

activity flow mapping model to test whether thalamocortical interactions can transfer 456 

thalamic task-evoked responses to cortical task activity. We found that our data-driven 457 

thalamocortical model can indeed successfully predict task-specific activity patterns 458 

and multi-task representational geometry observed in the cortex, better than null 459 

models that assumed thalamocortical interactions do not carry task-specific information. 460 

Furthermore, past studies that adopted similar activity flow mapping approaches have 461 

shown that including all regions across the whole brain can predict task-specific activity 462 
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patterns with very high accuracy (Cole et al., 2016). Our study tested a different 463 

question to evaluate the predictive power of the thalamus relative to other brain regions. 464 

Critically, we found that the thalamocortical model outperformed comparison models 465 

constructed with other cortical and subcortical structures, including frontal (the insula 466 

and the inferior frontal sulcus), parietal, and striatal regions previously implicated in 467 

adaptive control of tasks (Badre and Nee, 2018; Ito et al., 2022). These results suggest 468 

that thalamocortical interactions likely exert a strong influence on cortical activity that 469 

may instantiate cognitive representations.  470 

 471 

Placing the thalamus in a central position for influencing cortex-wide cognitive activity 472 

has several benefits. For instance, the thalamus consists of two classes of 473 

thalamocortical projection cells, “matrix” and “core” cells, where core cells target 474 

specific granular cortical structures, and matrix cells diffusely project to multiple brain 475 

regions (Jones, 2001). Given that different brain regions may be encoding different 476 

perceptual and cognitive information (Christophel et al., 2017), selectively modulating 477 

thalamic activity may facilitate targeted activations of cortical representations via 478 

associated thalamocortical interactions. The diffuse projection pattern of matrix cells in 479 

the thalamus may simultaneously activate multiple cortical regions and promote inter-480 

system integration when required (Hwang and D’Espostio, 2022; Jones 2001). 481 

Furthermore, the thalamus is modulated by inputs from other subcortical structures, 482 

such as the reticular nucleus, the basal ganglia, the superior colliculus, and the 483 

cerebellum (Bostan and Strick, 2018; Shine, 2020). This anatomical feature suggests that 484 

the thalamus may be an efficient target for exerting neuromodulatory (e.g., 485 

dopaminergic) influences on cognitive processes when required (Castro-Alamancos and 486 

Gulati, 2014; Garrett et al., 2022). Several computation models have leveraged these 487 

characteristics to explain the functions of basal-ganglia-thalamic circuits for higher-488 

order cognitive functions (Jaramillo et al., 2019; O’Reilly and Frank, 2006). 489 

 490 
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Another important observation was that the anterior, medial, and posterior thalamus 491 

exhibited “task hub” property, that is, are more flexibly recruited by multiple thalamic 492 

activity components. These subregions overlapped with thalamic FC hubs that we 493 

previously identified (Hwang et al., 2017). In the current study, we found that thalamic 494 

task hubs were most strongly coupled with the frontal and parietal associative cortices 495 

(Figure 2B). Intriguingly, these frontoparietal regions have been hypothesized to be part 496 

of a flexible multiple-demand system (Cole et al., 2013; Duncan, 2010; Ito et al., 2022), 497 

and thus, these thalamic subregions may be part of a core system whose functions are 498 

required to perform specific computations that are common across many different task 499 

contexts. One strong test of the behavioral relevance of these thalamic task hubs is to 500 

examine the effects of lesions. If thalamic task hubs are part of a domain-general core, 501 

lesioning task hubs should be associated with broad behavioral deficits not confined to 502 

a specific behavioral domain. Indeed, we found that simulated lesions to thalamic task 503 

hubs impaired prediction accuracy in cortical activity pattern across tasks, and stroke 504 

lesions to the anterior-medial thalamus in human patients were associated with 505 

behavioral deficits across functional domains (Hwang et al., 2021, 2020a). At this point 506 

we are agnostic to the specific function these thalamic task hubs perform. One 507 

hypothesis, suggested by findings from rodent models, is that the medial thalamus 508 

excites task-relevant and inhibits task-irrelevant cortical activity that encode working 509 

memory representations (Mukherjee et al., 2021; Rikhye et al., 2018). Thus, in human 510 

subjects, thalamocortical interactions between thalamic task hubs and frontoparietal 511 

systems may control task representations that bind sensory, motor, and contextual 512 

information that are necessary for adaptive behavior across tasks (Schumacher and 513 

Hazeltine, 2016). This is an open question that should be evaluated in future studies. 514 

 515 

On important limitation of our study is that our thalamocortical activity flow model 516 

cannot establish the directionality of thalamic activity influencing cortical activity. It is 517 

more likely that brain systems instantiate cognitive representations via recurrent 518 

interactions among cortical regions and the thalamus, as well as integrating inputs from 519 
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other brain structures. As discussed above, including all brain regions into the activity 520 

flow model can substantially improve model performance in predicting task-specific 521 

activity patterns (Cole et al., 2016). Nevertheless, our findings suggest that, across the 522 

whole brain, the thalamus likely has one of the strongest contributions to cortical task 523 

activity. Another important limitation is that the posterior thalamus exhibited strong 524 

task hub property in the MDTB dataset but not the N&N dataset. We suspect this could 525 

be related to differences in behavioral tasks across the two datasets, and speculatively, 526 

to the increased noise in the N&N dataset, given the lower number of observations per 527 

task and lower subcortical signal-to-noise ratio. One strong test of mapping task hubs is 528 

the lesion methods, and in our previous study (Hwang et al., 2021) we did not have 529 

good lesion coverage on the pulvinar nucleus. Future studies should test whether 530 

patients with pulvinar lesions have cognitive deficits beyond visual attention tasks 531 

(Snow et al., 2009). 532 

 533 

To conclude, our study reported two important organizational principles of how 534 

thalamic task-evoked activity and thalamocortical interactions support cognitive tasks. 535 

Thalamic task-evoked activity has a low-dimensional structure, and thalamocortical 536 

interactions have a strong influence on generating task-specific cortical activity patterns. 537 

These results highlight how the thalamus is in a central position for supporting 538 

cognitive task representations. 539 

 540 

Methods 541 

 542 

Datasets 543 

We analyzed two datasets, the multi-domain task battery dataset (MDTB dataset [King 544 

et al., 2019] at https://openneuro.org/datasets/ds002105/) and the Nakai and 545 

Nishimoto dataset (N&N dataset [Nakai and Nishimoto, 2020] at 546 

https://openneuro.org/datasets/ds002306/). We selected these datasets because both 547 

include fMRI data from subjects that performed a large number of tasks across 548 
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functional domains (Figure 1A). The MDTB dataset included fMRI data from 21 subjects 549 

(13 women, 8 men; mean age = 23.28 years, SD = 2.13; we excluded 3 out of the original 550 

24 subjects that did not have all tasks available after removing high noise datapoints). 551 

MRI Data were collected on a 3T Siemens Prisma with the following parameters: 552 

repetition time (TR) = 1 s; 48 slices with 3 mm thickness; in-plane resolution 2.5 × 2.5 553 

mm2; multi-band acceleration factor = 3; in-plane acceleration factor =2; echo time and 554 

flip angle were not reported in the original paper. Structural T1 images were acquired 555 

using magnetization-prepared rapid acquisition gradient echo sequence (MPRAGE; 556 

field-of-view = 15.6 × 24 × 24 cm3, at 1 × 1 × 1 mm3 voxel size). The N&N dataset 557 

included fMRI data from 6 subjects (2 females, 4 males, age range 22-33 years) collected 558 

on a 3T Siemens Tim Trio system. Functional MRI data were collected with the 559 

following parameters: TR = 2 s; 72 slices with 2mm slice thickness; in-plane resolution = 560 

2 x 2 mm2; echo time = 30 ms; flip angle = 62 degrees; multiband factor = 3. Structural 561 

MRI data were collected with a MPRAGE sequence (TR = 2530 ms; TE = 3.26 ms; flip 562 

angle=9 degrees; FOV=256 × 256 mm2; voxel size=1×1×1mm3).  563 

 564 

MRI data preprocessing 565 

Both datasets were preprocessed using fMRIPrep version 20.1.1 (Esteban et al., 2019) to 566 

reduce noise and transform data from subject native space to the ICBM 152 Nonlinear 567 

Asymmetrical template version 2009c for group analysis (Fonov et al., 2011). 568 

Preprocessing steps include bias field correction, skull-striping, co-registration between 569 

functional and structural images, tissue segmentation, motion correction, and spatial 570 

normalization to the standard space. As part of preprocessing, we obtained nuisance 571 

regressors including rigid-body motion estimates, cerebral spinal fluid (CSF), and white 572 

matter (WM) noise components from the component-based noise correction procedure 573 

(Behzadi et al., 2007). These nuisance regressors were entered in the regression model to 574 

reduce the influences from noise and artifacts (see below). We did not perform any 575 

spatial smoothing.  576 

 577 
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Task-evoked responses 578 

The MDTB dataset contained 24 cognitive tasks and a resting condition collected across 579 

four scanning sessions; each session consisted of 8 runs. Each task started with a 5 580 

second instruction and was followed by 30 seconds of continuous task performance. 581 

The N&N dataset contained 103 tasks collected across 18 MRI scanning runs in 3 days. 582 

Each task trial lasted 6 to 12 seconds where task instruction was on screen throughout 583 

the trial, and each task repeated 12 times distributed across runs. For a complete list of 584 

behavioral tasks, see Figure 1A and Figure 1-Supplementary File 1. The detailed design 585 

of each task for both datasets were reported in King et al., 2019, and in Nankai & 586 

Nishimoto, 2020. 587 

 588 

We employed a voxel-wise general linear modeling (GLM) approach to estimate task-589 

evoked responses, using AFNI’s 3dDeconvolve (Cox, 1996). For every voxel, a 590 

generalized least squares regression model was constructed and fitted to the 591 

preprocessed timeseries with the following regressors: task regressors, rigid body 592 

motion regressors and their derivatives, and the top 5 CSF and WM noise components. 593 

High motion volumes (framewise displacement > 0.2 mm) were removed from data 594 

analyses via the censoring option, and subjects with tasks with more than 40% of the 595 

data censored were dropped from further analyses (3 MDTB subjects dropped). For 596 

each subject, all imaging runs were concatenated, and signal drifts were modeled 597 

separately for each run, including run-specific constant and polynomial regressors. All 598 

task regressors were created by convolving a gamma hemodynamic response function 599 

with the stimulus duration. The stimulus duration was determined by the specific block 600 

or trial design sequence of each task (See Figure 1-Supplementary File 1 for the specific 601 

duration used for all tasks). For the MDTB dataset, several tasks contained different 602 

sub-conditions, and the GLM estimates of sub-conditions were averaged to obtain one 603 

estimate per task. Repeating our analyses without averaging sub-conditions did not 604 

change our results. For the MDTB dataset, the 5 s instruction period at the start of each 605 

task block was modeled but not included into subsequent analyses. For the N&N 606 
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dataset, the task instruction was presented simultaneously during all trials, and as a 607 

result it could not be separated from the GLM analyses.   608 

 609 

Low-dimensional organization of task-evoked activity in the thalamus 610 

To probe the low-dimensional organization of task-evoked activity in the thalamus, we 611 

first applied a thalamus mask from the Harvard-Oxford subcortical atlas, which mask 612 

was used to extract task-specific evoked response estimates from 2445 thalamus voxels. 613 

These estimates were then compiled into a task-by-voxel evoked activity matrix for each 614 

subject. This evoked activity matrix was then z-scored by subtracting the grand mean 615 

from the whole matrix and divided by the standard deviation across all elements. A 616 

principal component analysis decomposed the evoked activity matrix into a linear 617 

summation of a voxel-by-component weight matrix multiplied by a component-by-task 618 

loading matrix (Figure 1A). The voxel-by-component weight matrix can be 619 

conceptualized as sets of basis patterns of thalamic activity components engaged by 620 

different tasks. The loading matrix described the relationship between each voxel-wise 621 

component map and tasks. We then summated the percentage of variances explained to 622 

determine how many components were required to explain more than 50% of the 623 

variance observed in the evoked activity matrix. We performed the PCA analysis with 624 

and without averaging the evoked activity matrix across subjects. We averaged the 625 

matrix before PCA to visualize the voxel patterns of each component and repeated the 626 

PCA analysis without averaging separately for each subject to test whether the low-627 

dimensional structure can be replicated at the level of individual subjects. 628 

 629 

Thalamic task hubs 630 

Some thalamic subregions could participate in multiple tasks across functional domains, 631 

exhibiting “task hub” properties. To map these task hub regions, for every voxel we 632 

calculated a WxV metric: 633 

 WxV = ∑ |𝑊 | × 𝑉  634 
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Where |𝑊 | is the absolute value of weight for component i, 𝑉  is the percentage of 635 

variance explained for component i, and n is the number of components. We reasoned 636 

that a task hub region would be more strongly recruited by components that explained 637 

a large amount of the variances in the evoked activity matrix, exhibiting a higher WxV 638 

estimate.   639 

 640 

To compare the task hubs to the FC hubs that we had mapped previously (Hwang et al., 641 

2017), we first obtained a thalamocortical FC matrix using principle component linear 642 

regression (Ito et al., 2017) to estimate patterns of FC between each thalamic voxel and 643 

400 cortical ROIs (Schaefer et al., 2018). We estimated this FC matrix using residuals 644 

after task regression. Note that one advantage of principle component linear regression 645 

is that its estimates are similar to partial correlation, accounting for shared variances 646 

among signals. We then calculated a connector hub metric participation coefficient for 647 

each voxel (Gratton et al., 2012): 648 

 𝑃𝐶 = 1 − ∑  649 

where Ki is the sum of total FC weight for voxel i, Kis is the sum of functional 650 

connectivity weight between voxel i and the cortical network s, and N is the total 651 

number of networks. To perform this calculation, we assigned the 400 cortical ROIs to 652 

seven cortical functional networks, i.e., to the FP, DF, CO, DA, limbic, SM, and visual 653 

networks (Schaefer et al., 2018; Yeo et al., 2011). We calculated participation coefficient 654 

values across a range of density thresholds of the thalamocortical FC matrix (density = 655 

0.01–0.15) and averaged across thresholds. 656 

 657 

To determine which cortical regions showed the strongest coupling with thalamic task 658 

hubs, we calculated the dot product between WxV and thalamocortical FC matrix, 659 

yielding a project task hub matrix on the cortical space: 660 

 Cortical 𝑊𝑥𝑉 =  𝑊𝑥𝑉 ∙ 𝐹𝐶   661 
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where WxV is the 2445 voxel-wise task hub metrics, and 𝐹𝐶  is the 2445 x 400 662 

thalamocortical FC matrix.  663 

 664 

Thalamocortical activity flow mapping 665 

To determine whether thalamocortical interactions can transform thalamic task-evoked 666 

activity to cortical task activity, we modified the activity flow mapping procedure (Cole 667 

et al., 2016; Ito et al., 2017), and for each task and each subject we calculated:  668 

 A  =  𝑊  ∙ 𝐹𝐶   669 

where 𝑊  is the evoked response estimate for every thalamic voxel, 𝐹𝐶  is the 670 

thalamocortical FC matrix, and A  is the predicted cortical activity pattern. We 671 

repeated this analysis for every task, and the predicted cortex-wide activity patterns 672 

were then empirically compared to the observed activity patterns using Pearson 673 

correlation. In addition to comparing individual task activity patterns, we also 674 

compared the predicted versus observed representational geometry. Representation 675 

geometry seeks to capture the topography of task representations by characterizing the 676 

multivariate distance of activity patterns among tasks. We calculated the 677 

representational dissimilarity matrix using Spearman correlation. Predicted and 678 

observed representational dissimilarity matrices were compared using Kandal’s Tau 679 

(Nili et al., 2014). 680 

 681 

To evaluate our thalamocortical activity flow mapping procedure, we compared its 682 

results to two different null models and to comparison models. The first null model 683 

randomly shuffled the voxel order in 𝑊 , which assumed no task-specific information in 684 

thalamic evoked activity pattern. The second null model set 𝑊  to a uniform vector, 685 

which assumed that A  was entirely determined by the pattern in 𝐹𝐶 . We 686 

constructed a series of comparison models by repeating the same analysis on other 687 

source ROIs, including the hippocampus, the caudate, the putamen, and the pallidus, 688 

and 100 cortical ROIs (Schaefer et al., 2018) that were similar in size to the thalamus. For 689 

these comparison models, we replaced 𝑊  with voxel-wise evoked responses from other 690 
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source ROIs, and recalculated the FC matrix by calculating FC between every voxel in 691 

the source ROI and 400 cortical ROIs using PCA linear regression.  692 

 693 

Lesion analyses 694 

We performed additional simulated and empirical lesion analyses to test which 695 

thalamic subregions contribute to predicting cortical task activity. For simulated lesions, 696 

we ranked thalamic voxels by their task hub (WxV) metrics, then set the evoked 697 

responses in 20% of thalamic voxels to zero and repeated the thalamocortical activity 698 

flow analysis. We repeated this virtual lesioning procedure for voxels ranking from 0% 699 

to 80% in steps of 1%, window size of 20%, and calculated the effects of virtual lesioning 700 

of thalamic voxels on predicting both individual task activity pattern and 701 

representational geometry. The percentage of prediction reduction (relative to the 702 

original observed value) after virtual lesioning was assigned to each voxel to construct 703 

voxel-wise maps that depict the effects of simulated lesions. 704 

 705 

We then compared the effects of simulated lesions to lesions observed in human 706 

patients with focal thalamic lesions. Details of these patients were reported in our 707 

previous study (Hwang et al., 2021). Briefly, these patients were selected from the Iowa 708 

Neurological Patient Registry, and had focal lesions caused by ischemic or hemorrhagic 709 

strokes restricted to the thalamus (age = 18-70 years, mean = 55.8 years, SD = 13.94 710 

years, 13 males). The lesion sites of these patients were manually traced and normalized 711 

to the MNI-152 template using a high-deformation, non-linear, enantiomorphic, 712 

registration procedure that we described in detail in our previous papers (Hwang et al., 713 

2021, 2020a). 714 

 715 

We further tested whether voxels associated with stronger virtual lesioning effects 716 

overlapped with lesion sites associated with more pronounced behavioral deficits in 717 

human stroke patients. Behavioral deficits were assessed using a set of standardized 718 

neuropsychological tests: (1) executive function using the Trail Making Test Part B 719 
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(TMT Part B); (2) verbal naming using the Boston Naming Test (BNT); (3) verbal fluency 720 

using the Controlled Oral Word Association Test (COWA); (4) immediate learning 721 

using the first trial test score from the Rey Auditory-Verbal Learning Test (RAVLT); (5) 722 

total learning by summing scores from RAVLT, trials one through five; (6) long-term 723 

memory recall using the RAVLT 30-minute delayed recall score; (7) long-term memory 724 

recognition using the RAVLT 30-minute delayed recognition score; (8) visuospatial 725 

memory using the Rey Complex Figure delayed recall score; (9) psychomotor function 726 

using the Trail Making Test Part A (TMT Part A); and (10) construction using the Rey 727 

Complex Figure copy test. To account for age-related effects, all test scores were 728 

converted to age-adjusted z-scores using the mean and standard deviation from 729 

published population normative data. We determined the functional domain that each 730 

test assessed, described in Neuropsychological Assessment (Lezak et al., 2012). Twelve 731 

out of 20 patients had significant impairment (z < -1.645) reported in more than two 732 

functional domains, and thus were classified as the multiple-domain (MM) patient 733 

group. The rest of the 8 patients had significant impairment in one or fewer domains, 734 

and classified as the single-domain (SM) group. We predicted that lesion sites in the 735 

MM group would show stronger virtual lesioning effects, when compared to lesion 736 

sites in the SM group. 737 

 738 

Code and data availability statement 739 

Code and data are available at https://github.com/HwangLabNeuroCogDynamics/ 740 

ThalamicTaskHubs741 
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of variance across multiple tasks 
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of each component. 
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Fig 3. Thalamus multi-task activity and its influence on 
multi-task cognitive activity in the cortex. (A) Model for 
testing whether patterns of multi-task cortical evoked 
responses can be predicted by thalamic evoked activity 
propagating through a transfer function of 
thalamocortical functional connectivity. (b) Compared to 
other brain structures, multi-task thalamic evoked activity 
has the strongest predictive power of multi-task cortical 
activity patterns. Null model: randomly permute the 
evoked pattern in the thalamus. Uniformed model: 
Setting thalamic evoked responses to uniform across all 
voxels, which is a model testing the influence of 
thalamocortical connectivity. Error bars indicate 95% 
bootstrapped confidence intervals. (C-D) In addition to 
the thalamus, the visual cortex, the insula, the inferior 
frontal cortex, the intraparietal sulcus, the medial frontal 
cortex, and the precentral sulcus also showed strong 
predictive power. C

Evoked response  (a.u.)
MDTB

r
0.28

0.1

N&N

r
0.22

0.1

Thalamic evoked 
responses

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2022. ; https://doi.org/10.1101/2022.06.28.497905doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.28.497905
http://creativecommons.org/licenses/by/4.0/


A

Distance

Observed 
RDM

Predicted 
RDM

Kendall’s Tau

Kendall’s Tau

Tasks

Tasks

Tasks

Tasks

B

C

MDTB

N&N

Tau
0.27

0.1

Tau
0.2

0.1

Fig 4. Thalamus multi-task activity and its influence on 
multi-task representational geometry in the cortex (A) 
Model for testing whether multi-task representational 
geometry constructed from observed cortical responses 
can be predicted by thalamocortical activity flow (Figure 
3) (b) Compared to other brain structures, multi-task 
thalamic evoked activity has the strongest predictive 
power of multi-task representational geometry. Null 
model: randomly permute the evoked pattern in the 
thalamus. Uniformed model: Setting thalamic evoked 
responses to uniform across all voxels, which is a model 
testing the influence of thalamocortical connectivity. 
Error bars indicate 95% bootstrapped confidence 
intervals. (C) In addition to the thalamus, the visual 
cortex, the insula, the inferior frontal cortex, the medial 
frontal cortex, the intraparietal sulcus, and the precentral 
sulcus also showed strong predictive power. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2022. ; https://doi.org/10.1101/2022.06.28.497905doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.28.497905
http://creativecommons.org/licenses/by/4.0/


A C

MDTB

N&N

% reduction % reductionB D

Fig 5. Simulating the thalamic lesion’s 
effect on multi-task evoked pattern 
similarity and representational 
geometry. Artificially lesion 20% of 
thalamus voxels based on their 
percentile rank of multi-task hub 
property (Figure 1D), and determine its 
effect on evoked pattern similarity (A) 
and multi-task representational 
geometry (B). Shaded error indicates 
95% bootstrapped confidence intervals.
(C-D) Mapping thalamic voxels with the 
strongest simulated lesion effects.  z = 2  z = 6  z = 10  z = 14 L
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Fig 6. Neuropsych evaluations from 20 
patients with focal thalamic lesions. (A) 
12 patients exhibited multi-domain 
(MM) impairment (negative z-scores) 
across multiple neuropsychological 
assessments. Eight patients exhibited 
no multi-domain (SM) impairment. (B) 
Lesion sites from patients with and 
without multi-domain impairment.  
(C-D) Comparing the observed 
neuropsychological impairment versus 
simulated lesion effects (Figure 5), 
lesion sites associated with multi-
domain impairment also associated 
with larger reduction in multi-task 
pattern similarity (C) and 
representational geometry (D).

 z = 2  z = 6  z = 10  z = 14 L
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Figure 1 – Figure Supplement 1. Spatial topography of the top three components from 
the N&N dataset that explained about 50% of the variance in the group averaged task 
activity matrix.  
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Figure 1 – Figure Supplement 2. Loadings between individual tasks and thalamic 
activity components. (A) Loadings matrix for the top 3 activity components and 
individual tasks for both datasets. (B) Low-dimensional embedding of task-evoked 
responses, plotted by task loadings on each activity component. Each colored dot 
represents a single task. 
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