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Abstract 

Cryptic pockets expand the scope of drug discovery by enabling targeting of proteins currently 

considered undruggable because they lack pockets in their ground state structures. However, 

identifying cryptic pockets is labor-intensive and slow. The ability to accurately and rapidly 

predict if and where cryptic pockets are likely to form from a protein structure would greatly 

accelerate the search for druggable pockets. Here, we present PocketMiner, a graph neural 

network trained to predict where pockets are likely to open in molecular dynamics simulations. 

Applying PocketMiner to single structures from a newly-curated dataset of 39 experimentally-

confirmed cryptic pockets demonstrates that it accurately identifies cryptic pockets (ROC-AUC: 

0.87) >1,000-fold faster than existing methods. We apply PocketMiner across the human 

proteome and show that predicted pockets open in simulations, suggesting that over half of 

proteins thought to lack pockets based on available structures are likely to contain cryptic 

pockets, vastly expanding the druggable proteome. 
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Introduction 
 

Protein structural fluctuations often lead to the formation of cryptic pockets1–5, which 
present new druggable sites beyond pockets apparent in experimentally-determined structures. 
From a drug development perspective, targeting these cryptic pockets provides a number of 
compelling opportunities. For example, proteins that lack an obvious pocket in the native, folded 
structure may appear undruggable, but could be targeted via cryptic pockets. Additionally, while 
molecules that target an orthosteric site are obligate inhibitors, molecules that target a cryptic 
pocket can modulate protein function via inhibition or activation6,7. Finally, while orthosteric 
sites are often highly conserved across proteins that need to bind the same ligand, cryptic pockets 
are likely less conserved.8,9 This opens up the possibility of developing molecules that have 
improved specificity.  

While cryptic pockets are alluring drug targets, it remains challenging to find and target 
them intentionally. Most known cryptic pockets were discovered serendipitously by screening 
for inhibitors and solving structures for hits10–12. While this process has unveiled cryptic pockets, 
it does not specifically select for compounds that target cryptic pockets and is both costly and 
labor-intensive. Moreover, the discovery of cryptic pockets through this approach is rare because 
the lack of a priori knowledge of the cryptic pocket structure prohibits the design of a small 
molecule library targeting the pocket. Molecular dynamics simulations are another means to 
identify cryptic pockets. Simulations provide an atomistically-detailed ensemble of structures 
that a protein adopts in solution, which commonly reveals cryptic pockets that can be used as a 
template for drug design13–18. However, molecular dynamics simulations are computationally 
expensive, making it infeasible to screen large numbers of targets for cryptic pockets. 

Because identifying cryptic pockets is resource-intensive, a screening method that 
quickly indicates if a protein is likely to have any cryptic pockets would be extremely valuable. 
During the SARS-CoV-2 pandemic, a large number of experimental structures across numerous 
viral proteins were rapidly solved19. Similarly, recent advances in protein structure prediction 
have made a large number of protein structures available for structure-based drug design20–22. 
While the presence or absence of pockets in ground state experimental structures informs the 
choice of target protein, an algorithm designed to predict which proteins have cryptic pockets 
would also be useful for prioritizing which proteins are most ‘druggable.’ 

Cryptosite is an outstanding example of a supervised machine learning algorithm that 
takes a protein structure as input and predicts ligand-binding cryptic pockets23. Briefly, 
Cryptosite is trained to identify amino acid residues that will transition from an orientation that is 
incompatible with ligand binding to an orientation that has been verified to accommodate a 
ligand based on a set of 84 confirmed cryptic pockets derived from the Protein Databank (PDB). 
Even with this relatively small dataset, Cryptosite achieves good accuracy classifying whether or 
not an amino acid residue will participate in a cryptic pocket (ROC-AUC = 0.83). Achieving this 
performance requires ~1 day to run for a single protein because one of CryptoSite’s input 
features is simulation data, which it needs to generate on-the-fly for each prediction. The 
algorithm takes a performance hit without using simulation data as a feature (ROC-AUC = 0.74). 
A faster algorithm that achieves the same or better accuracy would be of tremendous value for 
prioritizing potential drug targets based on their likelihood of having useful cryptic pockets. 

We hypothesized that an algorithm trained to predict the probability a pocket forms 
within a fixed amount of simulation time would accurately identify cryptic pockets in ligand-free 
experimental structures. Specifically, we propose using simulations to evaluate if each residue in 
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a protein structure has the ability to rearrange its orientation to participate in a cryptic pocket as 
part of its thermal fluctuations. In contrast to Cryptosite, which relies on a small number of 
examples where a ligand is known to bind in a cryptic site, the proposed training scheme does 
not necessitate examples of ligands bound in cryptic pockets. Instead, models can be trained on 
structural ensembles (e.g., from molecular simulations) that contain examples of pocket opening 
events. One benefit of the proposed training scheme is that at least an order of magnitude more 
training examples can be obtained to train models (e.g., thousands of cryptic pocket opening 
events can be obtained from simulations). 

In the current study, we trained a graph neural network to predict where pockets are 
likely to open in molecular dynamics simulations (Fig. 1) and then tested whether it can predict 
the locations of cryptic pockets from single, experimentally-derived structures. Specifically, we 
trained a model to take a structure of a protein and forecast whether or not each residue will 
participate in the formation of a cryptic pocket over the course of a short simulation initiated 
from that structure. Our training dataset consists of a previous molecular dynamics simulations 
study that identified cryptic pockets across most proteins in the SARS-CoV-2 proteome14, 
simulations from a previous study of Ebolavirus VP3524, and a set of 16 proteins with known 
ligand-binding cryptic pockets that we simulated for this study. To test the ability of 
PocketMiner to predict the locations of ligand-binding cryptic pockets from single structures, we 
curated a dataset of 39 examples of cryptic pockets from the PDB. For each of these systems, 
there is a structure of the apo protein where the cryptic pocket is absent and a holo structure with 
a ligand bound in the cryptic pocket. We analyzed this dataset to learn a taxonomy of cryptic 
pockets and tested PocketMiner’s ability to identify the different types of cryptic pockets. 
Finally, we applied PocketMiner to the entire human proteome and highlighted new cryptic 
pockets we propose to be good drug targets. 
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Fig. 1: PocketMiner uses graph neural networks to predict cryptic pocket formation. A) 
Proteins exist in an equilibrium between different structures, including experimentally-derived 
structures that lack cryptic pockets (left, PDB ID 1JWP)25 and those with open cryptic pockets 
(right, PDB ID 1PZO)11. Residues lining the cryptic pocket are shown in yellow sticks. B) 
PocketMiner relies on a series of message passing layers to exchange information between 
residues and to generate encodings that can predict sites of cryptic pocket formation. On the left, 
we show the structural features that are fed into an input graph following transformations by 
Geometric Vector Perceptron (GVP) layers. Node features include backbone dihedral angles as 
well as forward and reverse unit vectors (for a full list see Methods). Edge features include a 
radial basis encoding of the distance between residues and a unit vector between their alpha-
carbons. In the middle, we show how the input graph is transformed by messaging passing layers 
which influence a residue’s embedding based on its neighbors’ node embeddings as well as its 
edge embeddings. On the right, we show that the node embeddings from the output graph are 
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used to make predictions of cryptic pocket likelihood following another GVP transformation. 
Finally, at the bottom right, we show an idealized prediction for the protein shown in A. 
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Results 
 
Known cryptic pockets open rapidly in simulations 
 

There have been few studies which systematically evaluate whether molecular dynamics 
(MD) simulations recapitulate known cryptic pockets. In previous work, MD simulations 
captured opening at known cryptic sites in TEM β-lactamase26, Interleukin-227, and several other 
protein drug targets28,29. MD simulations have also identified novel cryptic pockets that were 
experimentally confirmed in thiol labeling experiments24,30. However, these studies focused on a 
narrow set of proteins or did not evaluate wheter pocket formation was localized to known 
ligand-binding sites. Given the recent interest in using MD simulations for cryptic pocket 
discovery, there is a need for a systematic evaluation of how well MD simulations recapitulate 
known cryptic pockets. Such a study could dually generate data to train a machine learning 
model to identify the locations of cryptic pocket formation. 

Hence, we conducted unbiased adaptive sampling MD simulations of 16 proteins known 
to form cryptic pockets from apo, or ligand-free, starting structures. Eleven of the pairs have 
ligand-binding residues which were closer together in the apo structure than in the holo structure 
(i.e. they required an opening motion to form the pocket). Multiple different types of motion are 
represented, including three cases of secondary structure change. For each protein, we ran 2 μs of 
adaptive sampling simulations using the Fluctuation Amplication of Specific Traits (FAST) 
algorithm31. Specifically, we launched 10 parallel simulations from the apo structure, then 
constructed a Markov state model (MSM)32,33 of the conformational ensemble and prioritized 
structures for the next round of simulations using a ranking function that balances exploitation 
(i.e. prioritizing states with large pockets) with exploration. This procedure was repeated four 
times to generate 5 ‘swarms’ of simulations, each consisting of 400 ns of aggregate simulation 
(10 simulations 40 ns in length). 

To our surprise, we find that the large majority of cryptic pockets open in just 10 parallel 
simulations of 40 nanoseconds (Fig. 2). Pockets were considered open if the pocket volume of a 
simulated structure reached or exceeded the holo crystal structure pocket volume (see Methods). 
One of the proteins had a cryptic volume that was larger in apo than in holo and was thus 
eliminated from further analysis.Thirteen out of the remaining 15 proteins open in the first 10 
simulations of 40 nanoseconds. One other, elongation factor TU, opens after additional rounds of 
adaptive sampling (five rounds of 10 parallel 40 ns simulations). Only one protein, Niemann-
Pick C2 Protein, remains closed even after the 5 rounds of adaptive sampling simulations. We 
hypothesize that cryptic pocket opening is not observed for this protein because the ligand that 
binds in the cryptic pocket is highly hydrophobic.34 Encouragingly, we also find that cryptic 
pockets that form in simulation are mostly localized to known ligand-binding cryptic sites with 
the largest pocket volume changes occurring at ligand-binding sites (Fig. S1, table S3). 
Altogether, the rapid pocket opening we observe suggests that for most smaller proteins a modest 
amount of simulation data may be enough to discover cryptic pockets. Additionally, this finding 
suggests that machine learning models trained to predict cryptic pocket formation over small 
simulation time windows (i.e. 40 ns) would also be able to identify cryptic sites in ligand-free 
experimental structures. 
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Fig. 2: Cryptic pockets rapidly open in simulations started from closed apo structures.  
A) Structural overlay of the GluR2 subunit of the AMPA receptor protein in its apo (grey, PDB: 
1MY035) and holo (blue, PDB: 1N0T36) conformations reveals that a loop and helix must shift to 
form a cryptic pocket. B) A structure from an MD simulation started from the closed apo 
conformation with a pocket at the binding site with a volume exceeding that of the holo binding 
site pocket (orange). C) MSM-weighted violin plots of cryptic pocket volume in simulations of 
the GluR2 subunit of the AMPA receptor show that the ligand binding site exceeds the volume 
seen in the holo conformation within only 10 parallel simulations of 40 ns each. Cryptic pocket 
volume was calculated by assigning each LIGSITE 37 grid point to the single nearest residue and 
summing up the volumes assigned to all cryptic pocket residues (see Methods). The grey ‘X’ 
indicates the apo binding site cryptic pocket volume, the blue line indicates the holo volume, and 
the black dot indicates the MSM-weighted mean volume of all frames for each round of 
simulation. D) MSM-weighed distributions of cryptic pocket volumes from simulation of 15 
different proteins show that even 10 short simulations are usually sufficient to reach the cryptic 
pocket volume of the holo structure. The pocket volume distribution as a fraction of the holo 
volume for 10 short simulations (400 ns of cumulative simulation) is shown in orange while the 
distribution for five rounds of adaptive sampling (2 microseconds of sampling) is shown in 
white. The grey ‘X’ indicates the apo cyptic pocket volume as a fraction of holo, and the 
downward-pointing and upward-pointing triangles represent the MSM-weighted mean volume 
after 10 simulations (1 round) or 5 rounds of adaptive sampling respectively. The maximum 
cryptic pocket volumes as a fraction of holo reached in simulation are shown with tick marks or 
given numerically to the right of the plot if they lie outside the plot’s range. 
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Graph neural networks accurately predict the time evolution of cryptic pockets in 
simulation 
 

Given a starting structure, we reasoned that one could predict where cryptic pockets will 
form in that structure in the course of an MD simulation. Though MD simulations are stochastic, 
and no two simulations launched from the same structure will follow the exact same time 
evolution, we reasoned that sufficiently long simulations would sample similar pocket opening 
events. For example, a residue that is loosely packed with few specific interactions with its 
neighbors might move to create a pocket consistently across multiple simulations. Conversely, a 
residue that is tightly packed with strong interactions with its neighbors would be more likely to 
remain locked in its initial position across independent simulations. 

To confirm our intuition, we evaluated the consistency of pocket openings across 
independent simulations of known cryptic pocket openings. We calculated pocket volumes using 
the LIGSITE algorithm37 for each structure visited in a simulation (2,000 structures per 40 ns 
simulation) and assigned pocket volumes to nearby residues. Specifically, we determined how 
many LIGSITE pocket grid points are within 5 Angstroms of each residue. We then binarized 
residues into those that were part of a pocket opening event and those that did not form pockets. 
A residue was considered a positive example if at any point in simulation the nearby pocket 
volume determined by the LIGSITE algorithm increased by more than 40 Å!relative to its 
assigned pocket volume in the starting structure (see Methods). We find that independent 40 ns 
simulations launched from the same starting structure produced similar labels, with the vast 
majority of residues either always opening or always remaining closed (Fig. S2). When we 
visually inspect a protein with a known cryptic pocket opening like TEM 1 β-lactamase, we 
observe opening in similar hotspots across simulations (Fig. S1). 

Given that independent simulations converge to similar labels, we set out to develop an 
algorithm that predicts sites of cryptic pocket opening events in simulation. Specifically, we 
combined our simulation data of known cryptic pocket openings with additional adaptive 
sampling simulations of SARS-CoV-2 proteins14. This dataset included 37 proteins and 2,400 
independent MD simulations at least 40 ns in length. We generated labels for each residue in 
each 40 ns window’s starting structure based on whether that residue participates in a cryptic 
pocket at any point in the next 40 ns of simulation (Fig. 3A). Altogether, this dataset included 
11,128 unique examples. We split the 37 proteins into 5 folds and trained 5 different models with 
3 folds used for training, another fold for model validation, and the final fold for model testing. 
We then used this data to train a graph neural network based on the geometric vector perceptron 
(GVP-GNN)38 as well as a 3D convolutional neural network (3D-CNN)39. Both these 
architectures have demonstrated robust performance on other protein structure prediction tasks. 

We find that both the GVP-GNN and the 3D-CNN learn to accurately classify whether a 
given residue will form a cryptic pocket in simulation. We trained models across numerous class 
balancing schemes because ~10% of all residues were labeled as positives in our labeling scheme 
(protein-average, see Table S1). For each class balancing scheme, we then evaluated each of the 
5 independent models on a held-out validation fold to evaluate how well the models predict 
cryptic pocket formation in proteins that the network has not seen. Across the 5 folds, the best 
GVP-GNN model achieves an average ROC-AUC of 0.83 and an average PR-AUC of 0.44 (Fig. 
4C-D). The 3D-CNN achieves a comparable but modestly worse performance (ROC-AUC: 0.79; 
PR-AUC: 0.41). At high levels of recall (0.6-0.8), the GVP-GNN makes fewer false positive 
predictions, as demonstrated by the higher precision on the right side of the precision-recall 
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curve. As a result, we decided to proceed with the GVP-GNN architecture for further prediction 
tasks. Overall, these findings suggest that it may be possible to identify sites where cryptic 
pockets form without computing intermediate states (e.g. with MD simulations) when given a 
structure of the native, folded state of a protein. 
 

 
Fig. 3: Graph neural networks accurately forecast the sites of cryptic pocket formation in 
new simulations. A) We used MD simulations to generate training labels by tracking where 
cryptic pockets (shown in red) form. Residues were labeled as positive examples if a cryptic 
pocket formed nearby that residue at any point in simulation (shown in cyan). As an illustration, 
we show the TEM β-lactamase protein, which forms cryptic pockets at two separate sites (i.e the 
horn pocket and the omega loop pocket) in a single MD simulation. Each opening event marks 
the nearby residues as positive examples, so the training labels for this window reflect both 
opening events with residues around both pockets marked as positive examples. The starting 
structure can then be fed to a graph neural network that predicts where cryptic pockets will form. 
B) Receiver operating curves across 5 different folds demonstrate that a graph neural network 
trained with simulation starting structures and labels derived from simulation intermediates 
predicts which residues will form cryptic pockets in simulation (mean ROC-AUC of 0.83). The 
shaded region represents variation in performance across folds with the top of the shaded region 
tracing the curve with the highest AUC and the bottom of the shaded region tracing the curve 
with the lowest AUC. GVP-GNN refers to the Geometric Vector Perceptron-based Graph Neural 
Network; 3D-CNN refers to the 3D Convolutional Neural Network. C) Precision-recall curves 
across 5 different folds demonstrate robust performance on the positive class (i.e. residues which 
participate in cryptic pockets). Shading represents variation across folds (worst to best 
performance across 5 folds).  
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Curated dataset of 39 cryptic pockets reveals forward and reverse motions 
 
To evaluate if our models could detect sites of cryptic pocket formation from 

experimentally validated ligand-binding cryptic pockets, we first curated a novel dataset of 
cryptic pockets. Cimermancic et. al.23 previously identified 93 apo-holo protein structure pairs 
containing cryptic pockets, which will be referred to here as the Cryptosite set. While useful, the 
Cryptosite set contains relatively few proteins in which large conformational changes are 
necessary for pocket formation40 (Fig. S3). Furthermore, the PDB has roughly doubled in size 
since the version used to generate the Cryptosite set was downloaded, and Sun et. al. observed 
that some proteins in the Cryptosite set had additional apo structures in which the pocket was 
open41. We reasoned that curating a novel cryptic pocket dataset would improve our 
understanding of cryptic pockets and provide a test set for our model that has increased coverage 
of the large and diverse space of cryptic pocket structures and motions. Thus, we filtered the 
Protein Data Bank (PDB) to identify 38 apo-holo protein structure pairs containing 39 cryptic 
pockets with large root mean square deviations between apo and holo (see Methods, Fig. S3). 

The resulting collection of cryptic pockets, called the PocketMiner dataset, includes 
pockets formed by multiple types of conformational changes. Interestingly, we notice that many 
pockets form via closing motions, rather than the canonical pocket opening motion. For these 
“reverse” pockets, structural elements start far apart, such that there is little or no pocket present 
in the apo structure, but come together to form a lid or walls, creating a cavity where a ligand 
can bind in holo (Fig. 4D). Most pockets are formed primarily by a single type of motion, 
although in several cases multiple types contribute significantly. Across forward and reverse 
pockets, we observe four common structural rearrangements. First, loops can move apart to 
create space for an incoming ligand or clamp down to create a wall or lid over a ligand (Fig. 4A). 
Second, secondary structural elements can shift via a translation and/or rotation (Fig. 4B). Third, 
secondary structural elements can change to, or form from, a loop (Fig. 4C). Fourth, interdomain 
motions can create space for ligands to bind (Fig. 4D). Thus, our cryptic pocket dataset captures 
a diverse set of conformational rearrangements and represents a challenging benchmark for 
evaluating machine learning models. 
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Fig. 4: PocketMiner’s validation dataset contains diverse types of conformational changes 
that lead to cryptic pocket formation. Apo structures are shown in gray, holo structures are 
shown in blue, and ligands are shown in magenta. The red arrows highlight the main 
conformational change occurring between apo and holo. A) Cryptic pockets can arise as a result 
of loop motions like those seen in dihydrofolate reductase (apo PDB: 2W9T42, holo PDB: 
2W9S42); B) secondary structure element motions such as those seen in lipoprotein LpqN (apo 
PDB: 6E5D43, holo PDB: 6E5F43); C) secondary structure changes like those observed in 
calcium- and integrin-binding protein 1 (apo PDB: 1Y1A chain A44, holo PDB: 1Y1A chain B); 
D) or interdomain motions as in nopaline-binding periplasmic protein (apo PDB: 4P0I45, holo 
PDB: 5OTA46). We refer to examples like those shown in A-C as forward pockets because the 
residues adjacent to the ligand in the holo structure are farther from one another than they are in 
the apo structure. We refer to examples like that in D as reverse pockets because the residues 
adjacent to the ligand in holo are closer together than they are in apo. 
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PocketMiner accurately predicts cryptic pockets from ligand-free crystal structures 
 

Given that the GVP-GNN accurately predicts where cryptic pockets will form in 
simulation, we wondered if this network could be used to predict the sites of cryptic pocket 
formation in experimental structures. If known cryptic sites form quickly in simulations, then a 
GVP-GNN that learns to predict where pocket formation occurs in simulation might reasonably 
identify ligand-binding cryptic sites in experimental structures. As a result, we took all proteins 
from our previous training set and generated training labels based on local changes in LIGSITE 
pocket volume and fpocket druggability scores47 (see Methods). We tested fpocket labeling 
schemes since druggability scores consider not only the geometry of a pocket but also the 
chemical environment of a pocket. We then trained GVP-GNNs using a number of different 
labeling schemes and evaluated if they could distinguish residues at cryptic sites from residues 
that do not form cryptic pockets. 

To evaluate if our model is able to distinguish sites that do not form cryptic pockets, we 
curated a dataset of negative examples consisting of rigid proteins and other proteins that were 
the targets of extensive drug screening. In previous work, negative examples were defined as any 
residue not known to participate in a ligand-binding cryptic pocket23. However, many of these 
sites may have the potential to form ligand-binding cryptic pockets. To increase our confidence 
in our negative examples, we only used residues from proteins known to be extremely rigid or 
extremely stable or residues from proteins that have been put through extensive drug screens. 
Our dataset of hyper rigid proteins included three designed microproteins and a handful of 
proteins with unusually rigid folds or crystal-like properties (see Methods). We ran MD 
simulations of these proteins to verify that they do not form cryptic pockets and removed any 
residues that were near small pockets from the model evaluation dataset (see Methods). To 
supplement this relatively small number of negative examples for model evaluation, we also 
identified proteins that had been the subjects of extensive drug screens and pulled out residues 
where ligands did not bind (Fig. S4). Our reasoning was that sites where ligands did not bind 
would be highly unlikely to form cryptic pockets given that these proteins had been co-
crystallized or soaked with a large number of ligands. To build additional confidence in our 
negative labels, we also ran simulations of these proteins and removed any residues that were the 
sites of cryptic pocket opening in simulation (Fig. S5). Thus, we assembled a collection of 
negative examples with both experimental and simulation evidence to support our labels. 

We find that our final model, referred to as PocketMiner, achieves very good 
performance at discriminating residues that form cryptic pockets from those that do not (ROC 
AUC: 0.87). To test PocketMiner, we made predictions on a total of 24 apo structures that form 
ligand-binding cryptic pockets, 4 hyper-rigid proteins, and 7 proteins that were the subjects of 
extensive ligand screening. All of the proteins in the test set had less than 55% sequence identity 
with proteins in the training set (Fig. S6, Table S2). In total, there were 563 residues that form 
cryptic pockets and 1,283 residues that do not form cryptic pockets in our test set. Among apo 
structures that form cryptic pockets, our model predicts a high likelihood of cryptic pocket 
formation at the experimental cryptic site (Fig. 5A, S7). We achieve robust performance across a 
number of classes of cryptic pocket opening (Fig. 5C, S7, Table S6). Conversely, our model 
predicts a low probability of cryptic pocket formation for all the hyper-rigid proteins and 
correctly assigns low predictions to regions that are unlikely to form cryptic pockets from 
proteins with extensive ligand binding (Fig. 5B, S7). When we compared the performance of our 
model against CryptoSite, we find that the two methods give very similar performance, with 
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PocketMiner providing a small advantage (ROC-AUC: 0.87 for PocketMiner vs. 0.85 for 
CryptoSite). In particular, we find that PocketMiner predicts fewer false positives among rigid 
proteins and sites that do not bind ligands, suggesting that PocketMiner may be a more useful 
screening tool (Table S5). Moreover, we note that while CryptoSite must run simulations that 
often take several hours to generate a prediction, our model makes predictions in under a second 
(>1,000x improvement in prediction time). 
 
 

 
Fig. 5: The PocketMiner graph neural network accurately detects sites of cryptic pocket 
formation in experimental structures. A) PocketMiner predicts a high likelihood of cryptic 
pocket formation at the site of ligand binding. The ligand (cyan) from the aligned holo structure 
is shown on the apo structure to highlight the steric clash between the ligand and a loop that must 
move to create the holo binding site. Though PocketMiner only uses the apo structure to generate 
a prediction (blue indicates low probabilities of cryptic pocket formation while red indicates high 
probabilities), the predicted labels are also shown on the holo structure to highlight that high 
predicted labels cluster near the ligand binding site. B) PocketMiner correctly predicts that the 
probability of pocket formation is low for a highly rigid helical bundle (PDB: 4TQL48) that did 
not form large cryptic pockets in simulation. C) Receiver Operating Curve for residue-level 
cryptic site detection shows that PocketMiner achieves a better performance than CryptoSite 
despite running >1,000x faster. D) A precision-recall curve highlights that at high levels of recall 
(0.6-0.8) PocketMiner predicts fewer false positives. 
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PocketMiner predicts thousands of novel cryptic pockets across the human proteome 
 

Given its ability to accurately and rapidly predict sites of cryptic pockets, PocketMiner 
can be used to search for cryptic pockets across large numbers of protein structures. Thanks to 
decades of effort in structural biology and the high accuracy of protein structure prediction 
achieved by AlphaFold 249, there are proposed protein structures for all genes in a standard 
human genome. We hypothesized that PocketMiner could help uncover new opportunities for 
designing drugs against human proteins that lack clear drug binding pockets in their native, 
folded structures. Even in cases where there already exists a clear binding pocket, PocketMiner 
may identify cryptic pockets in other regions of the protein that could exert allosteric control 
over the protein’s function or be used for the design of drugs with better specificity. 

To identify cryptic pockets across the human proteome, we applied PocketMiner to over 
10,000 human genes. For each gene, we prioritized using high resolution, experimentally 
determined structures, but used the AlphaFold predicted structure as an alternative when there 
were no available experimental structures. Finally, we discarded structures that had long 
stretches of predicted disorder (see Methods). We binned structures into three categories: 
traditionally druggable, undruggable, and proteins with predicted cryptic pocket(s). Each 
structure was binned based on calculating its largest LIGSITE pocket volume and its highest 
PocketMiner prediction (see Methods). Structures with high LIGSITE pocket volumes were 
labeled “traditionally druggable.” Those with both low LIGSITE pocket volumes and low 
PocketMiner predictions were labeled “undruggable” while structures with low LIGSITE pocket 
volumes but high PocketMiner predictions were labeled “druggable via cryptic pockets” (see 
Methods). 

We find that several thousand proteins have predicted cryptic pockets despite lacking 
pockets in their ground state structures (29.4% of proteins in our set, Fig. 6A), expanding the 
fraction of potentially druggable proteins among proteins with single structured domains to over 
80%. This result stands in contrast to previous studies that have proposed that as much as 90% of 
human proteins are undruggable.50 A smaller number of single structured domain proteins 
remain apparently undruggable due to a lack of pockets (18.5%) according to our analysis. The 
large number of predicted cryptic pockets suggests that it may be fruitful to run a drug screen on 
a protein even if there are no obvious small molecule binding sites present in its native, folded 
structure. Ideally, one would use PocketMiner on some group of proteins of therapeutic interest, 
identify which ones are likely to have cryptic pockets, then simulate the structural dynamics of 
that protein to identify druggable structures that are adopted in its structural ensemble. 
PocketMiner’s residue level pocket site predictions could inform the use of adaptive or enhanced 
sampling methods targeting the region of a protein predicted to contain a cryptic pocket. 

To demonstrate the utility of PocketMiner, we used it to help identify cryptic pockets in 
proteins involved in the Jak/Stat pathway implicated in a number of cancers.51 First, we applied 
PocketMiner to all proteins in the KEGG52 pathway called “Pathways in Cancer” (KEGG ID: 
05200). We identified PIM2 as having a high cryptic pocket prediction. PIM2 is a 
serine/threonine kinase proto-oncogene with a known orthosteric ligand-binding site that has 
been the target of drug screens.53 PocketMiner predicts a cryptic pocket “above” the active site 
that may be targeted for the design of more specific compounds (Fig. 6D). We simulated PIM2 
and found that a cryptic pocket does form in the predicted region (Fig. 6E). Importantly, this 
pocket has not been previously targeted by a small molecule, but the structures derived from 
simulation could help lead a drug development campaign to do so. Across the KEGG pathway, 
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there were several other proteins, such as WNT2, which lack pockets in their ground state 
structures but have high cryptic pocket predictions. PocketMiner predicts that WNT2 has cryptic 
pockets, and our simulations of this protein captured the formation of a large pocket at the 
predicted site (Fig. S8). Given that WNT2 lacks any experimental structures, this suggests that 
applying PocketMiner to AlphaFold structures is a viable strategy for expanding the set of 
druggable proteins. 
 

 
Fig. 6. Applying PocketMiner across the human proteome reveals thousands of new cryptic 
pockets. A) Though nearly half of proteins lack a pocket in their native, folded state, the 
majority of these proteins are predicted to have a cryptic pocket. Pie chart shows the number of 
human proteins containing pockets in their native structures in wheat; proteins deemed 
undruggable (i.e. low cryptic pocket predictions and no pockets in their native structures) in 
gray; and proteins that lack pockets in their native structures but are likely to form cryptic 
pocket(s) in red. B) Schematic showing proteins involved in the cancer-related Jak/Stat signaling 
pathway. C) The crystal structure of the PIM2 kinase contains an orthosteric binding site but 
does not reveal any allosteric pockets. D) PocketMiner predicts a cryptic pocket at an allosteric 
site. E) Simulations recapitulate a cryptic pocket predicted by PocketMiner. In simulations, a 
loop peels back to reveal a cryptic pocket (shown in cyan) at the site pinpointed by PocketMiner. 
The simulated PIM2 structure with a cryptic pocket (orange) is overlaid on the apo PIM2 
structure (gray). 
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Discussion 
 
We have introduced PocketMiner, a graph neural network for predicting sites of cryptic 

pockets from folded protein structures. Previous work demonstrated that ligand-binding cryptic 
pockets could be predicted with reasonable accuracy by training a machine learning algorithm on 
known examples in the PDB.23 One drawback of the previous approach is that the prediction is 
slow to compute since it requires molecular simulations to be computed as an input feature to the 
algorithm. We hypothesized that we could develop a faster and more accurate algorithm by 
training a machine learning algorithm on simulation data containing cryptic pocket opening 
events rather than on proteins that are known to have ligand-binding cryptic sites. To test this 
hypothesis, we trained PocketMiner to predict which residues will form pockets over 2,400 
simulations across 35 proteins. This approach led to a model with improved performance (0.87 
vs. 0.85) and speed (>1,000 fold speedup) when compared to Cryptosite after being evaluated 
against a ground truth set of examples where a structure exists with a ligand bound in a cryptic 
pocket. Notably, PocketMiner has improved accuracy despite the training data containing many 
pockets without known ligands. This suggests that identifying sites where a protein “breathes” in 
a manner such that a pocket forms is a good proxy for identifying where ligands may bind. 

The current work also provides information about the effectiveness of molecular 
simulation for identifying cryptic pockets. A number of studies have detailed the discovery of 
cryptic pockets using molecular simulation13–18. In this work, we systematically evaluated how 
well cryptic pockets are identified by simulation across a large set of known cryptic pockets. To 
our surprise, we found that most known ligand-binding cryptic pockets can be identified with 
just 400 ns of aggregate, unbiased simulation (Fig. 2). Notably, the simulations accurately 
identify known cryptic pockets without numerous false positives (Fig. S1 and Table S3). Where 
PocketMiner can be used to identify if a protein has a cryptic pocket, simulations can then be 
used to sample structural configurations with the pocket open, which enables structure-based 
drug design. Given that this usuallly requires only a modest ~400 ns of sampling, this process 
should be accessible to a wide variety of researchers. 

To demonstrate the utility of PocketMiner we applied it across the human genome to 
identify new cryptic pockets in human proteins. We find over half of the proteins thought to lack 
pockets are predicted to harbor a cryptic pocket that could render them druggable. Therefore, 
proteins without obvious pockets in their folded structure should not be overlooked as drug 
targets. To this point, we highlight WNT2, a protein in the Jak/Stat signaling pathway that plays a 
crucial role in tumorigenesis, lacks an obvious pocket in its folded structure, and is predicted to 
form a cryptic pocket. Additionally, PocketMiner predicts a novel cryptic pocket in PIM2, a 
kinase implicated in multiple cancers. In both cases, we used molecular dynamics simulations to 
verify that those cryptic pockets form (Fig. 6). 

With our results indicating that PocketMiner can identify sites of cryptic pocket 
formation and that simulations can sample open structural states, we propose a pipeline for 
systematically targeting cryptic pockets. Given a set of proteins implicated in a disease (e.g., 
SARS-Cov-2 proteome), first apply PocketMiner to these proteins to learn which targets are 
likely to form cryptic pockets. Then, run MD simulations of those proteins with high 
PocketMiner scores to sample open structural states. One could even use adaptive sampling to 
preferentially sample opening events at the site(s) of predicted pockets. These states can be used 
as templates for structure-based drug design (e.g., molecular docking) to find small molecules 
that bind at the cryptic pocket. Finally, these hits can be validated with experimentally 
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determined structures or binding assays. Thus, PocketMiner has the potential to be an 
indispensable tool in the computational drug design pipeline. 
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Methods: 

Molecular Dynamics Simulations 

System preparation 

The structures of protein chains selected for simulation were downloaded from RCSB PDB.54 
Structures were loaded into PyMOL 55 and only the protein chain was saved to generate the 
simulation input structure. Unresolved internal loops were modeled using SWISS-MODEL56, 
with the available crystal structure as a template and the FASTA sequence from the same RCSB 
PDB entry as the target sequence. Unresolved terminal regions were not modeled. 

The structures of protein chains selected for simulation were downloaded from RCSB PDB.57 
Structures were loaded into PyMOL 55 and only the polypeptide chain was saved to generate the 
simulation input structure. Unresolved internal loops were modeled using SWISS-MODEL58, 
with the available crystal structure as a template and the FASTA sequence from the same RCSB 
PDB entry as the target sequence. Unresolved terminal regions were not modeled. 

GROMACS (Gromacs 2020.1)59 was used to prepare all simulations included in this study. The 
protein topology was prepared with Amber0360. Virtual sites61 were used to allow for a 4 fs 
timestep during production MD. It was solvated in a rhombic dodecahedral box of TIP3P water62 
with a minimum distance of 1 nm between the protein and the edges of the box. Na+ and Cl- ions 
were added to neutralize the net charge of the system and achieve a salt concentration of 0.1 
mol/liter.  

The protein’s potential energy was minimized using the steepest descents algorithm with an 
initial step size of 0.01 nm. Minimization ran until the maximum force fell below 100 
kJ/(mol*nm) or for 500 steps. 

The protein was equilibrated for 0.1 ns with a 2 fs time step. All bonds were constrained using 
the LINCS algorithm.63 The neighbor list used a Verlet cutoff scheme and a 1.1 nm cutoff radius. 
A cutoff of 0.9 nm was used for Coulomb and van der Waals interactions. Long-range 
interactions were treated using the particle mesh Ewald method64 with a Fourier spacing of 0.12 
nm. The velocity-rescaling thermostat65 was used with the temperature set to 300K. 

Molecular dynamics simulations 

GROMACS (Gromacs 2020.1 and Gromacs 2021.2) was used to simulate all proteins in this 
study. A 4 fs timestep was used. The leap-frog algorithm was used for integrating Newton’s 
equations of motion. All covalent bonds involving hydrogen were constrained using LINCS63. A 
cutoff of 0.9 nm was used for Coulomb and van der Waals interactions. Long range interactions 
were treated using the particle mesh Ewald method64 with a Fourier spacing of 0.12 nm. The 
velocity-rescaling thermostat65 was used to maintain the system at 310K and the Parinello-
Rahman barostat66 was used to maintain the system at 1 bar of pressure. 
 
Adaptive sampling protocols 

Adaptive sampling simulations were performed using the FAST algorithm67. FAST takes a 
single starting structure and an order parameter and uses multiple rounds of parallel unbiased 
molecular dynamics simulations to search for conformations that maximize or minimize the 
order parameter. The first round of FAST consists of n parallel trajectories started from a single 
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structure. At the end of each round of FAST, the simulation trajectory frames from all FAST 
trajectories run thus far are clustered by RMSD and the cluster centers are ranked by the order 
parameter. The top n cluster centers are then used to start n parallel trajectories for the next round 
of FAST. 

The equilibrated crystal structure of each protein was used as the FAST starting structure in this 
study. As our ability to generate accurate training labels from simulation depended on the ability 
of our simulations to sample cryptic pocket opening and we needed an order parameter not 
dependent on a priori knowledge of pocket location, we used total LIGSITE68 pocket volume as 
our order parameter. We clustered using the k-centers algorithm and RMSD between all 
backbone α-carbons as a distance metric. For each simulation, we determined a cluster radius 
that resulted in 100-300 clusters and used this same cluster radius for additional rounds of 
adaptive sampling. We performed either 3, 5, or 7 rounds of adaptive sampling depending on the 
simulation. For a full list of simulations that were conducted as part of this study, please 
reference Supplementary Table 4. This study also used pre-existing FAST simulation data from 
multiple sources, not all of which had used the same FAST parameters69,70. 

Network architectures 
 
Geometric vector perceptron-based graph neural networks (GVP-GNNs) 
 
The PocketMiner is an equivariant graph neural network derived from previous work done by 
Jing et. al.71 This geometric vector perceptron-based graph neural network (GVP-GNN) was 
originally designed to learn protein-level representations. In our work, we adapt this model to 
learn residue-level representations so we can infer each residue’s probability of participating in a 
cryptic pocket. 
 
The GVP-GNN learns a representation of a residue’s chemical and topological environment 
through an information exchange between neighboring residues. Specifically, the input to the 
network includes node features, which describe a residue’s properties, and edge features, which 
describe relationships between residues. The node features include the following: 
 

• Scalar features {sin, cos} ◦ {φ, ψ, ω}, where φ, ψ, ω are the dihedral angles computed 
from Ci−1, Ni, Cαi, Ci, and Ni+1. 
• The unit vector in the imputed direction of Cβi − Cαi. This is computed by assuming 
tetrahedral geometry and normalizing. 
• Forward and reverse unit vectors . 
• A one-hot representation of amino acid identity. 

 
The edge features, which are computed for the nearest 30 neighbors of a residue of interest, 
include the following: 
 

• The unit vector in the direction of Cαj − Cαi.  
• The encoding of the distance ||Cαj − Cαi||2 in terms of Gaussian radial basis functions.  
• A sinusoidal encoding of j − i, representing distance along the backbone71. 
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Here, we will present an illustrative description of how the network exchanges information 
between neighboring residues to learn a representation for a residue. We refer the reader to the 
original work for a mathematically precise description. During each graph propagation step, 
residue i’s representation is updated based on the properties of its 30 nearest neighbors and the 
spatial and sequence relationship between residue i and each of those neighbors. The neighbor’s 
node features and the edge features between residue i and the neighbor are concatenated such 
that for a single residue i, the network receives 30 vectors. The network transforms these vectors 
through a “geometric vector perceptron” (see original paper) and then takes the average of the 30 
output vectors and adds that to a representation of residue i's self, based on its node features, to 
get an updated representation of residue i. Simultaneously, this happens for all residues in the 
protein. Residue i (and all others) go through this update procedure n times. The consequence of 
the iterative updates is that residue i’s representation is implicitly affected by its neighbor’s 
neighbors (and so on) because residue i's representation is computed based on its neighbors’ 
representations, which are in turn affected by their own neighbors. Ultimately, each residue gets 
its own representation that accounts for the topology and chemical environment across the whole 
protein.  
 
We trained GVP-GNN models using the architecture described above with the following 
hyperparameters: 
 

• Structural feature node dimensions: 8 vector dimensions, 50 scalar dimensions 
• Structural feature edge dimensions: 1 vector dimension, 32 scalar dimensions 
• GVP hidden dimensions: 16 vector dimensions, 100 scalar dimensions 
• Encoding layers: 4 
• Neighbor list for graph propagation: 30 
• Dropout rate: 0.1 

 
With minor exceptions, these hyperparameters match those used in the Model Quality 
Assessment Model in Jing et. al. We tuned these hyperparameters using the optuna software 
package72 but found very little sensitivity to the choice of these hyperparameters. 
 
3D Convolutional Neural Networks (3D-CNNs) 
 
We also tested the ability of a 3D convolutional neural network to predict cryptic pocket opening 
in simulations. The 3D CNN model we trained is similar to the model from Torng et al. 201973, 
with three 3D convolutional layers with filters of size 3x3x3 and the following numbers of filters 
for each of the three layers: 32, 64 128. Each convolutional layer is followed by a max pooling 
layer and a drop-out layer with drop out probability of 0.7. The last layer is a fully connected 
layer of size 128 x 2. 
 
Model Training – Simulation Predictions 
 
Data Featurization 
 
We trained with protein structures from MD simulations with each residue assigned a label 
depending on whether pockets formed near that residue in the next 40 ns of simulation. 
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Specifically, we calculated pockets using the LIGSITE pocket detection algorithm68, mapped 
pockets to residues, and determined the difference for each residue between its assigned pocket 
volume in the starting structure and the maximum pocket volume for that residue in the 
simulation. For the LIGSITE calculation implemented in enspara74, we used a min rank of 7, a 
grid spacing of 0.7 Å, a probe radius of 1.4 Å, and a minimum cluster size of 3 grid points. To 
assign pocket volumes to residues, we calculated how many LIGSITE pocket grid points were 
within 5 Å of each residue. We labeled each residue as a positive example if at some point in the 
MD simulation (our trajectories were saved out at a rate of 20 ps and we performed computations 
on every frame) its assigned pocket volume increases by 40 Å! relative to its volume in the 
starting structure. 
 
GVP-GNN Training 
 
We trained with a constant learning rate of 0.00002 on AMD Radeon Vega 20 GPU nodes across 
a number of class balancing schemes (see Table S1). In an optuna hyperparameter scan72, we 
found that model performance was highly dependent on learning rate with smaller learning rates 
achieving better performance. To address the class imbalance between positive and negative 
residues, we trained models with oversampling of the positive class, undersampling of the 
negative class, loss weighting, and drawing of balanced 160-residue batches through both 
undersampling and oversampling. We also trained with and without examples with intermediate 
values (i.e. residues with pocket volume differences between 10 Å!and 40 Å!). To evaluate the 
relationship between model performance and batch size, we trained with protein-sized batches, 
32-residue-sized batches, and 4-residue-sized-batches. We find that model performance was 
generally better when we used smaller batch sizes but was not significantly affected by the 
choice of class balancing schemes or inclusion of intermediate examples (see Table S1). 
 
3D CNN Training 
 
For training our baseline 3D CNN model, we use the featurization described in Torng et al. 
201775, which creates a 3D input with four different channels, with one channel per atom type 
for: carbon, oxygen, sulfur, and nitrogen atoms. Given an input protein, first a 3D grid with 
points 10 Å apart is placed over it with the origin being set to the minimum Cartesian x, y and z 
coordinates of the structure. Next, every residue in the input structure is assigned to the grid 
point that is closest to any atom that belongs to it. A 20 Å x 20 Å x 20 Å cube is then defined 
around the Cβ atom and the cube is oriented such that the plane formed by the N-CA and the C-
CA bonds forms the x-y plane and the orthogonal orientation with which the CA- Cβ bond has a 
positive dot product serves as the positive z-axis. The cube is further divided into 1 Å 3D voxels, 
within which the presence of the four atom types C, O, N, S is indicated (count of 1 for presence, 
0 for absence) to produce the resultant 4 channel 3D grid. Gaussian filters are applied to the 
discrete counts to approximate atom connectivity and electron delocalization. See figure S9 for 
the result of the featurization on a structure from an MD trajectory for the SARS-2-nsp5 
monomer protein showing the 3D input for residue 51. Further details about the approach can be 
found in the Methods section of Torng et al. 2017. 
 
We used a batch size of 32 randomly chosen residues from our training set and learning rate of 
0.0001 and trained for 100 epochs. In each batch, we under-sample the negatives to ensure that 
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the ratio of positives to negatives is at most 1:2. Figure S10 shows convergence in the Precision-
Recall AUC for our 3D CNN model. 
 
Model Evaluation 
 
We evaluated the performance of our models at predicting the outcome of pocket opening events 
in simulation using 5-fold cross-validation. We generated 5 folds based on their CAT codes and 
limited the overlap between folds such that there was no overlap at the level of topology except 
for the very common 3.40.50 code, which appears 1-3 times in every fold. We performed 5 
independent model evaluations using 3 folds for training, 1 fold for validation (i.e. to select a 
model between training epochs), and 1 fold for testing. A model that was trained with 4 residue 
batches with no class balancing scheme (or intermediate filtering) was selected for final testing. 
 
Assembly of a novel set of cryptic pockets 
 
We used the steps described below to assemble a novel set of proteins containing cryptic pockets 
with solved apo and holo structures. The cryptic pockets in this set have, in many if not all cases, 
been identified individually by the authors of their respective crystal structures. but have not to 
our knowledge previously been systematically assembled into one cryptic pocket dataset. 

1) We BLAST searched 76,77 the amino acid sequence of every structure in the Binding MOAD 
ligand binding database (MOAD) 78 against the set of RCSB PDB structures not in MOAD. 
We removed hits with amino acid sequence identity below 90% (The 90% threshold at this 
stage was present for programmatic reasons and to ensure inclusion of selenomethionine and 
selenocysteine mismatches, and subsequent filtering steps ensured that protein structures 
with 100% sequence identity were ultimately used). We selected each MOAD structure with 
at least one remaining BLAST hit (other than itself) as a holo candidate and selected each 
PDB BLAST hit as an apo candidate. 

2) We removed each candidate structure which did not have at least 2.5 Å resolution. This 
criterion removed NMR structures, which do not have resolutions reported in PDB files. We 
also excluded multi-conformer X-ray structures (not to be confused with structures which 
have only a few residues modelled in multiple conformations). 

3) We removed each candidate structure which did not have a monomeric biological unit 
assigned in remark 350 of the PDB file. The author-assigned biological unit was used where 
available, and the software-assigned biological unit was used elsewhere. 

4) We processed each chain of each candidate structure individually, removing the following 
chains: 

a) We removed chains with gaps longer than 3 residues. 

b) We removed chains with alphabetic residue insertion codes (e.g., 35A). 

c) We treated holo candidate chains without biologically relevant ligands as apo candidate 
chains for the remainder of the analysis. Such chains occurred when only some of the 
chains in the holo candidate crystal structure had occupied binding sites. 

d) We removed holo candidate chains in which the holo ligand was a polymer. 
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5) We removed chains with non-canonical residues, except for those containing selenocysteine 
and selenomethionine, which were treated as cysteine and methionine respectively. 

6) We removed apo candidate structures with less than 100% sequence identity to their 
respective holo candidate structures, except for mismatches between selenocysteine and 
cysteine and selenomethionine and methionine (see above). This step did not check for 
differences between unresolved terminal residues, which can result from variation in the 
placement of histidine tags. As this step did not use a sequence alignment but instead relied 
on matching PDB residue numbers, it may have excluded some structures with mismatched 
PDB residue numbering. 

7) We removed apo candidate structures with ligands (excluding water, heavy water, sodium, 
chloride, and potassium) within 5 Å of all MOAD-assigned biologically relevant residues in 
the holo candidate structure (aligned by all-residue Cα RMSD). 

8) We selected the apo structure with the lowest all-atom Cα RMSD to its holo structure for 
further analysis. 

9) We defined the cryptic ligands and ligand-lining residues as follows: 

a) Cryptic ligands are the holo ligands with ligand-free apo binding sites, plus any 
associated ions within 3.5 Å which are absent from apo (i.e. when ADP and Mg2+ bind 
together, both are treated as cryptic ligands even though Mg2+ alone would not be 
considered a valid cryptic ligand in a holo candidate structure). 

b) Ligand-lining residues are residues with any heavy atom within 5 Å of any heavy atom of 
a cryptic ligand. 

10) We ranked and manually filtered the apo-holo candidate pairs as follows: 

a) We ranked all apo-holo pairs in descending order of all-residue Cα RMSD and manually 
inspected the top 220 proteins* (reaching an RMSD of 0.085 nm). The lowest-ranked 
protein to survive subsequent rounds of filtering was the 142nd protein on the list (apo 
PDB ID 6YPK), with an RMSD of 0.124 nm. 

b) We calculated the mean distance between heavy atoms of ligand-lining residues and the 
apo-holo heavy-atom RMSD of these residues. We sorted the structures in which the 
ligand-lining residues were closer together in the apo structure than in the holo structure 
in order of descending RMSD and manually filtered the top 121* (reaching an RMSD of 
0.038 nm). The lowest-ranked protein to survive subsequent rounds of filtering was the 
86th protein on the list (apo PDB ID 4w51), with an RMSD of 0.123 nm. 

c) *The minimum RMSDs and numbers of proteins to filter manually were determined 
manually in the course of filtering rather than being derived a priori. We stopped filtering 
proteins once we concluded that we were encountering only marginal cryptic pocket 
examples. 

11)  We removed the following classes of proteins in the course of manual filtering: 

a) monomeric truncation mutants of proteins which oligomerize in their complete forms 

b) proteins with covalently conjugated holo ligands 
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c) proteins with gaps longer than three residues in the resolved structures which had escaped 
automatic filtering due to anomalies in protein numbering and/or remark 465 of the PDB 
file 

12) To ensure that our dataset did not contain redundant examples, we calculated the pairwise 
sequence identities of the proteins selected during manual filtering. Sequence identities were 
calculated from alignments generated by BioPython 79 using the BLOSUM62 scoring matrix 
(the same one used by protein BLAST). We removed the protein with the lower cryptic site 
RMSD when the sequence identity of a pair of proteins exceeds 40%. 

13) We removed proteins with sequence identity to a CryptoSite80, SARS-CoV-2, or ‘brick’ 
protein exceeding 40%, except for those listed in the sequence_identity tab of the attached SI 
spreadsheet, which had very poor structural homologies. See figure S6 and table S2 for 
examples of such alignments. 

14) To ensure that pockets were larger in the holo structure than the apo structure, we removed 
any apo-holo pairs in which the LIGSITE pocket volume assigned to the ligand-lining 
residues in apo (see “Data Featurization” above) was greater than the volume assigned to 
them in holo by at least 20 Å3. As LIGSITE calculates solvent accessible volume rather than 
van der Waals volume, and volume alone does not indicate steric compatibility, this 
threshold could not easily be chosen by reference to the volumes of common small 
molecules. The threshold was therefore assigned manually. 

15) Unresolved internal loops were modeled using SWISS-MODEL56, with the available crystal 
structure as a template and the FASTA sequence from the same RCSB PDB entry as the 
target sequence. Unresolved terminal regions were not modeled. 

 
Identification of non-cryptic-pocket-forming residues from extensively crystallized proteins 
and hyper-rigid proteins 

Proteins extensively crystallized with ligands 

Having reliable examples of protein residues which do not form cryptic pockets is important for 
measuring the specificity of cryptic pocket prediction methods. However, identifying such 
residues is difficult because the existence of any single structure in which certain residues do not 
line cryptic pockets does not prove that those residues would not move to form cryptic pockets in 
the presence of other ligands. Given the immense size of both chemical space and protein 
configuration space, it is not possible to conclusively determine that a given protein residue 
would never form part of a cryptic pocket capable of binding small molecules. However, one can 
obtain a degree of confidence by using residues in well-studied proteins with many solved holo 
structures which never bind ligands as negative examples. Additional confidence in the stability 
of these residues can be gained by including holo structures of closely related mutants. We 
collected a set of these residues as described below: 

1) We clustered all of the proteins in MOAD to 90% sequence identity using the USEARCH 
algorithm 81 and ranked the resulting clusters in order of descending size. 

2) We BLAST searched the centroid of each USEARCH cluster against the PDB and 
collected results with sequence identity exceeding 90% and high BLAST scores 
(ensuring high coverage). The latter criterion eliminated chance and fragmentary 
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alignments which did not represent the complete protein structure. The results included 
the contents of the USEARCH cluster plus additional structures not in MOAD. Structures 
containing multiple different sequences were excluded as they are typically hetero-
multimeric complexes not consistent with this work’s focus on monomeric proteins. 

3) We aligned all the sequences of structures in the BLAST output in a multiple sequence 
alignment (MSA)82.  

4) For each structure in the BLAST results which was in MOAD, we identified all residues 
within 5 Å of any ligand identified as biologically relevant (‘valid’) by MOAD. These 
residues were projected onto the USEARCH cluster centroid using the MSA. The use of 
MOAD-identified compounds excluded small hydrophilic molecules such as DMSO, 
glycerol, and ethylene glycol which are miscible in water and are often added as 
cryoprotectants, as well as small ions. Such substances, when they are present in crystal 
structures, may sit at any point on the protein surface and are unlikely to occupy larger 
pockets in the hydrophobic interior of the protein. 

5) The residues of the USEARCH cluster centroid which were not found within 5 Å of any 
valid MOAD ligand were taken as candidate negative examples. 

6) As this study focuses on predicting cryptic pockets in monomeric proteins, we removed 
clusters which did not have more than 50% of the structures labeled as monomeric. The 
oligomerization state of each PDB BLAST hit was determined from remark 350 of the 
PDB file, using the author-assigned state if available and the software-assigned state 
otherwise. 

7) Clusters were ranked by the number of unique MOAD ligands they contained. 
8) The top 12 remaining clusters and lysozyme, which ranked 22nd in number of unique 

MOAD ligands but has been extensively studied and is known to be relatively 
thermostable, were selected for further analysis. 

9) Clusters with centroids having more than 40% sequence identity to proteins in the 
training set were removed, eliminating two clusters. 

10) For each of the remaining clusters, the apo structures identified from the PDB BLAST 
were ranked by their sequence homology to the consensus sequence for that USEARCH 
cluster, and the apo structure with the greatest homology was selected for use in the 
simulations described below. In some cases, holo structures not indexed in MOAD were 
eliminated to identify a suitable apo structure. 

 

Highly stable and/or highly rigid proteins 

To identify additional examples of residues which are unlikely to form cryptic pockets, we 
searched for proteins which had previously been studied as examples of extremely stable and/or 
rigid proteins. These proteins have been characterized by methods such as nuclear magnetic 
resonance (NMR) and circular dichroism (CD) spectroscopy which do not rely on sampling the 
chemical space of possible cryptic ligands. NMR measurements suggest that ubiquitin, the third 
IGG binding domain from streptococcal protein G, and flavodoxin (PDB IDs 4HJK, 1IGD, and 
1OFV respectively) have minimal internal motion 83–85. γ-B Crystallin (PDB ID 1AMM) is 
believed to have a highly rigid structure based on tryptophan fluorescence measurements of a γ-
D crystallin with which it shares its fold and all four relevant tryptophan residues 86. Hydrogen 
deuterium exchange (HDX) experiments demonstrate extremely slow solvent exposure of 
internal residues of alpha-lytic protease (PDB ID 2ALP), severely restricting the set of residues 
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which could possibly form pockets on biologically relevant timescales 87. Crambin, a designed 
three helix bundle, Top7, and a designed TIM barrel (PDB IDs 2FD7, 4TQL, 1QYS, and 5BVL 
respectively) lacked observables providing similarly direct evidence of ground state rigidity and 
were chosen on the basis of thermodynamic stability on the assumption that many such proteins 
would also have deep ground state energy wells which would disfavor cryptic pocket formation. 
Crambin was characterized by thermal denaturation measured by 1H-NMR 88, while the other 
three were characterized by thermal and chemical denaturation measured by CD spectroscopy 89–

91 (slow unfolding kinetics were reported for the designed three-helix bundle well). However, as 
CD spectroscopy itself only measures secondary structure content, such assays do not rule out 
the formation of cryptic pockets involving other types of protein motion at temperatures well 
below the melting point. Six of the above proteins are naturally occurring, and the other three 
(the three-helix bundle, Top7, and the TIM barrel) are engineered proteins, one of which (Top7) 
has a novel fold. Two of the natural proteins (alpha-lytic protease and flavodoxin) possess non-
cryptic ligand-binding pockets while the remainder are believed to lack pockets. The residues 
within 5Å of those ligands were not used as negatives, while all other residues of the resulting 9 
proteins were taken as candidate negative examples. To build further confidence in negative 
labels, we also conducted simulations of these proteins and tracked cryptic pocket opening in 
those simulations. 
 
Simulations 

Molecular dynamics simulations were performed to search for additional cryptic pockets not yet 
identified experimentally and to ensure a high degree of confidence in the negative labels. We 
ran simulations of the 9 hyper-rigid proteins and the 10 exemplars of proteins with extensive 
holo crystal structures. Candidate negative residues adjacent to pockets which formed in 
simulation were eliminated. Specifically, we eliminated any residues that had an assigned 
LIGSITE pocket volume greater than 20 Å!. This threshold was determined by finding the 
residue-level LIGSITE pocket volumes in 13 holo structures from the CryptoSite dataset and 
selecting a value at the 10th percentile of the distribution. The remaining negative residues that 
both a) do not bind any ligands in extensive holo crystal structures and b) were not adjacent to a 
cryptic pocket in simulation were used as negative true labels in the validation and test sets. 

 
Model Training – Cryptic Site Detection in Experimental Structures 
 
Data Featurization 
 
Like in the previous prediction task, we trained with protein structures from MD simulations 
with each residue assigned a label depending on whether pockets formed at that residue in the 
next 40 ns of simulation. Because there are multiple ways to calculate pockets and assign them to 
nearby residues, we trained with several labeling schemes. We used the LIGSITE pocket 
detection algorithm with the hyperparameters described above as well as the fpocket detection 
tool with default parameters92. We assigned LIGSITE volumes to nearby residues in two 
different ways: 1) by assigning all pocket grid points within 5 Å of each residue and 2) assigning 
each pocket grid point to the nearest residue.  
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The fpocket algorithm identifies cavities in the protein. Each pocket is a composite of both alpha 
spheres and the associated residues within that pocket. The fpocket algorithm implements a 
ranking function to estimate the druggability of the concavities in a protein. To generate residue-
level labels, we iterated through all pockets in the protein and assigned each residue either the 
maximum score of its nearby pocket(s) or a value of 0 if the residue did not participate in a 
pocket. 
 
Next, we found the maximum increase in residue-level pocket volumes or druggability scores 
over the course of the 40 ns simulation (for fpocket druggability scores, we also trained with 
labels based on the maximum drug score in the simulation rather than the maximum increase). 
To find the maximum increase over a 40 ns window, we determined pocket volumes for every 
structure spaced 20 ps apart and fpocket druggability scores for every structure spaced 100 ps 
apart. Finally, we binarized the assigned LIGSITE pocket volumes at different thresholds that 
were determined based on an analysis of pocket formation at known cryptic sites (e.g., 20, 30, 
and 40 Å! for the first assignment procedure). Fpocket druggability scores were not binarized 
since they are already between 0 and 1. 
 
GVP-GNN Training 
 
We trained with the same hyperparameters as described in the Methods section entitled “Model 
Training – Simulation Predictions” on AMD Radeon Vega 20 nodes. Models trained with 
different residue labels (LIGSITE pocket volume changes across different binarization thresholds 
vs. fpocket druggability scores), batch sizes (1 protein batches vs. 4 residue batches), and class 
balancing schemes (no balancing vs. constant size balanced draws of 640 residues vs. 
undersampling negatives) were compared using a validation set of experimental structures 
including hyper rigid proteins, proteins with extensive ligand-bound crystal structures, and 
examples of cryptic pockets. We found that a model trained for 20 epochs with LIGSITE-derived 
labels and refined for 1 epoch with labels derived from fpocket druggability scores had the best 
validation AUC among GVP-GNNs that we trained. This model, dubbed PocketMiner, was 
trained with 4 residue batches where labels were based on finding the difference in LIGSITE 
pocket volumes assigned by mapping each pocket grid point to its nearest residue in the first 
phase of training. Residue labels were binarized using a threshold of 20 Å!. In the second phase 
of training, the same residues were relabeled using the maximum fpocket druggability score 
assigned to each residue based on a 3 Å cutoff. 
 
Model Evaluation 
 
Following the selection of a single model, we evaluated the performance of PocketMiner using a 
held-out test set. This test set included 24 apo structures with ligand-binding cryptic pockets, 4 
hyper-rigid proteins, and 7 proteins that were the subjects of extensive ligand screening (see 
Methods section entitled “Identification of non-cryptic-pocket-forming residues from extensively 
crystallized proteins and hyper-rigid proteins”). None of the protein structures in our test set had 
more than 60% sequence similarity to our training proteins, but the proteins with >40% sequence 
identity had very poor structural homology (Fig. S6, Table S2). 

 
Applying PocketMiner to the human proteome 
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To obtain a protein for each gene in the human genome, we used the UNIPROT human reference 
proteome (UP000005640)93. For each protein, we checked the Protein Data Bank for an 
experimentally determined structure that is monomeric, has resolution < 2.5 Å, and is between 
50 and 1000 amino acid residues in length. If there was more than one such entry, we chose the 
longest version of the protein. If there was no experimentally determined structure, we used the 
AlphaFold predicted structure94. We only used the AlphaFold predicted structure if it had no 
stretches of more than 25 residues with a low confidence prediction (i.e. < 70 pLDDT confidence 
score), excluding the N- and C- terminal segments of the protein. We chopped low confidence 
N- and C-terminal segments from the protein structure because our validation and test sets did 
not contain disordered structural elements. In the case of extremely large proteins, AlphaFold 
breaks the prediction into fragments. We only considered the first (N-terminal) fragment for 
these proteins. 
 
We classified the remaining 10,806 structures into one of three categories: those proteins 
containing “ground state pockets”; those proteins containing “cryptic pockets” only; and proteins 
with neither ground state nor cryptic pockets (“no pocket” in Fig 6). For each structure, we 
calculated the PocketMiner’s prediction across all residues and calculated the size of the largest 
pocket in the structure using the enspara implementation of the LIGSITE algorithm. For 
LIGSITE, we used a min rank of 7 and a minimum cluster size of 3 grid points. We considered 
proteins to have a “ground state pocket” if they contained a LIGSITE pocket with volume over 
30 Å3 (Fig 6). We then determined if all the remaining proteins formed cryptic pockets using 
PocketMiner’s predictions. Specifically, we looped over all residues in the protein and took the 
average of that residue’s prediction and its 10 neighboring residues to define a cryptic pocket 
hotspot. If a protein had a hotspot with a score over 0.7, we considered it to have a cryptic 
pocket. This threshold was based on applying this score to the proteins in our test set where 
proteins with ligand-binding cryptic pockets were considered positive examples and hyper rigid 
proteins were considered negative examples. At a threshold of 0.7, we achieve an accuracy of 
0.90 with 3/4 negative examples correctly identified and 21/24 positive examples correctly 
identified. 
 
Finally, we manually inspected a random sampling of proteins in the KEGG pathway “Pathways 
in Cancer”95. During this manual inspection, we identified proteins (PIM2 and WNT2) with high 
PocketMiner predictions on regions of the protein that lacked a pocket. Then, we simulated 
PIM2 and WNT2 using the same procedure as all other simulations described. We then analyzed 
the simulations for pocket opening using LIGSITE as described above. 
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