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Abstract 13 

Reef-building corals play an important role in the marine ecosystem, and analyzing their 14 

proteomes from a structural perspective will exert positive effects on exploring their biology. 15 

Here we integrated mass spectrometry with newly published ColabFold to obtain digital 16 

structural proteomes of dominant reef-building corals. 8,382 proteins co-expressed in A. 17 

muricata, M. foliosa and P. verrucosa were identified, then 8,166 of them got predicted 18 

structures after around 4,060 GPU hours of computation. The resulting dataset covers 83.6% 19 

of residues with a confident prediction, while 25.9% have very high confidence. Our work 20 

provides insight-worthy predictions for coral research, confirms the reliability of ColabFold in 21 

practice, and is expected to be a reference case in the impending high-throughput era of 22 

structural proteomics. 23 

 24 

Introduction 25 

Coral reefs serve as a living environment for more than 30% of marine animals and plants [1-26 

2], while they are suffering from sharply declining due to global warming, changes in the 27 

physicochemical environment of the ocean, and massive encroachment of the predatory 28 

crown-of-thorns starfish [3-7]. Several researchers even propose that features similar to 29 

those exhibited during the last mass extinction have emerged in scleractinian coral 30 

populations, including population shrinkage, transplanting of colonies to the aphotic zone, 31 

and zygote dormancy [8-9]. Such serious situation has brought about research focused on 32 

the growth, restoration, and ecological defence of reef-building corals. 33 

However, in contrast to more common model organisms, there remains a lack of public 34 

omics data from reef-building corals, no exception for proteome bridging physiological 35 

function and genome. Taking the UniProt database as an example, as of June 2022, it has 36 

collected no more than 50 reviewed proteins from Acropora, one of the most species rich 37 

coral genera, while for another two dominant genera Montipora and Pocillopora, the 38 

number even fails to reach 5. Various factors such as geographic location and technical 39 

limitations result in the “data gap” for coral research [10], and to make matters worse, 40 

COVID-19 has exacerbated the risks of sampling at wild as well as performing “wet” 41 

experiments. Mass spectrometry technology having been applied in coral proteomics 42 

research [11-14] enables researchers to obtain high-throughput protein information from 43 

relatively small samples in standardized steps, yet according to traditional protocols 44 

downstream analysis on protein structures and functions still requires cumbersome manual 45 

operations. 46 

The booming AI (artificial intelligence) technology is expected to provide new solutions for 47 

current predicament. The results of the biennial Critical Assessment of protein Structure 48 

Prediction (CASP) have revealed the substantial progress in protein structure prediction [15] 49 

and brought AlphaFold2 [16] to spotlight. This AI system achieved a record score of 92.4 in 50 

CASP14 (2020), beating all competing models. As the structure modelling solution 51 

challenging x-ray crystallography and cryo-electron microscopy, AlphaFold2 can directly 52 

transform sequences to structures with high accuracy, particularly beneficial for studies on 53 

several non-model organisms represented by corals. These species may be important to our 54 

ecology and society, but existing experimental protocols for them are not as perfect as those 55 

for model organisms, moreover people tend to focus on their potentially valuable 56 

components rather than a head-to-tail understanding of them. Assisted by AI modelling, 57 

scientists can rapidly acquire their structural proteomes [17] in the digital lab, then use 58 

computational biology methods to find key proteins and explore crucial physiological 59 

functions, so as to pave the way for applications including breeding and protection. Such 60 
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“dry-led” strategy might not only reduce experimental costs but also better protect 61 

researchers’ health during COVID-19. 62 

Compared to other prediction algorithms such as RoseTTAFold [18], AlphaFold2 has obvious 63 

disadvantages in performance, even domains could consume long computation time [19]. 64 

Fortunately, its open source has attracted joint efforts of developers to improve it. In 2021, 65 

Zhong and colleagues from the center for high performance computing (HPC) of Shanghai 66 

Jiao Tong University released ParaFold [20], the specific AlphaFold version for their HPC 67 

clusters, making a successful attempt to accelerate AlphaFold2. In June 2022, ColabFold [21] 68 

claiming to make protein folding accessible to all got officially published. Replacing 69 

Jackhmmer with MMseqs2 [22] and utilizing optimized model, ColabFold can run dozens of 70 

times faster than original AlphaFold2, which means it greatly expands the throughput of 71 

protein structure modelling, thus breaking the last hurdle in effectively predicting complete 72 

structural proteome. 73 

Here we integrated mass spectrometry with AI system to obtain digital structural proteomes 74 

of dominant reef-building corals. Deploying the latest release of ColabFold on the Big Data 75 

Computing Center of Southeast University, we predicted structures of more than 8,000 co-76 

expressed proteins among A. muricata, M. foliosa and P. verrucosa in approximately 4,060 77 

GPU hours. The resulting dataset named CP-8382 covers 83.6% of residues with a confident 78 

prediction and 25.9% with very high confidence. We also developed a search engine 79 

interface in the style of AlphaFold Protein Structure Database [23] to open our data to the 80 

community (http://corals.bmeonline.cn/prot/). 81 

 82 

Materials and Methods 83 

 84 

Experimental model and subject details 85 

The species including A. muricata, M. foliosa and P. verrucosa in the study were collected 86 

from the Xisha Islands in the South China Sea (latitude 15°40'–17°10' north, longitude 111°–87 

113° east). 88 

The coral samples were cultured in our laboratory coral tank with conditions conforming to 89 

their habitat environment. All the species were raised in a RedSea® tank (redsea575, Red Sea 90 

Aquatics Ltd) at 26°C and 1.025 salinity (Red Sea Aquatics Ltd). The physical conditions of the 91 

coral culture system are as follows: three coral lamps (AI®, Red Sea Aquatics Ltd), a protein 92 

skimmer (regal250s, Reef Octopus), a water chiller (tk1000, TECO Ltd), two wave devices 93 

(VorTech
TM

 MP40, EcoTech Marine Ltd), and a calcium reactor (Calreact 200, Reef Octopus), 94 

etc. 95 

 96 

Total Protein Extraction 97 

Sample was ground individually in liquid nitrogen and lysed with PASP lysis buffer (100 mM 98 

NH4HCO3, 8 M Urea, pH 8), followed by 5 min of ultrasonication on ice. The lysate was 99 

centrifuged at 12000 g for 15 min at 4°C and the supernatant was reduced with 10 mM DTT 100 

for 1h at 56°C, and subsequently alkylated with sufficient IAM for 1 h at room temperature in 101 

the dark. Then samples were completely mixed with 4 times volume of precooled acetone by 102 

vortexing and incubated at -20°C for at least 2h. Samples were then centrifuged at 12000 g 103 

for 15 min at 4°C and the precipitation was collected. After washing with 1mL cold acetone, 104 

the pellet was dissolved by dissolution buffer (8 M Urea, 100 mM TEAB, pH 8.5). 105 

 106 
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Protein Quality Test 107 

BSA standard protein solution was prepared according to the instructions of Bradford 108 

protein quantitative kit, with gradient concentration ranged from 0 to 0.5 g/L. BSA standard 109 

protein solutions and sample solutions with different dilution multiples were added into 96-110 

well plate to fill up the volume to 20 µL, respectively. Each gradient was repeated three 111 

times. The plate was added 180 μL G250 dye solution quickly and placed at room 112 

temperature for 5 minutes, the absorbance at 595 nm was detected. The standard curve was 113 

drawn with the absorbance of standard protein solution and the protein concentration of 114 

the sample was calculated. 20 μg of the protein sample was loaded to 12% SDS-PAGE gel 115 

electrophoresis, wherein the concentrated gel was performed at 80 V for 20 min, and the 116 

separation gel was performed at 120 V for 90 min. The gel was stained by coomassie brilliant 117 

blue R-250 and decolored until the bands were visualized clearly. 118 

 119 

TMT Labeling of Peptides 120 

Each protein sample was taken and the volume was made up to 100 μL with DB dissolution 121 

buffer (8 M Urea, 100 mM TEAB, pH 8.5). Trypsin and 100 mM TEAB buffer were added, 122 

sample was mixed and digested at 37 °C for 4h. And then, trypsin and CaCl2 were added, 123 

sample was digested overnight. Formic acid was mixed with digested sample, adjusted pH 124 

under 3, and centrifuged at 12000 g for 5 min at room temperature. The supernatant was 125 

slowly loaded to the C18 desalting column, washed with washing buffer (0.1% formic acid, 126 

3% acetonitrile) 3 times, then eluted by some elution buffer (0.1% formic acid, 70% 127 

acetonitrile). The eluents of each sample were collected and lyophilized. 100 μL of 0.1 M 128 

TEAB buffer was added to reconstitute, and 41 μL of acetonitrile-dissolved TMT labeling 129 

reagent was added, sample was mixed with shaking for 2 h at room temperature. Then, the 130 

reaction was stopped by adding 8% ammonia. All labeling samples were mixed with equal 131 

volume, desalted and lyophilized. 132 

 133 

Separation of fractions 134 

Mobile phase A (2% acetonitrile, adjusted pH to 10.0 using ammonium hydroxide) and B 135 

(98% acetonitrile) were used to develop a gradient elution. The lyophilized powder was 136 

dissolved in solution A and centrifuged at 12,000 g for 10 min at room temperature. The 137 

sample was fractionated using a C18 column (Waters BEH C18, 4.6×250 mm, 5 μm) on a Rigol 138 

L3000 HPLC system, the column oven was set as 45°C. The detail of elution gradient was 139 

shown in Table S1. The eluates were monitored at UV 214 nm, collected for a tube per 140 

minute and combined into 10 fractions finally. All fractions were dried under vacuum, and 141 

then, reconstituted in 0.1% (v/v) formic acid (FA) in water. 142 

 143 

LC-MS/MS analysis 144 

For transition library construction, shotgun proteomics analyses were performed using an 145 

EASY-nLCTM 1200 UHPLC system (Thermo Fisher) coupled with a Q ExactiveTM series mass 146 

spectrometer (Thermo Fisher) operating in the data-dependent acquisition (DDA) mode. 1 μg 147 

sample was injected into a home-made C18 Nano-Trap column (4.5 cm×75 μm, 3 μm). 148 

Peptides were separated in a home-made analytical column (15 cm×150 μm, 1.9 μm), using a 149 

linear gradient elution as listed in Table S2. The separated peptides were analyzed by Q 150 

ExactiveTM series mass spectrometer (Thermo Fisher), with ion source of Nanospray FlexTM 151 

(ESI), spray voltage of 2.3 kV and ion transport capillary temperature of 320°C. Full scan 152 

ranges from m/z 350 to 1500 with resolution of 60000 (at m/z 200), an automatic gain 153 
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control (AGC) target value was 3×10
6
 and a maximum ion injection time was 20 ms. The top 154 

40 precursors of the highest abundant in the full scan were selected and fragmented by 155 

higher energy collisional dissociation (HCD) and analyzed in MS/MS, where resolution was 156 

45000 (at m/z 200) for 10 plex, the automatic gain control (AGC) target value was 5×104 the 157 

maximum ion injection time was 86 ms, a normalized collision energy was set as 32%, an 158 

intensity threshold was 1.2×105, and the dynamic exclusion parameter was 20 s. 159 

 160 

Protein identification and quantitation 161 

The resulting spectra from each run were searched separately against protein-coding 162 

sequences from PRJNA544778 by Proteome Discoverer 2.2 (PD 2.2, Thermo) [24]. The 163 

searched parameters are set as follows: mass tolerance for precursor ion was 10 ppm and 164 

mass tolerance for product ion was 0.02 Da. Carbamidomethyl was specified as fixed 165 

modifications, Oxidation of methionine (M) and TMT plex were specified as dynamic 166 

modification, acetylation and TMT plex were specified as N-Terminal modification in PD 2.2. 167 

A maximum of 2 miscleavage sites were allowed.  168 

In order to improve the quality of analysis results, the software PD 2.2 further filtered the 169 

retrieval results: Peptide Spectrum Matches (PSMs) with a credibility of more than 99% were 170 

identified PSMs. The identified protein contains at least 1 unique peptide. The identified 171 

PSMs and protein were retained and performed with FDR no more than 1.0%. The protein 172 

quantitation results were statistically analyzed by T-test. 173 

 174 

Structure modelling 175 

Protein sequences were sorted by length and numbered as CPXXXXXXXX according to order 176 

before sent to ColabFold (1.3.0) platform. 1,053 proteins no longer than 200 aa were 177 

calculated on NVIDIA Tesla P100 while others were calculated on NVIDIA Tesla V100 cluster 178 

of the Big Data Computing Center of Southeast University. The parameters of ColabFold 179 

were set to --amber, --templates, --num-recycle 3, --use-gpu-relax. For each protein, 180 

structure with highest pLDDT scores (*_relaxed_rank_1_model_x.pdb) was preserved and 181 

labeled as CPXXXXXXXX.pdb. 182 

 183 

Search engine development 184 

Elasticsearch 7.12.1 was employed as the key module. Each coral protein was annotated by 185 

NR (diamond v2.0.14.152, blastp --evalue 1e-5 -k 1), UniProt (diamond v2.0.14.152, blastp --186 

evalue 1e-5 -k 1) and InterPro (interproscan-5.54-87.0), then annotations were transformed 187 

into keywords in Elasticsearch index. Web interface was implemented using PHP 7.2, while 188 

Nginx worked as web server. 189 

Sequenceserver [25] 2.0.0 were deployed as the BLAST server, source codes of which were 190 

modified to link each hit to its information page. Mol* [26] in the style of AlphaFold Protein 191 

Structure Database was imported as structure viewer. 192 

 193 

Results and Discussion 194 

 195 

Protein identification and annotation 196 

8,382 proteins co-expressed in A. muricata, M. foliosa and P. verrucosa were identified by 197 

Proteome Discoverer, sequences and expression profile of which are shown in Table S3. It is 198 
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assumed that a considerable portion of proteomes be conserved among these dominant 199 

coral genera, for the total protein-coding gene number of one scleractinian coral is unlikely 200 

to exceed 25,000 according to previous reports [9-10][27]. Over 97% of them are shorter 201 

than 2,600 aa, while the longest is up to 14,622 aa. 202 

Proteins were annotated with NR and UniProt for homologs, and InterPro for domains. As 203 

illustrated in Fig S1.A, NR annotations map most proteins to scleractinians, not other 204 

cnidarians or marine organisms, indicating the increasing efforts into filling the “data gap” 205 

hindering coral research [10] in recent years. Fig S1.B shows some domains frequently found 206 

on coral proteins. EF-hand domain related to calcium signalling pathways [28] gets the top 1, 207 

just consistent with these corals’ roles as reef builders, who deal with calcium ion every day 208 

for skeleton construction and homeostatic regulation. All annotations were employed as 209 

keywords for searching. 210 

 211 

Protein structure prediction 212 

After about 4,060 GPU hours of computation, ColabFold succeeded to generate 8,166 213 

structures, covering 97.4% of our coral protein dataset and touching the maximum length 214 

that an NVIDIA Tesla V100 (32 GB) can process. The model confidence distribution is 215 

presented in Fig 1. In resulting dataset 83.6% of residues have pLDDT (predicted local 216 

distance difference test) larger than 70, which are considered as confident predictions [15], 217 

and 25.9% get very high pLDDT over 90. No more than 2% of predicted structures have an 218 

average pLDDT below 50. The predictions from ColabFold can be recognized as credible 219 

overall. 220 

Fig 2 demonstrates several highlighted structure predictions from the resulting dataset. 221 

There are few doubts that biomineralization is the most significant function of reef-building 222 

corals [29-30], thus their skeletal proteome regulating the mineral deposition is always of 223 

interest to scientists. Our results cover most of recognized coral mineralization-related 224 

proteins, including skeletal organic matrix protein (SOMP), skeletal aspartic acid-rich protein, 225 

collagen, carbonic anhydrase, etc. [11-12] Fig 2.A shows the sequence and structural 226 

alignment among three acidic SOMPs, two identified in this work and one from UniProt 227 

(B3EWY7). Although the sequence identity is only 40%-60%, it appears that their structures 228 

are broadly similar, consisting of an Asp-rich tongue-like region and a β-sheet-formed region. 229 

According to previous studies, Asp-rich proteins are supposed to interact directly with 230 

calcium carbonate crystals promoting crystal nucleation, determining the growth axes and 231 

inhibiting the crystal growth [31-32], and they usually have high-capacity yet low-affinity 232 

calcium-binding properties [33]. Our structure predictions may provide an explanation that 233 

for these proteins Asps are concentrated in an open tongue-like region, reducing the steric 234 

hindrance while weakening the binding strength with calcium ions. Besides, the β-sheet-rich 235 

region at the base of the “Asp tongue” form a barrel-like local structure, which is also found 236 

in many other uncharacterized skeletal organic matrix proteins (USOMP) (Fig S2). These 237 

barrel-like regions probably have transmembrane functions [34], however existing methods 238 

fail to annotate them with any known domains, making these SOMPs uncharacterized. This 239 

phenomenon might not only urge biologists to gain deeper insights into protein domains, but 240 

also enlighten bioinformaticians to design novel annotation algorithms for 3D structure data.  241 

Toxins are widely employed by marine organisms for prey capture and defense of the 242 

territory [35]. Natterin proteins discovered in the venom of the medically significant Brazilian 243 

toadfish Thalassophryne nattereri [36] are representative perforin-like toxins which can 244 

insert into the lipid bilayer to trigger the disruption of membrane function [37]. We identify 245 

one co-expressed Natterin-4-like protein CP00002607, as illustrated in Fig 2.B. The drill-like 246 
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toxic domain is supposed to “bore holes” on membranes, resulting in electrolyte leakage and 247 

inflammation [38]. The function of DUF3421 has not been commonly recognized [39], though 248 

several researchers propose such DM9-containing proteins be new members of PRRs 249 

(pattern recognition receptors) [40-42]. From a structural point of view, this DM9-containing 250 

domain is at the end of “toxic drill” with a funnel-like cavity. It indeed has potential to bind 251 

signalling molecule playing roles in the antagonism between toxin and immune system, 252 

nevertheless the possibility that it just exacerbates membrane damage or attaches other 253 

toxic chemicals cannot be ruled out. This structure prediction might help to deepen our 254 

understanding of marine biotoxin and provide inspiration for drug development [43], not to 255 

mention that it can serve as raw data for molecular docking itself. 256 

Symbiosis is another important topic for coral biologists and ecologists, as reef-building 257 

corals obtain the majority of their energy and nutrients from their algal symbionts (mainly 258 

Symbiodiniaceae), and loss of symbionts is causing coral bleaching threatening human 259 

survival. It is recognized that improved knowledge of interpartner signalling in coral 260 

holobionts could be applied to solutions against the coral reef crisis [44]. Previous studies 261 

reveal that the initiation of coral symbiosis depends on the interaction between PRRs on 262 

host gastrodermal nutritive phagocytes and MAMPs (microbe-associated molecular patterns) 263 

of Symbiont [45-46], as shown in Fig 2.C. Complete structures of several representative PRRs, 264 

such as C3R (complement 3 receptor), TLR (toll-like receptor), lectin and SR (scavenger 265 

receptor), get confident prediction in our work with pLDDT ranging from 75 to 88. 266 

Unfortunately, our predictions fail to cover PRRs too large for GPU devices to process, and 267 

symbiont proteins including MAMPs are beyond the scope of our experiment design. It will 268 

be an excellent work to acquire Symbiodiniaceae structural proteomes and integrate them 269 

with corals’, which may bring about novel insights into coral symbiosis and interpartner 270 

signalling in cnidarians. In fact, the “data gap” for Symbiodiniaceae turns out to be even 271 

larger than that for corals [10], presenting both challenges and opportunities. 272 

 273 

Web interface of CP-8382 274 

Combining annotations and predicted structures, the resulting dataset was named as CP-275 

8382 and cruated into an online database (http://corals.bmeonline.cn/prot/). Fig 3 describes 276 

its data content as well as the workflow of corresponding web interface. Predicted structures 277 

are displayed in the style of AlphaFold Protein Structure Database, where pLDDT of each 278 

residue is marked by color, and Mol* app enables users to zoom, rorate or take screenshot. 279 

They can be downloaded in the format of PDB or CIF. PAE (Predicted aligned error) graphs 280 

are given for assessing confidence in global features [15], raw data of which can be accessed 281 

in JSON format. Annotations with keywords highlighted are also presented. All the above 282 

information is accessible via search engine or BLAST server at the web interface. Video S1 283 

provides a demo of searching skeletal aspartic acid-rich protein in CP-8382. 284 

 285 

Conclusion 286 

By the aid of ColabFold, we succeeded to generate a content-rich structure dataset for reef-287 

building corals within an acceptable period. Its claim to make protein folding accessible to all 288 

is seemingly not an exaggeration, furthermore the relatively high confidence of our results 289 

might prove that ColabFold does not sacrifice too much accuracy for speed [21]. 290 

Our work is expected to be an early case of digital structural proteome building, not just a 291 

contribution to coral research. Computational biologists preferring similar approaches may 292 

optimize their resource allocation referred to our experience. Moreover, COVID-19 could 293 

threat our lives and hamper our fieldwork, but it can’t kill our inspiration or block our 294 
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communication. Moving most preliminary work to “dry lab” will not only accelebrate 295 

research progress via HPC technology, but also help to break regional restrictions and boost 296 

brainstorming through the internet, so as to facilitate problem-solving in a more efficient 297 

and economical way. In view that the open source of AlphaFold2 and RoseTTAFold has given 298 

birth to ColabFold and brought the dawn of the high-throughput era of structural proteomics, 299 

we recommend researchers, especially those interested in unfamous yet important 300 

organisms, to build and publish digital structural proteomes, which is conducive to new 301 

solutions and questions from a structural perspective, people’s deeper understanding of 302 

biodiversity, and attraction of joint efforts. 303 

In addition, the dawn of high-throughput structural proteomics might offer bioinformaticians 304 

chances to shine. First, there is still much room for improvement in protein structure 305 

modelling algorithms. For example, the maximum size of structure predictions is determined 306 

by GPU memory currently. Beyond waiting for the update of GPU devices, bioinformaticians 307 

can develop algorithms consuming less computing power or supporting distributed 308 

computing, further reducing hardware requirements. Second, the development of high-309 

accuracy structure prediction tools may trigger “data explosion” as happened with the 310 

emergence of NGS (next-generation sequencing) technology. It gives a variety of possibilities 311 

for downstream analysis as well as data mining, nearly a virgin land for method and software 312 

development. Last but not least, web apps to visualize and manage structures will receive 313 

more attention, adding beauty and convenience to this era. To summarize, let us perform 314 

our duties and embrace the spring of structural proteomics. 315 

  316 
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Figures 484 

Fig 1. Distribution of model confidence against protein length. Horizontal axis is protein length and 485 
vertical axis is protein number. Model confidence calculated by pLDDT are color-coded. Very high: 486 
pLDDT > 90; Confident: 90 > pLDDT > 70; Low: 70 > pLDDT > 50; Very low: pLDDT < 50. 487 

Fig 2. Highlighted structure predictions. A) Sequence and structure alignment among CP00002736, 488 
CP00003090 and B3EWY7. Asp-rich regions were framed in yellow and β-sheet-formed regions were 489 
framed in red. B) Structure of CP00002607 similar to natterin-4. C) Structures of several pattern 490 
recognition receptors involved in host-symbiont signalling, including C3R (complement 3 receptor), 491 
TLR (toll-like receptor), lectin and SR (scavenger receptor). 492 

Fig 3. Content of CP-8382 dataset and workflow of its web interface. Users can utilize search engine 493 
or BLAST server to acquire their interested coral proteins on the website, where elasticsearch module 494 
will process inputs and return the following information: (I) Predicted structure displayed in the style 495 
of AlphaFold Protein Structure Database; (II) PAE graph, where the colour at position (x, y) indicates 496 
AlphaFold's expected position error at residue x when the predicted and true structures are aligned on 497 
residue y; (III) Annotations with keywords highlighted. 498 

 499 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497859doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497859


200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

Protein length

0

500

1000

1500

2000

2500

P
ro

te
in

 n
um

be
r

Very high
Confident
Low
Very low

pLDDT

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497859doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497859


 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497859doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497859


 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 30, 2022. ; https://doi.org/10.1101/2022.06.27.497859doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.27.497859

