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Abstract 9 

EEG signals exhibit commonality and variability across subjects, sessions, and tasks. But most existing EEG studies 10 

focus on mean group effects (commonality) by averaging signals over trials and subjects. The substantial intra- and 11 

inter-subject variability of EEG has often been overlooked. The recently significant technological advances in 12 

machine learning, especially deep learning, have brought technological innovations to EEG signal application in 13 

many aspects, but there are still great challenges in cross-session, cross-task, and cross-subject EEG decoding. In this 14 

work, an EEG-based biometric competition based on a large-scale M3CV (A Multi-subject, Multi-session, and 15 

Multi-task Database for investigation of EEG Commonality and Variability) database was launched to better 16 

characterize and harness the intra- and inter-subject variability and promote the development of machine learning 17 

algorithm in this field. In the M3CV database, EEG signals were recorded from 106 subjects, of which 95 subjects 18 

repeated two sessions of the experiments on different days. The whole experiment consisted of 6 paradigms, including 19 

resting-state, transient-state sensory, steady-state sensory, cognitive oddball, motor execution, and steady-state 20 

sensory with selective attention with 14 types of EEG signals, 120,000 epochs. With the learning tasks of the 21 

identification and verification, the performance metrics and baseline methods were introduced in the competition. In 22 

general, the proposed M3CV dataset and the EEG-based biometric competition aim to provide the opportunity 23 

to develop advanced machine learning algorithms for achieving an in-depth understanding of the commonality 24 

and variability of EEG signals across subjects, sessions, and tasks. 25 

1. Introduction 26 

Since the discovery of electroencephalography (EEG) by Hans Berger in 1924 (Berger, 1929), EEG has evolved for 27 

use in a wide range of applications (Alotaiby et al., 2014; Cahn and Polich, 2006; Dietrich and Kanso, 2010; Wolpaw 28 

et al., 1991) for almost one hundred years. Typically, event-related potentials (ERPs) study focuses on the significant 29 

common or mean effects of a cohort, in which the intra- and inter-subject variability are treated as noise and are 30 

filtered out by averaging over trials and subjects (Seghier and Price, 2018). Hence ERPs have been widely used for 31 

investigating the neurological functions of sensory, motor, and cognitive processes (Kappenman et al., 2021). 32 

However, the conventional practice of ERP analysis takes the mean value of the EEG signals across trials and/or 33 

subjects to achieve a higher signal-to-noise ratio, but the group-level commonality may not have a reliable effect on 34 

the individual level (Boshra et al., 2019; Fröhner et al., 2019; Hu et al., 2021; Infantolino et al., 2018).  35 
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The intra- and inter-subject variability pose a great challenge to the individual level explanation and decoding of the 1 

EEG signal. Multiple factors may contribute to intra- and inter-subject variability, including different brain structures 2 

among subjects, non-stationarity of brain activity, neural processing for different tasks, and some unknown factors 3 

(Wei et al., 2021). With the availability and affordability of computational power, the recently significant 4 

technological advances in machine learning, especially deep learning, have brought technological innovations to EEG 5 

signals application in many aspects (Craik et al., 2019). In clinical and psychiatric studies, machine learning technique 6 

has pushed EEG-based diagnosis, prognosis, risk stratification, or treatment monitoring toward a more individualized 7 

approach (Olbrich & Conradi, 2016). In the application of brain-computer interface (BCI), intention-encoded EEG 8 

can be decoded for the direct interaction between the brain and a computer by single-trial decoding (Pfurtscheller and 9 

Neuper, 2001; Wolpaw et al., 2000). For system security, EEG-based biometrics become attractive to the research 10 

community for personal identification and verification.  11 

However, the lack of generalizability to different subjects and different sessions limited the use of EEG-based 12 

machine learning methods in clinical and psychiatric applications (Sui et al., 2020; Fisher et al., 2018). For example, 13 

a BCI decoder usually works well in a single personal session, but performs poorly over time or even fails to be 14 

applied to another subject (Krusienski et al., 2011; Satti et al., 2010). Although there are meaningful studies 15 

concerning cross-session and cross-subject transfer learning for BCI, the theory of common feature space 16 

construction in BCI applications is still being studied (Autthasan et al., 2021; Lotte and Guan, 2011; Rodrigues et al., 17 

2019). Similarly, severe overfitting was observed in the application of EEG-based biometrics in the within-session 18 

recognition. 19 

In summary, the traditional ERP analysis and statistical test methods help us identify the group-level commonality of 20 

EEG, while the recently developed machine learning techniques provided us with a way to further explore the 21 

individual-level variability of EEG. However, the lack of generalizability across subjects, sessions, and tasks is still 22 

a major challenge for machine learning in neuroimaging. A large-scale multi-subject, multi-session, multi-task EEG 23 

database is highly deserved to support this branch of research. Hence, in this study, we established an M3CV (Multi-24 

subject Multi-session Multi-task Commonality and Variability) EEG database to support cross-subject, cross-session, 25 

and cross-task EEG studies.  26 

The M3CV database contains 14 types of EEG tasks in 6 experiment paradigms from 106 healthy young adults, in 27 

which 95 subjects completed two experimental sessions repeated on different days. To record the EEG data for as 28 

many tasks as possible within the limited recording time and to ensure the data quality of each task, we designed the 29 

experiments based on suggestions from five experts in neuroscience and psychology (see Acknowledgments).  30 

The experimental paradigms in each session included the following six paradigms with 14 tasks of EEG signals 31 

(bolded text). 32 

· Paradigm 1: Resting-state with eye closed and eye open (EC and EO, each lasting for 2 mins). 33 

· Paradigm 2: Transient-state sensory with visual, auditory, and somatosensory stimulation (VEP, AEP, and SEP, 34 

each having 60 trials) 35 

· Paradigm 3: Steady-state sensory with steady-state visual, auditory, and somatosensory stimulation (SSVEP 1 36 

min, SSAEP 2 mins, and SSSEP 2 mins) 37 

· Paradigm 4: P300 with oddball experiment (target P300 with 30 trials, and nontarget P300 with 570 trials) 38 

· Paradigm 5: Motor execution with the movement of right foot, right hand, and left hand (FT, RH, and LH, each 39 

having 80 trials) 40 
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· Paradigm 6: SSVEP with selective attention (SSVEP-SA, six classes, each class having 12 trials, each trial 1 

lasting for 10 s) 2 

 3 

When retrieving existing open-access EEG databases (Table I), we found few databases with multi-task and multi-4 

session EEG signals. The number of subjects in most databases was less than 50. With some specific research 5 

objective, the number of tasks was typically only one or a small number. Multi-session EEG data are even harder to 6 

collect because it is more difficult to require all subjects to repeat the experiment after a certain time period. We also 7 

found that existing databases with some attributes of multi-task or multi-session were mainly used for reliability 8 

analysis, BCI, and EEG-based personal identification. Reliability analysis (Gaspar et al., 2011) focused on the cross-9 

session reproducibility of EEG signals, which plays a fundamental role in EEG research. BCI studies (Brunner et al., 10 

2008; Goldberger et al., 2000; Jeong et al., 2020; Korczowski et al., 2019; Kumar et al., 2021; Lee et al., 2019) often 11 

require the development of cross-session and cross-subject transfer learning algorithms. EEG-based personal 12 

identification techniques (Arnau-Gonzalez et al., 2021a; Kumar et al., 2021) use EEG features to identify certain 13 

persons among a large number of samples, which should be robust across tasks and sessions. In addition, SEED IV 14 

(Zheng et al., 2019) has four sessions of EEG data for EEG-based emotion studies, Langer et al (Langer et al., 2017) 15 

presented a dataset combining electrophysiology and eye-tracking intended as a resource for the investigation of 16 

information processing in the developing brain, and Kappenman et al (Kappenman et al., 2021) developed ERP Core 17 

with six tasks for ERP teaching studies. 18 

Table 1. Open access EEG databases with characteristics of multi-session, multi-subject, or multi-task. 19 

Database # Channels Equipment # Sessions # Subjects # Tasks Main Usages 

Cho et al., 2017 64 ActiveTwo 

/Biosemi 

1 52 Rest, MI Motor-BCI 

Goldberger et al., 

2000 

64 BCI2000 1 109 Rest, MI, ME Motor-BCI 

BCI Competition 

IV-2a, 2008 

22 Unknown 2 9 MI Motor-BCI 

SEED IV 2019 62 EPOC 

/ Emotiv 

4 15 Watch movie clips Emotion Recognition 

Korczowski et al., 

2019 

32 g.USBamp 

/ Gtec 

3 50 P300 P300-BCI 

Lee et al., 2019 62 BrainAmp 

/ BrainProduct 

2 54 Rest, MI, P300, SSVEP BCI inefficiency 

Jeong et al., 2020 60 actiCHamp 

/ BrainProduct 

3 25 11 different upper-extremity 

movement tasks 

Motor-BCI 

ERP Core 2021 30 ActiveTwo 

/ Biosemi 

1 40 Rest, N170, MMN, N2pc, 

N400, P3, LRP and ERN 

ERP studies 

Langer et al., 2017 128 Geodesic Hydrocel 

system 

2 126 Passive: Rest, P-SS, NS,  

Active: CCD, SL, A-SS 

Information processing 

in the developing brain 

Gaspar et al., 2011 128 ActiveTwo 

/ Biosemi 

10 5 ERPs (faces and noises) ERP reliability 

Kumar et al., 2021 128 GES400 

/ EGI 

2-5 30 OB, FUW, IBA, MMI, PA, 

SSVEP, PAV 

personal identification 

BED 2021  14 EPOC 

/ Emotiv 

3 21 Rest, AS, VCx and VFx personal identification 

M3CV 2021 

[this work] 

64 BrainAmp 

/ BrainProduct 

2 106 

(95 for 2 

sessions) 

Rest, VEP, AEP, SEP, 

SSVEP, SSAEP, SSSEP, 

P300, ME, and SSVEP-SA 

Intra- and inter-subject 

variability and cross-

task analysis 

Abbreviations: Rest – Resting-state, MI – Motor Imagery, ME – Motor Execution, LRP – Lateralized Readiness Potential, ERN – Error-

related Negativity, P-SS - Passive Surround Suppression, NS - Natural Stimuli, CCD - Contrast Change Detection, SL - Sequence Learning, 
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A-SS – Active Symbol Searching, OB – OddBall, FUW – Familiar and Unfamiliar Words, IBA- Imagining Binary Answers, PA – Passive 

Audio, PAV – Passive Audio-Visual, AS – Affective Stimulus VCx and VFx – Visual Evoked Potentials Evoked by Check-board and Flash, 

VEP – Visual Evoked Potential, AEP – Auditory Evoked Potential, SEP – Somatosensory Evoked Potential, SSVEP – Steady-State Visual 

Evoked Potential, SSAEP – Steady-State Auditory Evoked Potential, SSSEP – Steady-State Somatosensory Evoked Potential. 

EEG-based biometrics is more difficult to be stolen, or forged and must be acquired by live detection. It can provide 1 

a more secure biometric method for identity recognition compared with existing biometrics, such as iris, fingerprint, 2 

and face. The research on EEG-based biometrics has received increased attention in recent years (Wang et al., 2020; 3 

Chan et al., 2018; Debie et al., 2021; Jin et al., 2021; Marcel and Millan, 2007). However, there are many challenges 4 

such as temporal permanence and robustness to mental state changes in an EEG-based biometric system (Cahn and 5 

Polich, 2006; La Rocca et al., 2013; Maiorana, 2021a; Maiorana and Campisi, 2018). At the same time, there is no 6 

open EEG-based biometric competition. The lack of a unified test benchmark and platform hinders the development 7 

of this field. To this end, we decided to open the M3CV dataset to launch an EEG-based biometric competition. 8 

The remainder of this paper is organized as follows. Session II introduces the M3CV dataset. The details of the EEG-9 

based biometrics competition are presented in Section III. Results are provided in Section IV. The discussion and 10 

conclusion are given in Section V. 11 

 12 

2. M3CV Dataset 13 

2.1 Subjects 14 

A total of 106 healthy subjects from Shenzhen University participated in this experiment. Of these, 95 subjects (Age: 15 

21.3 ± 2.2 years; Gender:73 males) participated in two sessions of the experiment, which were scheduled on different 16 

days, the between-session time is in the range of 6 days to 139 days, with a mean of 20 days. All subjects had the 17 

normal hearing, normal or corrected-to-normal vision, and no history of neurological injury or disease (as indicated 18 

by a self-report). During the experiment, the subjects were seated in comfortable chairs and kept about one meter 19 

from the screen. 20 

Ethical approval of the study was obtained from the Medical Ethics Committee, Health Science Center, Shenzhen 21 

University (No. 2019053). All subjects were informed of the experimental procedure, and they signed informed 22 

consent documents before the experiment, in which they agreed to make their data open to access for research aim 23 

on the premise of concealing their personal information. 24 
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2.2 Experimental paradigm 1 

 

Fig. 1. The experiment paradigm of the M3CV database. 

Fig. 1 shows that the whole experiment was arranged in two sessions on separate days. The entire experiment with 6 2 

paradigms, 15 runs, and 14 tasks was completed within 2 hours (around 50 mins of recording time and 70 mins for 3 

experiment preparation and rest between the consecutive runs). 4 

The description of the 6 experimental paradigms is given below: 5 

1) Resting-state: Runs 01 and 14 were resting-state EEG signals with eyes-closed (EC), while Runs 02 and 15 6 

were resting-state EEG signals with eyes-open (EO). Each lasting for 1 min. Instead of the fixation cross on the 7 

screen, the subject was asked to keep their eyes fixed on the LED (staying off) during the resting state with their 8 

eyes open. In the eyes-open run, the subjects were required to keep their eyes fixed in front and blink as little as 9 

possible. 10 

2) Transient-state sensory: EEG elicited by visual, auditory, and somatosensory stimuli were recorded in Runs 11 

04 and 11. For each run, 30 trials of VEP, AEP, and SEP were arranged in random order. Each stimulus lasted 12 

50 milliseconds, and the inter-stimulus interval (ISI) was set at 2–4 s. On average, each run lasted 4.5 mins. 13 

3) Steady-state sensory: A train of visual, auditory, and somatosensory stimuli were released in Runs 05, 09, and 14 

12 respectively. Considering the different frequency responses of different modality stimuli, and the higher 15 

signal-to-noise ratio of SSVEP compared to SSAEP and SSSEP, the stimulation frequencies and recording times 16 

were different. They were 10 Hz (Herrmann, 2001) and 1 min for SSVEP in Run 05, 45.38 Hz (Galambos et al., 17 

1981) and 2 mins for SSAEP in Run 09, and 22.04 Hz (Snyder, 1992) and 2 mins for SSAEP in Run 12. 18 

4) Visual Oddball: A visual oddball experiment was arranged in Run 07 with the red square as the target stimuli 19 

and a white square as the nontarget stimuli on the screen. Each square lasted 80 ms with the ISI 200 ms. Six 20 

hundred trials of stimuli were arranged in 2 mins, in which target stimuli had a possibility of 5% (30 trials of 21 

target stimulation and 570 trials of nontarget stimulation). The subjects were asked to count the number of red 22 

squares and report after the run so that their attention would remain on the screen. 23 

5) Motor Execution: Executed movement was performed in Runs 03, 06, 10, and 13. During these runs, the 24 
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subjects were instructed to respond to a visual cue by gripping their left hand (LH) or right hand (RH), or by 1 

lifting their right ankle (FT) for a duration of 3 s, i.e., until the cue offset. No feedback was provided during the 2 

online recording. To ensure their motor areas were being fully activated, the subjects were required to perform 3 

the real executed movements of FT, RH, and LH at a rate of twice per second or faster, at approximately 80% 4 

of their maximum voluntary contraction, while keeping their upper body still. There was no external tool, like a 5 

metronome or hint on the screen, to remind the subject, because it may have produced unnecessary evoked 6 

potential as an external stimulus. During the experiment, the experiment monitored the movements of the 7 

subjects. If the subjects did not move fast enough or were found that their body moved simultaneously, the 8 

experimenter would abandon the recording of the current run, correct the subject’s movement and let them 9 

practice several more trials. The experimenters continuously monitored whether the movements of the subjects 10 

met these standards and corrected them when necessary. To minimize the intra- and inter-subject variability, we 11 

tried to ensure the consistency of the movements for all subjects. Hence, the executed movement was used 12 

instead of motor imagery in classical BCI experiments, and no feedback or training was given to the subjects. 13 

6) SSVEP with selective attention: Six white squares flashed simultaneously at different frequencies in Run 08. 14 

First, the target square turned red for 200 ms. After 500 ms, all squares with the frequency of 7 Hz, 8 Hz, 9 Hz, 15 

11 Hz, 13 Hz, and 15 Hz began to flash and lasted 10 s. The subject was asked to focus on the target square 16 

during the 10 s by covert visual attention with a fixation on the middle of the screen. In total, there were 12 trials 17 

arranged in Run 08. For each session of the experiment, they were instructed to perform 6 types of experimental 18 

paradigms, which were arranged in 15 runs, in which 14 tasks with rest, sensory, cognitive, and motor related 19 

EEG signals were listed in Table 2. 20 

Table 2. Description of 14 types of EEG tasks recorded in the M3CV database. 21 

No. Name Task Run Duration/quantity Description 

1 EC 1 01, 14 2 mins Resting-state with eye closed 

2 EO 1 02, 15 2 mins Resting-state with eye open 

3 VEP 2 04, 11 60 trials Visual evoked potential 

4 AEP 2 04, 11 60 trials Auditory evoked potential 

5 SEP 2 04, 11 60 trials Somatosensory evoked potential 

6 SSVEP 3 05 1 min Steady-state visual evoked potential 

7 SSAEP 3 09 2 mins Steady-state auditory evoked potential 

8 SSSEP 3 12 2 mins Steady-state somatosensory evoked potential 

9 Target P300 4 07 30 trials Epochs with target stimuli in P300 experiment 

10 Nontarget P300 4 07 570 trials Epochs with nontarget stimuli in P300 experiment 

11 FT 5 03, 06, 10, 13 80 trials Right ankle movement 

12 RH 5 03, 06, 10, 13 80 trials Right hand movement 

13 LH 5 03, 06, 10, 13 80 trials Left hand movement 

14 SSVEP-SA 6 08 12 segments Steady-state visual evoked potential with selective attention 
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2.3 Experimental platform 1 

The continuous EEG signals were recorded using an EEG amplifier (BrainAmp, Brain Products GmbH, Germany) 2 

and multichannel EEG caps (64 Channel, Easycap). The signals were recorded at a sampling rate of 1000 Hz by 64 3 

electrodes, placed in the standard 10–20 positions. The electrodes FCz and AFz served as reference and ground, 4 

respectively. Before data acquisition, the contact impedance between the EEG electrodes and the cortex was 5 

calibrated to be lower than 20 kΩ to ensure the quality of EEG signals during the experiments. 6 

An Arduino Uno platform was programmed to release the visual, auditory, and somatosensory stimuli in tasks 2 and 7 

3, which communicated with the Matlab program (The MathWorks Inc., Natick, USA) on a PC through a serial port. 8 

 Visual stimuli for VEP and SSVEP were delivered by a 3W light-emitting diode (LED) with a 2cm diameter 9 

circular light shield, which was placed in the center of the visual field of view 45cm away from the subjects’ 10 

eyes. The mean LED intensity was 1074 Lux as measured by a light meter (TES-1332A, TES). 11 

 Auditory stimuli for AEP and SSAEP were presented via a Nokia WH-102 headphone. 1000Hz pure tone was 12 

applied for the stimuli. The intensity was set at a comfortable level (75 dB SPL on average) for all subjects as 13 

measured by a digital sound level meter (Victor 824, Double King Industrial Holdings Co., Ltd. Shenzhen, 14 

China). 15 

 Somatosensory stimuli for SEP and SSSEP were generated by a 1027 disk vibration motor. Since there was no 16 

effective tool to measure the output intensity of the vibrator directly, we have to report the detail of the product 17 

parameters with the rated power of 3W, efficiency of 80%, and dimensions of 10mm*2.7mm). 18 

For the other tasks, A 24.5-inch screen (1920*1080) with a 240-Hz refreshing rate (Alienware AW2518H, Miami, 19 

USA) was used to present the visual stimuli or cues by programmed using Psychtoolbox-3 (http://psychtoolbox.org/) 20 

in Matlab. The red and white squares were delivered in a sequence at the center of the screen with a black background 21 

for visual oddball. Three white squares were also used in the motor execution paradigm to indicate the movement. 22 

Six white squares flashed simultaneously at different frequencies to deliver the stimulus in SSVEP with selective 23 

attention paradigm. The size of the square was set to be 300*300 pixels in these paradigms.  24 

2.4 EEG signal pre-processing 25 

The data pre-processing pipeline on the M3CV database is illustrated in Table 3. The raw EEG signals were recorded 26 

with BrainVision core data format (each recording consisting of a .vhdr, .vmrk, .eeg file triplet), which were managed 27 

with Brain Imaging Data Structure (BIDS) (Gorgolewski et al., 2016; Pernet et al., 2019). For each recording, the 28 

bad channels were interpolated first. Channel FCz (the reference) was added back, and channel IO was removed. 29 

Then all signals were filtered by a 0.01–200-Hz band-pass filter and a 50-Hz notch filter. A 2-order Butterworth zero-30 

phase filter was applied in the above two steps of filtering. After re-referencing to TP9/TP10, artifacts produced by 31 

eye blinks or eye movements were identified and removed manually by Independent Component Analysis (ICA) 32 

(Huang et al., 2020). 33 

Table 3. Pipeline for EEG pre-processing. 34 

Software Matlab 2018b & Letswave7 (Letswave.cn) 

Band-pass filtering Butterworth filter, 0.01-200 Hz, 4th order, 24dB/octave, zero-phase 

Notch filtering Butterworth filter, 49-51 Hz, 4th order, 24dB/octave, zero-phase 
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Channel interpolation Bad channels were identified manually and interpolated with the mean value of the three surrounding channels 

Re-reference Re-reference to the mean value of TP9 and TP10 

Artifacts removal by ICA Eye movement related ICA components were identified by visual inspection of their scalp topographies, time courses, and 

spectra. 

 1 

During the signal preprocessing, we interpolate bad channels for 22 subjects and one subject was removed due to 2 

strong 10 Hz artefacts among the 95 subjects who complete the two sessions. No bad epoch has been removed. For 3 

Motor execution, preventing the interference of EMG artifacts caused by actual movement was crucial during our 4 

data collection, especially in the movement paradigm. Firstly, we asked the subject to keep their torso still in both 5 

foot and hand movement. That is also the reason why we set right foot movement instead of two-foot movement in 6 

the experiment design. Secondly, the experimenters continuously monitored the subjects’ movement and online EEG 7 

display to ensure the quality of data collection. Thirdly, since the amplitude of EMG single is much higher than the 8 

EEG signal, the contamination of EMG artifacts is highly visible. Also, we did not see strong EMG artifacts during 9 

the signal preprocessing. Furthermore, no strong EMG artifact is observed in the time-frequency analysis. The main 10 

EEG responses came from C3, C4, and Cz at 𝜇 and 𝛽 band, The 𝛾 band response was much smaller, which was 11 

the main frequency band for EMG artifacts. 12 

After experiment, in the preprocessing process we interpolate bad channels for 22 subjects and one subject was 13 

removed due to strong 10 Hz artefacts among the 95 subjects who complete the two sessions.  14 

2.5 Basic EEG signal visualization 15 

To show the basic information of EEG signal in M3CV, we perform time domain analysis on ERP signal, Frequency 16 

domain analysis on resting-state EEG and steady-state evoked potentials, and time-frequency domain analysis on 17 

motor-related signals. 18 

1) Time domain analysis. The ERPs of VEP, SEP, AEP, and target and non-target P300 were analyzed in the time 19 

domain. A Butterworth bandpass filter with 0.5 – 30 Hz was applied to the preprocessed EEG signal. After 20 

segmentation and averaging, baseline correction was performed from −0.5 to 0 s to obtain the ERP for each subject. 21 

2) Frequency domain analysis. For the task of resting-state with eye closed and eye open, the EEG signals were 22 

firstly re-referenced to a common average reference after preprocessing. Welch's method with a 2-s window and 50% 23 

overlap was applied. After transforming the total power level into decibels and averaging, the frequency domain 24 

responses for resting-state EEG with eye closed and eye open were obtained for each subject. The processing pipeline 25 

for EEG signals from steady-state sensory and SSVEP with selective attention tasks was similar. But no re-reference 26 

was performed, and TP9/TP10 was still used as the reference. FFT was applied instead of Welch's method to obtain 27 

a sharp frequency response for SSVEP, SSAEP, SSSEP, and six classes of SSVEP-SA signals. 28 

3) Time-frequency domain analysis. For the motor execution tasks, since the EEG responses were complex in 29 

different time intervals and frequency bands, a continuous wavelet transform was applied for the time-frequency 30 

domain transform, in which the complex Morlet wavelet was used with the central frequency 1.5 Hz and bandwidth 31 

1 Hz. Considering the computation complexity, the EEG signal was downsampled to 200 Hz to reduce the time for 32 

computation. After the continuous wavelet transform, the time-frequency response was further downsampled to 50 33 

Hz to reduce the storage space on the hard disk and computer memory. 34 
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3. EEG-based biometrics 1 

3.1 Literature review 2 

Several studies have reported that EEG-based identification and verification systems are capable of high recognition 3 

accuracy (Kong et al., 2019; Koike-Akino et al., 2016). However, many of them have not been evaluated under more 4 

rigorous conditions, such as testing with large population size, across sessions, and across tasks, which were detailed 5 

as follows: 6 

 Uniqueness: Although many studies have revealed the uniqueness of EEG signals and their ability to 7 

discriminate between subjects, the tested databases normally have a small population size of fewer than 50 8 

subjects (Delpozo-Banos et al., 2018; Arnau-Gonzalez et al., 2021b; Chen et al., 2016). For employing EEG as 9 

a biometric trait, it must be tested on a larger database.  10 

 Permanence: EEG signals could be different in days even for the same task, which poses a major challenge to 11 

decoding subject identity (La Rocca et al., 2013; Maiorana et al., 2016; Maiorana and Campisi, 2018). Further, 12 

in single-session settings, machine learning algorithms may recognize the special electrode situation and 13 

preprocessing parameters rather than the EEG-based personal trait. 14 

 Robustness: For the same session, EEG signals could vary significantly under different tasks or experimental 15 

conditions. A good biometric system should be robust to the above conditions (Wang et al., 2019; Maiorana, 16 

2021a; Kumar et al., 2021; Kong et al., 2018), otherwise, an enrolled subject may be rejected or misidentified 17 

by the system when they are under different mental states. 18 

According to the three points mentioned above, we did a short review of the existing studies on multi-session and 19 

multi-task EEG-based biometrics as shown in Table 4. Compared with our proposed database, the population size of 20 

these studies is quite small, especially for (La Rocca et al., 2013) and (Zeynali and Seyedarabi, 2019). As for feature 21 

extraction, hand-crafted features, such as AR, MFCC, and PSD, are still the dominant choice while only Maiorana 22 

(Maiorana, 2020) and Kumar et al (Kumar et al., 2021) applied deep learning methods. In terms of performance 23 

metrics, the recognition accuracy and the equal error rate were the most used metric for identification tasks and 24 

verification tasks respectively(Arnau-Gonzalez et al., 2021a; Kumar et al., 2021). It should be noted that these studies 25 

were performed on multi-session and multi-task EEG databases, but only Kumar et al (Kumar et al., 2021) applied 26 

cross-session and cross-task evaluation to their proposed algorithm.  27 

Table 4. Literature review on multi-session and multi-task EEG-based biometrics study 28 

Previous work # Subjects # Sessions  #Tasks Feature Classifier Performance metric 

La Rocca et al., 2013 9 2 EC, EO AR LDC ACC 

Zeynali and 

Seyedarabi, 2019 

7 1-3 Rest, LT, MT, GFR, VC PSD, AR, DWT, 

LEE, SE 

SVM, NB ACC, F1- score, AUC 

Maiorana et al., 2016 50 3 EC, EO AR, PSD L1, L2 & CS ACC 

Delpozo-Banos et al., 

2018 

15 2 VEP, MT PSD NB，LDC ACC，FAR, GAR 

Maiorana, 2020 45 5 EC, EO, MI, MT, VS, SI AR, MFCC CNNs & RNNs Rank-1 IR 

Arnau-Gonzalez et al., 

2021a 

21 3 Rest, AS, MC, VC x, and 

VF x 

AR, MFCC, PSD HMM ACC, AUC, EER 
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3.2 Learning Task 1 

Based on the M3CV database, the EEG-based biometric competition was launched by focusing on the problems of 2 

personal identification and verification (Fig. 2). The contestant needs to train the classification model for the 3 

biometric system with the enrollment dataset. After the model has been trained, the contestant would be asked to 4 

complete the following two classification tasks: 5 

 Identification: Determine whether a given EEG signal comes from the enrollment set, and further determine 6 

the subject ID if the epoch is not judged as from an intruder. The potential applications of identification systems 7 

include video surveillance and information retrieval (e.g., identifying criminals from police databases).  8 

 Verification: Determine whether a given EEG signal comes from a certain subject. The potential applications 9 

of the verification system are to access control systems (airport checking, monitoring, computer or mobile 10 

devices log-in).  11 

 

Fig. 2. The architecture of the EEG-based biometric system with the learning task of personal identification and 

verification. 

3.3 Baseline model 12 

3.3.1 Feature extraction 13 

According to the literature review, three types of commonly used features were selected for EEG-based biometrics 14 

based on the EEG signal pre-processing: 15 

1) Power Spectral Density (PSD): To estimate the power spectrum of each channel for each epoch, we used the 16 

Kumar et al., 2021 30 2-5 OB, FUW, IBA, MMI, PA, 

SSVEP, PAV 

PSD ix-vector ACC, EER 

M3CV 2021, [this 

work] 

106 2 EC, EO, EP, SSVEP, 

SSAEP, SSSEP, P300, ME 

and SSVEP-SA 

AR, MFCC, PSD SVM, L2 TER 

Abbreviations: LT – Letter Task, MT – Math Task, GFR – Geometric Figure Rotation, DWT – Discrete Wavelet Transform, VC – Visual 

Counting, LEE – Log Energy Entropy, SE – Sample Entropy, NB – Naïve Bayes, LDC – Linear Discriminant Classifier, AUC – Area Under 

the Curve, FAR – False Acceptance Rate, GAR – Genuine Acceptance Rate, Rank-1 IR – Rank1 Identification Rate, EER – Equal Error Rate, 

AR – Auto-Regressive, MFCC – Mel-Frequency Cepstrum Coefficients. VS – Visual Stimuli, HMM – Hidden Markov Models, TER – Total 

Error Rate. Some abbreviations were omitted, which were already described in Table 1. 
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Welch periodogram algorithm. Specifically, we divided the whole 4s epoch into 1s segments with 0.5s overlap, 1 

then we averaged the FFT of each segment using a hamming window. The PSD spectrum from 2 to 45 Hz was 2 

evenly divided into 12 frequency bands, then the band power of these frequency bands was extracted. 3 

2) Mel Frequency Cepstral Coefficients (MFCCs): MFCCs are one of the most common features of speech 4 

recognition, and have been recently applied to the biometric analysis of EEG data (Arnau-Gonzalez et al., 2021b; 5 

Maiorana, 2020). MFCCs are extracted from the mel-filtered spectrum amplitudes sm using log compression 6 

and discrete cosine transform, defined as 7 

ci=√
2

M
∑  

M

m=1

log(sm)cos (
m-0.5

M
𝜋i) , (1.) 8 

where L is the number of preserved cepstral coefficient, ci is the 𝑖-th cepstral coefficient, with 𝑖 = 1,2,3, … , 𝐿. 9 

𝑀 is the number of triangular band-pass filters in a mel-scaled filter bank and 𝐿 is the number of the first 10 

cepstral coefficients used to obtain signal representation. In this study, M = 18 and L = 12 were employed. 11 

3) Autoregressive Coefficient (AR): AR features are commonly used for EEG-based identification and verification 12 

(Maiorana and Campisi, 2018). In this study, AR features were extracted from each epoch from a 12-th order 13 

autoregressive model created by solving the Yule-Walker equations. Thus 12 AR coefficients were extracted for 14 

each EEG channel. 15 

3.3.2 Classification 16 

In the biometric system, the verification task is a one-to-one classification problem and the identification task is a 17 

one-to-N classification problem. With the existence of the intruders, identification becomes a one-to-(N+1) 18 

classification problem. Considering the extensibility of the enrollment set, using N one-to-one weak classifiers from 19 

each subject to compose a one-to-N classifier is a practical way for the biometric system. The method can effectively 20 

avoid the retraining of the whole classifier after the enrolling of new subjects.  21 

In this study, one-to-one classifiers, including the similarity-based method based on Euclidean distances (L2) and the 22 

One-class Support Vector Machine (SVM), were applied as the baseline classifiers for both verification and 23 

identification tasks in the subsequent analysis for simplicity. More specifically, after extracting features, an L2-based 24 

or SVM classification model was trained by epochs from each subject in the enrollment set.  25 

In the verification task, the corresponding classifier would confirm the subject ID claimed by test epochs when the 26 

acquired score was greater than the rejection threshold 𝛿. In an offline system, this threshold was varied to obtain 27 

the equal error rate (𝑉𝐸𝐸𝑅), which was a commonly used threshold-independent measure in biometric verification 28 

tasks (Bidgoly et al., 2022), defined as the intersection point of false acceptance rate (𝑉𝐹𝐴𝑅) curve and false rejection 29 

rate (𝑉𝐹𝑅𝑅 ) curve. In an online system, the threshold has to be pre-determined, which was normally decided by 30 

obtaining EER on the training set (Marcel and Millan, 2007; Kang et al., 2018). 31 

In the identification task, the intruder test was performed firstly, in which the test epoch was fed into each subject’s 32 

classification model to generate a score, when the maximal score obtained from all subjects’ models was below the 33 

threshold, the test epoch was judged as an intruder. For the L2-based model, the rule of judging the test epoch as an 34 

intruder was defined by Eq. (2)  35 
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max
𝑖

{
𝑑(𝑦𝑖 , 𝑁𝑁(𝑦𝑖))

𝑑(𝑧, 𝑦𝑖)
} < 𝛿 (2) 1 

where 𝑁 is the number of subjects in the enrolled set, 𝑧 is the test epoch, 𝑦𝑖 is the nearest epoch of 𝑧 from all 2 

epochs of 𝑖-th subject with 𝑖 = 1,2,3, … , 𝑁, 𝑁𝑁(𝑦𝑖) is the nearest epoch of 𝑦𝑖 from all epochs of 𝑖-th subject, 𝛿 3 

is the rejection threshold determined by 𝑉𝐸𝐸𝑅. The subject ID would be assigned based on the maximum score from 4 

all subjects if the test epoch 𝑧 passed the intruder detection. For an SVM-based classifier, the likelihood is applied 5 

instead of the distance in the L2-based classifier. 6 

3.4 Online competition 7 

Fig. 3. The segmentation of M3CV for online competition. The whole set was divided into three parts: Enrollment 8 

Set, Calibration Set, and Testing set (containing 11 intruders). 9 

1) Dataset Composition: The whole set for this competition was divided into three parts: Enrollment Set, 10 

Calibration Set, and Testing set (containing 11 intruders).  11 

 Enrollment Set: it provides the 1st session of EEG from 95 subjects. The enrollment set is used for the 12 

contestants to train the biometric model. 13 

 Calibration set: the EEG data of the 2nd session from 20 subjects is provided in the calibration set, which is 14 

used to help the contestants get familiar with the data format, refine effective feature extraction, and tune 15 

hyper-parameters of the machine learning model. The number of subjects in the calibration set is relatively 16 

small as compared with the enrollment set and testing set. 17 

 Testing set: it is used to evaluate the performance of the algorithm in the competition with the leaderboards 18 

A (public) and B (private), for which epochs belonging to leaderboard A or B are hidden. The testing epochs 19 

come from the 2nd session of 106 subjects, among which 95 subjects also exist in the enrollment set, and 20 

the other 11 subjects are treated as an intruder. And it should be noted that several epochs in the testing set 21 

come from the same subjects as that in the calibration set, but there is no overlap of the epochs. 22 

2) Organization of the competition: We would launch the challenge on June 15th, 2022, and close it on Aug 25th, 23 

2022. We would award money prizes to the top 9 contestants and certificates of honor for the 20 best contestants. 24 

Challengers were ranked based on the score of recognition accuracy of their submission computed on the private 25 
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leaderboard (Leaderboard B). We framed the challenge problem by providing: (i) an open accessed dataset, (ii) 1 

a standard way to assess the submission, and (iii) a starting kit. For this purpose, we used the PaddlePaddle AI 2 

Studio platform. During the challenge, contestants submitted their solutions on the PaddlePaddle AI Studio 3 

website (https://aistudio.baidu.com/aistudio/competition/detail/315/0/introduction), and we provided to the 4 

contestants the score computed on the public leaderboard (Leaderboard A). At the end of the challenge, we asked 5 

each contestant to select a single submission with the code and description document. Contestants were ranked 6 

based on the score of these submissions computed on the private leaderboard (Leaderboard B). 7 

3) Competition platform: PaddlePaddle’s AI Studio is a feature-rich, open-source, industry-level deep learning 8 

platform. With the full-process function and professional service support, the platform has held more than 150 9 

AI competitions, attracted 500,000 elite developers from many countries around the world, and trained tens of 10 

thousands of top players. It is committed to creating the world's leading AI competitions, gathering talents, and 11 

promoting the development of the intelligent economy. 12 

4) Data and code availability: The public dataset with the code of the baseline methods and an example submission 13 

file are available at https://aistudio.baidu.com/aistudio/datasetdetail/151025/0. 14 

3.5 Benchmarks 15 

To make a comprehensive understanding of the challenges in the EEG-based biometrics competition, we have 16 

provided the benchmark test in three steps. 1) Offline evaluation was applied to investigate the influence of the 17 

increasing population size, cross-session, and cross-task tests on the performance of the biometric system. 2) 18 

Simulated online analysis was applied to evaluate the baseline methods by simulating the competition process with 19 

data from the enrollment set and calibration set. 3) Online submission shows an example submission with the baseline 20 

method with a score returned from competition platform. 21 

3.5.1 Offline evaluation  22 

We performed three analyses to show the influence of the increasing population sizes, cross-session, and cross-task 23 

tests on the performance degradation of EEG-based biometrics. These analyses were done on the data from 20 24 

subjects in the calibration set and enrollment set, whose subject ID of the second session was known. The reason 25 

of restrict our analyses to these 20 subjects is to avoid any information leakage about the testing set. The train/test 26 

pipeline and performance metric for these analyses were detailed as follows: 27 

1) Testing on increasing population sizes: In this test, we increased the number of subjects from 2 to 20, with the 28 

increasing step of 2 subjects each time, to investigate the influence of increasing population sizes on the 29 

performance of EEG-based biometrics. To avoid bias, subjects were randomly selected 10 times for each number 30 

of subjects. For each task, the data from the first session was used to train, and the data from the second session 31 

was used to test. Since the aim of this test is to show the influence of increasing the number of subjects, the 32 

intruder is not considered. 33 

2) Testing across tasks: In this test, EEG data of a particular task from one session (session 1/session 2) was used 34 

to train the model, and EEG data of another task from the other session (session 2/session 1) was used to test. 35 

And then the training set and the testing set would be exchanged. The population size was set to 20 in the test. 36 

Since AEP, SEP and VEP are in the same runs, we treated them as one condition/task, EP (i.e., Evoked Potential). 37 
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Also, the term ME (Motor execution) was used to represent the LH, RH, and RF conditions.  1 

3) Testing across sessions: In this test, to make a fair comparison of the performance between within-session and 2 

cross-session tests, we used the same training set for the within-session tests and cross-session tests, which is 3 

the first half of the epochs in the first session. The testing set for the within-session test is the second half of the 4 

epochs in the first session, while the testing set for the cross-session tests is all epochs from the second session. 5 

This procedure was done for each task separately. And the population size was set to 20 in the test. 6 

For offline evaluation, the performance metrics consists of 𝐼𝐸𝑅  and 𝑉𝐸𝐸𝑅 . For the identification task, the 7 

identification error rate 𝐼𝐸𝑅 is defined as 8 

𝐼𝐸𝑅 =
𝐼𝑓𝑎𝑙𝑠𝑒_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦

𝐼𝑓𝑎𝑙𝑠𝑒_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 + 𝐼𝑡𝑟𝑢𝑒_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦

(3) 18 

in which 𝐼𝑓𝑎𝑙𝑠𝑒_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 and 𝐼𝑡𝑟𝑢𝑒_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 are the number of epochs being wrongly and truly identified. For the 9 

verification task, since the subject ID of the testing set is known, the verification equal error rate 𝑉𝐸𝐸𝑅  was 10 

commonly used as a conventional performance metric in biometric verification tasks for offline analysis (Maiorana, 11 

2021b). With the growth of the reject threshold in the classifier model, the false acceptance rate (𝑉𝐹𝐴𝑅) increases and 12 

false rejection rate (𝑉𝐹𝑅𝑅) decreases, and 𝑉𝐸𝐸𝑅 is the intersection point of the 𝑉𝐹𝐴𝑅 and 𝑉𝐹𝑅𝑅 curve. 𝑉𝐹𝐴𝑅 and 13 

𝑉𝐹𝑅𝑅 are defined as 14 

𝑉𝐹𝐴𝑅 =
𝑉𝑓𝑎𝑙𝑠𝑒_𝑎𝑐𝑐𝑒𝑝𝑡

𝑉𝑡𝑟𝑢𝑒_𝑟𝑒𝑗𝑒𝑐𝑡 + 𝑉𝑓𝑎𝑙𝑠𝑒_𝑎𝑐𝑐𝑒𝑝𝑡

(4) 19 

𝑉𝐹𝑅𝑅 =
𝑉𝑓𝑎𝑙𝑠𝑒_𝑟𝑒𝑗𝑒𝑐𝑡

𝑉𝑡𝑟𝑢𝑒_𝑎𝑐𝑐𝑒𝑝𝑡 + 𝑉𝑓𝑎𝑙𝑠𝑒_𝑟𝑒𝑗𝑒𝑐𝑡

(5) 20 

in which 𝑉𝑓𝑎𝑙𝑠𝑒_𝑟𝑒𝑗𝑒𝑐𝑡 and 𝑉𝑡𝑟𝑢𝑒_𝑎𝑐𝑐𝑒𝑝𝑡 are the number of epochs being wrongly rejected or truly accepted for whose 15 

true identity is the same as the claimed ID. Similarly, 𝑉𝑓𝑎𝑙𝑠𝑒_𝑎𝑐𝑐𝑒𝑝𝑡 and 𝑉𝑡𝑟𝑢𝑒_𝑟𝑒𝑗𝑒𝑐𝑡 are the number of epochs being 16 

wrongly accepted and truly rejected for whose true identity is not the same as the claimed ID. 17 

3.5.2 Simulated online analysis 21 

During the offline evaluation, 𝑉𝐸𝐸𝑅 is commonly used as an important metric to evaluate the performance of the 22 

verification result. However, in the online application, the equation 𝑉𝐹𝐴𝑅 = 𝑉𝐹𝑅𝑅 on calibration set may not hold on 23 

to the testing set, the metric 𝑉𝐸𝐸𝑅 may not reflect the real performance of a biometric system. Furthermore, the time 24 

consumption would also be an important metric for a practical biometric system. 25 

Therefore, beyond offline evaluation, we further applied simulated online analysis to evaluate the performance of 26 

different baseline methods of feature extraction and classification. Ten subjects in the calibration set and 27 

corresponding enrollment set were used to determine the optimal threshold, which was defined as the one that making 28 

𝑉𝐹𝐴𝑅 = 𝑉𝐹𝑅𝑅 . Another 10 subjects were used to evaluate the performance of the six baseline models for each 29 

combination of feature extraction (PSD, AR, MFCC) and classification (L2 and SVM) methods.  30 

For simulated online analysis, the performance metrics of 𝐼𝐸𝑅, 𝑉𝐸𝑅, 𝑉𝐹𝐴𝑅, 𝑉𝐹𝑅𝑅, 𝑇𝑡𝑟𝑎𝑖𝑛, and 𝑇𝑡𝑒𝑠𝑡 were used in 31 

the evaluation, in which 𝑇𝑡𝑟𝑎𝑖𝑛 and 𝑇𝑡𝑒𝑠𝑡 are the time consumption for training and testing, and verification error 32 

rate 𝑉𝐸𝑅 is defined as 33 

𝑉𝐸𝑅 =
𝑉𝑓𝑎𝑙𝑠𝑒_𝑟𝑒𝑗𝑒𝑐𝑡 + 𝑉𝑓𝑎𝑙𝑠𝑒_𝑎𝑐𝑐𝑒𝑝𝑡

𝑉𝑓𝑎𝑙𝑠𝑒_𝑟𝑒𝑗𝑒𝑐𝑡 + 𝑉𝑡𝑟𝑢𝑒_𝑟𝑒𝑗𝑒𝑐𝑡 + 𝑉𝑓𝑎𝑙𝑠𝑒_𝑎𝑐𝑐𝑒𝑝𝑡 + 𝑉𝑡𝑟𝑢𝑒_𝑎𝑐𝑐𝑒𝑝𝑡

(6) 34 
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3.5.3 Online submission 1 

For online submission, an example code is provided with the methods of feature extraction (PSD, AR, MFCC) 2 

and classification (L2 and SVM), in which the optimal threshold was determined by making the 𝑉𝐹𝐴𝑅 = 𝑉𝐹𝑅𝑅 on 3 

the 20 subjects in the calibration set and enrollment set, whose subject ID of two sessions was known.  4 

An example submission file was also provided with the method of PSD+L2. With the subject ID unknown in the 5 

testing set, only the score of the total recognition accuracy returned after submission can be used to evaluate the 6 

performance. The result can also be obtained if the contestant submits the same result file to the system. The code 7 

and the submission file are available at the link: https://aistudio.baidu.com/aistudio/datasetdetail/151025/0. 8 

Hence, for online submission, the performance metric is the score as 1-total error rate (𝑇𝐸𝑅), which is computed by 9 

Eq. (7) 10 

𝑠𝑐𝑜𝑟𝑒 = 1 − 𝑇𝐸𝑅 = 1 −
𝐼𝑓𝑎𝑙𝑠𝑒_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 + 𝑉𝑓𝑎𝑙𝑠𝑒_𝑟𝑒𝑗𝑒𝑐𝑡 + 𝑉𝑓𝑎𝑙𝑠𝑒_𝑎𝑐𝑐𝑒𝑝𝑡

𝐼𝑓𝑎𝑙𝑠𝑒_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 + 𝐼𝑡𝑟𝑢𝑒_𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑦 + 𝑉𝑓𝑎𝑙𝑠𝑒_𝑟𝑒𝑗𝑒𝑐𝑡 + 𝑉𝑡𝑟𝑢𝑒_𝑟𝑒𝑗𝑒𝑐𝑡 + 𝑉𝑓𝑎𝑙𝑠𝑒_𝑎𝑐𝑐𝑒𝑝𝑡 + 𝑉𝑡𝑟𝑢𝑒_𝑎𝑐𝑐𝑒𝑝𝑡

(7) 11 

4. Results 12 

4.1 Basic EEG results for visualization 13 

The basic EEG results from the proposed M3CV database are shown in Fig. 4-6, which include the results from the 14 

time domain, frequency domain, and time-frequency domain. 15 

Fig. 4. Time domain EEG results for A) VEP, B) AEP 2, C) SEP in paradigm 2 and D) P300 in paradigm 4. 16 

For time-domain analysis. The grand-averaged waveforms of VEP, AEP, SEP, and target- and nontarget-P300 are 17 

shown in Fig. 4 (A–D), with the topographies at their corresponding peaks. The response of VEP mainly concentrated 18 

on the occipital area. AEP and SEP shared a similar N2/P2 waveform in the central area. A classical N75-P100-N135 19 

complex is not seen here, which is typically observed from pattern-reversal VEP, for which high-contrast, black-and-20 

white checkerboards are used as stimuli. As the vibrator was placed on the subject’s left hand, the N2 response of 21 
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SEP showed a response from the contralateral primary sensory area. The topographies for the P2 components from 1 

AEP and SEP are quite similar. In the oddball experiment, the target P300 response was mainly concentrated on the 2 

channel POz at around 300 ms. By comparison, the nontarget response mainly came from the occipital area because 3 

the visual stimuli were used in the oddball experiment. 4 

Fig. 5. Frequency domain EEG results for A) Resting-state EEG with eye closed and eye open, B) Steady-state 5 

Evoked potential with SSVEP, SSAEP, and SSSEP, and C) SSVEP with selective attention. 6 

For frequency domain analysis of the resting-state EEG with EC and EO (Fig. 5A), the difference was concentrated 7 

on the occipital area. With the increase in frequency, the amplitude of the EEG response decreased at a rate of 8 

approximately 1/freq for both EC and EO. The main difference between EC and EO was the three peaks that appeared 9 

in sequence around 10 Hz, 20 Hz, and 30 Hz. For the first peak in the interval of 8-12 Hz, the main response was in 10 

the occipital area, the frequency power at Cz (0.45 dB) is larger than C3 (0.17 dB) and C4 (0.21 dB) in the condition 11 

of EO, while the frequency power at Cz (-1.05 dB) would be smaller than C3 (-0.88 dB) and C4 (-0.73 dB) in the 12 

condition of EC. The topographies for the second peaks in the interval of 18-22 Hz had a similar shape, while the 13 

difference mainly came from the magnitude. For SSEP analysis in Fig. 5B, the brain areas and frequency band of the 14 

induced SSEP were different for visual, auditory, and somatosensory stimuli, which were around 10 Hz at the occipital 15 

area for SSVEP, around 45 Hz at the frontal-central area for SSAEP, and around 22 Hz at the primary sensory area 16 

for SSSEP. Fig. 5C shows how attention modulated the foundation frequency (black triangles) and their harmonic 17 

(gray triangles) responses at different frequency points. With selective attention, the target frequency (downward-18 

pointing triangles) responses were larger than those at other nontarget frequencies (upward-pointing triangles). 19 
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Fig. 6. Time-frequency domain EEG results for motor execution task for FT (right angle movement), RH (angle hand), 1 

and LH (left hand movement) at channels Cz, C3, and C4. The topographies of the mean magnitude from the six 2 

typical regions are illustrated for three types of movements.  3 

Time-frequency analysis was performed for the motor task because foot and hand movements led to rich neural 4 

oscillation changes in different time-frequency-spatial regions. Fig. 6H is a comprehensive illustration of these 5 

changes caused by these three types of movements, which are FT, RH, and LH. Further, no strong EMG artifact is 6 

observed in the time-frequency analysis. The main EEG responses came from C3, C4, and Cz at 𝜇 and 𝛽 band, 7 

The 𝛾 band response was much smaller, which was the main frequency band for EMG artifacts. 8 

The corresponding topographies from six regions of interest (ROI) are detailed below. 9 

· ROI #1 (from 0.1 to 0.3 s, 2 to 7 Hz): The response in this region was due to Motor-related Cortical Potential 10 

(MRCP), which is a super low-frequency negative shift in EEG recording. MRCP may come earlier than the 11 

movement because the cortical processes are employed in the planning and preparation of movement. Hence, 12 

MRCP can be used for predicting the movement in BCI applications. In this experiment, subjects did not know 13 

which movement and when they were going to execute. Hence the MRCP response came out after the zero point. 14 

The brain area of its response was the same as the motor area of the corresponding action. 15 

· ROI #2 (from 1 to 3 s, 9 to 13 Hz): The ERD response from the 𝜇 rhythm oscillation was observed in this 16 

region. By carefully comparing the responses of RH and LH, we found that the ERD phenomenon happened in 17 

motor areas of both left and right hemispheres. But the ERD in the contralateral brain area was larger than that 18 

in the ipsilateral brain area. 19 

· ROI #3 (from 1 to 3 s, 20 to 30 Hz): The ERD response from the 𝛽 rhythm oscillation was also well reported 20 
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for motor-based BCI application. Similar to ROI #2, the ERD phenomenon happened in the motor areas of both 1 

the left and right hemispheres for RH and LH. The interhemispheric difference was mainly located in the 2 

parietal-central area in ROI #2, and located in the frontal-central area in ROI #3. 3 

· ROI #4 (from 1 to 3 s, 55 to 90 Hz): During the movement, high 𝛾 oscillation also showed an interhemispheric 4 

difference for RH and LH. But the magnitude was weaker than that of ROI #2 and ROI #3. We found that the 5 

magnitude change in ROI #4 was ERD for both RH and LH, which was ERS for FT. But the magnitude was 6 

quite small for the high-frequency EEG recording. 7 

· ROI #5 (from 4 to 4.5 s, 12 to 14 Hz): After the movement, 𝜇  rhythm ERS phenomenon occurred in the 8 

corresponding motor area for FT, RH, and RL. With the large sample size in our dataset, some more detailed 9 

results can be observed. For example, the 𝜇 rhythm ERS for FT occurred earlier at a higher frequency band 10 

(around 12.5 Hz, and 4.2 s) than ERS for RH and LH (around 9 Hz, and 5 s). 11 

· ROI #6 (from 4 to 4.5 s, 20 to 30 Hz): 𝛽 rhythm ERS phenomenon was seen in this region. We found that from 12 

3.7 to 4.2 s, the 𝜇 rhythm ERD and 𝛽 rhythm ERS occurred simultaneously for RH and RL. The 𝜇 rhythm 13 

ERS and 𝛽 rhythm ERS did not occur at the same time for RH and LH, but occurred at almost the same time 14 

interval for FT. 15 

4.2 Benchmark results 16 

4.2.1 Offline evaluation  17 

Since this section only aims to evaluate the performance degradation resulting from larger population sizes, cross-18 

session, and cross-task tests, only the MFCC feature and SVM classifier was adopted. The results for the investigation 19 

of the uniqueness of individuals, robustness to mental state changes, and permanence over recording sessions of 20 

EEG-based biometrics are shown in Fig. 7(A-C) correspondingly.  21 

In terms of the uniqueness of individuals, it can be observed that the averaged identification error rate 𝐼ER increased 22 

from 0.81 to 0.34 as the population sizes increased from 2 to 20, as shown in the left figure of Fig. 7A. It should be 23 

noted that with the different population sizes, the chance levels are different. With the population sizes rising to a 24 

larger scale (e.g., 106 subjects in our testing set), the identification problem for machine learning algorithms to 25 

identify one subject would be more challenging. Since the verification task is a one-to-one matching problem, 26 

increasing the population size will not lead to its performance degradation.  27 

Fig. 7B showed the robustness of EEG-based biometrics to mental state changes, in which the row represents the task 28 

used for training, and the column represents the task used for testing. In the left figure of Fig. 7B, the red square 29 

border (where EP was used to train and SSSEP was used to test) shows a lower identification error rate than the black 30 

square border (where EP was used to train and test), which is 0.55 versus 0.59. Except for this, the minimal error rate 31 

for other rows was achieved at the diagonal line, in which the training task and the testing task is the same. This result 32 

is consistent for both identification and verification tasks. Due to the unequal number of training samples for each 33 

task, it’s unfair to compare the error rate across different rows. The within-task and cross-task test results were 34 

obtained in cross-session settings. 35 

As for the permanence across recording sessions in Fig. 7C, the averaged equal error rate for verification 𝑉𝐸𝐸𝑅 36 

increased from 0.16 to 0.31, and the average classification error rate for identification 𝐼𝐸𝑅 increased from 0.30 to 37 
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0.69.  1 

 

Fig. 7. The influence of (A) increasing population sizes, (B) cross-task tests, and (C) cross-session tests on the 

performance degradation of EEG-based biometric systems. These results were obtained on 20 subjects in the 

enrollment set and calibration set. Left: identification results. Right: verification results.  
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 1 

4.2.2 Simulated online analysis 2 

 

Fig. 8. Model evaluation for the combination of different features (PSD, MFCC, SVM) and different classifiers 

(L2 and SVM). The limit of each ax in the radar plot was decided by the minimal value and the maximal value for 

each metric among the six models.  

As illustrated in Fig. 8, 6 performance metrics including (𝐼𝐸𝑅 , 𝑉𝐸𝑅 , 𝑉𝐹𝐴𝑅 , 𝑉𝐹𝑅𝑅 , 𝑇𝑡𝑟𝑎𝑖𝑛 , and 𝑇𝑡𝑒𝑠𝑡 ) were 

displayed on radar charts for the six modes for the combination of feature extraction (PSD, AR, MFCC) and 

classification (L2 and SVM) methods. The smaller area in the radar charts indicates better performance of the 

biometric system. The value of 𝑇𝐸𝑅 , which decides the ranking on the leaderboard for six models, is also 

provided. PSD+L2 provided the best result as 𝑇𝐸𝑅 = 0.278.  

In terms of extracted features, the AR features have the worst performance no matter which classifier was used. 

PSD features have a better or similar performance, as compared with more elaborated features such as MFCC 

across each metric. It is interesting to note that with the threshold determined by the equal error rate (i.e., 𝑉𝐹𝐴𝑅 = 

𝑉𝐹𝑅𝑅) in an independent training set, the performance of MFCC and AR features are very different on the metrics 

of 𝑉𝐹𝐴𝑅  and 𝑉𝐹𝑅𝑅 . Especially, the 𝑉𝐹𝐴𝑅  of AR feature is 0.628  and 0.578  for L2 and SVM, but the 

corresponding 𝑉𝐹𝑅𝑅 is 0.096 and 0.162, exhibited strong instability for AR-based verification system. 

In terms of classifier, the SVM classifier performed a little better than L2 classifier with the PSD and MFCC 

features.  As for the time consumption, since the L2-based classifier has to compare the new input with all points 

in the training set, its evaluation time 𝑇𝑡𝑒𝑠𝑡 is slower than the SVM classifier. 
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4.2.3 Online Submission 1 

For the example submission, we get the score of 0.4039, which indicated the total error rate 𝑇𝐸𝑅 of 59.61% in 2 

leaderboard A. It should be noted that the methods with a better result on the simulated online analysis may not 3 

necessarily directly lead to higher scores in the online submission. That is caused by the different samples used for 4 

training and testing. For the same reason, it is also possible that the score varies from Leaderboard A to Leaderboard 5 

B. 6 

5. Discussion and Conclusion 7 

5.1 Challenges in EEG-based biometrics competition 8 

In the field of EEG-baed biometrics, many studies have mentioned that their major limitation is lacking a database 9 

containing large sample sizes, recorded under different conditions and different sessions (Wang et al., 2020; Chan et 10 

al., 2018; Delpozo-Banos et al., 2018). Based on our proposed M3CV database, we launch the EEG-based biometric 11 

competition. In view of the current development of EEG-based biometric technology, this competition proposes the 12 

following challenges for machine learning algorithms from many aspects: 13 

1. Challenge with large population size: the population size of the testing database is an important indicator of 14 

whether the current EEG-based biometric technology can be practically applied. As illustrated in Fig. 7(A), the 15 

identification error increases greatly with the increase of the population size. The identification task on the 106 16 

population size would be more challenging for the machine learning algorithm. 17 

2. Challenge for cross-session tests: a practical biometric system should be robust to cross-session variability. 18 

However, as illustrated in Fig. 7(C), the machine learning model would easily achieve a good performance in the 19 

within-session test but degraded severely in the cross-session test. Hence, the cross-session test would be one big 20 

challenge in this competition. 21 

3. Challenge for cross-task tests: similar to the cross-session tests, the robustness of the biometric system to the 22 

cross-task variability is also a challenge in this competition. For the real application, the biometric system should 23 

recognize the subject even when they are in different mental states. 24 

4. Challenge for intruders: Whether the biometric system can prevent an attack from intruders outside the 25 

enrollment set is determined by the identification performed on a closed set or an open set (Kumar et al., 2021). 26 

That would lead to very different strategies for the classifier design in the use of machine learning technique  27 

To our best knowledge, no previous study has tested the permanence and robustness of EEG-based biometric features 28 

over 100 subjects in an open-set setting. Hence, the M3CV database can facilitate the development of advanced 29 

machine learning algorithms for EEG-based biometrics. 30 

5.2 From competition to real application 31 

Due to the limitations of the competition conditions, the winner of the competition may still be some distance from 32 

the real application.  33 
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Firstly, the competition needs to have a unique ranking. Hence the score 1 − 𝑇𝐸𝑅 was applied to comprehensively 1 

evaluate the contestant’s performance in the identification and verification task to decide the final winner. However, 2 

the evaluation of a system's performance should consider multiple aspects. On the calibration set, the performance 3 

metrics of 𝐼𝐸𝑅 , 𝑉𝐸𝑅 , 𝑉𝐹𝐴𝑅, , 𝑉𝐹𝑅𝑅 , 𝑇𝑡𝑟𝑎𝑖𝑛 , and 𝑇𝑡𝑒𝑠𝑡  have been proposed for a comprehensive evaluation of the 4 

system. For the submission of each team, the error rate under different conditions can be calculated offline, but the 5 

computation complexity of training and testing is difficult to make a relatively consistent evaluation. Hence, it is 6 

required for the contestants to report the time for training and testing, and their hardware and software environment. 7 

Furthermore, the baseline models provided in the studies are all one-class classifiers (L2 and one-class SVM). If a 8 

new subject is added to the enrollment set, the biometrics system just needs to add the model for the new coming 9 

subject alone. It doesn’t need to retrain the whole classifier model. We believe the multi-class classifier would achieve 10 

better performance in the competition. But one-class classifier would be more practical in the real application. 11 

5.3 Intra- and inter-subject variability 12 

Intra- and inter-subject variability poses a great challenge for the interpretation and decoding of EEG signals (Seghier 13 

and Price, 2018; Wei et al., 2021). Traditional ERP analysis and statistical test methods were typically used to analyze 14 

the group-level commonality of EEG signals, while machine learning techniques are considered to be more powerful 15 

in dealing with intra- and inter-subject variability. The dataset for this competition is not only restricted to the study 16 

of EEG-based biometric algorithms but can also be used for other applications, such as cross-session reliability 17 

analysis of EEG signals from different tasks, and transfer learning in cross-subject and cross-session BCI studies. 18 

Furthermore, the cross-run and cross-trial variability within subject is also a meaninful topic to study. The multi-19 

run EEG recording of resting-state, Transient-state sensory, motor execution also made the M3CV database useful in 20 

these studies. 21 

5.4 Deep learning  22 

Undoubtedly, deep learning is the biggest advance in machine learning in recent years, which has also been applied 23 

in the EEG-based biometrics study (Behrouzi and Hatzinakos, 2022; Wang et al., 2019; Maiorana, 2021b). However, 24 

due to the lack of support from large datasets, the generalizability of deep learning has always been doubtable in this 25 

field. On the other hand, most of the newly proposed ideas of transfer learning are based on the framework of deep 26 

learning. Based on this competition on the M3CV database, it is hoped that some cross-session and cross-task deep 27 

learning methods can emerge. Furthermore, it is also hoped that these methods can not only work well in the field of 28 

EEG-based biometrics but also provide a universal solution in dealing with Intra- and inter-subject variability of the 29 

EEG signals. 30 

5.5 Conclusion  31 

The lack of a large-scale comprehensive EEG database, which contains data recorded from multiple subjects in 32 

multiple sessions and over multiple tasks, limits our understanding of intra- and inter-subject variability and hinders 33 

the development of advanced machine learning algorithms. In this study, we established an M3CV database with 106 34 

subjects, 2 sessions, and 6 tasks to reveal the commonality and variability of cross-subject, cross-session, and cross-35 

task EEG signals. Based on this M3CV dataset, a machine learning competition about EEG-based biometrics was 36 

launched to help this field grow. Except for advancing the development of machine learning algorithms for EEG 37 
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decoding (such as biometrics and BCI), we believe the M3CV database can help researchers gain a deep understanding 1 

of the relationship between different types of EEG signals, such as resting state, motor, sensory-related, or cognitive-2 

related EEG signals. 3 
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