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Abstract 18 

Neural entrainment to continuous speech is typically observed within the language network 19 

and can be modulated by both low-level acoustic features and high-level meaningful 20 

linguistic units (e.g., phonemes, phrases, and sentences). Recent evidence showed that 21 

visual cortex may entrain to speech envelope, however its putative role in the hierarchy of 22 

speech processing remains unknown. We tested blindfolded participants who listened to 23 

semantically meaningful or meaningless stories, either in quiet or embedded in multi-talker 24 

babble noise. Entrainment to speech was assessed with forward linear modeling of 25 

participants' EEG activity. We investigated (1) low-level acoustic effects by contrasting 26 

neural tracking of speech presented in quiet or noise and (2) high-level linguistic effects by 27 

contrasting neural tracking to meaningful or meaningless stories. Results showed that 28 

envelope tracking was enhanced and delayed for speech embedded in noise compared to 29 

quiet. When semantic information was missing, entrainment to speech envelope was 30 

fastened and reduced. Source modeling revealed that envelope tracking engaged wide 31 

neural networks beyond the auditory cortex, including early visual cortex. Surprisingly, while 32 

no clear influence of semantic content was found, the magnitude of visual cortex 33 

entrainment was affected by low-level features. The decrease of sound SNR-level 34 

dampened visual cortex tracking, suggesting an active suppressing mechanism in 35 

challenging listening conditions. Altogether, these findings provide further evidence of a 36 

functional role of early visual cortex in the entrainment to continuous speech. 37 

 38 
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Introduction 48 

Neuronal populations developed the ability to synchronize their activity (through aligning 49 

the phase) to temporal regularities of a continuous input (Lakatos et al., 2019; Obleser & 50 

Kayser, 2019). This neural entrainment influences several aspects of processing, 51 

including language. In this context, neural activity entrained to amplitude modulations over 52 

time of continuous speech (that is, the envelope) has been consistently reported (Ding & 53 

Simon, 2014). The exact functional meaning of the entrainment to the speech envelope is 54 

still unclear. Several studies showed that intelligible speech is not mandatory for neural 55 

tracking (Howard & Poeppel, 2010; Luo & Poeppel, 2007). However, during 56 

comprehension, phase-locked responses to speech in the auditory cortex are enhanced 57 

(Gross et al., 2013; Peelle et al., 2013). Moreover, entrainment to an attended speaker's 58 

speech envelope in noisy environments appears to play a role in solving the so-called 59 

"cocktail party" (Cherry, 1953) problem (Ding, Chatterjee, & Simon, 2014; Riecke, 60 

Formisano, Sorger, Başkent, & Gaudrain, 2018). Based on this evidence, entrainment to 61 

speech envelope may be involved in promoting the perception of linguistic information 62 

(Poeppel & Assaneo, 2020) and facilitating speech comprehension (Ahissar et al., 2001; 63 

Luo & Poeppel, 2007), especially in challenging acoustic environments (e.g., Kerlin, 64 

Shahin, & Miller, 2010; Zion Golumbic et al., 2013). Importantly, neural entrainment to 65 

temporal dynamics of speech is modulated by low-level acoustic features (Ding et al., 66 

2014) and high-level meaningful linguistic units, such as phonetic information, phrases, 67 

and sentences (Di Liberto, O'Sullivan, & Lalor, 2015).  68 

Neural entrainment does not only occur for the auditory input of speech (A. E. O'Sullivan, 69 

Crosse, Liberto, Cheveigné, & Lalor, 2021; Plass, Brang, Suzuki, & Grabowecky, 2020). 70 

Recent magnetoencephalography (MEG) studies revealed that the early visual areas 71 

entrain even to silent lip movements (Bourguignon, Baart, Kapnoula, & Molinaro, 2018, 72 

2020; Hauswald, Lithari, Collignon, Leonardelli, & Weisz, 2018). This neural tracking is 73 

modulated by audiovisual congruences and boosts speech comprehension in noisy 74 

conditions (Park, Kayser, Thut, & Gross, 2016). The contribution of visual cortices in 75 

language processing is not limited to visual or audiovisual representations of spoken 76 

language. There is scattered evidence that the early visual cortex is also active during 77 

purely auditory stimulation (Brang et al., 2022; Petro, Paton, & Muckli, 2017; Vetter, Smith, 78 

& Muckli, 2014) and while listening to spoken language (e.g., Martinelli et al., 2020; 79 

Seydell-Greenwald, Wang, Newport, Bi, & Striem-Amit, 2021; Wolmetz, Poeppel, & Rapp, 80 

2011). Importantly, such activations cannot be explained by semantic-based imagery 81 

alone but rather seem to reflect genuine responses to language input; in fact, the visual 82 

cortex also responds to abstract concepts with low imaginability rates (Seydell-Greenwald 83 

et al., 2021). Overall, this evidence highlights a putative role of the visual cortex in mapping 84 
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temporal modulations of incoming sounds, especially in the absence of competing retinal 85 

input (Martinelli et al., 2020; Vetter et al., 2014). However, the exact role of the visual 86 

cortex in the hierarchy of speech processing remains unclear. 87 

Here, we investigated the neural tracking of speech envelope when visual input is absent. 88 

Using electroencephalography (EEG), we recorded neural responses of blindfolded 89 

individuals while they were listening to stories presented in isolation (Quiet) or combined 90 

with multi-talker babble noise at different signal-to-noise ratios (SNR; Noise). Stories 91 

comprised either meaningful (speech) or meaningless (jabberwocky) narration. We used 92 

a temporal response function (TRF) to model neural tracking of broadband speech 93 

envelope (in 2-8 Hz range; as in: Hausfeld, Riecke, Valente, & Formisano, 2018; Mirkovic, 94 

Debener, Jaeger, & De Vos, 2015; J. A. O'Sullivan et al., 2015). TRF approach allows 95 

linear mapping between neurophysiological responses and continuous speech stimuli 96 

(Crosse, Di Liberto, Bednar, & Lalor, 2016; Crosse et al., 2021) and has been used to 97 

measure entrainment to speech in both clear and challenging listening conditions (e.g., 98 

Decruy, Vanthornhout, & Francart, 2019; Di Liberto et al., 2015; Ding et al., 2014; Ding, 99 

Melloni, Zhang, Tian, & Poeppel, 2016; Ding & Simon, 2014; Legendre, Andrillon, Koroma, 100 

& Kouider, 2019; J. A. O'Sullivan et al., 2015).  101 

To disambiguate the effects of lower-level acoustic and higher-level linguistic processing 102 

using continuous naturalistic stimuli, we built a hierarchical model. We specifically 103 

assessed the effects of (i) low-level acoustic features by contrasting TRFs resulting from 104 

listening to stories presented in quiet vs. in noise, and (ii) high-level linguistic information 105 

by contrasting TRFs resulting from listening to meaningful (speech) vs. meaningless 106 

(jabberwocky) stories, both embedded in noise. Finally, we tested how low-level and high-107 

level information effects are distributed at the source level, with a focus on whether and 108 

how speech envelope information is mapped in the visual cortex in the absence of 109 

competing visual information.  110 

 111 

 112 

Materials and Methods 113 

Participants 114 

Nineteen native speakers of the Italian language took part in the study (N = 19; age: 115 

median = 28; min = 22; max = 32; females = 12; all right-handed). We excluded one 116 

participant because of an error in the presentation script during EEG acquisition and three 117 

more participants due to their inability to complete the experiment, resulting in a final 118 

sample of fifteen participants (N = 15; age: median = 28; min = 22; max = 30; females= 119 

10). All participants self-reported the absence of any hearing problems and neurological 120 

disorders. The experimental protocol was approved by the local ethics committee and 121 
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conducted following the Declaration of Helsinki. All participants were informed in advance 122 

that they would be blindfolded during the experiment, signed written informed consent 123 

prior to the study, and received monetary compensation for their participation.  124 

 125 

Stimuli  126 

We used two types of target stories: (i) meaningful (speech) and (ii) meaningless 127 

(jabberwocky) narration. Meaningful stories were extracted from the fiction book for teens 128 

Polissena del Porcello by (Pitzorno, 1993). Meaningless stories were extracted from the 129 

books containing nonsense, metasemantic (jabberwocky) poems and texts: Gnòsi delle 130 

fànfole by (Maraini, 2019) and Esercizi di Stile by (Queneau, 1947/1983). Note that 131 

syntactic information is preserved in jabberwocky stories, whereas semantic information 132 

is absent or significantly reduced.  133 

Target stories were narrated by a trained Italian actress. We registered stories in a 134 

soundproof booth, using a video camera with an external condenser microphone 135 

(Olympus ME51S) at sampling frequency of 48000 kHz. To create stimuli for our EEG 136 

experiment, we extracted the audio material from the recorded files and edited them in 137 

Audacity® software (version 2.3.0, https://www.audacityteam.org/) and with a custom 138 

code using Signal Processing toolbox incorporated in MATLAB (version R2018b, Natick, 139 

Massachusetts: The MathWorks Inc.). Specifically, we: (i) inspected raw audio files for 140 

pronunciation errors and long breaths, consequently removing them, (ii) downsampled 141 

audio to 44100 Hz, set to 16-bit and converted from Stereo to Mono, (iii) truncated long 142 

pauses and silent periods exceeding 0.5 s to 0.5 s, (iv) trimmed resulting files to the same 143 

length (~ 15 min), (v) identified the noise floor of the frequencies comprising the noise via 144 

“Get Noise Profile” feature and subsequently removed low-amplitude background noise 145 

using the Noise Reduction built-in feature based on an algorithm using Fourier analysis, 146 

(vi) normalized resulting files to the same common root-mean-square (RMS) value to 147 

ensure no variation of loudness across stories. Natural variations of loudness within each 148 

story were preserved. 149 

We combined the target stories with a five-talker babble to construct stimuli in which the 150 

target story was embedded in the noise. Here, we used the babble noise, which is a non-151 

stationary noise that works well both as an energetic and informational masker, efficiently 152 

reducing intelligibility and speech quality (Brungart, 2001; X. Wang & Xu, 2021). The 153 

babble noise was a mixture of five different voices (2 females, 3 males, all native Italian 154 

speakers). Every speaker was recorded in the soundproof booth, reading several non-155 

related extracts from the fiction book La Strada by (McCarthy, 2006/2014). These 156 

individual recordings were registered and edited with the similar routine described above 157 

for the target stimuli. Then, individual recordings were superimposed, resulting in multi-158 
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talker babble. Finally, the initial 500 ms of the multi-talker babble got discarded to eliminate 159 

a part that did not contain all five talkers.  160 

The first 5 s of the resulting multi-talker babble were set to zero/"muted," followed by 5 s 161 

of fade-in to make it easier for the participants to identify and track the target stories in the 162 

multi-talker babble noise. Then, with custom MATLAB scripts, we normalized the target 163 

stories and the babble to a common RMS value to make sure there would be no story or 164 

any of its segments standing out from the noise, and then superimposed the stories and 165 

the babble at two SNR levels (SNR1 = +3.52 dB, – for both meaningful and meaningless 166 

stories, and SNR2 = +1.74 dB, – for meaningful story only; see supplementary material 167 

for more details). As the last step, we normalized all the resulting audio files for all 168 

conditions once again to a common RMS value to achieve equal loudness across the 169 

stimuli and consequently verified each file's spectrogram in Audacity. 170 

Altogether, we constructed stimuli to generate four experimental conditions: 1) Speech-171 

in-Quiet, 2) Speech-in-Noise at SNR1, 3) Speech-in-Noise at SNR2, and 4) Jabberwocky-172 

in-Noise at SNR1 (Figure 1A). Each experimental condition contained a particular story 173 

divided into three parts of ~ 5 min, therefore the total duration of continuous speech stimuli 174 

per condition was ~ 15 min. 175 

To test the effect of low-level acoustic (SNR) information, we compared neural tracking in 176 

Speech-in-Quiet condition and Speech-in-Noise at SNR2 condition. To test the effect of 177 

high-level linguistic (semantic) information, we compared neural tracking in Speech-in-178 

Noise at SNR1 condition and Jabberwocky-in-Noise at SNR1 condition.  179 

 180 
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Figure 1: Stimuli, Behavioral Responses, and Analysis Approach. (A) Stimuli 181 

consisted of continuous (i) meaningful (Speech) and (ii) meaningless (Jabberwocky) 182 

stories presented either in quiet (Quiet) or as embedded in the multi-talker babble noise 183 

at a different signal-to-noise ratio (SNR1; SNR2). The babble noise was a mixture of five 184 

voices (2 females, 3 males) reading extracts from a book. The acoustic envelopes were 185 

extracted for further analysis through the Hilbert transform and filtering in the range 186 

between 2 and 8 Hz. (B) Power spectra density estimates of normalized acoustic 187 

envelopes were obtained using Welch's method with a 10 s Hamming window and half-188 

overlap. Bold lines indicate average across trials; shaded areas indicate standard error of 189 

the mean. (C) Behavioral Responses represented by correct responses (Top) and 190 

intelligibility rates (Bottom). Barplots display mean ± SE across participants. Asterisks 191 

indicate statistically significant differences (***p < 0.001). (D) Neural tracking of the speech 192 

envelope was estimated using the forward encoding approach – Temporal Response 193 

Function (TRF). Ridge regression-based linear models (TRFs) were fitted to participants' 194 

neural data, obtained during active listening, to predict EEG response for of a given EEG 195 

channel from speech envelope.  196 

 197 

Task and Experimental Procedure 198 

Participants performed four blocks, each consisted of one experimental condition. During 199 

the first block, they always listened to the story without background noise (i.e., Speech-200 

in-Quiet condition). This was done to help the participants habituate both to the (target) 201 

narrator's voice and the experimental design since this condition was the easiest to attend. 202 

The order of the remaining three blocks was randomized across participants. Each of the 203 

four blocks consisted of a story that lasted ~ 15 min divided into three parts ~ 5 min (see 204 

supplementary material for further details). Participants listened to each part of the story 205 

only once, without repetition, therefore avoiding the possibility of predicting the content of 206 

the story. To maintain the continuity of the storyline within each block, each part within 207 

each story followed the previous part chronologically.  208 

We instructed participants to attentively listen to the target story (narrated by the female 209 

voice and guided by the first 5 s of the audio) while ignoring babble noise in the 210 

background. To ensure that the participants were actively attending to the stimuli, at the 211 

end of each part, they answered three specific Yes/No questions about the part of the 212 

story that they just listened to (for example, "Il cane di Lucrezia è un San Bernardo? [Is 213 

Lucrezia's dog a Saint Bernard?]"; see supplementary material for the full list of 214 

questions). If they were not sure about the correct answer between the two, they had to 215 

choose the answer that seemed to them the most probable. To answer, participants 216 

pressed corresponding buttons on the response panel with their index and middle fingers. 217 
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At the end of each part, we asked participants to self-report intelligibility rates of the target 218 

story on a Likert scale (where 1 – absolutely non-intelligible, 7 - very intelligible) and let 219 

them have a short break lasting ~ 2 min. We also ensured that none of the participants 220 

was familiar with or recently exposed to the target stories. Moreover, we informally 221 

assessed a participant's comfort, alertness, and motivation to continue the experiment 222 

during short and long breaks. We removed the blindfolding mask during the breaks 223 

between each blocks (every 15 minutes) for the participants' comfort and in order to avoid 224 

inducing short term cross-modal plasticity effects resulting from the prolonged visual 225 

deprivation (Landry, Shiller, & Champoux, 2013; Lazzouni, Voss, & Lepore, 2012; Merabet 226 

et al., 2008). 227 

The experiment was controlled with E-Prime® software (version 3.0, Schneider et al., 228 

2002). All instructions and speech stimuli were presented through a single front-facing 229 

loudspeaker (Bose Companion® series III multimedia speaker system, USA) placed in 230 

front of the participants at approximately 1 m distance from their heads. Stimuli were 231 

delivered at ~ 60 dB sound pressure level (SPL), measured at the participant's ear, and 232 

reported by all the participants as comfortable volume.  233 

To accurately measure the actual onset time of our stimuli, we administered a timing-test 234 

using Audio/Visual (AV) Device (Electrical Geodesics, Inc.) compatible with E-Prime 235 

software and NetStation system. The measured average delay in time was constant and 236 

about + 5 ms regarding the stimulus onset. 237 

 238 

EEG Recording 239 

Before starting the experiment, each participant received a brief instruction and had a 240 

short (~ 1 min) "training" session on how to control over muscular artifacts through 241 

monitoring their EEG signal displayed on the computer screen. Then, we applied the 242 

blindfolding mask to the participant, and they were reminded to keep their eyes open 243 

during the EEG recordings, though blinking was permitted whenever they wanted. 244 

Moreover, we recorded resting-state EEG data for about 2 minutes at the beginning of 245 

each experiment while the participant kept their eyes open. Obtained resting-state data 246 

served as calibration data to attenuate EEG artifacts during the preprocessing step. 247 

During the tasks, the participants were seated comfortably in a chair in a dark, 248 

soundproofed booth (BOXY, B-Beng s.r.l., Italy). The EEG recordings were acquired at a 249 

sampling rate of 500 Hz using NetStation5 software together with a Net Amps 400 EGI 250 

amplifier connected to 64 electrodes HydroCel Geodesic Sensor Net (Electrical 251 

Geodesics, Inc.), all signals referenced to vertex (additional channel E65/Cz). For data 252 

visualization purposes only, the data were band-pass filtered online using the digital filter 253 

from 1.0 to 100 Hz, and online digital anti-alias filter aligning EEG recordings with real-254 
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time events was kept on. Electrode impedances were kept below 50 kΩ and were checked 255 

between the blocks (when the blindfolding mask was reapplied).  256 

Participants were encouraged to take a break after each block and get enough rest before 257 

continuing. They also were reminded about the importance of staying attentive, keeping 258 

eyes open while blindfolded, and avoiding excessive movements during the EEG 259 

recordings.  260 

 261 

EEG Preprocessing 262 

We preprocessed continuous EEG raw data offline using custom MATLAB (version 263 

R2018b, Mathworks Inc., Natick, MA) scripts together with EEGLAB toolbox (version 264 

14.1.2b, Delorme & Makeig, 2004) for MATLAB. 265 

First, the EEG data were submitted to cleaning with Artifact Subspace Reconstruction 266 

(ASR) - an automated artifact attenuation algorithm (clean_rawdata plug-in, version 2.1) 267 

for EEGLAB toolbox. We applied the default flatline criterion of 5 s, together with default 268 

transition band parameters ([0.25 0.75]). ASR algorithm was chosen due to its objective 269 

and reproducible evaluation of artifactual components in EEG data. ASR is based on 270 

Principal Component Analysis (PCA) sliding window and effectively attenuates high-271 

variance signal components in the EEG data (including eye blinks, eye movements, and 272 

motion artifacts). Specifically, first, the algorithm automatically identifies the most artifact-273 

free part of the data (here, the resting-state data) to use it as the calibration data to 274 

compute the statistics. Next, a 500 ms PCA sliding window with 50% overlap is applied 275 

across all the channels to identify "bad" principal components. Then, the algorithm 276 

identifies the subspaces in which the signal exceeds 5 standard deviations away from the 277 

calibration data as corrupted and rejects them. Finally, it reconstructs the high variance 278 

subspaces using a mixing matrix calculated based on the calibration data. 279 

The artifact attenuated EEG data were preprocessed as follows: (i) re-referenced from 280 

E65/Cz electrode to a common average reference, (ii) band-pass filtered from 0.1 to 40 281 

Hz (low-pass: FIR filter, filter order: 100, window type: Hann; high-pass: FIR filter, filter 282 

order: 500, window type: Hann), (iii) downsampled to 250 Hz, (iv) epoched according to 283 

the onset of acoustic stimuli (related to each part of the story), adjusting to measured +5 284 

ms onset delay in time and discarding the first 5 s of target-speech alone and 5 s of fade-285 

in for the babble noise, (v) band-pass filtered between 2 and 8 Hz (filter type and 286 

parameters the same as described above), (vi) downsampled to 64 Hz, (vii) EEG data 287 

corresponding to each of the three ~ 5 min parts of the story were concatenated, (viii) and 288 

segmented into 1 min long trials, resulting in 12 trials per block per subject (N = 12). The 289 

preprocessed EEG data for each trial were z-scored to optimize cross-validation 290 

procedure during encoding (Crosse et al., 2016). 291 
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 292 

Extraction of Acoustic Envelope 293 

First, audio files containing relevant parts of the target stories were concatenated and 294 

segmented into corresponding 1 min long trials, resulting in 12 trials per speech envelope 295 

per subject (N = 12) (Figure 1B). Next, the acoustic envelope per each trial was obtained 296 

taking the absolute value of the Hilbert transform of the original target stories (i.e., without 297 

babble noise) followed by a low-pass filtering using a 3rd-order Butterworth filter with a 298 

cut-off frequency of 8 Hz (filtfilt function in MATLAB) and downsampling the resulting 299 

signal to 64 Hz, so to be matched with the EEG data (e.g., Mirkovic et al., 2015; J. A. 300 

O'Sullivan et al., 2015). Finally, the resultant extracted envelopes were normalized by 301 

dividing by maximum value.  302 

 303 

Estimation of TRF 304 

We modeled where and how the neural response to the speech envelope of the target 305 

stories is encoded in the brain, using a linear prediction approach known as temporal 306 

response function (TRF) (Figure 1D). The TRF approach, incorporated in mTRF toolbox 307 

(Crosse et al., 2016), allows to predict previously unseen EEG response from the stimulus 308 

and has been used to model the neural tracking of acoustic and linguistic properties of 309 

naturalistic continuous speech (Drennan & Lalor, 2019; Obleser & Kayser, 2019). 310 

The TRF is a mathematical function that is based on the ridge regression and could be 311 

described as follows: 312 

𝑟(𝑡, 𝑛) =∑𝑤(𝜏, 𝑛)𝑠

𝜏

(𝑡 − 𝜏) + 𝜀(𝑡, 𝑛), 313 

where 𝑡 = 0, 1, … T is time, 𝑟(𝑡, 𝑛) is the EEG response from an individual channel, 𝑠(𝑡) 314 

is the stimulus feature(s) (e.g., speech envelope), 𝜏 is the range of time-lags between 𝑠 315 

and 𝑟,  𝑤(𝜏, 𝑛) are the regression weights over time-lags, and 𝜀(𝑡) is a residual response 316 

at each channel not explained by the TRF model (Crosse et al., 2016). Specifically, TRF 317 

can be viewed as a filter that describes the linear relationship between a continuous 318 

speech stimulus and a continuous neural response for a specified range of time-lags 319 

related to stimulus occurrence (Crosse et al., 2016).  320 

The important assumptions about the TRF include the fact that it reflects the same neural 321 

generators as cortical auditory evoked potentials (CAEPs) resulting in their comparable 322 

topographies and that it can be used to measure neural tracking of speech envelope (Lalor 323 

& Foxe, 2010; Lalor, Power, Reilly, & Foxe, 2009). We fitted separate models (TRFs) to 324 

predict response in each EEG channel, using time-lags from -100 to 600 ms related to 325 

stimulus onset, typically used to capture CAEP components. Here we estimated the TRF 326 
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using the envelope estimated between 2 and 8 Hz as previously performed (Legendre et 327 

al., 2019; Mirkovic et al., 2015; J. A. O'Sullivan et al., 2015). 328 

The TRF models were trained using a leave-one-out cross-validation procedure, keeping 329 

all but one trial for training the model to predict EEG response from the stimuli and using 330 

a left-out trial for testing. Thus, a prediction model was obtained for every single trial, and 331 

then the final averaging across trials, within participants and conditions was performed, 332 

resulting in a grand average TRF model. 333 

 334 

Regularization Parameter Estimation 335 

Regression models are exposed to overfitting the training data, that is, fitting the random 336 

noise rather than true relationships between variables and failing to generalize to unseen 337 

data. The problem of overfitting needs to be accounted for before making any 338 

interpretations from the resulting model since it could be misleading. Ridge regularization 339 

prevents the model from overfitting by penalizing the model weights, forcing them to be 340 

smaller, towards 0, so the model could become better generalized. 341 

To control for model overfitting, we empirically identified the optimal regularization 342 

parameter (λ) of TRF models through leave-one-out cross-validation procedure, using a 343 

grid of ridge values (λ = {10^−6, 10^−5,…, 1, 10, …, 10^5, 10^6}), for time-lags from -100 344 

to 600 ms. The regularization parameter λ was determined based on the mean squared 345 

error (MSE) value between the actual and predicted EEG responses. The optimal 346 

regularization parameter was the one yielding the lowest MSE on the testing data (here, 347 

identified as λ=10^3) and kept constant across channels, participants, and conditions 348 

allowing to generalize across them at the group level. 349 

 350 

Spatiotemporal Characteristics 351 

Forward model weights are directly physiologically interpretable (Haufe et al., 2014) and 352 

allow us to get an insight about which channels contribute most to neural tracking of the 353 

speech envelope. The resulting topographical plots with TRF weights obtained per each 354 

individual time-lag window can be interpreted similarly to CAEPs in terms of both 355 

amplitude and direction (Lalor, Pearlmutter, Reilly, McDarby, & Foxe, 2006; Lalor et al., 356 

2009). We investigated spatiotemporal characteristics of forward model weights by fitting 357 

the TRFs at different individual time-lags between the EEG response and the speech 358 

envelopes, using a sliding time-lag window of 45 with 30 ms overlap in a time-lag range 359 

from −115 to 620 ms. Finally, the estimate of forward model weights allowed us to directly 360 

transfer the data into source space avoiding further transformations (Haufe et al., 2014). 361 

 362 

Chance-level Estimation by Permutation Testing (Control) 363 
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To assess the ability of TRF models to predict neural responses (i.e., neural tracking) and 364 

verify that neural tracking was well above chance, we computed "null distributed" TRF 365 

model (Combrisson & Jerbi, 2015). We used a permutation-based approach with 366 

mTRFpermute function, incorporated in mTRF-toolbox (Crosse et al., 2016, 2021). 367 

Specifically, this approach cross-validates models, iteratively (1000 iterations) fitting TRFs 368 

on randomly mismatched pairings of speech envelopes/EEG responses and evaluating 369 

the models on matched data. This procedure was done separately for each trial, 370 

participant, and condition, and then grand averaged to get the average "null" TRF model, 371 

which served as a baseline ("control"). 372 

 373 

Source Estimation 374 

Forward modeling allowed us to investigate the TRFs and better understand how the 375 

information about the envelope of continuous stimuli is encoded in the brain. Specifically, 376 

we tested how low-level (SNR) acoustic and high-level linguistic (Semantic) effects are 377 

distributed at sensor and source levels. Furthermore, we investigated whether and how 378 

the visual cortex is activated for neural tracking of the speech envelope in blindfolded 379 

individuals when competing retinal input is absent. 380 

We performed source localization in Brainstorm software (Tadel, Baillet, Mosher, 381 

Pantazis, & Leahy, 2011) together with custom MATLAB scripts and the pipeline for EEG 382 

source estimation introduced by Stropahl and colleagues (2018; see also Bottari et al., 383 

2020) that we adapted to the TRF data. Specifically, source localization was performed 384 

using dynamical Statistical Parametric Mapping (dSPM, Dale et al., 2000). A Boundary 385 

Element Model (BEM) was computed for each participant using default parameters to 386 

calculate the forward solution and constrain source locations to the cortical surface. We 387 

used a standard electrode layout together with a standard anatomy template (ICBM152) 388 

for all participants. The model resulted in a single dipole oriented perpendicularly to the 389 

cortical surface for each vertex since dipole orientations were constrained to the cortical 390 

surface. We did not perform individual noise modeling since TRF has no clear nor true 391 

baseline period. Instead, we used an identity matrix as a noise covariance matrix, with the 392 

assumption of equal unit variance of noise on every sensor.  393 

We created visual regions of interest (ROIs) based on predefined scouts from the 394 

Destrieux atlas (Destrieux, Fischl, Dale, & Halgren, 2010) implemented in FreeSurfer 395 

(Fischl, 2012) and available in Brainstorm. Visual ROIs were selected for the left and right 396 

hemispheres and included primary (V1; Calcarine sulcus) and secondary (V2, Lingual 397 

gyrus) visual cortex, defined as the 'S_calcarine' and the 'G_oc-tem_med-Lingual' scouts 398 

in the atlas, correspondingly. These visual ROIs were selected based on recently reported 399 

evidence of their involvement in speech processing not only in blind but also sighted 400 
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individuals, albeit to a lower extent (Martinelli et al., 2020; Petro et al., 2017; Seydell-401 

Greenwald et al., 2021; Van Ackeren, Barbero, Mattioni, Bottini, & Collignon, 2018; Vetter 402 

et al., 2020, 2014). Upon the ROIs creation, their time-series were extracted and 403 

submitted to the analysis.  404 

 405 

Statistical Analysis 406 

Participants' behavioral responses concerning comprehension of the story were computed 407 

as the average correct responses (in %) across all three parts of the story, resulting in 408 

nine scores per participant for each condition. Intelligibility rates from each participant 409 

were computed similarly, by averaging across all three parts of the story. Statistical 410 

analysis of behavioral responses to assess low-level acoustic (SNR) effect was conducted 411 

using one-way repeated measure ANOVA. Post-hoc comparisons were made with two-412 

tailed paired t-tests. Statistical analysis of behavioral responses to assess high-level 413 

linguistic (semantic) effect was performed using two-tailed paired t-tests.  414 

As a sanity check, we first performed comparisons between the TRFs of each condition 415 

with the "null" TRF through paired t-tests, with the significance threshold set at p < 0.05 416 

(one-tailed) and corrected for multiple comparisons with the false-discovery rate (FDR) at 417 

0.05 (Benjamini & Hochberg, 1995), at two electrodes selected a priori on the midline 418 

frontocentral (Fz) and the occipital (Oz) scalp locations, over a range of post-stimulus 419 

time-lags between 0 and 600 ms  420 

To access differences in the spatiotemporal profile of averaged TRFs between conditions, 421 

we performed non-parametric cluster-based permutation tests (Maris & Oostenveld, 2007) 422 

in FieldTrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011). A cluster was defined 423 

along electrodes x time-lags dimensions, with extension criteria set to at least two 424 

neighboring electrodes. The t-statistic for adjusted electrode x time-lag pairs exceeding a 425 

preset critical threshold of 5% (cluster alpha = 0.05) was summed, and the adjusted pairs 426 

formed the clusters. Then, two-tailed tests were performed at the whole brain level (across 427 

all electrodes and time-lags from 0 to 600 ms), using the Monte-Carlo method with 1000 428 

permutations. The maximum of the summed t-statistic in the observed data was compared 429 

with a random partition formed by permuting the experimental condition labels, resulting 430 

in a critical p-value for each cluster. In case the cluster-based p-value was less than 0.025 431 

(corresponding to a critical alpha level of 0.05 for two-tailed testing, accounting for both 432 

positive and negative clusters), we rejected our null hypothesis that there were no 433 

differences between TRFs for two conditions. 434 

Finally, cluster-based statistics on sources at the whole-brain level were performed in 435 

Brainstorm, across all electrodes and time-lags from 0 to 600 ms, using Monte-Carlo 436 

method with 1000 permutations, alpha = 0.05, two-tailed (meaning alpha = 0.025 per each 437 
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tail), cluster alpha = 0.05, and neighboring criteria for electrodes set for 2. Analysis of 438 

visual ROIs time-series between conditions was performed using paired t-tests, with the 439 

significance threshold set at p < 0.05 (one-tailed) and correcting for multiple comparisons 440 

with the FDR-method at 0.05. 441 

 442 

 443 

Results 444 

Behavioral responses 445 

To ensure that the participants successfully understood the content of the target stories, 446 

they were asked to answer three Yes/No questions at the end of each segment (5 447 

minutes). Moreover, participants were asked to self-rate the intelligibility of each part of 448 

the target story from 1 (absolutely non-intelligible) to 7 (very intelligible). 449 

 450 

Low-level acoustic (SNR) effect 451 

As expected, both comprehension scores and intelligibility rates gradually decreased with 452 

SNR (Figure 1C). Comprehension scores, converted to percentage of correct responses, 453 

decreased as a function of noise (Speech-in-Quiet mean ± SE: 82.22 ± 3.72%; Speech-454 

in-Noise at SNR1 mean ± SE: 61.48 ± 4.58%; Speech-in-Noise at SNR2 mean ± SE: 455 

53.33 ± 4.09%). A repeated measures ANOVA with a correction confirmed that listening 456 

condition significantly affected participants' comprehension (F(2, 28) = 16.14, p = 0.00002, 457 

Huynh-Feldt corrected). Post-hoc comparisons showed that correct responses for 458 

Speech-in-Quiet were significantly higher than for Speech-in-Noise at SNR1 (t(14) = 4.40, 459 

p = 0.0006) and Speech-in-Noise at SNR2 (t(14) = 5.46, p = 0.0001), but no significant 460 

difference emerged between Speech-in-Noise at SNR1 and Speech-in-Noise at SNR2 461 

(t(14) = 1.43, p = 0.17). 462 

Intelligibility rates were in line with comprehension scores, dramatically dropping from 463 

Speech-in-Quiet (rated 7 by all participants, and thus reaching a ceiling which prevented 464 

comparisons with other conditions; see Liu & Wang, 2021; Šimkovic & Träuble, 2019) to 465 

Speech-in-Noise at SNR1 (mean ± SE: 3.53 ± 0.22) and further significantly dropping at 466 

Speech-in-Noise at SNR2 (mean ± SE: 2.40 ± 0.19; Speech-in-Noise at SNR1 vs. 467 

Speech-in-Noise at SNR2: t(14) = 5.90, p < 0.0001).  468 

 469 

High-level linguistic (Semantic) effect 470 

We found no difference in correct responses and intelligibility rates between Speech-in-471 

Noise at SNR1 and Jabberwocky-in-Noise at SNR1 (all p-values > 0.05; correct 472 

responses, mean ± SE: Speech-in-Noise at SNR1: 61.48 ± 4.58%; Jabberwocky-in-Noise 473 
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at SNR1: 62.22 ± 3.03%; intelligibility rates, mean ± SE: Speech-in-Noise at SNR1: 3.53 474 

± 0.22; Jabberwocky-in-Noise at SNR1: 3.84 ± 0.32. Results indicated that participants 475 

were able to equally attend target stories embedded in noise (SNR1), regardless of 476 

semantic information.  477 

 478 

Neural tracking  479 

Low-level acoustic (SNR) effect at the sensor level 480 

First, we examined the temporal profile of SNR effect at preselected representative 481 

electrodes: frontal (Fz) and occipital (Oz; Figure 2A). The TRFs for Speech-in-Quiet and 482 

Speech-in-Noise at SNR2 were significantly different from the "null" TRF (p < 0.05, one-483 

tailed, FDR-corrected), suggesting that TRFs indeed reflected neural tracking of the 484 

speech envelope (Supplementary Figure S1).  485 

To access the effect of SNR on neural tracking of the speech envelope, we compared the 486 

TRFs of Speech-in-Quiet and Speech-in-Noise at SNR2 (the most challenging) conditions 487 

(Figure 2). The Cluster-based permutation test revealed significant differences between 488 

the TRFs for the two conditions (p < 0.025; cluster-corrected). A positive (p = 0.002, 489 

corrected) and a negative (p = 0.002, corrected) clusters were identified at time-lags 490 

interval 150 – 250 ms. Other pair of positive (p = 0.001, corrected) and negative clusters 491 

(p = 0.002, corrected) were also found at time-lags interval 290 – 410 ms (Figure 2C). 492 

Both effects extended over fronto-central and parieto-occipital electrodes. Results showed 493 

that TRF to Speech-in-Noise at SNR2 was delayed and increased in magnitude compared 494 

to Speech-in-Quite condition (Figure 2A, B and C).  495 

 496 

Low-level acoustic (SNR) effect at the source level  497 

The cluster-based permutation test, performed at the whole brain level, contrasting TRFs 498 

for Speech-in-Quiet vs. Speech-in-Noise at SNR2, revealed that SNR effect was localized 499 

in both hemispheres (Figure 2D): a significant cluster was found in the left hemisphere (p 500 

= 0.008, corrected), lasting from ~ 0 to ~ 484 ms, and another one in the right hemisphere 501 

(p = 0.028, corrected), lasting from ~ 141 to ~ 312 ms (see Supplementary Figure S2). 502 

The effect was observed mostly over bilateral temporal cortex, and also included parts of 503 

the bilateral parietal cortex, insular cortex, visual cortex, and left prefrontal cortex.  504 
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 505 

Figure 2: Low-level acoustic (SNR) effect. (A) Grand averaged temporal response 506 

functions (TRFs) for Speech-in-Quiet (Quiet, blue), Speech-in-Noise at SNR2 (SNR2, 507 

yellow), and "null" TRF (Control, black). TRFs displayed over time-lags at frontal Fz and 508 

occipital Oz electrodes, marked with red on the electrode layout. Shaded areas represent 509 

the standard error of the mean (SE) across participants. Grey horizontal bars above the 510 

x-axis indicate time-lags at which TRFs for Speech-in-Quiet and Speech-in-Noise at SNR2 511 

differed significantly at these representative electrodes (series of paired two-tailed t-tests, 512 

p < 0.05, FDR-corrected). Grey dotted vertical lines indicate time-lags with the maximal 513 

difference between TRFs for Speech-in-Quiet and Speech-in-Noise at SNR2. (B) 514 

Topographic representations of TRFs, displayed at time-lags marked by grey dotted 515 

vertical lines on A. (C) The results of the cluster-based permutation test contrasting TRFs 516 

for Speech-in-Quiet vs. Speech-in-Noise at SNR2, displayed around time-lags marked by 517 

grey dotted vertical lines on A. Significant (p < 0.05, corrected for two tails, p < 0.025 for 518 

each tail) positive and negative clusters comprised the electrodes marked in black and in 519 

red asterisks, respectively. (D) Differences at the source level, contrasting TRFs for 520 

Speech-in-Quiet vs. Speech-in-Noise at SNR2 at the whole-brain level (p < 0.05, 521 

corrected for two tails). Lateral and medial views of the left (LH) and right (RH) 522 

hemispheres, displayed at the time-lag corresponding to the peak in the temporal profile 523 

(i.e., 250 ms). Bright yellow (positive t-values) indicates greater activation for Quiet over 524 

SNR2. Black contours indicate the ROIs borders (V1 and V2) in both hemispheres based 525 
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on the Destrieux cortical atlas. (E) Activations obtained at the source space in visual ROIs. 526 

Boxplots display source activation for each condition, averaged over the ROIs (V1 + V2) 527 

and across the 0 to 600 ms time window, in the left (LH) and right (RH) hemispheres, 528 

respectively. The line through the boxplot indicates the median, × marker indicates the 529 

mean, lines indicate pairwise statistical comparisons (*p < 0.05, one-tailed).  530 

 531 

Visual cortex ROIs 532 

To test whether and how the visual cortex is taking part in neural tracking of speech and 533 

speech comprehension in blindfolded individuals, we performed source analysis on TRFs, 534 

using predefined ROIs in the visual cortex comprising V1 and V2. 535 

The contrast Speech-in-Quiet vs. Speech-in-Noise at SNR2 survived cluster-correction 536 

for multiple-comparisons in the left (p = 0.008, corrected) and right hemispheres (p = 537 

0.028, corrected; Supplementary Figure S3). Extracted time-series from V1 and V2 538 

showed a similar pattern, with the magnitude of source activation for TRF in Speech-in-539 

Quiet being larger than for TRF in Speech-in-Noise at SNR2 at multiple time points (see 540 

Supplementary Figure S3 reporting uncorrected results). Averaged activation across time 541 

points in combined ROIs (V1 + V2) was significantly larger for TRF in Speech-in-Quiet 542 

than for TRF in Speech-in-Noise at SNR2 in the right hemisphere (p = 0.04, one-tailed), 543 

but not in the left hemisphere (p = 0.08, one-tailed) (Figure 2E). These results suggest the 544 

dampening of visual cortex activity in case of challenging auditory inputs. 545 

 546 

High-level linguistic (Semantic) effect at the sensor level  547 

At the two electrodes of interest (The TRFs for Speech-in-Noise at SNR1 and 548 

Jabberwocky-in-Noise at SNR1 significantly differed from the "null" TRF (p < 0.05, one-549 

tailed, FDR-corrected), suggesting that the estimated TRFs indeed reflected neural 550 

tracking of the speech envelope (Supplementary Figure S1).  551 

To access the effect of semantic information on neural tracking, we compared the TRFs 552 

of Speech-in-Noise at SNR1 and Jabberwocky-in-Noise at SNR1 conditions (Figure 3).  553 

Cluster-based permutation test on TRFs revealed statistically significant differences 554 

between two conditions (p < 0.025; corrected). Three pairs of positive and negative 555 

clusters were identified at time-lags intervals of 70 – 165 ms (positive: p = 0.001, 556 

corrected; negative: p = 0.01, corrected), 200 – 290 ms (positive: p = 0.001, corrected; 557 

negative: p = 0.001, corrected), and 310 – 430 ms (positive: p = 0.003, corrected; 558 

negative: p = 0.01, corrected), comprising fronto-central electrodes and parieto-occipital 559 

electrodes (Figure 3C). Results revealed that the TRFs of Speech-in-Noise at SNR1 was 560 

higher and delayed compared to the TRF of Jabberwocky-in-Noise at SNR1 (see Figure 561 

3A, B and C). 562 
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 563 

Figure 3: High-level (Semantic) effect. (A) Grand averaged temporal response functions 564 

(TRFs) for Speech-in-Noise at SNR1 (Speech, red), for Jabberwocky-in-Noise at SNR1 565 

(Jabberwocky, purple), and "null" TRF (Control, black). TRFs displayed over time-lags at 566 

frontal Fz and occipital Oz electrodes, marked with red on the electrode layout. Shaded 567 

areas represent the standard error of the mean (SE) across participants. Grey horizontal 568 

bars above the x-axis indicate time-lags at which TRFs for Speech-in-Noise at SNR1 and 569 

Jabberwocky-in-Noise at SNR1 differed significantly (running paired two-tailed t-tests, p < 570 

0.05, FDR-corrected). Grey dotted vertical lines indicate time-lags with the maximal 571 

difference between TRFs for Speech-in-Noise at SNR1 and Jabberwocky-in-Noise at 572 

SNR1. (B) Topographic representations of TRFs, displayed at time-lags marked by grey 573 

dotted vertical lines on A. (C) The results of the cluster-based permutation test contrasting 574 

TRFs for Speech-in-Noise at SNR1 and Jabberwocky-in-Noise at SNR1, displayed 575 

around time-lags marked by grey dotted vertical lines on A. Significant (p < 0.05, cluster-576 

corrected for two tails, meaning p < 0.025 each tail) positive and negative clusters 577 

comprised the electrodes marked in black and in red asterisks, respectively. (D) 578 

Differences at the source level, contrasting TRFs for Speech-in-Noise at SNR1 and 579 

Jabberwocky-in-Noise at SNR1 at the whole brain level (p < 0.05, cluster-corrected for 580 

two tails). Lateral and medial views of the left (LH) and right (RH) hemispheres, displayed 581 

at the time-lag corresponding to the peaks in the temporal profile. Bright yellow (positive 582 

t-values)/dark red (negative t-values) colors indicate greater activation for 583 

Speech/Jabberwocky, respectively. Black contours indicate the ROIs borders (union of 584 

V1 and V2) in both hemispheres based on the Destrieux cortical atlas. (E) Activations 585 

obtained at the source space in visual ROIs. Boxplots display source activation for each 586 
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condition, averaged over the ROIs (V1 + V2) and across the 0 to 600 ms time window in 587 

the left (LH) and right (RH) hemispheres, respectively. The line through the boxplot 588 

indicates the median, × marker indicates the mean.  589 

 590 

High-level linguistic (Semantic) effect at the source level  591 

Cluster-based permutation test, contrasting TRFs for Speech-in-Noise at SNR1 and 592 

Jabberwocky-in-Noise at SNR1 at the whole-brain level, revealed two clusters in both 593 

hemispheres: one in the left hemisphere (p = 0.002, corrected), extending over all time 594 

points, and one in the right hemisphere (p = 0.006, corrected), lasting from ~0 to ~531 ms 595 

(Supplementary Figure S2), with maximum activation ~ 330 ms (Figure 3D). The effect 596 

extended primarily over the left auditory cortex and a large portion of the bilateral fronto-597 

parietal network at earlier time points and extended to the anterior temporal lobe (ATL) at 598 

later time points (Supplementary Figure S2). 599 

 600 

Visual cortex ROIs 601 

In the visual ROI the Semantic effect did not survive cluster-correction for multiple-602 

comparisons (p > 0.05, corrected for two tails), and extracted time-series from ROIs did 603 

not differ between source TRFs for Speech-in-Noise at SNR1 and Jabberwocky-in-Noise 604 

at SNR1 (p > 0.05) (Supplementary Figure S3 and Figure 2E). 605 

 606 

 607 

Discussion 608 

We used a hierarchical model to investigate entrainment to continuous speech envelope 609 

in blindfolded individuals, assessing (1) the effects of low-level acoustic and high-level 610 

linguistic information on neural tracking and (2) testing how these effects are distributed 611 

at the source level, with the focus on the visual cortex. To address the role of low-level 612 

acoustic, we compared the entrainment to target stories presented in quiet or multi-talker 613 

babble noise. Results revealed that TRF was delayed and higher in magnitude at latencies 614 

between 100 and 300 ms when SNR decreased. This finding suggests that neural tracking 615 

requires greater resources in case of concurrent masking noise. Next, we also addressed 616 

the role of high (semantic) level of speech processing on neural entrainment by comparing 617 

TRFs to meaningful and meaningless stories. Results indicated delayed and higher TRFs 618 

when semantic information is present. Source modeling suggested that entrainment to 619 

continuous speech in noise engaged a spread activation beyond the auditory cortex, 620 

including linguistic and attentional networks. Finally, in the absence of retinal input, we 621 

found evidence that the visual cortex entrained to the speech envelope. However, the 622 

magnitude of such entrainment was degraded with concurrent background noise, 623 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2022.06.28.497713doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.28.497713
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

suggesting a suppressing mechanism helping to focus auditory attention in challenging 624 

listening conditions.  625 

 626 

Effects of low-level acoustic (SNR) processing on neural tracking of speech 627 

envelope  628 

We demonstrated that speech envelope tracking in noise, compared to quiet, was 629 

characterized by larger amplitude and delayed latency of the TRF responses and by the 630 

reversed polarity of the TRFs topography distributions over fronto-central parieto-occipital 631 

electrodes (Figure 2A, B). 632 

The TRF time-courses were consistent with previous studies reporting amplitudes and 633 

latencies being affected by concurrent noise (Brodbeck, Jiao, Hong, & Simon, 2020; Ding 634 

& Simon, 2013; Fiedler, Wöstmann, Herbst, & Obleser, 2019; Gustafson, Billings, 635 

Hornsby, & Key, 2019; Zendel, West, Belleville, & Peretz, 2019) as well as enhanced N1 636 

and N2 amplitudes in noise compared to quiet (Papesh, Billings, & Baltzell, 2015). 637 

Increased frontal negativity around 100 ms (N1) is associated with attention-dependent 638 

processes in response to auditory changes (Hansen & Hillyard, 1980; Näätänen, 1982). 639 

The enhanced envelope tracking observed here for the N1-like response to speech in 640 

noise compared to quiet may reflect the use of more resources for the encoding of acoustic 641 

variations at earlier stages of speech processing when intelligibility gets degraded by 642 

noise (Alain, Quan, McDonald, & Van Roon, 2009; Näätänen & Picton, 1987; Parbery-643 

Clark, Marmel, Bair, & Kraus, 2011).  644 

Additional differences were observed around the second negative peak, corresponding to 645 

the N2 component. The TRF peak around this component was smaller and delayed for 646 

speech in noise compared to speech in quiet. Delayed N2 response is associated with 647 

attentive speech processing in challenging acoustic conditions (Balkenhol, Wallhäusser-648 

Franke, Rotter, & Servais, 2020; Billings, Tremblay, Stecker, & Tolin, 2009; Finke, 649 

Büchner, Ruigendijk, Meyer, & Sandmann, 2016). Again, differences in this time range 650 

(between 100 and 300 ms after stimulus onset) possibly reflect changes in the degree of 651 

attention required to encode incoming stimuli effectively. Particularly, delayed TRF peak 652 

response may reflect participants' effort in keeping track of meaningful information over 653 

time in the degraded signal. Compensatory mechanisms may be involved in segregating 654 

speech from noise. Previous evidence reported stronger envelope tracking of attended 655 

speech with increased background noise in hearing-impaired and elderly individuals 656 

compared to hearing younger adults (Brodbeck, Presacco, Anderson, & Simon, 2018; 657 

Decruy, Vanthornhout, & Francart, 2020; Presacco, Simon, & Anderson, 2016). Both 658 

internal (hearing loss) and external (background noise) factors can produce acoustic 659 
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distortion, which may result in increased listening effort (Van Engen & Peelle, 2014) and 660 

enhanced envelope tracking.  661 

There is a debate whether envelope tracking is enhanced (Ding et al., 2014; Ding & Simon, 662 

2013; Fuglsang, Dau, & Hjortkjær, 2017; Presacco et al., 2016) or reduced (Desai et al., 663 

2021; Ding & Simon, 2013; Kurthen et al., 2021; Vanthornhout, Decruy, Wouters, Simon, 664 

& Francart, 2018; L. Wang, Wu, & Chen, 2020) with decreasing SNR. Our behavioral 665 

results showed that comprehension scores and intelligibility rates were directly 666 

proportional to SNR levels. Our results on TRFs also add to the findings that envelope 667 

tracking increases with noise and when listening becomes more challenging.  668 

 669 

Effects of high-level linguistic (Semantic) processing on neural tracking of speech 670 

envelope  671 

Topographical distributions of the TRFs suggest the involvement of distinct neural 672 

generators when semantic content is present or absent (Figure 3B). Moreover, the 673 

temporal dynamics of TRFs for meaningful story was characterized by a more prominent 674 

P1 peak and generally delayed P1-N1-P2-N2 complex, as compared to meaningless story 675 

(Figure 3A).  676 

At a relatively early processing stage (around 100 ms), we observed stronger neural 677 

tracking of the speech envelope for meaningful story than for meaningless story over 678 

fronto-central electrodes (Figure 3A, B). This finding could seem surprising since auditory 679 

P1 is often associated with pre-attentive processes such as onset detection and sensory 680 

gating (Huotilainen et al., 1998; Miller, Graham, & Schafer, 2021; Thoma et al., 2003; 681 

Waldo et al., 1992). Predictive models of speech processing provide a plausible 682 

explanation for this result. Semantic content generates expectations about upcoming 683 

stimuli and limits the degree of uncertainty about what was heard (Poeppel, Idsardi, & van 684 

Wassenhove, 2008), affecting early auditory encoding (Broderick, Anderson, & Lalor, 685 

2019) and neural tracking of the speech envelope (Di Liberto et al., 2018; Kaufeld et al., 686 

2020). Meaningful information may provide regularities in meaningful story, making it more 687 

predictable than meaningless story.  688 

Moreover, it is possible that envelope tracking of meaningless story may not be affected 689 

by the background noise as much as meaningful story due to the difference in the degree 690 

of informational masking. It is possible that meaningless story could "pop-out" from the 691 

background multi-talker babble noise due to lower informational masking compared to 692 

meaningful story. Under the linguistic similarity hypothesis (Van Engen & Bradlow, 2007), 693 

informational masking is more efficient when background babble noise has more linguistic 694 

similarity with the target speech stream (e.g., same spoken language, known accent) 695 

compared to a different or unknown language, accent and semantically anomalous 696 
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speech (Brouwer, Van Engen, Calandruccio, & Bradlow, 2012; Brungart, 2001; 697 

Calandruccio, Van Engen, Dhar, & Bradlow, 2010; Cooke, Garcia Lecumberri, & Barker, 698 

2008; Garcia Lecumberri & Cooke, 2006; Van Engen, 2010; Van Engen & Bradlow, 2007). 699 

Therefore, it could have been easier for participants to segregate from the background 700 

noise meaningless story than meaningful story. 701 

 702 

Two distributed networks are engaged in envelope tracking of continuous speech 703 

Source analysis of TRFs highlighted temporal and fronto-parietal regions traditionally 704 

involved in speech and language comprehension (Hertrich, Dietrich, & Ackermann, 2020). 705 

Key regions for low-level acoustic effect tested here involved the bilateral temporal cortex, 706 

parts of the parietal, insular, and visual cortices bilaterally, and the left prefrontal cortex 707 

(Figure 2D). Naturalistic speech stimuli are complex and resemble everyday listening 708 

conditions, thus leading to extended activations and involvement of higher-order cortical 709 

regions (Alexandrou, Saarinen, Kujala, & Salmelin, 2020; Hamilton & Huth, 2020). For 710 

example, narrative speech involves widely distributed bilateral neural activity that tracks 711 

hierarchically organized speech representations at multiple cortical sites and temporal 712 

windows (de Heer, Huth, Griffiths, Gallant, & Theunissen, 2017; Di Liberto et al., 2015; 713 

Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016; Lerner, Honey, Silbert, & Hasson, 714 

2011; Poeppel, 2003; Puschmann, Regev, Baillet, & Zatorre, 2021). Neuroimaging studies 715 

reported distributed cortical activations beyond the auditory cortex (comprising higher-716 

order associative brain structures and attentional networks) during effortful listening (see 717 

Alain, Du, Bernstein, Barten, & Banai, 2018 for a meta-analysis).  718 

Higher-level linguistic processing was assessed by contrasting meaningful and 719 

meaningless stories (Speech vs. Jabberwocky) and resulted in higher activation for 720 

meaningful story, mainly involving the left auditory cortex, a large portion of bilateral fronto-721 

parietal network, and the left anterior temporal lobe later in time (Figure 3D). Overall 722 

source modeling results of TRFs indicate that low-level acoustic effects mainly involved a 723 

bilateral temporo-parietal network, while higher-level linguistic effects primarily involved a 724 

left dominant fronto-temporal network. These results support the notion that successful 725 

speech comprehension requires multiple extended networks beyond the temporal lobe to 726 

process the acoustic signal at multiple and parallel hierarchical levels (Davis & Johnsrude, 727 

2003, 2007; de Heer et al., 2017; Hickok & Poeppel, 2007; Peelle, 2012; Peelle, 728 

Johnsrude, & Davis, 2010) 729 

 730 

Early visual cortex's entrainment to speech envelope in blindfolded individuals is 731 

reduced by background noise  732 
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We performed source analysis on the TRFs from preselected visual ROIs (V1 and V2) to 733 

assess whether the visual cortex contributes to neural envelope tracking in blindfolded 734 

individuals. While source estimates of EEG activity should be taken with caution, results 735 

suggested early visual cortex's involvement in envelope tracking, especially for low-level 736 

acoustic speech processing (Figure 3D, E). 737 

A recent fMRI study showed that the visual cortex of blindfolded individuals displayed 738 

some degree of synchrony to audio tracks from movies and narratives, suggesting that 739 

auditory information can reach the visual cortices (Loiotile, Cusack, & Bedny, 2019). 740 

Overall, numerous fMRI findings supported the notion that the visual cortex is functionally 741 

engaged in processing non-visual stimuli in sighted individuals (Facchini & Aglioti, 2003; 742 

Merabet et al., 2008; Poirier et al., 2006; Qin & Yu, 2013; Ricciardi et al., 2011; Sathian, 743 

2005; Seydell-Greenwald et al., 2021; Vetter et al., 2014; Zangaladze, Epstein, Grafton, 744 

& Sathian, 1999). 745 

Interestingly, we observed a decrease in total signal magnitude for speech in noise 746 

compared to speech in quiet. This difference emerged in particular for the right visual 747 

cortex (although a trend also existed in the left hemisphere; Figure 2E). Hemispheric 748 

asymmetry is not surprising, as previous evidence already showed the right hemisphere 749 

dominance for several aspects of natural speech processing, especially for tracking of 750 

slow temporal modulations within the delta-theta range (Alexandrou, Saarinen, Mäkelä, 751 

Kujala, & Salmelin, 2017; Poeppel, 2003). More importantly, this finding aligns with the 752 

evidence that the early visual cortex is sensitive to acoustic SNR effects (Bishop & Miller, 753 

2009). 754 

These results seem to suggest that the activity of the visual cortex could be modulated 755 

during continuous speech tracking. However, its activity gets suppressed if the attentional 756 

network becomes more engaged in tracking relevant auditory information in a challenging 757 

listening environment. Human neuroimaging studies reported cross-modal deactivation of 758 

the visual cortex by auditory stimuli during active listening or passive stimulation (with the 759 

instructions to concentrate on the stimuli) and suggested that such suppression can be 760 

top-down modulated by attention as task demands increase (e.g., Hairston et al., 2008; 761 

Johnson & Zatorre, 2006; Laurienti et al., 2002). Several other studies found suppression 762 

effects of sound on visual perception. Such cross-modal suppression has been suggested 763 

to reduce the magnitude of the percept of a weaker or less relevant modality input 764 

considered as a perceptual noise (Hidaka & Ide, 2015).  765 

Overall, our results align with recent evidence reporting that the visual cortex can 766 

contribute to auditory information processing in sighted individuals (Brang et al., 2022; 767 

Martinelli et al., 2020; Seydell-Greenwald et al., 2021; Vetter et al., 2014). Here, we 768 

observed that the visual cortex is more engaged in processing when speech signal is 769 
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intelligible and clear (i.e., presented in quiet). Differences in mapping speech envelope in 770 

the visual cortex for low-level acoustic representations exist and might reflect cross-modal 771 

visual cortex suppression. Such suppression could be top-down modulated and attributed 772 

to auditory attention (Cate et al., 2009), which plays an essential role in segregating 773 

relevant speech information in challenging listening conditions and when congruent visual 774 

input is unavailable. 775 

It could be argued that mental imagery mechanisms may drive the visual cortex's 776 

response to speech. Previous studies observed an overlap in neural representations in 777 

the occipital areas between perception and visual imagery, stemming from common top-778 

down influences (see Dijkstra, Bosch, & Gerven, 2019 for a review). However, V1 has 779 

been shown to encode auditory information regardless of imageability (Martinelli et al., 780 

2020; Seydell-Greenwald et al., 2021; Vetter et al., 2020, 2014). Thus, the role of the early 781 

visual cortex in auditory processing may not be merely ascribed to an imagery effect. If 782 

that was the case, when contrasting Speech-in-Noise and Jabberwocky-in-Noise, we 783 

could have observed higher visual cortex's responses in meaningful condition compared 784 

to meaningless one, since only the former contained visually imaginable information. 785 

However, no significant difference in the visual cortex's entrainment to speech envelope 786 

was found between these conditions.  787 

 788 

 789 

Limitations and future research perspectives 790 

It is important to acknowledge the challenges of EEG-based source modeling, as spatial 791 

resolution of EEG is generally known to be relatively poor, making it difficult to identify 792 

exact brain sources that generate the neuronal activity measured on the scalp. EEG-793 

based source modeling majorly suffers from an ill-posed inverse problem and can also 794 

result in misleading activity patterns due to, for instance, low SNR, unrealistic head 795 

models, invalid constraints, and so on. More accurate EEG source localization requires 796 

digitized electrode positions and individual anatomical scans of participants, which can 797 

diminish source estimation uncertainty (Shirazi and Huang, 2019; Michel and Brunet, 798 

2019; Zorzos et al., 2021) but were not available in our study. Therefore, EEG source 799 

estimates should be interpreted with caution. However, it is worth noting that we used a 800 

validated pipeline for source modeling estimation (Stropahl et al., 2018; Bottari et al., 801 

2020). Moreover, the same source modeling was performed across different conditions; 802 

thus, similar errors should be attributed to activations for each condition. While the exact 803 

location of the activity cannot be ensured with the present data, our results suggested that 804 

the activity of posterior cortices was modulated only by low-level and not high-level speech 805 

processing. 806 
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A further limitation pertains the input data we used for the encoding. We modeled neural 807 

tracking of the speech signal based on a single feature: the speech envelope comprising 808 

specific bandwidth frequencies (2-8 Hz). The envelope represents slow-variate temporal 809 

modulations of the speech signal. It contains multiple acoustic and linguistic cues 810 

important for continuous speech segmentation into smaller units, and therefore it has been 811 

hypothesized to be crucial for speech comprehension (Luo & Poeppel, 2007; Shannon, 812 

Zeng, Kamath, Wygonski, & Ekelid, 1995; Zoefel, 2018). However, it has also been argued 813 

that focusing on the envelope alone might not get the complete picture of the neural 814 

mechanism underlying speech comprehension (Obleser, Herrmann, & Henry, 2012). 815 

Recent studies reported that the inclusion of multiple speech features, such as 816 

spectrogram, phonemes, and phonetic features in the model sometimes result in a better 817 

model performance represented by a more robust neural tracking response (e.g., 818 

Brodbeck, Hong, & Simon, 2018; Di Liberto et al., 2015, 2018; Lesenfants, Vanthornhout, 819 

Verschueren, Decruy, & Francart, 2019). Future research may include multiple speech 820 

features to build a multivariate model to assess neural speech tracking in the brain and 821 

how the visual cortex maps speech information when visual input is absent. 822 

 823 

 824 

Conclusion  825 

Overall, our results indicate low-level acoustic and high-level linguistic processes affecting 826 

envelope tracking of continuous speech. Envelope tracking may play a role in supporting 827 

active listening in challenging conditions and is enhanced when SNR decreases, and 828 

when segregation of target speech from the background noise becomes more difficult (i.e., 829 

due to linguistic similarity). Tracking speech signal embedded in noise requires spread 830 

networks of activation, including linguistic and attentional regions beyond the auditory 831 

cortex. In the absence of retinal input, the visual cortex might entrain to the speech 832 

envelope, however, the functional role of such activity remains to be ascertained. The 833 

magnitude of entrainment is degraded by concurrent noise, suggesting a suppressing 834 

mechanism aimed at focusing resources within the auditory attention network in case of 835 

challenging listening conditions. Conversely, no clear impact of semantic content was 836 

found in the visual cortex, suggesting that the magnitude of such entrainment is generally 837 

affected by low-level speech features.  838 

 839 
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