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Highlights 

· CRISPR interference screen coupled with single-cell RNA sequencing (CROP-Seq) 

· Parallel screening of 12 genes in human SGBS adipocytes and preadipocytes 

· Uncovered novel regulators of adipogenesis and adipocyte function 

 

Abstract  

Objective: CROP-Seq combines gene silencing using CRISPR interference (CRISPRi) with single-cell RNA 

sequencing (scRNA-Seq) to conduct a functional reverse genetic screen of novel gene targets associated with 

adipocyte differentiation or function, with single-cell transcriptomes as the readout. 

Methods: We created a human preadipocyte SGBS cell line with stable expression of KRAB-dCas9 for 

CRISPRi-mediated gene knock-down. This line was transduced with a lentiviral library of sgRNAs targeting 6 

genes of interest (3 sgRNAs / gene, 18 sgRNAs), 6 positive control genes (3 sgRNAs / gene, 18 sgRNAs), and 

non-targeting control sgRNAs (4 sgRNAs). Transduced cells were selected and differentiated, and individual 

cells were captured using microfluidics at day 0, 4 and 8 of adipogenic differentiation. Next, expression and 

sgRNA libraries were created and sequenced. Bioinformatic analysis of resulting scRNA-Seq expression data 

was used to determine the effects of gene knock-down and the dysregulated pathways, and to predict cellular 

phenotypes. 

Results: Single-cell transcriptomes obtained from SGBS cells following CRISPRi recapitulate different states 

of differentiation from preadipocytes to adipocytes. We confirmed successful knock-down of targeted genes. 

Transcriptome-wide changes were observed for all targeted genes, with over 400 differentially expressed 

genes identified per gene at least at one timepoint. Knock-down of known adipogenesis regulators PPARG and 

CEBPB inhibited adipogenesis. Gene set enrichment analyses revealed molecular processes for adipose 

tissue differentiation and function for novel genes. MAFF knock-down led to a downregulation of transcriptional 

response to proinflammatory cytokine TNF-α in preadipocytes. TIPARP knock-down resulted in an increase 

in the expression of a beiging marker UCP1 at D8 of adipogenesis. 

Conclusions: The CROP-Seq system in SGBS cells can determine the consequences of target gene knock-

down at the transcriptome level. This powerful, hypothesis-free tool can identify novel regulators 

of adipogenesis, preadipocyte and adipocyte function associated with metabolic disease.  
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Abbreviations 

ATP – adenosine triphosphate 

CRISPRi - Clustered Regularly Interspaced Short Palindromic Repeats interference 

KRAB-dCas9 - Krüppel-associated box repressor – inactive CRISPR associated protein 9 

scRNA-Seq – single-cell RNA sequencing 

SGBS - Simpson-Golabi-Behmel syndrome  
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1. Introduction  

Over the past decade, numerous genomics efforts uncovered a wealth of associations between human 

genetic loci and metabolic traits, creating a rich resource that can be mined to identify novel factors 

contributing to disease pathophysiology. However, within many of these genetic loci, the causal gene remains 

unclear hampering downstream investigations1. Many of these trait loci are tied to adipose tissue which is not 

surprising given the key role of adipose tissue in metabolic diseases. Differences in both adipocyte 

differentiation and adipocyte function contribute to metabolic disorders. For example, in lipodystrophies 

insufficient adipocyte differentiation from preadipocyte progenitors leads to insulin resistance and type 2 

diabetes (T2D)2. Adipocyte hypertrophy contributes to metabolic abnormalities associated with obesity3. 

Additionally, adipocyte browning/beiging improves whole-body metabolism in rodent models4 and is associated 

with leanness in humans5,6. As diverse adipocyte-related phenotypes can contribute to whole-body metabolic 

health, there is an advantage to using hypothesis-free approaches to investigate the molecular role 

of candidate genes within disease-associated loci. Once a potential molecular mechanism is identified, gene 

function can be validated using a relevant assay. 

Functional follow-up of novel genes predicted to affect metabolism through their adipocyte-related function 

is a time-consuming process. Creation of knock-out mouse lines is costly and low-throughput. In addition, there 

are key differences between some metabolically-relevant processes in humans and mice, for example 

in cholesterol metabolism7. In cell culture models, prolonged culture of individual genetically manipulated lines 

may lead to artifacts resulting from clonal effects. Therefore, pooled screens that can be accomplished within 

a short time frame, in which different experimental groups and controls are subjected to the same handling and 

environmental stimuli, are advantageous.  

Here, we establish a platform for high-throughput studies of genes involved in adipogenesis and adipocyte 

function in a human non-immortalized Simpson-Golabi-Behmel syndrome (SGBS) model8. The CROP-Seq 

platform combines CRISPRi-mediated pooled gene knock-down  with single-cell RNA sequencing (scRNA-

Seq) using DROP-seq9 to determine transcriptomic states resulting from target gene knock-down. As a proof-

of-concept, we show that this approach captures the phenotypes resulting from knock-down of known 

regulators of adipogenesis. Further, we show that it can be utilized to generate hypotheses regarding the role 

of novel genes in distinct mechanisms relevant for adipose tissue function.  

  

2. Materials and methods 

2.1 Gene selection 

Candidate genes were selected in 2019 based on colocalization of GWAS hits for metabolic traits: waist-

hip ratio adjusted for BMI (WHRadjBMI)10, fasting insulin (FI)11, fasting glucose (FG)11, triglycerides (TG)12, 

HDL-cholesterol12 with eQTL in adipose tissue (subcutaneous or visceral) as described13. The gene list was 

further limited to genes with Unique Molecular Identifier (UMI) expression of at least 2 in at least 9% 

of individual cells at day 7 (D7) of adipogenesis, based on a scRNA-Seq of SGBS cells (data not shown).  

2.2 Cell culture and differentiation 

The SGBS preadipocyte cell line was cultured and differentiated as described before8. Cells were 

maintained in a humidified chamber at 37°C with 5% CO2, and their media was replaced every 2-3 days. The 

standard culture media used was composed of DMEM/Nutrient Mix F-12 (Invitrogen), supplemented with 33 

uM biotin, 17 uM pantothenic acid, 10 % FBS and antibiotics (100 IU/ml penicillin and 100 ug/ml streptomycin). 

Differentiation was induced three days post-confluence by the change of culture media to DMEM/F-12, 33 uM 
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biotin, 17 uM pantothenic acid, 0.01 mg/ml human transferrin, 100 nM cortisol, 200 pM triiodothyronine, 20 nM 

human insulin (Sigma-Aldrich), 25 nM dexamethasone, 250 uM IBMX, 2 uM rosiglitazone, and antibiotics. After 

four days of differentiation, the medium was replaced with DMEM/F-12, 33 uM biotin, 17 uM pantothenic acid, 

0.01 mg/ml human transferrin, 100 nM cortisol, 200 pM triiodothyronine, 20 nM human insulin and antibiotics. 

Cells were cultured for up to eight days after the induction of differentiation. As differentiation ability of SGBS 

cells is affected by local confluence, and lentiviral transduction and subsequent puromycin selection may affect 

their proliferation ability, cells were plated evenly at high density.  

To validate the transcriptional effects of TIPARP knock-down, the TIPARP inhibitor RBN-2397 (Fisher 

Scientific) was used at a concentration of 1 uM. Recombinant human TNF-alpha (PeproTech/VWR) was used 

at a concentration of 10 ng/ml.  

2.3 Quantitative PCR 

Total RNA was isolated from cells using the RNeasy Mini kit (QIAGEN) according to the manufacturer’s 

instructions. Reverse transcription was conducted using High Capacity cDNA Reverse Transcription Kit 

(Thermo Fisher Scientific). Gene expression was quantified on the ViiA7 machine (Applied Biosystems), using 

Taqman Gene Expression Master Mix (Applied Biosystems) and standard cycling settings. The following gene 

expression assays were obtained from Thermo Fisher Scientific: CXCL6 (Hs00605742_g1), IL6 

(Hs.PT.58.39866843.g), PPARG (Hs01115513_m1), PPIA (Hs04194521_s1), UCP1 (Hs01084772_m1). The 

following PrimeTime qPCR Probe Arrays were obtained from Integrated DNA Technologies: CYP1B1 

(Hs.PT.58.25328727.g), STC2 (Hs.PT.58.38362090). All gene expression results were normalized to the 

expression of the housekeeping gene PPIA using the ddCt method. 

2.4 siRNA-mediated gene knock-down 

siRNA duplexes targeting TIPARP and Universal scrambled negative control were purchased from Origene 

and transfected into SGBS cells using Lipofectamine RNAiMAX reagent (Invitrogen) according to the 

manufacturer’s protocol. 

2.5 Generation and validation of the stable SGBS CRISPRi cell line 

pHR-SFFV-KRAB-dCas9-P2A-mCherry plasmid (Addgene, #60954) was a gift from Jonathan Weissman14. 

Lentivirus was produced as previously described15. Transduced cells were purified based on mCherry 

expression using FACS. The resulting cell line was validated by transduction with sgRNAs targeting individual 

genes, cloned into the pCRISPRia-v2 plasmid digested with BstXI and BlpI (New England Biolabs). Following 

the sgRNA transduction and puromycin selection, gene expression prior to differentiation (D0) and adipogenic 

marker gene expression at D8 of differentiation was quantified using RT-qPCR. 

2.6 sgRNA cloning and CROP-Seq plasmid library preparation 

Three sgRNAs targeting each gene of interest, and four control non-targeting sgRNAs, were chosen 

from the human genome-wide CRISPRi-v2 library16 (Supplementary Table 1). The inserts were ordered as 

ssDNA from Integrated DNA Technologies. They consisted of the sgRNA sequence with the following 

overhangs: TGGAAAGGACGAAACACCG (5’) and GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGC (3’). 

The CROP-seq-opti plasmid (Addgene, #106280) was digested with BsmBI and purified from agarose gel 

using QIAquick Gel Extraction Kit (QIAGEN). Ligation was conducted using NEBuilder HiFi DNA Assembly 

Master Mix (New England Biolabs) and transfected into NEB Stable E.coli. Single colonies were picked and the 

correct sequence of the inserts was validated using Sanger sequencing. The plasmids were combined at equal 

ratios into a lentiviral plasmid library for the CROP-Seq screening. For validation experiments some of the 

plasmids were also used individually. 
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2.8 Cell transduction, selection and differentiation 

Lentiviral stock was produced as described previously15. To establish the dilution of the lentiviral stock that 

results in multiplicity of infection (MOI) of 0.3-0.4, SGBS cells were transduced with various lentivirus titers, 

cultured for two days, selected with puromycin (1 ug/ml) for two days, and allowed to recover in puromycin-free 

media for one day. Next, cell number was approximated using alamarBlue Cell Viability Reagent (Thermo 

Fisher Scientific) according to the manufacturer's protocol.  

In the CROP-Seq experiment, SGBS cells were transduced with the selected lentiviral dilution associated 

with MOI 0.3-0.4, cultured for two days, and selected with puromycin for two days, followed by one-day 

recovery in puromycin-free media. Next, cells were replated at 5,000 cells / cm2 in 12-well plates and cultured 

for further 3-5 days until confluence. Once cells were confluent, standard differentiation protocol was followed. 

At D0, D4 and D8 of differentiation, cells were trypsinized and subjected to cell sorting. 

2.9 Cell sorting and CROP-Seq library construction and sequencing 

On the day of the single-cell capture, cells were trypsinized, filtered and stained with the live/dead stain 

SYTOX Green Ready Flow Reagent (Thermo Fisher) according to the manufacturer’s protocol. Cells were 

stored on ice throughout the procedure. Live (SYTOX-negative) mCherry-positive single cells were isolated 

using fluorescence-activated cell sorting (FACS) at the Stanford Shared FACS Facility. Next, live cells 

underwent microfluidic single-cell capture on the 10X Chromium Controller device at Stanford Genomics 

Service Center during which single cells were encapsulated with individual Gel Beads-in-emulsion (GEMs) 

using the Chromium Next GEM Single Cell 3’ GEM, Library & Gel Bead Kit (10X Genomics). In-drop reverse 

transcription and cDNA amplification was conducted according to the manufacturer’s protocol to construct 

expression libraries. Library size was checked using Agilent Bioanalyzer 2100 at the Stanford Genomics 

facility. Expression libraries were sequenced by Novogene on the HiSeq4000 sequencer. 

Additional sequencing was performed to determine sgRNA representation and to assign sgRNA sequences 

to individual cells. To determine sgRNA representation, sgRNA sequences were amplified from bulk genomic 

DNA after transduction, at D0 and D8 of differentiation. To assign sgRNAs to individual cell barcodes, sgRNA 

sequences were amplified from the pooled cDNA. PCR products were purified using AMPure XP (Beckman 

Coulter) and the SPRIselect reagent (Beckman Coulter) according to the manufacturer’s protocol. All sgRNA 

libraries were combined and sequenced on the HiSeq4000 instrument by Novogene. 

2.10 Sequencing data analysis 

The sequencing data from SGBS cells in the format of FASTQ files were aligned to the human (hg38) 

reference genome and quantified using “cellranger count” (10X Genomics). The aligned files were then 

analyzed using R package Seurat. The dataset was trimmed of cells expressing fewer than 200 genes. Cells 

with mitochondria content higher than 5% were considered poor quality cells and were discarded from the 

dataset. The gene expression matrix was then used to perform normalization and scaling using Seurat’s built-

in functions. Principal component analysis for dimensionality reduction followed by clustering using graph-

based clustering approach was performed. The UMAP was then used to visualize the resulting clusters in the 

two-dimensional space. “FeaturePlot” and “DotPlot” functions from Seurat’s pipeline were used to visualize the 

expression of the gene of interest. We used MAST to identify differentially expressed (DE) genes with p-value 

< 0.05 and log2FC cut-off 0.5.  

Lineage inference (pseudotime analysis) was performed using the Dyno package which includes 

a collection of pseudotime and trajectory inference tools. We performed trajectory inference with expected 

topology as “bifurcating” so the best model was built using “slingshot”, “page_tree”, “paga” and “mst”.  
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Due to high percentage of multiple gRNA cells, we used scMAGeCK pipeline17 for single-cell CRISPR 

screening data. After filtering against the significance as well as degree of perturbation impact, we ranked all 

the target genes by the number of differentially expressed genes. 

2.11 Gene set enrichment analysis 

Gene set enrichment analysis was conducted using the Hallmark gene sets18 and Gene Ontology19,20 gene 

sets within the MsigDB collections21. Genes identified by scMAGeCK with adjusted p-value < 0.05 were used 

and scMAGeCK score cut-off at <(-0.1) or >0.1. Up to the top 500 DE genes from scMAGeCK, ranked by the 

p-value, were used for the analysis. All the reported pathways were shown with the corresponding q-values. 

2.12 Co-expression module build and gene query 

Human co-expression networks were constructed from transcriptome data from adipose tissue samples, 

including visceral omentum and subcutaneous adipose from the GTEx study22. Mouse co-expression networks 

were constructed from transcriptome data from adipose tissue from 101 Hybrid Mouse Diversity Panel (HMDP) 

strains23, which included healthy mice, mice with liver steatosis and mice with nonalcoholic steatohepatitis 

(NASH). The co-expression networks were built using two network methods: Weighted Gene Co-expression 

Network Analysis (WGCNA)24 and Multiscale Embedded Gene Co-expression Network Analysis (MEGENA)25. 

WGCNA and MEGENA cluster genes into modules based on the co-regulation structure of the genes using 

hierarchical clustering. Modules from both methods can be reciprocally conserved, however, their 

compactness and sizes are different, making these two methods complementary. Once these modules were 

built, they were queried for candidate genes to identify co-expressed genes. For any module that contained 

either a candidate or control gene, we annotated it with its functions by using the previously curated biological 

pathways taken from MSigDB database26 that incorporates pathways from Biocarta, KEGG, and Reactome 

databases based on a hypergeometric test (one-tailed Fisher Exact test). Bonferroni correction was used to 

adjust the p-values of this test. Pathways with a corrected p-value<0.05 and sharing ≥ 5 genes with a given 

module were accepted as significant. The top three significant pathways were used to annotate each module. 

2.13 Statistical analyses 

For functional assays, normal distribution of data was tested using Kolmogorov-Smirnov test. Differences 

between groups were compared using one-way ANOVA, with p-value < 0.05 interpreted as significant. Tukey’s 

multiple comparisons test was used to correct for multiple testing. Unless indicated otherwise, average and 

SEM are shown. N=3 biological replicates were used unless indicated otherwise. Statistical analyses and 

plotting were conducted using GraphPad Prism 9. 

 

3. Results  

3.1 Creation of the CROP-Seq platform in the human preadipocyte SGBS cell line 

In the CROP-Seq experiment, a human preadipocyte SGBS cell line with stable expression of KRAB-

dCas9 was transduced with a pooled lentiviral library containing sgRNAs targeting the genes of interest and 

non-targeting control sgRNAs. The transduced cells were sorted and subjected to scRNA-Seq using DROP-

Seq either before (Day 0) or during (Day 4 and Day 8) differentiation, followed by next-generation sequencing 

and bioinformatic analysis. 

To establish the CRISPRi SGBS line, we introduced KRAB-dCas9-P2A-mCherry transgene into wild-type 

SGBS cells using lentivirus, followed by FACS-based selection of mCherry-expressing cells. Next, to validate 
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that the cell line contains functional CRISPRi machinery, SGBS CRISPRi cells were transduced with lentivirus 

encoding sgRNAs targeting transcription factors which drive adipogenesis (CEBPB and PPARG) or non-

targeting sgRNAs as a control. Robust downregulation of target gene expression at D0 and D8 

of differentiation (Supplementary Figure 1A,B), as well as predicted downregulation of the adipogenesis 

marker FABP4 at D8 by over 60% (Supplementary Figure 1C), was confirmed using RT-qPCR.  

To select candidate genes for the screen, we used a colocalization approach13, which combines 

information from genome-wide analysis studies (GWAS) with expression quantitative trait loci (eQTLs). We 

focused on GWAS relevant for metabolic disease traits: WHRadjBMI27, fasting insulin11, fasting glucose11, 

triglycerides12, and HDL-cholesterol12. eQTLs for subcutaneous (SubQ) and visceral adipose tissue were 

selected. For the colocalization analysis, genes with a minimum colocalization posterior probability (CLPP) 

score28 of 30% for at least one of the traits colocalizing with adipose tissue were chosen. Candidate genes 

were further selected based on their expression level in single SGBS cells (unpublished data) and literature 

search indicating their novelty. The following candidate genes were chosen: FAM13A, MAFF, PDGFC, 

TIPARP, VEGFB, and ZBTB7B. In addition, positive control genes were included based on their known role 

in adipogenesis (PPARG29, CEBPB30), insulin signaling (IRS131), lipid metabolism (MLXIPL32), or their role as 

adipokine-encoding genes (ADIPOQ33, RBP434). The pooled lentiviral library was composed of three sgRNAs 

per gene, as well as 10% non-targeting sgRNAs which served as negative controls (Supplementary Table 1). 

The pooled screen was conducted, and single cells were collected at D0, D4 and D8 of adipogenesis. 

To confirm whether sgRNAs affect the expression of their target genes, we compared average expression 

and percentage of cells with detectable expression of candidate gene depending on the sgRNA that was 

present. We observed noticeable downregulation of the target transcripts for most sgRNAs at all three time 

points (Figure 1A, Supplementary Figure 1D). Altogether, we established that the CROP-Seq approach 

captures single-cell transcriptome data, with concurrent target gene repression. To our knowledge, this is the 

first study which used this type of single-cell perturbation and readout to study adipogenesis using the human 

SGBS cell model. 

To determine whether cells within the CROP-Seq experiment recapitulate transcriptional states expected 

for differentiating preadipocytes, we first compared transcriptional states of cells with non-targeting sgRNAs 

only. Clustering of differentially expressed (DE) genes revealed a clear separation of differentiation states at 

D0, D4 and D8 (Figure 1B). Moreover, unsupervised clustering of all cells with assigned sgRNAs revealed 10 

cell clusters, with three larger clusters corresponding to the day of differentiation (Figure 1C). Cells with non-

targeting sgRNAs were represented in all clusters (Supplementary Figure 1E). The three clusters showed the 

predicted pattern of expression of marker genes for preadipocytes (SERPINE135, GREM136) and adipocytes 

(ADIPOQ37, FABP438)(Figure 1D, Supplementary Figure 1F). 

3.2 CROP-Seq identifies transcriptional states along the preadipocyte to adipocyte differentiation 

trajectory 

Pseudotime trajectory analysis of cells with non-targeting sgRNAs was used to infer cell lineages, which 

revealed cells grouping in four main states (Figure 1E). Analysis of the heatmap containing the genes which 

drove the pseudotime trajectory analysis showed that cells clustered largely based on the day of differentiation 

(Figure 1F). Notably, cells collected at D8 and D4 showed a distribution of transcriptional states, likely due to 

a mixture of undifferentiated, partially differentiated and differentiated cells (Figure 1F). Analysis of single-cell 

expression of adipocyte (ADIPOQ, FABP4) and preadipocyte (SERPINE1) marker genes further supported 

that the pseudotime trajectory replicates the predicted states during adipogenic differentiation (Figure 1G). 

Altogether, these complementary approaches showed that the transcriptional states captured in the CROP-

Seq experiment are consistent with a mixture of preadipocytes, differentiating cells and adipocytes. 
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3.3 Knock-down of PPARG and CEBPB results in adipogenesis inhibition 

Next, to establish analysis approach that would allow us to identify gene networks whose expression is 

altered following the knock-down of candidate genes, we focused on genes which were differentially expressed 

(DE) following PPARG knock-down. PPARγ is a key adipogenic transcription factor whose pattern of gene 

expression regulation in SGBS adipocytes is well-described39-41. PPARγ binds to the promoters of over 5,600 

human genes, with approximately 2,700 genes (corresponding to 10-14% of all human genes) showing 

conserved binding between human and mouse adipocytes41. Based on these data, we used additional filtering 

based on p-value and score to select DE genes resulting from scMAGeCK analysis17 (Supplementary Figure 

2). The number of DE genes varied across the candidate genes targeted and differentiation timepoints, with 

the highest average DE gene number for PPARG and CEBPB knock-down (score <(-0.1) or >0.1 and p-value 

< 0.05) (Figure 2A). For PPARG knock-down, the number of DE genes was the highest at D8. Expectedly, 

Gene Set Enrichment Analysis (GSEA) showed a significant enrichment of genes involved in adipogenesis 

within the PPARG DE genes at D4 and D8 (Figure 2B), with many known PPARG targets amongst the 

downregulated DE genes (Figure 2C). Altogether, these data supported differentiation inhibition in PPARG 

knock-down cells29,42.  

Similar to PPAR-γ, C/EBP-β is an adipogenic transcription factor. However, it acts at an earlier stage 

of adipogenesis compared to PPAR-γ43,44. Consistent with the known role of C/EBP-β in early adipogenesis, 

the highest number of DE for CEBPB knock-down were identified at D4 and D0 (Figure 2A). GSEA analysis 

pointed to changes in the expression of adipogenesis-related genes at D4 and D8, but not D0 

(Supplementary Figure 3). In conclusion, knock-down of genes encoding known regulators of adipogenesis, 

PPARG and CEBPB, was used as a proof-of-concept for the use of the CROP-Seq identify gene expression 

patterns affected by candidate gene downregulation.  

3.4 MAFF regulates cellular preadipocyte response to TNF-α 

To determine whether CROP-Seq can be used as a discovery tool to identify novel gene function, we 

focused on one of the candidate genes, MAFF, which encodes the MAF Basic Leucine Zipper Transcription 

Factor F. MAFF was identified in GWAS on HDL and triglyceride levels45. MAFF variants have also been 

identified as associated with T2D risk46. MAFF eQTL signal colocalized in both subcutaneous and visceral 

adipose tissue. However, its function in adipose tissue biology has not been studied to date. 

MAFF knock-down led to largest changes in gene expression at D0, assessed by the number of DE genes 

(Figure 2A). Gene Set Enrichment analysis revealed that MAFF knock-down at D0 was associated with 

changes in the expression of genes related to TNF-α signaling via the NF-κB pathway (Figure 3A). In support 

of the possible role of MAFF in mediating cellular response to TNF-α, co-expression analyses of MAFF 

in human adipose tissue consistently indicated MAFF involvement in cytokine signaling-related networks 

(Figure 3B).  

In addition to the impact of MAFF knock-down on disruption of gene expression networks at D0, MAFF has 

high expression in preadipocytes compared to adipocytes in human adipose tissue (Figure 3C) and is 

predominantly expressed in preadipocytes in the SGBS cell model (Figure 3D). Therefore, for functional 

follow-up studies we focused on the hypothesis that MAFF plays a role in regulating immune function 

in preadipocytes. To test this hypothesis, we created individual SGBS preadipocyte lines with MAFF knock-

down along with a control line with non-targeting sgRNAs, and subjected them to stimulation with TNF-α. 

Under MAFF knock-down, SGBS cells showed a blunted response to TNF-α treatment, quantified by the lower 

induction of the expression of genes encoding proinflammatory cytokines CXCL6 and IL-6 (Figure 3E). We 

concluded that MAFF is a positive regulator of cytokine production in response to TNF-α in SGBS 

preadipocytes. In addition, TNF-α is a known negative regulator of adipogenesis47, and the changes 
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in intracellular signaling in response to this cytokine under MAFF knock-down may directly impact 

adipogenesis, which was affected by MAFF knock-down at D4 and D8 (Figure 3A). 

3.5 TIPARP knock-down induces the expression of browning markers in differentiating SGBS cells 

Next, we focused on another candidate gene, TIPARP, which was identified in a GWAS on WHRadjBMI48 

and HDL and had an eQTL in subcutaneous adipose tissue. Gene Set Enrichment Analysis of TIPARP knock-

down showed an unexpected enrichment of DE genes within pathways related to myogenesis at D4 and D8, 

and oxidative phosphorylation at D0 and D4 (Figure 4A). Moreover, co-expression analysis in adipose tissue 

indicated potential TIPARP involvement in mitochondrial function (Figure 4B). White adipocytes can undergo 

beiging4, a process in which their morphology and molecular profile becomes similar to brown adipocytes that 

develop from myogenic progenitors49. Brown and beige adipocytes contain significantly more mitochondria 

than white adipocytes, and they express uncoupling protein 1 (UCP1) which leads to the uncoupling 

of respiration from ATP production4. As the Hallmark database does contain few gene sets pertaining 

to mitochondria, we examined the enrichment of DE genes in TIPARP knock-down cells at D0 using Gene 

Ontology sets. Indeed, the most significant association within the Cellular Component gene sets was 

for mitochondria (Supplementary Figure 4). 

To determine if there is an indication of beiging in TIPARP knock-down adipocytes, we compared the 

expression of brown/beige adipocyte marker UCP1 and adipocyte marker PPARG following acute siRNA-

mediated TIPARP knock-down in SGBS cells which then underwent differentiation. Both UCP1 and PPARG 

had increased expression levels in TIPARP knock-down cells compared to control (Figure 4C). Next, we 

validated these findings using specific TIPARP inhibitor RBN-239750 (Figure 4D). Both TIPARP knock-down 

and chemical inhibition led to increased and homogenous differentiation of small adipocytes (Figure 4E,F). We 

conclude that TIPARP is a negative regulator of adipocyte beiging.  

 

4. Discussion 

To derive biological knowledge from associations between human genetic loci and trait/disease risk, 

functional testing is indispensable. Unbiased approaches to functional testing of candidate genes allow for the 

discovery of unexpected mechanisms. Here, we established the CROP-Seq platform for parallel gene 

expression manipulation using CRISPRi, with single cell transcriptome readout in human preadipocytes and 

adipocytes. Based on the results of the disruption of known regulators of adipogenesis, this approach allows 

for reliable identification of key pathways that are dysregulated following target gene downregulation. 

Moreover, the CROP-Seq approach can be used as an efficient tool for hypothesis generation regarding the 

biological function of disease-associated candidate genes in adipogenesis, preadipocyte and adipocyte 

function. This functional genomics approach significantly speeds up the translation of genetic associations 

to the knowledge of gene function. Therefore, CROP-Seq has the potential to bridge the current gap between 

hundreds of identified genomic associations and our limited understanding of molecular mechanisms 

of metabolic disease.  

Beyond recapitulating the genes and pathways underlying the known regulators of adipocyte biology 

CEBPB and PPARG, we also uncovered biological pathways and phenotypes resulting from the knock-down 

of two candidate genes MAFF and TIPARP. Based on the analysis of cells with MAFF knock-down and 

functional validation tests, we identified MAFF as a novel regulator of transcriptional response to TNF-α 

in preadipocytes. In vivo, preadipocytes are present within adipose tissue alongside blood vessels51, and they 

are known to participate in inflammation52. In addition, the differentiation ability of human preadipocytes is 

impaired by inflammatory signals, including TNF-α, which are more prevalent in obesity53. Therefore, 
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differences in MAFF function between individuals may contribute to varied levels of cytokine production 

by preadipocytes in response to pro-inflammatory environment in obese adipose tissue, leading to differences 

in adipose tissue maintenance or function. In fact, our CROP-Seq analysis indicated changes in the expression 

of adipogenesis-related genes at D4 and D8 in MAFF knock-down cells. In the future, in vivo models should be 

used to identify the effect of MAFF loss in preadipocytes on other cell types within adipose tissue, both under 

standard conditions and in obesity.  

We also investigated the role of the TCDD Inducible Poly(ADP-Ribose) Polymerase (TIPARP). We found 

that TIPARP downregulation and inhibition increased the expression of adipocyte beiging marker UCP1 

in adipocytes. TIPARP is a known repressor of the aryl hydrocarbon receptor (AHR) and mediates the effects 

of dioxin on steatohepatitis54. However, recently an additional function of TIPARP was described as 

a repressor of several transcription factors, including HIF-1, c-Myc, and estrogen receptor55. Moreover, the 

specific TIPARP inhibitor RBN-2397 is undergoing a clinical trial as a drug capable of restoring type I interferon 

response in cancer cells56. The molecular pathway through which TIPARP affects adipogenesis or adipocyte 

function remains to be elucidated.  

CROP-Seq has several drawbacks due to the inclusion of scRNA-Seq as the readout. scRNA-Seq is not 

well suited for detecting expression changes for genes with low baseline expression level. To allow for the 

verification of target gene knock-down, only genes with a medium to high expression should be targeted. 

To avoid the expression limitation, other methods such as Targeted Perturb-Seq (TAP-Seq)57 have been 

developed. In addition, pooled gene knock-down inevitably leads to the presence of cells with more than one 

sgRNA present. scMAGeCK17 and criprQTL58 pipelines were developed to include cells with multiple sgRNAs, 

which need more validation and improvement.  

The pooled approach used in the CROP-Seq leads to additional limitations with regards to studying 

biological effects of genes encoding secreted factors (e.g. ADIPOQ and PDGFC) because cells with target 

gene knock-down might still be exposed to the factors if they are secreted by other cells in their environment. 

In our CROP-Seq experiment we observed robust changes in gene expression in response to knock-down 

of genes encoding transcription factors (CEBPB, PPARG, MAFF) and an enzyme (TIPARP). Therefore, we 

envision CROP-Seq as applicable to study genes encoding a variety of protein types, although it is likely that 

the interpretation of the results is more straightforward if the candidate proteins directly affect gene expression 

that is quantified by CROP-Seq. 

Adipocytes, both in vivo and in vitro, are technically challenging to work with, because of their large size, 

high lipid content, and fragility. To ensure that adipocytes are well-represented within the sequenced cells from 

the differentiated population, we propose that cell sorting based on fluorescent staining of neutral lipids or cell 

size and granularity can be added to the CROP-Seq pipeline.  

In summary, our method is the first to combine pooled single-cell CRISPRi knock-down with scRNA-Seq 

readout in a human adipogenesis model. The CROP-Seq is a powerful tool to investigate molecular function 

of novel genes with putative role in adipocyte biology. 
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Figure 1: Establishment of a CRISPRi screen in a human primary cell model of adipocyte differentiation 

at single-cell resolution. 

A) Quantification of target gene expression at D0 by average expression and percent of cells with detectable 

expression depending on the sgRNA. knock-down of targeted genes is highlighted by the blue boxes. 

B) Heat map of all differentially expressed (DE) genes within cells with non-targeting sgRNAs using Seurat 

shows clustering by day of differentiation. 

C) UMAP plot of all cells with identified sgRNAs across differentiation timepoints. 

D) UMAP plot of all cells showing single-cell expression of marker genes for pre-adipocytes (SERPINE1) and 

adipocytes (FABP4). 

E) Slingshot pseudotime ordering of all non-targeting sgRNA-expressing cells reveals a continuous trajectory 

of cell states corresponding to adipocyte differentiation. 

F) Heatmap of genes driving Slingshot pseudotime states in cells with non-targeting sgRNAs. 

G) Expression of preadipocyte (SERPINE1) and adipocyte (ADIPOQ, FABP4) markers along the pseudotime 

trajectory. 
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Figure 2: CROP-seq is a reliable approach to characterize biologically meaningful genetic perturbation 

effects in the human SGBS adipogenesis model. 

A) Number of differentially expressed genes identified using scMaGeCK in different gene knock-down 

conditions with score 0.1 cutoff and p < 0.05.  

B) GSEA analysis of PPARG knock-down DE genes at D0, D4, D8. Gene set of adipogenesis-related genes is 

highlighted in orange. 

C) Volcano plot of DE genes for PPARG knock-down at D8.  
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Figure 3: CROP-Seq identifies TNF-α  gene expression response as a downstream target of MAFF. 

A) The results of Gene Set Enrichment Analysis for CROP-Seq results in MAFF knock-down cells at D0, D4 

and D8 of differentiation. Gene sets relevant for TNF-α signaling is highlighted in orange. 

B) Co-expression modules identified for MAFF in human and mouse adipose tissue, constructed by WGCNA 

and MEGENA. The modules relevant for immune function are highlighted in red. 

C) UMAP plot showing single-cell RNA expression of MAFF in human adipose tissue59. Preadipocyte (PA) and 

adipocyte (Ad) clusters are marked. 

D) UMAP plot showing single-cell MAFF expression in SGBS cells in the CROP-Seq experiment. 

E) RT-qPCR quantification of CXCL6 and IL6 gene expression in MAFF-deficient preadipocytes than in non-

targeting control preadipocytes following stimulation with TNFα. Two-tailed Student t Test. ***, p<0.001. N=3 

biological replicates. 
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Figure 4: CROP-seq as an approach to connect changes in transcriptome to gene activity. 

A) The results of Gene Set Enrichment Analysis for CROP-Seq results in TIPARP knock-down cells at D0, D4 

and D8 of differentiation.  

B) Co-expression network of TIPARP in adipose tissue. 

C) RT-qPCR quantification of differentiation marker PPARG and brown/beige adipocyte markers (STC2, 

CYP1B1, UCP1) gene expression in SGBS cells differentiated following gene knock-down using TIPARP 

siRNA (siTIPARP) or scrambled control siRNA. 
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D) RT-qPCR quantification of PPARG, STC2, CYP1B1, and UCP1 in SGBS cells differentiated in the presence 

of TIPARP inhibitor RBN-2397 or DMSO control. 

E) Representative light microscopy images of SGBS cells differentiated following gene knock-down using 

TIPARP siRNA (siTIPARP) or scrambled control siRNA. 

F) Representative light microscopy images of SGBS cells differentiated in the presence of TIPARP inhibitor 

RBN-2397 or DMSO control. 

Two-tailed Student t test. ***, p<0.001; *, p<0.05. N=3 biological replicates. 
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