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Abstract 

Considerable evidence highlights the dorsolateral prefrontal cortex (DLPFC) as a key 

region for hierarchical learning. In a previous electroencephalography (EEG) study 

we found that the low-level precision-weighted prediction errors (pwPEs) were 

encoded by frontal theta oscillations (4–7Hz), centered on F4 in the 10-20 EEG 

system corresponding to right DLPFC (rDLPFC). However, the causal relationship 

between frontal theta oscillations and hierarchical learning remains poorly 

understood. To investigate this question, in the current study, participants received 

theta (6Hz) and sham high-definition transcranial alternating current stimulation 

(HD-tACS) over the rDLPFC, while performing the probabilistic reversal learning 

task. Behaviorally, theta tACS induced a significant reduction in accuracy for the 

stable environment, but not for the volatile environment, relative to the sham 

condition. Computationally, we implemented a combination of a hierarchical 

Bayesian learning and a decision model. Theta tACS induced a significant increase in 

low-level (i.e., probability) learning rate and uncertainty of low-level estimation 

relative to sham condition. Instead, the temperature parameter of the decision model 

was not significantly altered due to theta stimulation. These results indicate that theta 

frequency may modulate the (low-level) learning rate. Furthermore, environmental 

features (e.g., its stability) may determine whether learning is optimized as a result. 

Key words: high-definition tACS; dorsolateral prefrontal cortex; hierarchical 

learning; computational modeling  
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Introduction 

Hierarchy appears widely in the anatomy and cognitive processes of the human brain, 

as it provides several computational advantages for adapting to the environment. 

Understanding hierarchical learning at the computational and the neural level is 

crucial for understanding adaptive learning under uncertainty. Previous studies have 

demonstrated that humans engage in hierarchical learning (Botvinick 2008; Botvinick 

et al. 2009; Mathys 2011; Diuk et al. 2013; Iglesias et al. 2013, 2021; Mathys et al. 

2014; Verbeke and Verguts 2019; Verbeke et al. 2021). In this perspective, 

hierarchically organized prediction errors (PEs) are crucial for predicting information 

inputs and inferring their underlying causes. Such a hierarchical mechanism was 

demonstrated by Iglesias et al. (2011): This fMRI work linked low-level PEs to frontal 

dopamine-receptive regions like dorsolateral prefrontal cortex (DLPFC) and anterior 

cingulate cortex (ACC); in contrast, high-level PEs activated the cholinergic basal 

forebrain. These findings suggested separable roles for dopaminergic and cholinergic 

modulation at different hierarchical levels of learning (Iglesias et al. 2013, 2021; 

Powers et al. 2017; Deserno et al. 2020; Henco et al. 2020; Sevgi et al. 2020). Given 

the role of the DLPFC in adaptive learning, flexible regulation of activity in the 

DLPFC might thus adjust hierarchical learning (Bishop, 2009; Fonteneau et al., 2018). 

Additionally, a parallel line of work has demonstrated functionally relevant 

oscillatory activity in the same network during hierarchical learning. Frontal cortical 

activity in the theta band (4–7Hz) is crucial in the implementation of behavioral 

adaptation and cognitive control (Senoussi et al., 2022). It has been proposed that 
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theta oscillations are modulated by unsigned PE (Bayesian surprise) which was 

considered to correspond to low-level PE (Oliveira et al. 2007; Cavanagh et al. 2010). 

Particularly, theta oscillations are considered to be involved in long-range neural 

communication between cortical and subcortical areas (Womelsdorf et al. 2010; Voloh 

et al. 2015; Babapoor-Farrokhran et al. 2017), and it is also considered key to 

synchronize neuronal activity to implement hierarchical learning (Verguts 2017; 

Verbeke and Verguts 2021; Verbeke et al. 2021; Senoussi et al. 2022). Recently, in Liu 

et al. (2022), we combined a hierarchical learning model and EEG technology to 

reveal that hierarchical PEs at low-level were encoded in frontal theta oscillations, 

centered on F4 in the 10-20 EEG system corresponding to right DLPFC (rDLPFC). 

However, the causal relationship between frontal theta oscillations and hierarchical 

learning is incompletely understood. To address these issues, we used non-invasive, 

high-definition tACS (HD-tACS) to establish the functional contribution of theta 

frequency in hierarchical learning and examined its potential impact on computational 

mechanism. 

The Hierarchical Gaussian Filter (HGF) is a validated hierarchical computational 

framework used to probe hierarchical learning (Mathys 2011; Mathys et al. 2014). In 

this setting, the brain is considered to compute two hierarchical PEs for updating 

hierarchically coupled beliefs: a low-level PE serves to update the estimate of the 

probability of the stimulus, and a high-level PE serves to update the estimate of the 

volatility of the probability. For each level, PEs are weighted by uncertainty to 

modulate the magnitude of belief updates (Mathys 2011; Mathys et al. 2014). 
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Generally, learning rate at each level is proportional to the uncertainty about the same 

level; specifically, more uncertain environments promote a greater integration of new 

information to better predict the future (Behrens et al. 2007, 2008). Overestimating or 

underestimating uncertainty would thus alter adaptive learning (i.e., the learning rate) 

(Feldman and Friston 2010; Mathys 2011; Hein et al. 2021). Accordingly, the current 

study aims to examine whether this hierarchical Bayesian framework would help 

explain the mechanism of frontal theta oscillations regulating task performance. 

Specifically, we investigate whether frontal theta stimulation regulates hierarchical 

learning primarily through changes in uncertainty estimates.  

In summary, the current study aimed to test the causal relationship between 

frontal theta oscillations and hierarchical learning. Participants received theta (6Hz), 

and sham HD-tACS over rDLPFC (within-participants, once a week), while 

performing the probabilistic reversal learning task. In general, behavior depends on 

both learning and decision. Consequently, we fitted individual behavioral data using a 

combination of a learning and a decision model, to reveal the potential stimulation 

effects on learning and decision processes respectively. Here, the learning model (i.e., 

HGF model) allows for obtaining individual learning characteristics at hierarchical 

level; while the decision model contains an individual temperature parameter which 

represents the noise or the degree of exploration during decision. On the one hand, if 

the neuromodulation effect regulates the learning process, significant changes in 

learning parameters would be revealed after the theta tACS. On the other hand, if the 

neuromodulation effect regulates the decision process, a significant change in 
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temperature parameter would be found after the theta tACS. Overall, based on our 

previous finding that low-level pwPEs were encoded by theta oscillations (Liu et al. 

2022), we hypothesized that theta neuromodulation would regulate hierarchical 

learning primarily through increasing low-level learning rate and uncertainty.  

 

Materials and Methods 

Participants 

Forty-four healthy college students participated in this study for reimbursement. All of 

them were right-handed, with normal or corrected-to-normal vision. This 

experimental procedures were approved by the Ethics Committee of the Institute of 

Psychology, South China Normal University (No. SCNU-PSY-2021-042). Each 

participant provided written consent before the experiment. Four measured 

participants were not included in the analysis: three participants did not perform the 

task according to the instruction, and one was excluded due to excessive reaction 

time. Accordingly, the final sample included forty effective subjects (24 females), age 

from 18 to 24 years old (M = 20.43 ± 1.6 years).  

 

Experimental Procedure 

We used a within-participants design, and each participant was recruited to complete 

the probabilistic reversal learning task for two sessions (once a week): theta (6 Hz) 

and sham stimulation. The order of the HD-tACS protocol was counterbalanced 

across participants. The study design was single blinded. As such, participants were 
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kept naïve about the session-specific stimulation conditions.  

In each session, participants were asked to complete a probabilistic reversal 

learning task including 120 trials, where they need to learn the predictive strength of 

cues (two circular patterns) and predict a subsequent visual stimulus (horizontal or 

vertical grating); see Figure 1A and 1B for illustration. All procedures for each session 

were identical, with the exception of the cues. These cues were selected from Kool 

and McGuire’s photo gallery (Kool et al. 2010; McGuire and Botvinick 2010). The 

stimuli (horizontal or vertical grating) were also used in several earlier studies 

(Verbeke et al. 2021; Liu et al. 2022). Critically, the cue-stimulus association strength 

changed over time in the current task. This learning environments contained a stable 

environment, the probability of horizontal given a cue A remained at 0.75 (as did the 

probability of vertical given a cue B), and a volatile environment, the probability of 

horizontal given a cue A switched between 0.2 and 0.8 (see Figure 1B). Participants 

were explicitly instructed that the conditional probabilities were perfectly coupled in 

the sense that ���������	
� | ����� � �����	��
� | �����. 

At the beginning of each trial, one of two possible cues was presented in the 

center of the screen for 800 ms, which was followed by a 400ms fixation cross. 

Subsequently, participants were informed to determine whether a horizontal or 

vertical grating would follow, and to make their responses as accurately and as 

quickly as possible by pressing either “F” or “J” buttons. Horizontal and vertical 

gratings were randomly displayed on the left and right of the screen in order to control 

for handedness, where the grating on the left corresponded to “F” button and the 
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grating on the right corresponded to “J” button. The presentation of selection ended 

immediately after a response was made. Then a fixation cross lasted for 1000-1500ms 

followed by a 500ms feedback (i.e., correctly matched grating, horizontal or vertical 

grating). Each session began with a practice with 20 trials, ensuring that participants 

understood the experimental requirements (see Figure 1A).  

 

 

Figure 1. Task design. (A) Probabilistic reversal learning task. Each trial started with 

one of two cues centrally presented for 800 ms. Participants were instructed to report 

either horizontal or vertical grating would follow. After response, a 500ms feedback 

was presented in the center of the screen. (B) Time-varying cue- stimulus contingency 

across trials. Participants were asked to complete the session without breaks, 

including 120 trials. The first half, a stable environment, the probability of horizontal 
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given a cue A remained at 0.75; the second half, a volatile environment, the 

probability of horizontal given a cue A switched between 0.2 and 0.8 three times. For 

half of the subjects, this order was reversed. (C) RDLPFC neuromodulation protocol 

and current-flow models on three-dimensional reconstructions of the cortical surface. 

 

High-definition Transcranial Alternating Current Stimulation 

We applied HD-tACS using a five-channel high-definition transcranial 

electrical-current stimulator (Soterix Medical). In line with our hypothesis, we 

planned to deliver focalized current to the rDLPFC. HD-Explore and HD-Targets was 

applied to model electrical field to decide how and where to place electrodes. Figure 

1C shows the modulation parameters. The total current strength was 1.5 mA, with 

AFz (-0.375 mA), AF8 (-0.375 mA), F4 (1.5 mA), FC2 (-0.375 mA), and FC6 (-0.375 

mA) separately (see Figure 1C). In the theta (6 Hz) stimulation, modulation was 

turned on 1 minute before the start of the probabilistic reversal learning task and 

lasted until the end of the session. In the sham stimulation, modulation was ramped up 

and then ramped down within 30 seconds before the start of the task, and no real 

stimulation was applied in the whole session. All participants reported that the 

stimulation process was acceptable without intense skin pain or phosphene. 

 

Computational Modelling 

To investigate the mechanisms of modulation effects on hierarchical learning, we 

modelled individually learning and decision processes with a combination of 
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perceptual learning and decision model (Mathys 2011; Mathys et al. 2014), as in our 

previous study (Liu et al. 2022). Two types of models were paired in order to infer the 

latent states of an observer during the task.  

 

Learning model 

The perceptual learning model was a validated Hierarchical Gaussian Filter (HGF). 

The implementation of the HGF analyses in the current study was available (TAPAS, 

http://www.translationalneuromodeling.org/tapas). Regarding to our probabilistic 

reversal learning task, the three levels of the HGF model correspond to the following: 

the first level represents the occurrence of the cue and grating stimuli (x1), the second 

level represents the conditional probability of the grating given the cue (x2), and the 

third level represents the change in this conditional probability (log-volatility, x3). 

Each of these hidden states (x2 and x3) is assumed to evolve as a Gaussian random 

walk, such that its mean is centered around its previous value at trial k-1, and its 

variance depends on the state at the level above. As in previous work (De Berker et al. 

2016; Hein et al. 2021; Liu et al. 2022), �2 and �3 were estimated in each participant, 

and � was fixed to 1. Here, �2 represents a constant component of the step size at the 

second level, and �3 represents metavolatility parameter. In addition, � represents the 

strength of the estimated environmental volatility affected the probability learning 

rate. Details on the exact update equations are provided in Mathys et al. (2011, 2014).  
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Figure 2. Computational modeling of behavior. (A) Model architecture. A 

combination of a three-level HGF and a decision model describe individual learning 

and decision processes. The blue and gray circles represent potential states changed 

trial-by-trial, and the yellow and green circles denote free parameters estimated from 

the HGF or decision models. (B) Binary outcomes and model-based hierarchical 

belief trajectories from a representative participant. At the first level, green dots 

correspond to the actual associative stimulus of each trial, and yellow dots 

corresponds to the participant’s selections (1 = cue A-horizontal stimulus or cue 

B-vertical stimulus, 0 = cue A-vertical stimulus or cue B-horizontal stimulus).  

 

For each trial, the update formula of HGF for both low-level (i = 2) and 

high-level (i = 3) is expressed in the following form: 

 ∆ ��
���  � ��

��������
��� � ��

�������
��� � ��

���    (1) 

This expression illustrates that the updating of the expectation of the posterior mean 

∆ ��
��� is proportional to the weighted PE ��

���. Here, the precision weighting of the 
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PE is a ratio of precisions ��
���, which can be considered as a dynamic learning rate 

(Preuschoff and Bossaerts 2010; Mathys et al. 2014; Liu et al. 2022). This precision 

weighting ��
��� equals 

 ��
��� � �	���

���

�
�

���       (2) 

where � ���
���  is the precision of the prediction of the level below and ��

��� is the 

precision of the posterior expectation on the current level. Precision (π) is defined as 

the inverse variance (or uncertainty, !�) of the posterior expectation: 

 ��
��� � �



�
���       (3) 

The intuition behind this is that the precision of its data modulate the magnitude of 

updating of an individual’s belief, with a higher precision (or lower uncertainty) 

promoting a greater integration of PEs. 

 

Decision model 

The decision model is a unit-square sigmoid observation model, which links the 

posterior estimates of beliefs to expressed decisions y��� (Mathys 2011; Mathys et al. 

2014). Here, the predicted probability #��� that a grating stimulus (e.g., horizontal 

grating) given the cue A on trial $ is linked to trial-wise predictions of grating 

stimulus category by using the softmax (logistic sigmoid) function:  

� �%|#, '�  �  ( ���


���������
)
�

． ( ������

���������
)
���

   (4) 

where ' is a subject-specific temperature parameter and can be interpreted as inverse 

decision noise (see Figure 2A). This temperature parameter ' is the only free 

parameter in the decision model. It captures how deterministically % is associated 
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with #. Higher ' values represent that participants are more likely to choose the 

option that is more congruent with their current belief.  

 

Model Space  

Using random effects Bayesian model selection (BMS; Stephan et al. 2009; code from 

the freely available MACS toolbox; Soch and Allefeld 2018), following our previous 

study (Liu et al. 2022), we compared three different learning models. The decision 

model mentioned above was combined with three different learning models. First was 

the three-level hierarchical learning model (with volatility on the third level: HGF3). 

The second was the Rescorla Wagner (RW) model, which is probably the simplest and 

most widely used learning model. It adopts the idea of prediction errors driving belief 

updating, but the fitted learning rate is not adaptive (Rescorla and Wagner 1972). 

Third, the Sutton K1 model (SK1) model allows adaptive learning rate to adapt with 

recent prediction errors, but without a hierarchy (Sutton and Barto 1998). Also, as in 

previous work (Iglesias et al. 2013, 2021; Hein et al. 2021; Liu et al. 2022), there was 

one single value tracked in all three models. Participants were explicitly informed that 

the probability of one stimulus (i.e., horizontal grating) given a particular cue (i.e., cue 

A), was the same as the probability of another stimulus (i.e., vertical grating) given 

another cue (i.e., cue B).  

 

Data Analysis 

Firstly, paired t-tests were carried out to test the neuromodulation effects on 
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behavioral task performance (i.e., accuracy) during the probabilistic reversal learning 

task. Accuracy was defined as making the optimal choice (i.e., the choice with the 

currently highest probability of success) on a given trial. Furthermore, paired t-tests 

were also performed for stable and volatile environments separately, in order to 

analyze the neuromodulation effects on different learning environments.  

Secondly, to investigate the neuromodulatory effects on hierarchical learning 

specifically, we focused on individual computational parameters from the learning 

and decision models separately. On the one hand, we carried out paired t-tests to test 

the neuromodulatory effects on hierarchically learning model parameters: learning 

rate (ψ2, ψ3), estimation of uncertainty (σ2, σ3), and precision-weighted PEs (|ε2|, ε3) 

on both low-level (here, level 2) and high-level (here, level 3). Consistent with 

previous studies (Iglesias et al. 2013; Hein et al. 2021; Liu et al. 2022), the absolute 

value of ε2 was chosen. Indeed, it does not matter if we code the probability of 

horizontal grating given the cue A or instead the probability of vertical grating given 

the cue A. On the other hand, a paired t-test was used to test the neuromodulation 

effects on temperature parameter (') from decision model. Furthermore, as for the 

analysis of accuracy, the same paired t-tests were carried out for stable and volatile 

environments separately.  

Finally, to investigate the relationship between task performance and internal 

computational mechanisms, we tested whether the behavioral change induced by 

HD-tACS stimulation was related to the computational learning parameter. Here, we 

calculated the (Pearson) correlations between the change in accuracy (Δaccuracy, the 
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difference between theta and sham stimulation regarding accuracy) and the change in 

low-level probability learning rate (Δψ2, expected computational mechanism regulated 

by neuromodulation effect) for stable and volatile environments respectively.  

 

Results 

Stimulation Effects on Accuracy 

Figure 3 illustrates the average accuracy for both theta and sham tACS, respectively. 

As a whole, the theta HD-tACS condition (M = 0.809 ± 0.010) showed a significant 

reduction in accuracy (averaged across all 120 trials) relative to the sham condition 

(M = 0.832 ± 0.008), p < 0.01, d = -0.474. Furthermore, the theta HD-tACS condition 

showed a significant reduction in accuracy relative to the sham condition only for the 

stable environment (M = 0.872 ± 0.014 vs. M = 0.920 ± 0.012), p < 0.001, d = -0.778, 

but not for the volatile environment (M = 0.746 ± 0.012 vs. M = 0.745 ± 0.010) (p = 

0.946).  

For exploratory purposes, we investigated whether and found that the theta 

HD-tACS condition showed a significant increase in accuracy relative to the sham 

condition only for the post-reversal-1 (the five trials right after the first reversal were 

labelled post-reversal-1) (M = 0.255 ± 0.030 vs. M = 0.170 ± 0.020), p < 0.05, d = 

0.376, but not for the post-reversal-2 (M = 0.505 ± 0.023 vs. M = 0.455 ± 0.023), p = 

0.086, and also not for the post-reversal-3 (M = 0.380 ± 0.045 vs. M = 0.310 ± 0.040), 

p = 0.217 (see Figure 3). These data suggest that the characteristics of the 

environment (e.g., its stability) may determine whether learning is optimized.  
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Figure 3. Neuromodulation effects on average accuracy. Average accuracy per trial 

of both theta and sham HD-tACS conditions. The theta HD-tACS condition showed a 

significant reduction in accuracy relative to the sham condition for the stable 

environment. However, the theta HD-tACS condition showed a significant increase in 

accuracy relative to the sham condition for post-reversal-1. 

 

Model Comparison and Selection  

BMS were applied to quantify the protected exceedance probability (PXP) of three 

competing models. The model with the highest PXP was selected as the optimal 

model. Comparisons of the three models are summarized in Table 1. Here, the HGF3 

model was obviously superior to the other two alternative models. These suggest that 

participants were indeed likely to implement hierarchical learning. Having identified 

the optimal model (HGF3), we proceeded to testing whether there were significant 

differences in parameter estimates between theta and sham tACS stimulation. 
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Table 1. Model comparison results.  

 HGF3 RW SK1 

EXP 0.9608 0.0233 0.0159 

XP 1.000 0.000 0.000 

PXP 1.000 0.000 0.000 

Note: HGF3, hierarchical Gaussian filter with 3 levels; RW, Rescorla Wagner model; 

SK1; Sutton K1 model. EXPs, expected posterior probabilities; XPs, exceedance 

probabilities; PXPs, protected exceedance probabilities. 

 

Stimulation Effects on Low-level Learning about Cue-stimulus Probabilities  

The probability learning rate (ψ2) in theta HD-tACS condition (M = 1.017 ± 0.048) 

was significantly higher than in the sham condition (M = 0.788 ± 0.038), p < 0.001, d 

= 0.889 (see Figure 4A). Similarity, the probability learning rate in theta HD-tACS 

condition was significantly higher than sham condition for both stable (M = 1.001 ± 

0.045 vs. 0.789 ± 0.036), p < 0.001, d = 0.882, and volatile environments (M = 1.032 

± 0.052 vs. 0.787 ± 0.041), p < 0.001, d = 0.894.  

Although learning rate, uncertainty, and prediction error are statistically related, 

we report results on all three variables for completeness. The uncertainty of 

probability estimation (σ2) in the theta HD-tACS condition (M = 1.301 ± 0.077) was 

significantly higher than in the sham condition (M = 0.954 ± 0.055), p < 0.001, d = 

0.861 (see Figure 4B). Similarly, the uncertainty of probability estimation in the theta 

HD-tACS condition was significantly higher than in the sham condition for both 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.28.497899doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.28.497899


18 

 

stable (M = 1.280 ± 0.073 vs. 0.954 ± 0.052), p < 0.001, d = 0.856, and volatile 

environments (M = 1.322 ± 0.082 vs. 0.955 ± 0.058), p < 0.001, d = 0.865. 

The absolute probability pwPE (|ε2|) in the theta HD-tACS condition (M = 0.451 

± 0.022) was significantly higher than in the sham condition (M = 0.348 ± 0.017), p < 

0.001, d = 0.881 (see Figure 4C). Furthermore, the distinction between stable and 

volatile environments revealed similar results. That is, the absolute probability pwPE 

in the theta HD-tACS condition was significantly higher than in the sham condition 

for both stable (M = 0.443 ± 0.022 vs. 0.340 ± 0.017), p < 0.001, d = 0.874, and 

volatile environment (M = 0.460 ± 0.022 vs. 0.356 ± 0.017), p < 0.001, d = 0.887. 

In sum, we found a significant increase in probability learning rate (ψ2), 

uncertainty of probability estimation (σ2), and prediction error (epsilon) regulated by 

theta stimulation, in both stable and volatile learning environments. 
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Figure 4. Neuromodulation effects on hierarchical computational learning 

parameters. (A-C) Stimulation effects on learning about low-level (probability). (A) 

Probability learning rate (ψ2) in theta HD-tACS condition was significantly higher 

than in the sham condition. (B) Uncertainty of probability estimation (σ2) in theta 

HD-tACS condition was significantly higher than in the sham condition. (C) Absolute 

probability pwPE (|ε2|) in theta HD-tACS condition was significantly higher than 

sham condition. (D-F) Stimulation effects on learning about high-level (volatility). 

(D) Volatility learning rate (ψ3) in the theta HD-tACS condition was significantly 

lower than in the sham condition. (E) Uncertainty of volatility estimation (σ3) in the 

theta HD-tACS condition was significantly lower than in the sham condition. (F) 

Theta HD-tACS condition showed a significant increase in volatility pwPE (ε3) 

relative to the sham condition.  

 

Stimulation Effects on High-level Learning about Volatility 

The volatility learning rate (ψ3) in theta HD-tACS condition (M = 0.187 ± 0.014) was 

significantly lower than in the sham condition (M = 0.272 ± 0.022), p < 0.001, d = 

-0.747 (see Figure 4D). Similarly, the volatility learning rate in the theta HD-tACS 

condition was significantly lower than in the sham condition for both stable (M = 

0.143 ± 0.009 vs. 0.199 ± 0.014), p < 0.001, d = -0.772, and volatile environments (M 

= 0.230 ± 0.018 vs. 0.346 ± 0.031), p < 0.001, d = -0.734.  

The uncertainty of volatility estimation (σ3) in the theta HD-tACS condition (M 

= 0.207 ± 0.003) was significantly lower than in the sham condition (M = 0.220 ± 
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0.002), p < 0.001, d = -0.890 (see Figure 4E). Similarly, the uncertainty of volatility in 

the theta HD-tACS condition was significantly lower than in the sham condition for 

both stable (M = 0.161 ± 0.001 vs. 0.166 ± 0.001), p < 0.001, d = -0.850, and volatile 

environments (M = 0.254 ± 0.004 vs. 0.274 ± 0.003), p < 0.001, d = -0.892. 

The theta HD-tACS condition showed a significant increase in volatility pwPE 

(ε3) relative to the sham condition (M = 0.0000 ± 0.00001 vs. M = -0.0004 ± 0.0001), 

p < 0.001, d = 0.693 (see Figure 4F). Similarly, the theta HD-tACS condition showed 

a significant increase in volatility pwPE relative to the sham condition for both stable 

(M = -0.0005 ± 0.00001 vs. M = -0.0008 ± 0.0001), p < 0.001, d = 0.796, and volatile 

environments (M = 0.0004 ± 0.00001 vs. M = 0.0000 ± 0.0001), p < 0.01, d = 0.529.  

In sum, we found a significant decrease in volatility learning rate (ψ3) and 

uncertainty of volatility estimation (σ3) regulated by the theta stimulation, in both 

stable and volatile learning environments. 

 

Stimulation Effects on Temperature Parameter of Decision Model 

We tested whether the neuromodulation also affected the decision process. The 

temperature parameter is the only free parameter in the decision model. No significant 

difference was found between the theta condition (M = 4.350 ± 1.001) and sham 

condition (M = 4.493 ± 0.969) (p = 0.670) on the temperature parameter.  

 

Correlation between the Changes of Accuracy and Low-level Learning Rates 

In line with our hypothesis, theta stimulation modulated the low-level learning rate. 
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Consequently, we next correlated task performance (i.e., accuracy) and the low-level 

learning rate across subjects. Considering that the effect of neuromodulation on 

accuracy varies across environments, the correlations were calculated for stable and 

volatile environment separately. As can be seen in Figure 5A, the change in accuracy 

induced by HD-tACS stimulation (Δaccuracy, the difference between theta and sham 

condition) was significantly negatively correlated with the change in probability 

learning rate (Δψ2, the difference between theta and sham condition) in the stable 

environment, r = -0.355, p = 0.024 (see Figure 5A). However, no significant 

correlation was reported for the volatile environment, r = 0.186, p = 0.249 (see Figure 

5B).   

 

 

Figure 5. Correlation between behavioral changes and computational learning 

parameter. The change on accuracy (between theta and sham condition) and the 

change on probability learning rate (A) in the stable environment and (B) in the 

volatile environment. 
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Discussion 

The current study combined HD-tACS and the HGF model to assess the modulatory 

effects of frontal theta frequency band on hierarchical learning. Behaviorally, theta 

tACS modified participants’ adaptive behavior such that theta stimulation induced a 

significantly decreased accuracy in an environment suitable for stable learning, but a 

significantly increased accuracy in an environment suitable for fast learning (relative 

to the sham condition). Computationally, the HGF model revealed that the low-level 

learning rates were significantly increased relative to sham condition, which may 

explain the change in accuracy. Moreover, the HGF model also revealed that the theta 

condition increased the estimation of low-level uncertainty compared to the sham 

condition. This suggests that theta stimulation may bias the estimation of uncertainty 

and then adjust hierarchical learning. Furthermore, no stimulation effects on the 

temperature of the decision model were observed, suggesting that the effect of theta 

stimulation is specific to the learning process but not to the decision process. Finally, 

those subjects with worse performance (in stimulation relative to sham) also had a 

relatively more increased learning rate (in stimulation relative to sham). 

Adaptive learning requires a dynamic balance between stability and flexibility 

(Behrens et al. 2007; Nassar et al. 2013; Massi et al. 2018). For example, in the 

current probabilistic reversal learning task, an ideal learner needs to adjust learning 

strategies to adapt to different learning environments: more stable in a stable 

environment and more flexible in a volatile environment. However, the current results 
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revealed that accuracy was significantly decreased (presumably due to increased 

low-level learning rate) after theta stimulation in the stable environment, but not 

significantly altered in the volatile environment. This suggests that theta stimulation 

does not promote adaptive learning, but makes learners more inclined to faster 

learning. This matches previous findings about frontal neuromodulation in 

probabilistic reversal learning (Wischnewski et al. 2016; Borwick et al. 2020; Panitz 

et al. 2022), which demonstrated that neuromodulation promotes faster learning to 

volatile environment. Our study supplements these earlier results by demonstrating 

that faster learning reduces task performance in the stable environment. Furthermore, 

our exploratory analysis found that theta tACS induced a significantly increased 

accuracy in post-reversal-1 relative to sham condition, which may also support 

accelerating learning in theta stimulation. Collectively, theta tACS seemed to speed up 

(lower-level) learning, improving accuracy in the environment suitable for faster 

learning, but impairing accuracy in the environment suitable for more stable learning. 

These findings suggest that environmental features (e.g., its stability) may determine 

whether learning is optimized.  

The use of (hierarchical) computational modeling in the current study allowed 

for a specific focus on (low-level) learning rate, to understand the underlying 

mechanisms of the changes of accuracy. Consistent with previous studies, the 

empirical advantage of the HGF framework suggested that a hierarchical framework 

is the key to learning (Mathys 2011; Iglesias et al. 2013, 2021; Mathys et al. 2014). 

The current results, combined with those of previous theta oscillations studies (Cohen 
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et al. 2007; Cavanagh et al. 2010; Cavanagh and Frank 2014; Soutschek et al. 2021), 

suggested that frontal theta oscillations increase an individual's low-level (probability) 

learning rate from feedback information. Previous EEG studies suggested that frontal 

theta oscillations underlie neural processes associated with reinforcement learning and 

decision making. For example, frontal theta oscillations have been linked to response 

to an incorrect trial, and then predict subsequent adaptive behavior (Cohen et al. 2007; 

Cohen 2011). In further support, theta oscillations in a probabilistic reversal learning 

task can improve reinforcement learning and speed up rule learning after reversal 

(Wischnewski et al. 2016). In the current study, theta tACS significantly increased 

low-level learning rate, which could explain the change of behavioral task 

performance. These results suggest that frontal theta increases learning from 

feedback, and makes humans over-react to environmental change (i.e., they “chase the 

noise”).  

Previous studies established links between theta frequency and uncertainty 

(Cavanagh et al. 2012; Wischnewski and Compen 2022). For example, the increase in 

reaction time during a decision-making task when theta tACS was applied, has been 

suggested to reflect an increase in perceived uncertainty (Wischnewski and Compen 

2022). Consistently, our findings further provide insight into how theta tACS may 

influence subjective uncertainty from a computational perspective. Examination of 

uncertainty estimates using Bayesian framework in probabilistic reversal learning task 

is increasingly used to provide mechanistic explanations for hierarchical learning 

(Mathys 2011; Lawson et al. 2017; Pulcu and Browning 2019). The HGF model 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.06.28.497899doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.28.497899


25 

 

updates its parameters trial-by-trial via hierarchical pwPEs to reduce multiple 

uncertainty. The less confident (more uncertain) an individual is about its estimate of a 

parameter at some level, the higher it should weigh the information about parameter 

updates conveyed by PEs (higher learning rate). In the same line, our results also 

revealed that uncertainty and learning rate have the same correspondence for each 

level. Specifically, theta stimulation increased both the uncertainty of low-level 

estimation and low-level learning rates; while decreasing both the uncertainty of 

high-level estimation and its corresponding learning rate, compared with sham 

condition.  

Notably, impaired uncertainty estimation may be a characteristic of a wide range 

of neuropsychiatric disorders, including anxiety disorder, autism, and schizophrenia 

(Kaplan et al. 2016; Lawson et al. 2017; Powers et al. 2017; Pulcu and Browning 

2019; Cole et al. 2020; Deserno et al. 2020). For example, Lawson et al. (2017) 

reported that people with autism spectrum disorder significantly increased volatility 

learning rates, resulting in worse performance in probabilistic reversal learning. They 

proposed that these patients may be more willing to be uncertain about the volatility 

of the world itself, and difficult to tolerate the uncertainty of probability information 

(Lawson et al. 2017; Pulcu and Browning 2019). In contrast, the present results 

revealed that enhanced coding of low-level pwPEs in theta stimulation increased 

informational uncertainty about the probability and increased willingness to update 

the probability learning at low-level. 

Interestingly, our model-based behavioral data found that learning rate at 
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different hierarchical level showed opposing patterns of change after stimulation. 

Specifically, frontal theta stimulation increased the low-level learning rate and 

decreased high-level learning rate relative to sham. Collectively, these results are 

consistent with previous EEG and fMRI studies. That is, the brain uses hierarchical 

learning under dynamic environments, and learning signals at different hierarchies can 

be separately represented in the brain (Iglesias et al. 2013, 2021; Lawson et al. 2017; 

Deserno et al. 2020; Henco et al. 2020; Liu et al. 2022). For example, low-level 

pwPEs (served to update the estimate of stimulus probabilities) were encoded by 

DLPFC, and ACC, while high-level pwPEs (served to update the estimate of 

volatility) were not. Further, in Liu et al. (2022), we revealed that the trajectories of 

low-level but not high-level pwPEs were associated with increases in theta power, 

centered on F4 in the 10-20 EEG system corresponding to rDLPFC. Based on these 

data, the current results further support the separation of different hierarchical levels 

of learning. Theta stimulation over rDLPFC strengthens low-level learning, thus 

leading humans to over-react to low-level probabilistic changes. Concurrently, 

chasing the environmental probability noise means increasing resistance against 

environmental volatility's noise. Thereby, theta stimulation leads humans to learn less 

from the change of high-level volatility. 

The “Inverted-U-shaped” function hypothesis proposes that cognitive control 

requires a dynamic balance between flexible updating and cognitive stabilization 

(Cools and D’Esposito 2011). The relationship between brain dopamine and 

performance is inverted-U-shaped, where both excessive and insufficient levels 
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impair performance (Murphy et al. 1996; Vijayraghavan et al. 2007; Cools and 

D’Esposito 2011). It is worthy to note that patients with psychiatric disorders had 

smaller uncertainty about probability contingencies and were thus more resistant to 

updating the probability level, ultimately leading to worse performance in 

probabilistic reversal learning (Lawson et al. 2017; Pulcu and Browning 2019; Hein et 

al. 2021). At the other end of the spectrum, in the current theta stimulation, 

excessively increased probabilistic updating also impaired performance in this task. 

Specifically, the theta stimulation significantly increased absolute probability pwPEs 

and reduced accuracy in the stable environment. Consistent with the inverted-U-shape 

hypothesis, the present results may indicate that individuals with excessively stable or 

unstable updates of probability information have worse performance in probabilistic 

reversal learning. This novel hypothesis may provide a plausible starting point for 

further empirical work. 

One limitation of the current study is that we did not have an active control (e.g., 

stimulation at the gamma frequency band), in order to pinpoint the functionally 

specific effect of frontal theta on hierarchical learning. Moreover, we used no 

personalized neuromodulation frequencies to apply stimulation, which emphasizes 

that we cannot draw strong conclusions regarding the observed stimulation effects. 

Finally, to further investigate the neural mechanism underlying the behavioral 

changes, future research will combine non-invasive brain stimulation with concurrent 

neuroimaging techniques. 

To summarize, the present study combined HD-tACS and a hierarchical 
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Bayesian model to reveal a causal relationship between probabilistic learning rate 

during probabilistic reversal learning and theta oscillations over rDLPFC. 

Behaviorally, the effects of theta stimulation on task performance were influenced by 

the stability of the environment. Computationally, a hierarchical Bayesian model 

provided a possible explanation for the change of accuracy, that is, theta tACS 

induced a significant increase in low-level learning rate and the uncertainty of 

low-level estimation relative to sham condition. We conclude that learning rates at 

different levels, primarily through changes in uncertainty estimates, are directly 

malleable by theta tACS over rDLPFC.  
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